JP6498531B2 - 燃料電池システム及びその運転方法 - Google Patents

燃料電池システム及びその運転方法 Download PDF

Info

Publication number
JP6498531B2
JP6498531B2 JP2015111231A JP2015111231A JP6498531B2 JP 6498531 B2 JP6498531 B2 JP 6498531B2 JP 2015111231 A JP2015111231 A JP 2015111231A JP 2015111231 A JP2015111231 A JP 2015111231A JP 6498531 B2 JP6498531 B2 JP 6498531B2
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
cell system
fuel
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015111231A
Other languages
English (en)
Other versions
JP2016225165A (ja
Inventor
藤田 顕二郎
顕二郎 藤田
健太郎 伊東
健太郎 伊東
貴英 羽田
貴英 羽田
淳也 香田
淳也 香田
達哉 中島
達哉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2015111231A priority Critical patent/JP6498531B2/ja
Publication of JP2016225165A publication Critical patent/JP2016225165A/ja
Application granted granted Critical
Publication of JP6498531B2 publication Critical patent/JP6498531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は燃料電池システム及び燃料電池システムの運転方法に関する。
燃料電池システムの燃料電池は、例として図13に示すように、連続的に発電している時間(連続発電時間)が長くなるに従って、触媒の活性が低下することで発電電圧が低下し、これに伴って発電の効率も低下していく、という特性を有している。このため、燃料電池システムは、燃料電池の連続発電時間が予め設定した時間(例えば図13に示す時間t)に達する度に、燃料電池の発電を停止させて触媒の活性を回復させる回復処理を行い、その後、燃料電池の発電を再開する構成となっていることが多い。
また特許文献1には、燃料電池によって発電された電圧を計測し、計測した電圧が所定の値(例えば図13に示す電圧v)以下になったときに、燃料極への燃料ガスの導入を継続しつつ、空気極への酸化剤ガスの導入を停止することで、燃料電池の発電を停止させる技術が提案されている。
特開2006−120421号公報
しかしながら、燃料電池は、触媒の活性低下のような回復可能な変化とは別に、燃料電池システムの稼働期間が長期間になるに伴い、触媒が経年的に劣化するという不可逆の変化も生ずる。そして、触媒の経年劣化により、例として図14に「経年劣化期(発電終了を時間で判定)」と表記して示すように、発電開始時の発電電圧が燃料電池システムの稼働初期よりも低下し、連続発電時の電圧降下量も燃料電池システムの稼働初期と比較して増大する。更に、燃料電池システムにおけるその他の経年劣化、例えば改質器における改質効率の低下、所望の動力を得るための補機の消費エネルギーの増大、インバータの効率の低下等も影響することで、連続発電時に出力電力の低下も生ずる。
上述した燃料電池システムの経年変化に対し、連続発電時間が予め設定した時間に達したことをトリガとして燃料電池の発電を停止させる技術を適用した場合は、燃料電池システムの稼働期間が長期間になった際に、図14に「経年劣化期(発電終了を時間で判定)」と表記して示すように、燃料電池の発電電圧が大幅に低下し、効率も大幅に低下している状態でも燃料電池の発電が継続される可能性があり、燃料電池システムの効率の大幅な低下を招く可能性がある。
一方、発電電圧が所定値以下に低下したことをトリガとして燃料電池の発電を停止させる技術を適用した場合は、燃料電池の発電電圧が大幅に低下する前に燃料電池の発電を停止させることができるので、燃料電池システムの効率の大幅な低下を回避できる。但し、燃料電池システムの稼働期間が長期間になると、前述のように、発電開始時の発電電圧が燃料電池システムの稼働初期よりも低下し、連続発電時の電圧降下量も燃料電池システムの稼働初期と比較して増大するので、図14に「経年劣化期(発電終了を電圧で判定)」と表記して示すように、燃料電池の連続発電時間が非常に短くなって利用者に違和感を与える可能性があり、また、発電開始時の発電電圧が所定値以下になって発電が開始されない事態も生じ得る。
本発明は上記事実を考慮して成されたもので、経年変化に伴う効率の大幅な低下及び連続発電時間の短時間化を抑制できる燃料電池システム及び燃料電池システムの運転方法を得ることが目的である。
請求項1記載の発明に係る燃料電池システムは、燃料ガスにより発電する燃料電池と、 前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池を含む燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする制御部と、を含む燃料電池システムであって、前記制御部は、前記燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、発電停止の可否を問い合わせる情報を出力し、発電停止を許可する情報が入力された場合に、前記燃料電池の発電を停止させる
請求項1記載の発明では、燃料電池が燃料ガスにより発電する。また、制御部は、燃料電池の発電中に燃料電池の発電電圧及び燃料電池を含む燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に燃料電池の発電を停止させる。このように、燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方に基づいて燃料電池の発電を停止させることで、経年変化に伴い、燃料電池の発電電圧が大幅に低下している状態で燃料電池の発電が継続されることが防止され、効率が大幅に低下することが抑制される。
また、制御部は、燃料電池システムの稼働期間又は燃料電池の累積発電時間が長くなるに従って閾値を小さくする。これにより、燃料電池システムの稼働期間又は燃料電池の累積発電時間が長くなり、それに伴って燃料電池を含む燃料電池システムの経年変化が大きくなると、閾値が小さくされることで、燃料電池の発電において、燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下するまでの時間が延びることになり、燃料電池の連続発電時間が非常に短くなって利用者に違和感を与えたり、発電が開始されない事態となることが防止される。これにより、経年変化に伴う効率の大幅な低下及び連続発電時間の短時間化を抑制することができる。
また、燃料ガスにより発電する燃料電池を含む燃料電池システムは、例えば停電時等の非常時に電力供給を代替できる有用性の高いシステムであることを考慮し、請求項1記載の発明に係る制御部は、燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、発電停止の可否を問い合わせる情報を出力し、発電停止を許可する情報が入力された場合に、燃料電池の発電を停止させる。
これにより、燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下することで、発電停止の可否を問い合わせる情報が出力された場合に、例えば停電時等の非常時である等のときには、利用者は、発電停止を許可する情報を入力しないことで、燃料電池の発電を継続させることができる。従って、請求項1記載の発明によれば、燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、効率低下の回避(燃料ガスの利用効率の維持)を優先して発電を停止させるか、効率低下回避よりも発電の継続を優先するかを、利用者が選択することが可能となる。
請求項2記載の発明に係る燃料電池システムは、燃料ガスにより発電する燃料電池と、前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池を含む燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする制御部と、を含む燃料電池システムであって、前記燃料電池システムには、発電時間優先モードと効率優先モードとを含む複数の運転モードが設けられており、前記制御部は、前記燃料電池システムの運転モードとして発電時間優先モードが選択された場合に、前記燃料電池システムの運転モードとして効率優先モードが選択された場合よりも、少なくとも、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が所定値以上の期間における前記閾値の低下度合いを大きくする。
請求項2記載の発明では、利用者が、燃料電池システムの運転モードとして発電時間優先モード又は効率優先モードを選択することで、燃料電池システムの稼働期間又は燃料電池の累積発電時間が所定値以上となり、燃料電池を含む燃料電池システムの経年変化が大きくなった場合に、燃料電池において、燃料ガスを高効率で利用することを優先して発電させるか、発電時間がなるべく長くすることを優先して発電させるかが切り替わることになる。従って、請求項2記載の発明によれば、燃料電池システムの経年変化が大きくなった期間における燃料電池の発電に、利用者の好みを反映させることができる。
また、請求項1又は請求項2記載の発明において、制御部は、例えば請求項3に記載したように、燃料電池の発電を停止させた場合に、燃料電池に含まれる触媒の活性を回復させるための回復処理を行わせることが好ましい。回復処理は、例えば、燃料電池に燃料ガス及び空気を供給している状態で燃料電池を流れる電流を低下させ、次に、燃料電池への空気の供給を停止して燃料ガスのみ供給している状態を所定時間継続し、その後、燃料電池への燃料ガスの供給を停止する、という一連の処理により実現できる。回復処理により燃料電池に含まれる触媒の活性が回復するので、発電電圧及び効率が回復した状態で燃料電池の発電を再開することが可能となる。
また、請求項1〜請求項3の何れか1項記載の発明において、制御部は、燃料電池の累積発電時間を計測し、累積発電時間の計測値の増加に伴って閾値を小さくするようにしてもよいが、例えば請求項4に記載したように、累積発電電力量、累積原料ガス流量、累積カソード空気流量及び累積改質水流量の少なくとも1つに基づいて、燃料電池の累積発電時間を判断するようにしてもよい。
請求項5記載の発明に係る燃料電池システムの運転方法は、燃料ガスにより発電する燃料電池を含む燃料電池システムにおいて、前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする燃料電池システムの運転方法であって、前記燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、発電停止の可否を問い合わせる情報を出力し、発電停止を許可する情報が入力された場合に、前記燃料電池の発電を停止させるので、請求項1と同様に、燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、効率低下の回避(燃料ガスの利用効率の維持)を優先して発電を停止させるか、効率低下回避よりも発電の継続を優先するかを、利用者が選択することが可能となる。
請求項6記載の発明に係る燃料電池システムの運転方法は、燃料ガスにより発電する燃料電池を含む燃料電池システムにおいて、前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする燃料電池システムの運転方法であって、前記燃料電池システムには、発電時間優先モードと効率優先モードとを含む複数の運転モードが設けられており、前記燃料電池システムの運転モードとして発電時間優先モードが選択された場合に、前記燃料電池システムの運転モードとして効率優先モードが選択された場合よりも、少なくとも、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が所定値以上の期間における前記閾値の低下度合いを大きくするので、請求項2記載の発明と同様に、燃料電池システムの経年変化が大きくなった期間における燃料電池の発電に、利用者の好みを反映させることができる。
本発明は、経年変化に伴う効率の大幅な低下及び連続発電時間の短時間化を抑制できる、という効果を有する。
第1実施形態に係る燃料電池システムの概略構成図である。 第1実施形態における停止条件テーブルの一例を示す図表である。 第1実施形態に係る発電停止制御処理の内容を示すフローチャートである。 第1実施形態において、稼働初期及び経年劣化期での連続発電時の発電電圧及び出力電力の変化の一例を示す線図である。 発電停止の可否を問い合わせるメッセージの一例を示すイメージ図である。 停止条件テーブルの他の例を示す図表である。 停止条件テーブルの他の例を示す図表である。 停止条件テーブルの他の例を示す図表である。 停止条件テーブルの他の例を示す図表である。 停止条件テーブルの他の例を示す図表である。 第2実施形態における停止条件テーブルの一例を示す図表である。 第2実施形態に係る発電停止制御処理の内容を示すフローチャートである。 従来の燃料電池システムにおいて、連続発電時の発電電圧の変化の一例を示す線図である。 従来の燃料電池システムにおいて、稼働初期及び経年劣化期での連続発電時の発電電圧及び出力電力の変化の一例を示す線図である。
以下、図面を参照して本発明の実施形態の一例を詳細に説明する。
〔第1実施形態〕
図1には、本実施形態に係る燃料電池システム10が示されている。燃料電池システム10は、主要な構成として、改質器12、燃料電池スタック14及び制御部16を備えている。
改質器12は、改質触媒18、シフト触媒20、選択酸化触媒22及び燃焼器24を有している。改質触媒18には原料ガス管26の一端が接続されており、原料ガス管26の途中にはブロワ28が設けられている。改質触媒18は、脱硫器によって硫黄化合物が吸着除去された原料ガスが原料ガス管26を通じて供給され、供給された原料ガスを、後述する凝縮水供給管68を通じて供給された凝縮水を利用して水蒸気改質する。
燃焼器24には、途中にブロワ30が設けられた燃焼空気管32の一端と、燃料極排ガス管34の一端と、燃焼排ガス管36の一端と、が各々接続されており、燃焼空気管32を通じて燃焼空気が供給され、燃料極排ガス管34を通じて燃料極排ガスが供給される。燃料極排ガスには燃料電池スタック14で未反応の水素が含まれており、燃焼器24は、燃焼空気管32を通じて供給された燃焼空気と、燃料極排ガス管34を通じて供給された燃料極排ガスと、を混合した混合ガスを燃焼し、改質触媒18を加熱する。なお、燃焼排ガスは燃焼排ガス管36を通じて排出される。
シフト触媒20は、改質触媒18で発生した一酸化炭素を水蒸気と反応させて水素と二酸化炭素に変換し、一酸化炭素濃度を低減させる。選択酸化触媒22は、途中にブロワ38が設けられた選択酸化空気管40の一端と、燃料ガス管42の一端と、が各々接続されており、選択酸化空気管40を通じて選択酸化空気が供給される。選択酸化触媒22は、貴金属触媒上で一酸化炭素と酸素を反応させて二酸化炭素に変換し、一酸化炭素を酸化除去する。
改質器12は、以上の構成により、供給された原料ガスから水素ガスを含む燃料ガスを生成し、生成した燃料ガスを、燃料ガス管42を通じて燃料電池スタック14の後述する燃料極48に供給する。
燃料電池スタック14は、積層された複数の燃料電池セル44を含んでいる。なお、燃料電池スタック14は、固体高分子型燃料電池(PEFC)、リン酸型燃料電池(PAFC)、固体酸化物型燃料電池(SOFC)及び溶融炭酸塩型燃料電池(MCFC)の何れであってもよい。個々の燃料電池セル44は、電解質層46と、電解質層46の表裏面に各々積層された燃料極48及び空気極50と、を含んでいる。
燃料極48(アノード極)には、燃料ガス管42を通じて改質器12から燃料ガスが供給される。燃料極48では、下記の(1)式で示されるように、燃料ガス中の水素が水素イオンと電子とに分解される。燃料極48で生成された水素イオンは、電解質層46を通って空気極50に移動し、燃料極48で生成された電子は、外部回路を通って空気極50に移動する。
(燃料極反応)
→2H+2e …(1)
一方、空気極50(カソード極)には、途中にブロワ52が設けられたカソード空気管54を通じてカソード空気が供給される。空気極50では、下記の(2)式で示されるように、電解質層46を通ってきた水素イオンと、外部回路を通ってきた電子が、カソード空気中の酸素と反応して、水が生成される。
(空気極反応)
4H+O+4e →2HO …(2)
そして、電子が燃料極48から空気極50に移動することにより、個々の燃料電池セル44で発電が行われる。また、個々の燃料電池セル44は、発電時に上記の反応に伴って発熱し、空気極50で生成された水は水蒸気とされる。
燃料電池スタック14は電気配線を介してインバータ56と接続されており、燃料電池セル44の発電によって得られた直流の電力はインバータ56に供給される。インバータ56は、燃料電池スタック14から供給された直流の電力を、交流の電力へ変換して電力負荷へ出力する。
一方、一端が燃焼器24に接続された燃焼排ガス管36の他端はドレイナー58に接続されている。また、燃料電池セル44の空気極50には、空気極排ガス管60の一端が接続されており、空気極排ガス管60の他端は燃焼排ガス管36の途中に接続されている。ドレイナー58は、燃焼排ガス管36及び空気極排ガス管60を通じて供給された排ガス(燃焼排ガス及び空気極排ガス)に含まれる水蒸気を凝縮する。ドレイナー58の排ガス流路の出口部には排気管62の一端が接続されており、ドレイナー58で凝縮水が除去された排ガスは排気管62を通じて外部へ排出される。
また、ドレイナー58の凝縮水流路の出口部は凝縮水回収管64を介してドレンタンク66の入口部に接続されている。ドレンタンク66は、ドレイナー58で凝縮された凝縮水が凝縮水回収管64を通じて供給され、供給された凝縮水を貯留する。ドレンタンク66の出口部には、前述の改質触媒18に一端が接続された凝縮水供給管68の他端が接続されており、凝縮水供給管68の途中にはポンプ70が設けられている。ドレイナー58で生成された凝縮水は、凝縮水回収管64を通じてドレンタンク66に回収された後、凝縮水供給管68を通じて改質触媒18に供給され、改質触媒18において水蒸気改質用の水蒸気として利用される。
制御部16は、CPU72、ワークメモリ等として用いられるメモリ74、HDD(Hard Disk Drive)又はフラッシュメモリを含む不揮発性の記憶部76及び入出力インタフェース(I/O)78を備えている。
図1では、燃料電池システム10に設けられた各種のセンサと、ブロワ28,30,38,52及びポンプ70を駆動するモータ群と、を計測部/駆動部80と総称して示しており、計測部/駆動部80は制御部16のI/O78に接続されている。計測部/駆動部80には、燃料電池スタック14の発電電圧を検出するセンサと、燃料電池システム10の出力電力を検出するセンサと、が含まれている。また、I/O78には操作部82が接続されている。図5にも示すように、操作部82は、各種の情報を表示可能な表示部84と、利用者が各種の指示を入力可能な入力部86と、を含んでいる。
制御部16の記憶部76には、燃料電池スタック14が連続的に発電している場合に発電を停止させる条件を表す停止条件情報が登録された停止条件テーブル88が記憶されている。図2に停止条件テーブル88の一例を示す。図2に示す停止条件テーブル88は、燃料電池システム10の稼働年数が「〜2年」、「〜4年」、「〜6年」、「〜8年」、「〜10年」、「10年以降」の各場合毎に、停止条件である発電電圧及び出力電力の値が各々設定されている。停止条件情報が表す発電電圧及び出力電力の値は、燃料電池スタック14の発電を停止させるか否かを判定する際の閾値に相当し、燃料電池システム10の稼働期間が長くなるに従って前記閾値が小さくなるように設定されている。
なお、ここで示している発電電圧の閾値はセル電圧に対する閾値であるが、これに限定されるものではなく、燃料電池スタック14における燃料電池セルの積層枚数に対応したスタック電圧に対する閾値を適用することも可能である。
なお、詳細は後述するが、本実施形態では、停止条件テーブル88に停止条件として設定された発電電圧及び出力電力のうち、発電電圧を用いて燃料電池スタック14の発電を停止させるか否かを判定する態様を説明する。この態様では、図2では停止条件の1つとして示されている出力電力の値を停止条件テーブル88から削除することも可能である。また、発電電圧に代えて出力電力を用いて燃料電池スタック14の発電を停止させるか否かを判定するようにしてもよい。この場合は、図2では停止条件の1つとして示されている発電電圧の値を停止条件テーブル88から削除することも可能である。また、発電電圧及び出力電力を各々用いて燃料電池スタック14の発電を停止させるか否かを判定するようにしてもよい。
また、記憶部76には、CPU72によって実行される運転制御プログラム90も記憶されている。運転制御プログラム90は、後述する発電停止制御処理を行うためのプログラムを含んでいる。
次に本第1実施形態の作用として、燃料電池スタック14で発電が開始されたことをトリガとして、制御部16で実行される発電停止制御処理について、図3を参照して説明する。
発電停止制御処理のステップ100において、制御部16は、記憶部76の所定の記憶領域に記憶されている燃料電池システム10の現在の稼働年数(燃料電池システム10が稼働を開始してからの経過年数)を取得し、取得した稼働年数と対応付けて停止条件テーブル88に設定されている停止条件情報(本第1実施形態では発電電圧の値)を停止条件テーブル88から取得する。
なお、燃料電池システム10は、停止条件テーブル88に設定された停止条件情報が表す停止条件以外に、燃料電池スタック14の発電を停止させる他の停止条件も予め設定されている。他の停止条件としては、例えば、操作部82の入力部86を介して利用者から発電の停止が指示された場合や、利用者の電気や湯の消費パターンを学習した結果に基づき発電を停止すべきと判断した場合、図示しない貯湯槽の消毒を行うタイミングが到来した場合等が挙げられる。このため、次のステップ102において、制御部16は、上記のような他の停止条件を満足したか否か判定する。
ステップ102の判定が否定された場合はステップ104へ移行し、ステップ104において、制御部16は、燃料電池スタック14の発電電圧が、ステップ100で停止条件テーブル88から取得した停止条件、すなわち燃料電池システム10の稼働年数に応じた停止条件を満足したか否か判定する。ステップ104の判定も否定された場合はステップ106へ移行し、ステップ106において、制御部16は、一定時間待機した後に、ステップ102に戻る。これにより、燃料電池スタック14で発電が開始されると、ステップ102又はステップ104の判定が肯定される迄は、燃料電池スタック14の発電が継続される。
なお、燃料電池スタック14で発電が行われている間、制御部16は、電力負荷の消費電力を検知し、検知した消費電力に基づき燃料電池システム10が要求されている出力電力を算出し、算出した出力電力から出力電流を算出し、算出した出力電流から燃料電池スタック14への燃料ガスの供給量及びカソード空気の供給量、改質器12への凝縮水供給量等を算出する。そして、制御部16は、燃料電池スタック14からの出力電流を算出した出力電流に制御すると共に、燃料電池スタック14への燃料供給量を算出した燃料ガスの供給量に制御し、燃料電池スタック14へのカソード空気の供給量を算出した供給量に制御し、改質器12への凝縮水の供給量を算出した凝縮水供給量に制御する制御信号を計測部/駆動部80へ出力する。
燃料電池スタック14で発電が行われている間、制御部16で上記処理が繰り返されることで、燃料電池スタック14では、電力負荷の消費電力に応じた電力が発電され、電力負荷へ供給される。また、燃料電池スタック14の発電に伴って生成された湯は貯湯槽に貯留される。
また、前述した他の停止条件を満足した場合には、ステップ102の判定が肯定されてステップ112へ移行し、ステップ112以降で、燃料電池スタック14における発電を停止させて、燃料電池スタック14に含まれる触媒の活性を回復させる回復処理が行われる。なお、回復処理については後述する。
また、他の停止条件を満足しないまま燃料電池スタック14での発電が継続された場合には、例として図4に「稼働初期」と表記して示すように、燃料電池スタック14に含まれる触媒の活性が徐々に低下することで燃料電池スタック14の発電電圧が徐々に低下する。そして、燃料電池スタック14の発電電圧が、ステップ100で停止条件テーブル88から取得した停止条件情報が表す発電電圧の値以下になると、ステップ104の判定が肯定されることでステップ108へ移行する。
なお、燃料電池システム10が、稼働開始から長い年月が経過している場合、触媒の経年的な劣化、改質器12の改質効率の低下、所望の動力を得るための補機の消費エネルギーの増大、インバータ56の効率の低下等の影響により、例として図4に「経年劣化期」と表記して示すように、発電開始時の発電電圧が燃料電池システム10の稼働初期よりも低下し、連続発電時の電圧降下量(発電電圧の低下の傾き)も燃料電池システムの稼働初期よりも大きくなり、連続発電時に出力電力の低下も生ずる。
これに対し、本実施形態では、停止条件テーブル88に、燃料電池スタック14における連続発電の停止条件を発電電圧又は出力電力の値によって規定する停止条件情報が設定されており、当該停止条件情報は、燃料電池システム10の稼働期間が長くなるに従って、停止条件に相当する発電電圧及び出力電力の値が小さくなるように設定されている。これにより、燃料電池システム10が、稼働開始から長い年月が経過している場合に、図4に「経年劣化期」として示す発電電圧及び出力電力の変化を、図14に「経年劣化期」として示す発電電圧及び出力電力の変化と比較しても明らかなように、停止条件を発電時間で規定した場合と比較して、発電電圧及び出力電力が大幅に低下する状態となる迄燃料電池スタック14の発電を継続させることを防止できると共に、停止条件として一定の発電電圧(電圧閾値v)を用いる場合と比較して、燃料電池スタック14の連続発電時間が非常に短くなって利用者に違和感を与えたり、燃料電池スタック14で発電が開始されない事態となることを防止できる。
ステップ108において、制御部16は、操作部82の表示部84に発電停止の可否を問い合わせるメッセージを表示することで、発電停止の可否を利用者に問い合わせる。例として図5には、発電停止の可否を問い合わせるメッセージとして、「燃料電池の性能が低下してきました。発電を停止して性能回復処理を行ってよろしいですか?」というメッセージ92を表示部84に表示すると共に、問い合わせに対する回答を入力するための選択肢として複数のボタン94を表示部84に表示した状態を示している。
利用者により、入力部86を介して、表示部84に表示した複数のボタン94の何れかを選択する操作が行われると、次のステップ110へ移行し、ステップ110において、制御部16は、利用者によって何れのボタン94が選択されたかに基づいて、利用者によって発電停止が許可されたか否か判定する。ステップ110の判定が否定された場合はステップ102に戻り、ステップ102〜106を繰り返すので、燃料電池スタック14における発電が引き続き行われる。
これにより、燃料電池スタック14の発電電圧が停止条件情報が表す発電電圧の値以下になった場合にも、例えば停電時等の非常時であれば、利用者は、発電停止を許可しないことに相当するボタン94を選択する操作(発電停止を許可しない情報を入力する操作)を行うことで、発電を継続させることが可能となる。
なお、ステップ110の判定が否定されてステップ102に戻った場合には、ステップ104の判定が直ちに肯定されて再度メッセージが表示されることが阻止されるように、例えばタイマをスタートさせ、タイマがタイムアウトする迄の間はステップ104の判定をスキップする等の処理を行うことが望ましい。
また、利用者により、発電停止を許可することに相当するボタン94を選択する操作(発電停止を許可する情報を入力する操作)が行われた場合には、ステップ110の判定が肯定されてステップ112へ移行し、ステップ112以降で、燃料電池スタック14における発電を停止させて、燃料電池スタック14に含まれる触媒の活性を回復させる回復処理が行われる。
すなわち、ステップ112において、制御部16は、燃料電池スタック14を流れる電流が低下するように制御する。続いて、ステップ114において、制御部16は、ブロワ52の作動を停止させることで、燃料電池スタック14の空気極50へのカソード空気の供給を停止させる。次のステップ116において、制御部16は、予め設定した一定時間が経過するまで待機する。このように、燃料電池スタック14の燃料極48へ燃料ガスが供給される一方で、空気極50へのカソード空気の供給が停止している状態が一定時間継続されることで、燃料電池スタック14に含まれる触媒の活性が回復される。
ステップ116で一定時間が経過すると、次のステップ118において、制御部16は、燃料電池スタック14の燃料極48への燃料ガスの供給を停止させる。そしてステップ120において、制御部16は、回復処理の完了を通知し、発電停止制御処理を終了する。なお、回復処理完了の通知先としては、例えば、燃料電池スタック14で発電を再開させる処理を制御部16で行うためのプログラムが挙げられるが、これに限定されるものではなく、回復処理の完了を受けて燃料電池スタック14での発電が再開される通知先であればよく、前記プログラムの起動を制御する別のプログラムであってもよい。上記のように、回復処理を経て発電を再開することで、低下していた燃料電池スタック14の発電電圧が回復し、低下していた発電の効率も回復することになる。
このように、本第1実施形態では、停止条件テーブル88に設定する停止条件情報を、発電電圧又は出力電力の値によって連続発電の停止条件を規定し、かつ燃料電池システム10の稼働期間が長くなるに従って、停止条件に相当する発電電圧及び出力電力の値が小さくなるように設定している。そして、燃料電池システム10の現在の稼働年数に対応する停止条件情報を停止条件テーブル88から取得し、燃料電池スタック14の発電電圧が停止条件情報が表す発電電圧の値以下になった場合に、利用者から許可されれば燃料電池スタック14の発電を停止させる。これにより、燃料電池システム10の経年変化に伴い、効率が大幅に低下する状態となるまで発電を継続したり、連続発電時間が非常に短くなることを抑制することができる。
また、本第1実施形態では、燃料電池スタック14の発電電圧が停止条件に相当する値まで低下した場合に、発電停止の可否を利用者に問い合わせるメッセージ等を表示部84に表示し、発電停止を許可する情報が入力部86を介して入力された場合に、燃料電池スタック14の発電を停止させている。これにより、発電停止の可否を利用者に問い合わせるメッセージ等を表示部84に表示した際に、例えば停電時等の非常時である等のときには、利用者が、燃料電池スタック14の発電を継続させることも可能となり、利便性が向上する。
また、燃料電池スタック14の発電を停止させた場合に、燃料電池スタック14に含まれる触媒の活性を回復させるための回復処理を行うので、発電電圧及び効率が回復した状態で燃料電池スタック14の発電を再開することができる。
なお、上記では停止条件テーブル88が、燃料電池システム10の稼働年数が「〜2年」、「〜4年」、「〜6年」、「〜8年」、「〜10年」、「10年以降」の各場合毎に、停止条件である発電電圧及び出力電力の値が各々設定されている場合を説明した。しかし、停止条件テーブル88は上記に限られるものではなく、例えば図6に示すように、燃料電池システム10の稼働年数に代えて燃料電池システム10の累積発電時間を適用し、例えば累積発電時間が「〜1万時間」、「〜2万時間」、「〜3万時間」、「〜4万時間」、「〜5万時間」、「5万時間以上」の各場合毎に停止条件を各々設定するようにしてもよい。
また、例えば図7に示すように、燃料電池システム10の稼働年数に代えて燃料電池システム10の累積発電電力量を適用し、例えば累積発電電力量が「〜0.5万kWh」、「〜1万kWh」、「〜1.5万kWh」、「〜2万kWh」、「〜2.5万kWh」、「2.5万kWh以上」の各場合毎に停止条件を各々設定するようにしてもよい。累積発電電力量は累積発電時間と相関があり、累積発電時間を間接的に判断するためのパラメータの1つである。
また、例えば図8に示すように、燃料電池システム10の稼働年数に代えて燃料電池システム10の累積原料ガス流量を適用し、例えば累積原料ガス流量が「〜1000m3」、「〜2000m3」、「〜3000m3」、「〜4000m3」、「〜5000m3」、「5000m3以上」の各場合毎に停止条件を各々設定するようにしてもよい。累積原料ガス流量も累積発電時間と相関があり、累積発電時間を間接的に判断するためのパラメータの1つである。
また、例えば図9に示すように、燃料電池システム10の稼働年数に代えて燃料電池システム10の累積カソード空気流量を適用し、例えば累積カソード空気流量が「〜10000m3」、「〜20000m3」、「〜30000m3」、「〜40000m3」、「〜50000m3」、「50000m3以上」の各場合毎に停止条件を各々設定するようにしてもよい。累積カソード空気流量も累積発電時間と相関があり、累積発電時間を間接的に判断するためのパラメータの1つである。
また、例えば図10に示すように、燃料電池システム10の稼働年数に代えて燃料電池システム10の累積改質水流量を適用し、例えば累積改質水流量が「〜4000L」、「〜8000L」、「〜12000L」、「〜16000L」、「〜20000L」、「20000L以上」の各場合毎に停止条件を各々設定するようにしてもよい。累積改質水流量も累積発電時間と相関があり、累積発電時間を間接的に判断するためのパラメータの1つである。
〔第2実施形態〕
次に本発明の第2実施形態を説明する。なお、第1実施形態と同一の部分には同一の符号を付し、説明を省略する。
図11には、本第2実施形態に係る停止条件テーブル88を示す。本第2実施形態では、燃料電池システム10の運転モードとして、発電時間優先モードと効率優先モードが設けられており、本第2実施形態に係る停止条件テーブル88は、燃料電池システム10の稼働年数が各年数のときの停止条件(発電電圧及び出力電力の値)を表す停止条件情報が、各モード毎に各々設定されている。また、発電時間優先モードに対応する停止条件は、効率優先モードに対応する停止条件と比較して、稼働年数が2年以降の期間における発電電圧及び出力電力の値の低下度合いが大きくされている。
次に本第2実施形態の作用を説明する。本第2実施形態では、燃料電池システム10の運転モードとして、発電時間優先モード及び効率優先モードの何れかが利用者により操作部82を介して予め選択される。利用者によって選択された燃料電池システム10の運転モードは、例えば制御部16の記憶部76に記憶される。
図12に示すように、本第2実施形態に係る発電停止制御処理は、第1実施形態で説明した発電停止制御処理(図3)と比較して、ステップ100に代えてステップ122の処理を行う点でのみ相違している。本第2実施形態に係る発電停止制御処理のステップ122において、制御部16は、記憶部76に記憶されている燃料電池システム10の現在の稼働年数及び運転モードを取得し、取得した稼働年数及び運転モードと対応付けて停止条件テーブル88に設定されている停止条件情報を停止条件テーブル88から取得する。
上記のステップ122で取得した停止条件情報はステップ104の判定に用いられる。すなわち、本第2実施形態に係る発電停止制御処理のステップ104において、制御部16は、燃料電池スタック14の発電電圧が、ステップ100で停止条件テーブル88から取得した停止条件、すなわち燃料電池システム10の稼働年数及び運転モードに応じた停止条件を満足したか否か判定する。
前述のように、発電時間優先モードに対応する停止条件は、効率優先モードに対応する停止条件と比較して、稼働年数が2年以降の期間における発電電圧及び出力電力の値の低下度合いが大きく設定されているので、燃料電池システム10の運転モードが発電時間優先モードの場合には、燃料電池システム10の運転モードが効率優先モードの場合よりもステップ104の判定が肯定されるタイミングが遅くなり、燃料電池スタック14の連続発電時間がより長くなる。一方、燃料電池システム10の運転モードが効率優先モードの場合には、燃料電池システム10の運転モードが発電時間優先モードの場合よりも、燃料電池スタック14の発電電圧がより高い状態、すなわち発電の効率がより高い状態で燃料電池スタック14の連続発電が停止されるので、燃料電池スタック14の発電の効率が大きく低下することが抑制される。
このように、本第2実施形態では、利用者が、燃料電池システム10の運転モードとして発電時間優先モード又は効率優先モードを選択することで、燃料電池スタック14における発電を、効率が大きく低下しないことを優先して行わせるか、発電時間がなるべく長くすることを優先して行わせるか、を切り替えることができる。従って、特に燃料電池システム10の経年変化が大きくなった期間における燃料電池の発電に、利用者の好みを反映させることができる。なお、その他の効果は第1実施形態と同様であるので、説明を省略する。
なお、上記の第2実施形態では、発電時間優先モードに対応する停止条件と、効率優先モードに対応する停止条件と、について、稼働年数が2年以降の期間における発電電圧及び出力電力の値を相違させた態様を説明したが、発電電圧又は出力電力の値を相違させる期間は上記に限定されるものではなく、発電開始時の発電電圧の低下や発電中の発電電圧の低下、発電中の出力電力の低下がより顕著となる期間、例えば稼働年数が6年以降や8年以降の期間について発電電圧又は出力電力の値を相違させるようにしてもよい。
また、上記の第2実施形態では、燃料電池システム10の運転モードとして発電時間優先モードと効率優先モードが設けられた態様を説明したが、これに限定されるものではなく、例えば、稼働年数が2年以降の期間における発電電圧及び出力電力の値を発電時間優先モードと効率優先モードとの間に相当する値とした標準モードを追加してもよい。
また、上記の第2実施形態に係る停止条件テーブル88についても、燃料電池システム10の経年変化を表すパラメータとして、燃料電池システム10の稼働年数に代えて、燃料電池システム10の累積発電時間、累積発電電力量、累積原料ガス流量、累積カソード空気流量、及び、累積改質水流量の何れか1つを適用するようにしてもよいし、稼働年数、累積発電時間、累積発電電力量、累積原料ガス流量、累積カソード空気流量、及び、累積改質水流量の中から選択した2つ以上のパラメータを、燃料電池システム10の経年変化を表すパラメータとして適用するようにしてもよい。
更に、上記では、燃料電池システム10の経年変化を表すパラメータが各値のときの停止条件を表す停止条件情報を停止条件テーブル88に設定・記憶する態様を説明したが、本発明はこれに限定されるものではなく、例えば、停止条件を規定する閾値を、燃料電池システム10の経年変化を表すパラメータ(燃料電池システム10の稼働年数、累積発電時間、累積発電電力量、累積原料ガス流量、累積カソード空気流量、及び、累積改質水流量の何れでもよい)を変数とする関数の形で規定して記憶するようにしてもよい。
また、上記では、燃料電池システムの一例として、単一の燃料電池スタックを備え、当該燃料電池スタックからの排ガスを循環させ、排ガスに含まれる未反応の水素を再利用する循環式の構成を説明したが、本発明に係る燃料電池システムは、上記構成に限られるものではなく、燃料電池スタックを複数備え、前段の燃料電池スタックからの排ガスに含まれる未反応の水素を後段の燃料電池スタックで再利用する多段式の構成であってもよい。
また、上記では発電停止制御処理を行うためのプログラムを含む運転制御プログラム90が記憶部76に予め記憶(インストール)されている態様を説明したが、上記のプログラムは、CD−ROMやDVD−ROM、メモリカード等の記録媒体に記録されている形態で提供することも可能である。
10…燃料電池システム、12…改質器、14…燃料電池スタック、16…制御部、44…燃料電池セル、56…インバータ、76…記憶部、80…計測部/駆動部、82…操作部、84…表示部、86…入力部、88…停止条件テーブル、92…メッセージ、94…ボタン

Claims (6)

  1. 燃料ガスにより発電する燃料電池と、
    前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池を含む燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする制御部と、
    を含む燃料電池システムであって、
    前記制御部は、前記燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、発電停止の可否を問い合わせる情報を出力し、発電停止を許可する情報が入力された場合に、前記燃料電池の発電を停止させる燃料電池システム。
  2. 燃料ガスにより発電する燃料電池と、
    前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池を含む燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする制御部と、
    を含む燃料電池システムであって、
    前記燃料電池システムには、発電時間優先モードと効率優先モードとを含む複数の運転モードが設けられており、
    前記制御部は、前記燃料電池システムの運転モードとして発電時間優先モードが選択された場合に、前記燃料電池システムの運転モードとして効率優先モードが選択された場合よりも、少なくとも、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が所定値以上の期間における前記閾値の低下度合いを大きくする燃料電池システム。
  3. 前記制御部は、前記燃料電池の発電を停止させた場合に、前記燃料電池に含まれる触媒の活性を回復させるための回復処理を行わせる請求項1又は請求項2記載の燃料電池システム。
  4. 前記制御部は、累積発電電力量、累積原料ガス流量、累積カソード空気流量及び累積改質水流量の少なくとも1つに基づいて、前記燃料電池の累積発電時間を判断する請求項1〜請求項3の何れか1項記載の燃料電池システム。
  5. 燃料ガスにより発電する燃料電池を含む燃料電池システムにおいて、
    前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする燃料電池システムの運転方法であって、
    前記燃料電池の発電電圧及び燃料電池システムの出力電力の少なくとも一方が閾値まで低下した場合に、発電停止の可否を問い合わせる情報を出力し、発電停止を許可する情報が入力された場合に、前記燃料電池の発電を停止させる燃料電池システムの運転方法。
  6. 燃料ガスにより発電する燃料電池を含む燃料電池システムにおいて、
    前記燃料電池の発電中に前記燃料電池の発電電圧及び前記燃料電池システムの出力電力の少なくとも一方が閾値まで低下する度に前記燃料電池の発電を停止させると共に、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が長くなるに従って前記閾値を小さくする燃料電池システムの運転方法であって、
    前記燃料電池システムには、発電時間優先モードと効率優先モードとを含む複数の運転モードが設けられており、
    前記燃料電池システムの運転モードとして発電時間優先モードが選択された場合に、前記燃料電池システムの運転モードとして効率優先モードが選択された場合よりも、少なくとも、前記燃料電池システムの稼働期間又は前記燃料電池の累積発電時間が所定値以上の期間における前記閾値の低下度合いを大きくする燃料電池システムの運転方法。
JP2015111231A 2015-06-01 2015-06-01 燃料電池システム及びその運転方法 Active JP6498531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111231A JP6498531B2 (ja) 2015-06-01 2015-06-01 燃料電池システム及びその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111231A JP6498531B2 (ja) 2015-06-01 2015-06-01 燃料電池システム及びその運転方法

Publications (2)

Publication Number Publication Date
JP2016225165A JP2016225165A (ja) 2016-12-28
JP6498531B2 true JP6498531B2 (ja) 2019-04-10

Family

ID=57746204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111231A Active JP6498531B2 (ja) 2015-06-01 2015-06-01 燃料電池システム及びその運転方法

Country Status (1)

Country Link
JP (1) JP6498531B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119918B2 (ja) * 2018-11-05 2022-08-17 トヨタ自動車株式会社 燃料電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120421A (ja) * 2004-10-20 2006-05-11 Ebara Ballard Corp 燃料電池発電システム
JP2006338925A (ja) * 2005-05-31 2006-12-14 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2007273388A (ja) * 2006-03-31 2007-10-18 Toshiba Corp 燃料電池システムおよびその動作制御方法
JP5444789B2 (ja) * 2009-03-31 2014-03-19 トヨタ自動車株式会社 燃料電池劣化判定装置

Also Published As

Publication number Publication date
JP2016225165A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
JP4946015B2 (ja) 燃料電池発電装置の運転方法
RU2402841C1 (ru) Система топливных элементов
JP2010027298A (ja) 燃料電池発電システム及びその性能回復方法並びに性能回復プログラム
JP4951917B2 (ja) 燃料改質システム
JP2003286002A (ja) 一酸化炭素除去装置
JP2005158557A (ja) 燃料電池システム
JP2006196402A (ja) 燃料電池システムの制御装置
JP5190749B2 (ja) 燃料電池システム
JP6498531B2 (ja) 燃料電池システム及びその運転方法
JP5791070B2 (ja) 固体酸化物形燃料電池システム
JP5076293B2 (ja) 燃料電池システム
JP2008218051A (ja) 燃料電池の制御方法
KR101780288B1 (ko) 통합 연료전지 제어 시스템 및 그 구동 방법
KR20170116829A (ko) 연료전지 스택의 전류를 제어하는 방법 및 이를 적용한 연료전지 시스템
JP2007109568A (ja) 燃料電池システム
JP4634071B2 (ja) 燃料電池発電システム
JP2007200771A (ja) 燃料電池発電装置の改質触媒温度制御システムおよびその制御方法
JP4834766B2 (ja) ダイレクトメタノール型燃料電池および電子機器
JP5986236B2 (ja) 固体酸化物形燃料電池システム
JP2009187883A (ja) 燃料電池システムの電池特性回復操作方法
JP5055696B2 (ja) 燃料電池システム
JP5683031B2 (ja) 燃料電池システムおよびその運転方法
JP2004265692A (ja) 燃料電池システム
JP5329291B2 (ja) 燃料電池モジュールの制御プログラム
JP2010257751A (ja) 燃料電池システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6498531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250