JP6481824B2 - ヒートポンプ式空調装置 - Google Patents

ヒートポンプ式空調装置 Download PDF

Info

Publication number
JP6481824B2
JP6481824B2 JP2015101671A JP2015101671A JP6481824B2 JP 6481824 B2 JP6481824 B2 JP 6481824B2 JP 2015101671 A JP2015101671 A JP 2015101671A JP 2015101671 A JP2015101671 A JP 2015101671A JP 6481824 B2 JP6481824 B2 JP 6481824B2
Authority
JP
Japan
Prior art keywords
refrigerant
heating
cooling
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015101671A
Other languages
English (en)
Other versions
JP2016217590A (ja
Inventor
石田 修
修 石田
歩 鵜野
歩 鵜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2015101671A priority Critical patent/JP6481824B2/ja
Publication of JP2016217590A publication Critical patent/JP2016217590A/ja
Application granted granted Critical
Publication of JP6481824B2 publication Critical patent/JP6481824B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

この発明は、暖房運転時にヒートポンプサイクルを利用するヒートポンプ式空調装置に関するものである。
電気自動車等のエンジンを具備しない車両等においては、ヒートポンプサイクルを利用して暖房運転を行う空調装置が用いられることがある。
車両等で用いられるヒートポンプ式空調装置の多くは、暖房用冷媒回路と冷房用冷媒回路を有し、両冷媒回路でコンプレッサや室外熱交換器が共用されている。また、コンプレッサの上流側(吸入側)には、暖房用冷媒回路と冷房用冷媒回路で共用される気液分離器が設けられることがある。この気液分離器は、コンプレッサに吸い込まれる低圧の冷媒を気体分と液体分とに分離し、気体分を優先してコンプレッサに流入させる(例えば、特許文献1参照)。
特許文献1に記載のヒートポンプ式空調装置で用いられる気液分離器は、液体分が滞留する滞留室の上方にコンプレッサの吸入通路が接続されている。
特開2006−3022号公報
上述のようなヒートポンプ式空調装置においては、暖房運転時や冷房運転時に気液分離器の滞留室内に冷媒の液体分が適切に滞留することにより、冷媒回路内を循環する冷媒の流量が調整される。暖房運転時には、比較的多くの冷媒の液体分が貯留室内に滞留して冷媒回路内を循環する冷媒量が減少し、冷房運転時には、冷媒の液体分が殆ど貯留室内に滞留せずに冷媒回路内を循環する冷媒量が増大する。
ところで、冷媒回路内を循環する冷媒には、通常、コンプレッサ等の冷媒回路内の機器の摺動部を潤滑するために潤滑油が混入されている。そして、冷媒に混入されている潤滑油は、冷媒とともに冷媒回路内を循環し、気液分離器内において、冷媒の液体分とともに貯留室内に一部滞留する。
ヒートポンプ式空調装置では、暖房運転時に、室外熱交換器が低温環境下で外気と熱交換を行わなければならないため、冷媒をコンプレッサで高圧に圧縮し、その高圧に圧縮した冷媒を室外熱交換器の入り口側で急激に膨張させなければならない。このため、ヒートポンプ式空調装置においては、暖房運転時にコンプレッサを高回転で運転するときに、その高回転に充分に耐え得るように冷媒回路内を循環する潤滑油の流量を増大させなければならない。
しかしながら、ヒートポンプ式空調装置において、冷媒中に混入する潤滑油の量を増大させると、冷房運転中に冷媒流路内を循環する潤滑油の流量も増大するため、冷房運転時における熱交換効率が低下してしまう。即ち、冷房運転時に冷媒回路内を循環する潤滑油の流量が必要以上に増大すると、室内熱交換器や室外熱交換器の内壁に潤滑油が大量に付着し、その付着した潤滑油が室内熱交換器や室外交換器の伝熱効率を低下させる原因となり易いうえ、潤滑油の混入量の増大によってコンプレッサに送り込まれる冷媒量が実質的に減少してしまう。冷房運転時における熱交換効率は、これらの原因によって低下してしまう。
そこでこの発明は、暖房運転時には充分な流量の潤滑油を冷媒回路内に循環させることができ、しかも、冷房運転時には熱交換効率を高く維持することができるヒートポンプ式空調装置を提供しようとするものである。
この発明に係るヒートポンプ式空調装置は、上記課題を解決するために、コンプレッサ(例えば、実施形態のコンプレッサ21)によって圧縮した冷媒を暖房用室内熱交換器(例えば、実施形態の暖房用室内熱交換器55)で室内空気と熱交換した後に暖房用膨張弁(例えば、実施形態の暖房用膨張弁22)で減圧し、その冷媒を室外熱交換器(例えば、実施形態の室外熱交換器24)で外気と熱交換した後に気液分離器(例えば、実施形態の気液分離器33)を経由して前記コンプレッサに戻す暖房用冷媒回路と、コンプレッサによって圧縮した冷媒を室外熱交換器で外気と熱交換した後に冷房用膨張弁(例えば、実施形態の冷房用膨張弁29)で減圧し、その冷媒を冷房用室内熱交換器(例えば、実施形態のエバポレータ53)で室内空気と熱交換した後に気液分離器を経由して前記コンプレッサに戻す冷房用冷媒回路と、を備え、前記暖房用冷媒回路と前記冷房用冷媒回路とが前記コンプレッサと前記気液分離器を共用するヒートポンプ式空調装置であって、前記気液分離器は、分離された液体分が滞留する滞留室(例えば、実施形態の滞留室71)と、前記滞留室内に上下方向に略沿うように配置され、冷媒の気体分が上部から内部に流入するようにガイドするガイドパイプ(例えば、実施形態のガイドパイプ72)と、前記ガイドパイプの内側に配置されて気体分を主に前記コンプレッサに戻す導出孔(例えば、実施形態の導出孔70a)と、を有し、前記滞留室内には、前記ガイドパイプ及び前記導出孔の配置されない第1室(例えば、実施形態の第1室75)と前記ガイドパイプ及び前記導出孔の配置される第2室(例えば、実施形態の第2室76)とに隔成する仕切壁(例えば、実施形態の仕切壁74)と、冷房運転時に、冷媒に混入している前記潤滑油を前記気液分離器内で前記第1室に流入させる潤滑油導入部(例えば、実施形態の内周面65a)と、が設けられ、前記仕切壁の高さは、前記導出孔の高さよりも高く設定されるようにした。
これにより、暖房運転時には、コンプレッサで圧縮されて高温高圧になった冷媒が暖房用室内熱交換器で熱交換して室内空気を暖め、その冷媒が暖房用膨張弁で減圧される。暖房用膨張弁を通過して低温低圧になった冷媒は室外熱交換器で外気の熱を取り入れて一部気化し、その後に気液分離器に流入する。気液分離器に流入した冷媒は、冷媒に混入している潤滑油とともに液体分が滞留室内の第1室と第2室とに滞留する。そして、気液分離器内の冷媒の気体分は、滞留室内に滞留している冷媒の液体分と潤滑油とともに導出孔を通してコンプレッサに吸い込まれる。暖房用冷媒回路には、導出孔から吸い上げられた潤滑油が循環する。
また、冷房運転時には、コンプレッサで圧縮されて高温高圧になった冷媒が室外熱交換器で外気と熱交換し、その後に冷房用膨張弁で減圧される。冷房用膨張弁を通過して低温低圧になった冷媒は、冷房用室内熱交換器で室内空気の熱を取り込んで一部が気化し、そのとき室内空気を冷却する。冷房用室内熱交換器を通過した冷媒は気液分離器に流入する。このとき冷媒とともに気液分離器内に流入した潤滑油は、潤滑油導入部を通して第1室内に滞留し、第1室内を満たした後に仕切壁を乗り越えて第2室内に流入し、第2室内にも滞留する。そして、気液分離器内の冷媒の気体分は、第2室内に滞留している潤滑油の一部とともに導出孔を通してコンプレッサに吸い込まれる。冷房用冷媒回路には、導出孔から吸い上げられた潤滑油が循環するが、このとき循環する潤滑油の流量は、気液分離器の第1室内に潤滑油が滞留する分だけ制限される。
前記仕切壁は、暖房運転時に、前記滞留室に流入した冷媒と潤滑油の混合液内に没する高さに設定されることが望ましい。
この場合、暖房運転時に、気液分離器に流入した冷媒と潤滑油の液分とは、滞留室内の広いスペースで混合される。このため、暖房運転時には、冷媒と潤滑油が充分に混合した状態でコンプレッサに吸い込まれる。したがって、暖房運転時に冷媒回路内を流れる潤滑油の流量が安定する。
前記潤滑油導入部は、前記滞留室の内周面によって構成され、前記仕切壁は、前記滞留室内の底部側を径方向内外で仕切る筒体によって構成され、前記仕切壁によって仕切られた前記滞留室内の外側部分が前記第1室とされるとともに、内側部分が前記第2室とされるようにしても良い。
この場合、冷房運転時に冷媒とともに気液分離器内に流入した潤滑油は、滞留室の内周面を伝って筒体の外側の第1室内に滞留し、第1室内を満たした後に筒体の上端部を乗り越えて内側の第2室内に流入する。コンプレッサには、筒体の内側の第2室に滞留している潤滑油のみが吸い込まれるようになる。
この構成
においては、極めて簡単な構造でありながら、冷房運転時に、潤滑油を第1室内に確実に滞留させておくことができる。
前記暖房用冷媒回路と前記冷房用冷媒回路は、前記コンプレッサと前記室外熱交換器と前記気液分離器とを共用し、前記室外熱交換器の下流部には、前記冷房用膨張弁と前記冷房用室内熱交換器を経由して前記気液分離器に接続される冷房用主通路(例えば、実施形態の冷房用主通路43)と、前記冷房用膨張弁と前記冷房用室内熱交換器を迂回して前記気液分離器に接続される暖房用バイパス通路(例えば、実施形態の暖房用バイパス通路44)と、が切り換え可能に接続され、前記コンプレッサの吐出部には、前記暖房用室内交換器と前記暖房用膨張弁を経由して前記室外熱交換器の上流部に接続される暖房用主通路(例えば、実施形態の暖房用主通路94)と、前記暖房用室内交換器と前記暖房用膨張弁を迂回して前記室外熱交換器の上流部に接続される冷房用バイパス通路(例えば、実施形態の冷房用バイパス通路96)と、が切り換え可能に接続されるようにしても良い。
この場合、冷房運転時には、コンプレッサの吐出部から吐出された冷媒が、冷房用バイパス通路と冷房用主通路を通って気液分離器に流入し、暖房運転時には、コンプレッサの吐出部から吐出された冷媒が、暖房用主通路と暖房用バイパス通路を通って気液分離器に流入する。冷房運転時には、冷媒が冷房用バイパス通路を通って暖房用室内熱交換器を迂回するため、冷房運転時に暖房用室内熱交換器で不要な熱損失を招くことがなくなる。また、冷房運転時に暖房用室内熱交換器内に冷媒が流れないため、冷房運転時に暖房用室内熱交換器で放熱が行われて、内部に液化した冷媒及び潤滑油が滞留するのを防止することができる。また、冷房運転時には、冷媒が冷房用バイパス通路を通って暖房用室内熱交換器を迂回するため、冷媒の通過する配管が短くなる。このため、冷房用冷媒回路内における圧力損失を少なくすることができる。
前記コンプレッサの吐出部には、前記暖房用主通路と前記冷房用バイパス通路を選択的に切り換える三方弁(例えば、実施形態の三方弁95)が設けられるようにしても良い。
この発明によれば、暖房用冷媒回路と冷房用冷媒回路で共用する気液分離器に、冷房運転時に、滞留室内の第1室内に潤滑油を滞留させて、コンプレッサに吸い込まれる潤滑油の流量を制限する仕切壁が設けられている。このため、暖房運転時には充分な流量の潤滑油を冷媒回路内に循環させ、かつ、冷房運転時には冷媒回路内を循環する潤滑油の流量を制限して熱交換効率を高く維持することができる。
この発明の一実施形態に係るヒートポンプ式空調装置の構成図である。 この発明の一実施形態に係るヒートポンプ式空調装置の作動説明図である。 この発明の一実施形態に係るヒートポンプ式空調装置の作動説明図である。 この発明の一実施形態に係る気液分離器の縦断面図である。 この発明の一実施形態に係る気液分離器の縦断面図である。 この発明の他の実施形態に係るヒートポンプ式空調装置の構成図である。
以下、この発明の一実施形態を、図1〜図5を参照して説明する。
図1は、この実施形態に係るヒートポンプ式空調装置10の構成図である。
この実施形態に係るヒートポンプ式空調装置10(以下、「空調装置10」と呼ぶ。)は、例えば車両駆動源としてのエンジン(内燃機関)を具備していない電気自動車等に搭載される。具体的には、空調装置10は、空調ユニット11と、冷媒が循環可能なヒートポンプサイクル12と、制御装置13と、を主に備えている。
空調ユニット11は、空調空気が流通するダクト51と、このダクト51内に収容されたブロワ52、エバポレータ53(冷房用室内熱交換器)、エアミックスドア54、暖房用室内熱交換器55、及びヒータコア56と、を備えている。
ダクト51は、空調空気の流通方向における上流側に位置する空気取込口57、及び下流側に位置する空気吹き出し口58を有している。そして、上述したブロワ52、エバポレータ53、エアミックスドア54、暖房用室内熱交換器55、及びヒータコア56は、流通方向の上流側から下流側に向けてこの順で配置されている。
ブロワ52は、例えば制御装置13の制御により印加される駆動電圧に応じて駆動し、空気取込口57を通してダクト51内に取り込まれた空調空気(内気及び外気の少なくとも一方)を、下流側に向けて送出する。
エバポレータ53は、内部に流入した低圧の冷媒と車室内雰囲気(ダクト51内)との間で熱交換を行い、例えば冷媒が蒸発する際の吸熱によって、エバポレータ53を通過する空調空気を冷却する。
暖房用室内熱交換器55は、内部に流入した高温かつ高圧の冷媒によって放熱可能であって、例えば暖房用室内熱交換器55を通過する空調空気を加熱する。
ヒータコア56は、ダクト51内における暖房用室内熱交換器55よりも下流側に配置されている。ヒータコア56は、配管61を通して水加熱電気ヒータ62、及びウォータポンプ63に接続されている。ヒータコア56は、ウォータポンプ63の動作により、水加熱電気ヒータ62との間で水が循環するようになっている。そして、水加熱電気ヒータ62により加熱された水がヒータコア56に供給されることで、ヒータコア56を通過する空調空気を加熱する。
エアミックスドア54は、例えば制御装置13の制御により駆動する駆動手段(不図示)によって回動可能とされている。具体的に、エアミックスドア54は、ダクト51内のうち、暖房用室内熱交換器55及びヒータコア56に向かう通風経路(加熱経路)を開放する加熱位置(図2参照)と、加熱経路を迂回する通風経路(冷却経路)を開放する冷却位置(図3参照)と、の間で回動する。
ヒートポンプサイクル12は、例えば、上述したエバポレータ53及び暖房用室内熱交換器55と、コンプレッサ21、暖房用膨張弁22、バイパス弁23、室外熱交換器24、冷房弁26、レシーバタンク25、サブコンデンサ27、逆止弁28、冷房用膨張弁29、冷房用補助熱交換器31、暖房弁32、気液分離器33、除湿弁34、及び蒸発能力制御弁35と、を備え、これら各構成部材が冷媒流路を介して接続されている。
コンプレッサ21は、気液分離器33と暖房用室内熱交換器55との間に接続されている。コンプレッサ21は、例えば制御装置13の制御により駆動する駆動手段の駆動力によって駆動され、気液分離器33から冷媒の主に気体分を吸入するとともに、この冷媒を圧縮した後、高温かつ高圧の冷媒として上述した暖房用室内熱交換器55に吐出する。
暖房用膨張弁22は、いわゆる絞り弁であって、暖房用室内熱交換器55から吐出された冷媒を、膨張させた後、低温かつ低圧で気液2相(液相リッチ)の噴霧状の冷媒として室外熱交換器24に吐出する。
なお、コンプレッサ21の突出部から暖房用室内熱交換器55を経由して暖房用膨張弁22に至る通路は、高圧側主通路41とされている。
バイパス弁23は、暖房用室内熱交換器55の下流部において、高圧側主通路41の暖房用膨張弁22を迂回して室外熱交換器24に接続されるバイパス通路42上に設けられ、例えば制御装置13により開閉制御される。なお、バイパス弁23は、暖房運転の実行時には閉状態とされ、冷房運転の実行時には開状態とされる。
これにより、例えば、暖房運転の実行時には、暖房用室内熱交換器55から流出した冷媒は暖房用膨張弁22を通過して低温かつ低圧の状態で室外熱交換器24に流入する。
一方、冷房運転の実行時には、暖房用室内熱交換器55から流出した冷媒はバイパス弁23を通過して高温の状態で室外熱交換器24に流入する。
室外熱交換器24は、内部に流入した冷媒と室外雰囲気との熱交換を行なう。また、室外熱交換器24の前方には、室外熱交換器24に向けて送風可能なファン24aが配設されている。なお、ファン24aは、例えば制御装置13の制御により駆動される。
室外熱交換器24は、暖房運転の実行時には、内部に流入する低温かつ低圧の冷媒によって室外雰囲気から吸熱可能であって、例えば室外雰囲気からの吸熱によって冷媒を気化させる。
一方、冷房運転の実行時には、室外熱交換器24は、内部に流入する高温の冷媒によって室外雰囲気へと放熱可能であって、例えば室外雰囲気への放熱及びファン24aの送風によって冷媒を冷却する。
冷房弁26は、冷媒流路のうち、室外熱交換器24の下流部に接続された冷房用主通路43上に設置され、例えば制御装置13により開閉制御される。冷房弁26は、冷房運転の実行時には開状態とされ、暖房運転の実行時には閉状態とされる。
レシーバタンク25は、冷房用主通路43のうち、冷房弁26の下流側に設置されている。レシーバタンク25は、室外熱交換器24を通過して冷房用主通路43内に流入した冷媒のうち、気相の冷媒(冷媒の気体分)を回収する。すなわち、レシーバタンク25は、冷房用主通路43内に流入した冷媒のうち、液相の冷媒(冷媒の液体分)のみを冷房用主通路43の下流側へ流通させるようになっている。
サブコンデンサ27は、冷房用主通路43のうち、レシーバタンク25よりも下流側に設置され、内部に流入した冷媒と室外雰囲気との間で熱交換を行う。
逆止弁28は、冷房用主通路43のうち、サブコンデンサ27よりも下流側に設置されている。逆止弁28は、冷房運転の実行時において、サブコンデンサ27を通過した冷媒を下流側に向けて流通させ、除湿運転の実行時において、冷房用主通路43のうち、逆止弁28よりも上流側(サブコンデンサ27側)への冷媒の逆流を防止する。
冷房用膨張弁29は、いわゆる絞り弁であって、冷房用主通路43のうちの、逆止弁28とエバポレータ53の流入口との間に接続されている。冷房用膨張弁29は、例えば制御装置13によって制御される弁開度に応じて逆止弁28を通過した冷媒を、膨張させた後、低温かつ低圧で気液2相(気相リッチ)の噴霧状の冷媒としてエバポレータ53に吐出する。
冷房用補助熱交換器31は、冷房用主通路43のうち、冷房用膨張弁29よりも上流側に位置する上流部分と、エバポレータ53よりも下流側に位置する下流部分と、の間を跨るように配置されている。冷房用補助熱交換器31は、冷房運転の実行時において、上述した上流部分及び下流部分の間で熱交換を行い、上流部分の冷媒をエバポレータ53内に流入する前に冷却する。
なお、この実施形態における冷房用主通路43は、室外熱交換器24の下流部から冷房弁26、レシーバタンク25、サブコンデンサ27、逆止弁28、冷房用補助熱交換器31、冷房用膨張弁29、エバポレータ53、蒸発能力制御弁35を経由して気液分離器33に接続される通路である。
暖房弁32は、冷房用主通路43を迂回して室外熱交換器24の下流部と気液分離器33を接続する暖房用バイパス通路44上に設置されている。暖房弁32は、例えば制御装置13により開閉制御される。暖房弁32は、暖房運転の実行時には開状態とされ、冷房運転の実行時には閉状態とされる。
気液分離器33は、冷房用主通路43の下流端と暖房用バイパス通路44の下流端を接続する合流部46と、上述したコンプレッサ21と、の間に接続されている。気液分離器33は、合流部46から流出した冷媒の気液を分離し、主に気相の冷媒をコンプレッサ21に吸入させる。
除湿弁34は、冷房用主通路43における逆止弁28よりも下流側に位置する部分と、高圧側主通路41における暖房用室内熱交換器55よりも下流側に位置する部分と、を接続する除湿流路48上に設置され、例えば制御装置13により開閉制御される。除湿弁34は、除湿運転の実行時に開状態とされ、それ以外の運転(冷房運転及び暖房運転)の実行時には閉状態とされる。
蒸発能力制御弁35は、冷房用主通路43のうち、エバポレータ53と冷房用補助熱交換器31との間に設置され、例えば制御装置13により開閉制御される。蒸発能力制御弁35は、除湿運転の実行時において、冷房運転の実行時に比べて開度が小さくなるように制御される。
ここで、この実施形態においては、暖房運転時に冷媒が内部を循環する暖房用冷媒回路と、冷房運転時に冷媒が内部を循環する冷房用冷媒回路と、を備え、両冷媒回路が、コンプレッサ21と室外熱交換器24と気液分離器33を共用している。
暖房用冷媒回路は、暖房用室内熱交換器55と暖房用膨張弁22を経由して、コンプレッサ21の吐出部と室外熱交換器24の上流部を接続する高圧側主通路41と、冷房用主通路43を迂回して室外熱交換器24の下流部と気液分離器33を接続する暖房用バイパス通路44と、を有している。また、冷房用冷媒回路は、冷房用膨張弁29やエバポレータ53を経由して室外熱交換器24の下流部と気液分離器33を接続する冷房用主通路43と、暖房用室内熱交換器55を経由する高圧側主通路41の一部とバイパス通路42とから成り暖房用膨張弁22を迂回してコンプレッサ21の吐出部と室外熱交換器24の上流部を接続する通路と、を有している。
また、暖房用冷媒回路と冷房用冷媒回路を含む冷媒回路内には、内部を循環する冷媒が充填されているが、その冷媒には、コンプレッサ21等の回路内の機器の摺動部を潤滑するための潤滑油が混入されている。潤滑油は、コンプレッサ21を高回転で作動する必要のある暖房運転時を想定し、暖房運転時にコンプレッサ21を充分に潤滑し得る量が冷媒に混入されている。
また、制御装置13は、例えば車室内に配設された図示しないスイッチ等を介して操作者により入力された指令信号等に基づいて、空調装置10の運転を制御する。さらに、制御装置13は、空調装置10の運転を暖房運転や冷房運転、除湿運転等に切り替え制御する。
次に、上述した空調装置10の動作について説明する。図2は、暖房運転時における空調装置10の動作を示す説明図であり、図3は、冷房運転時における空調装置10の動作を示す説明図である。なお、図中において、鎖線は冷媒の高圧状態、実線は冷媒の低圧状態を示し、破線は冷媒の流通しない部分を示している。
(暖房運転)
暖房運転時には、図2に示すように、エアミックスドア54は加熱経路を開放する加熱位置とされ、暖房弁32は開状態とされる。なお、暖房運転時において、バイパス弁23、冷房弁26、除湿弁34、及び蒸発能力制御弁35は閉状態とされる。
この場合、コンプレッサ21から吐出された高温かつ高圧の冷媒は、暖房用室内熱交換器55における放熱によってダクト51内の空調空気を加熱する。
そして、暖房用室内熱交換器55を通過した冷媒は、暖房用膨張弁22によって膨張させられて液相リッチの気液2相の噴霧状とされ、その後、室外熱交換器24において室外雰囲気から吸熱して気相リッチの気液2相の噴霧状となる。室外熱交換器24を通過した冷媒は、暖房用バイパス通路44と合流部46を通って気液分離器33に流入する。気液分離器33に流入した冷媒は、その内部において気液分離され、主に気相の冷媒(冷媒の液体分)がコンプレッサ21に吸入される。
このとき、空調ユニット11のダクト51内を流れる空調空気は、エバポレータ53を通過した後、加熱経路内で暖房用室内熱交換器55及びヒータコア56を通過する。そして、空調空気は、暖房用室内熱交換器55及びヒータコア56を通過する際に加熱された後、吹き出し口58を通って車室内に暖房として供給される。
(冷房運転)
冷房運転時には、図3に示すように、エアミックスドア54はエバポレータ53を通過した空調空気が冷却経路を通過する冷却位置とされるとともに、バイパス弁23、冷房弁26、及び蒸発能力制御弁35は開状態とされる。なお、暖房用膨張弁22、暖房弁32及び除湿弁34は閉状態とされる。
この場合、コンプレッサ21から吐出された高温かつ高圧の冷媒は、暖房用室内熱交換器55とバイパス弁23とを通過して、室外熱交換器24において室外雰囲気へと放熱された後、冷房用主通路43内に流入する。そして、冷媒は、レシーバタンク25で気相の冷媒が回収された後、サブコンデンサ27において室外雰囲気へと再び放熱される。その後、冷媒は冷房用膨張弁29によって膨張させられて液相リッチの気液2相の噴霧状とされ、次に、エバポレータ53における吸熱によってダクト51内の空調空気を冷却する。
そして、エバポレータ53を通過した気相リッチの気液2相の冷媒は、冷房用補助熱交換器31において熱交換された後、気液分離器33内に流入する。気液分離器33に流入した気相リッチの冷媒は、その内部において気液分離され、主に気相の冷媒(冷媒の気体分)がコンプレッサ21に吸入される。
このとき、空調ユニット11のダクト51内を流れる空調空気は、エバポレータ53を通過する際に冷却された後、暖房用室内熱交換器55を迂回して吹き出し口58から車室内に冷房として供給される。
つづいて、この実施形態の空調装置10で用いられる気液分離器33について説明する。
図4,図5は、気液分離器33の縦断面図であり、図4は、冷房運転時における気液分離器33の内部の様子を示し、図5は、暖房運転時における気液分離器33の内部の様子を示している。
気液分離器33は、円柱状の筒状容器によってハウジング65が構成され、そのハウジング65の上壁に、冷房用主通路43や暖房用バイパス通路44に接続される導入側接続口66と、コンプレッサ21の吸入部に接続される導出側接続口67とが設けられている。
ハウジング65内の上部には、導入側接続口66を通して内部に流入した冷媒をハウジング65の内周面65aに向かって誘導するガイド壁68が設置されている。ガイド壁68は、上面視が略円形状に形成されるとともに、外周縁部に下方に向かって屈曲するガイドフランジ68aが設けられている。ガイドフランジ68aは、ハウジング65の内周面65aに対して隙間をもって対峙しており、その隙間を冷媒と潤滑油が通過する際に、潤滑油がハウジング65の内周面65aに付着し易いように設定されている。なお、この実施形態においては、ハウジング65の内周面65aが潤滑油導入部を構成している。
また、ガイド壁68には、上端部が導出側接続口67に接続され下端側がハウジング65内の底壁の近傍部まで延出する導出パイプ69が取り付けられている。導出パイプ69の下端には、導出パイプ69の内外を連通する複数の導出孔70aを有する端部部品70が取り付けられている。また、導出パイプ69の径方向外側には、導出パイプ69よりも径の大きいガイドパイプ72が導出パイプ69と同軸に配置されている。ガイドパイプ72は、下端部がハウジング65内の底面に固定されるとともに、上端部がガイド壁68のガイドフランジ68aの径方向内側の空間部に開口している。ハウジング65内に導入された冷媒の気体分は、ガイドパイプ72の上端部からガイドパイプ72と導出パイプ69の間の隙間を通り、端部部品70の導出孔70aとガイドパイプ72の内部を通過してコンプレッサ21の吸入部に吸入される。
なお、ガイドパイプ72の下端近傍の周壁部には後述する連通孔73が形成されている。
ハウジング65内の底部側は、導入側接続口66から導入された冷媒の液体分とその冷媒に混入している潤滑油が滞留する滞留室71とされている。また、ハウジング65内の底部には、ガイドパイプ72の外側を取り囲む仕切壁74が突設されている。この実施形態の場合、仕切壁74は円形の筒体によって構成されている。仕切壁74は、滞留室71内を径方向外側の円環状の第1室75と、径方向内側の円形の第2室76とに隔成する。第1室75の外側の周面は、潤滑油導入部であるハウジング65の内周面65aによって構成されており、第2室76内には、ガイドパイプ72と導出パイプ69の下端が配置されている。また、仕切壁74の高さは、導出パイプ69の下端の導出孔70aの高さよりも高く設定されている。
なお、第2室76内に流入した冷媒の液体分や潤滑油は、ガイドパイプ72の下端近傍の連通孔73を通してガイドパイプ72の内側領域に流入する。そして、ガイドパイプ72内の冷媒の液体分や潤滑油の液面は、第2室76内の液面高さと同高さとなる。
ハウジング65内で気液分離された冷媒の液体分や潤滑油は、ハウジング65の内周面65aに沿って滞留室71内の第1室75に流入し、第1室75を満たした後に仕切壁74を乗り越えて第2室76内に流入する。そして、ハウジング65内で気液分離される液体分がさらに増大すると、仕切壁74の上端部が気液分離された液体内に没する。
この実施形態の場合、冷媒の液体分が大量に分離されて滞留室71内に滞留する暖房運転時には、仕切壁74の上端部が気液分離された液体内に没するように設定されている。また、冷媒の液体分が滞留室71内に殆ど滞留せず、主に冷媒中の潤滑油が滞留室71内に滞留する冷房運転時には、第2室76内の液面が第1室75内の液面よりも低くなり、その液面の低い第2室76から導出孔70aを通して潤滑油がコンプレッサ21に吸い込まれる。
なお、図4,図5中の符号90は、気液分離器33のハウジング65内に設置されて冷媒中に混入した水分を乾燥させるための乾燥剤である。また、図4中の符号L1は、第1室75と第2室76とに滞留した潤滑油であり、図5中の符号L2は、滞留室71内に滞留した冷媒と潤滑油の混合液である。
つづいて、冷房運転時と暖房運転時における気液分離器33の機能について説明する。
冷房運転時には、冷房用主通路43内のエバポレータ53を通過した冷媒が気液分離器33の導入側接続口66を通ってハウジング65内に流入する。導入側接続口66からハウジング65内に流入した冷媒は、ガイド壁68に誘導されてハウジング65の内周面65aに沿って滞留室71方向に進み、この間に気液が分離される。
気液分離された冷媒中の液体分と潤滑油とは、図4に示すように、潤滑油導入部であるハウジング65の内周面65aを伝って滞留室71の第1室75内に流入し、第1室75内を満たした後に仕切壁74を乗り越えて第2室76内に流入する。これにより、冷媒中の液体分と潤滑油とが第1室75と第2室76とに滞留する。ただし、冷房運転時には、冷媒が液体分として滞留室71内に多量に滞留せず、滞留室71には主として潤滑油が滞留する。
一方、気液分離された冷媒中の気体分は、滞留室71の上方においてガイドパイプ72と導出パイプ69の上部側の隙間を通ってガイドパイプ72の下方に進み、導出パイプ69の下端の導出孔70aを通り、導出パイプ69と導出側接続口67を経てコンプレッサ21の吸入部に吸い込まれる。また、このとき導出パイプ69の下端の導出孔70aは第2室76内の潤滑油を主とする液面下に位置しているため、冷媒の気体分が導出孔70aを通ってコンプレッサ21に吸い込まれるときに、第2室76内の潤滑油が冷媒の気体分と合わせてコンプレッサ21に吸い込まれる。
このように冷房運転時には、気液分離器33からコンプレッサ21の吸入部には第2室76内に滞留されている潤滑油のみが吸い込まれ、第1室75内には一定量の潤滑油が滞留されたままとなる。このため、気液分離器33からコンプレッサ21に吸い込まれて冷媒回路内を循環する潤滑油の流量は第1室75による滞留によって制限される。したがって、冷房運転時には、冷媒回路内を循環する潤滑油の流量が適切に調整され、多量の潤滑油がエバポレータ53や室外熱交換器24の内壁に付着してこれらの伝熱効率が低下するのを抑制することができる。また、過剰な潤滑油がコンプレッサ21に送り込まれることがないため、冷媒回路中を循環する冷媒量が実質的に減少することもない。
一方、暖房運転時には、室外熱交換器24を通過した冷媒が暖房用バイパス通路44と気液分離器33の導入側接続口66を通ってハウジング65内に流入する。導入側接続口66からハウジング65内に流入した冷媒は、混入している潤滑油とともにガイド壁68に誘導されて、ハウジング65の内周面65aに沿って滞留室71方向に進み、この間に気液が分離される。
暖房運転時には、気液分離器33内で冷媒の液体分が大量に分離されるため、図5に示すように、大量の冷媒の液体分と潤滑油とが混合した状態で滞留室71内に滞留する。特に、図5に示すように、冷媒と潤滑油の混合液の液面が仕切壁74の上端部よりも上昇すると、冷媒と潤滑油が充分に混ざった状態で滞留室71に滞留する。また、気液分離器33内の冷媒の気体分は、滞留室71内に滞留している冷媒と潤滑油の混合液とともに導出孔70aを通してコンプレッサ21の吸入部に吸い込まれる。これにより、気液分離器33からコンプレッサ21には、冷媒と混合している潤滑油が大量に吸い入れられる。この結果、暖房運転時には、大量の潤滑油が冷媒回路内を循環することになり、コンプレッサ21等の機器の摺動部に充分な量の潤滑油が供給されるようになる。
以上のように、この実施形態に係る空調装置10においては、冷房運転時に滞留室71内の第1室75に潤滑油を滞留させて、コンプレッサ21に吸い込まれる潤滑油の流量を制限する仕切壁74が気液分離器33に設けられている。このため、暖房運転時には、コンプレッサ21に充分な流量の潤滑油を供給してコンプレッサ21の摺動部を充分に潤滑することができるとともに、冷房運転時には、冷媒回路内を循環する潤滑油の流量を制限して熱交換効率を高く維持することができる。
特に、この実施形態に係る空調装置10の場合、気液分離器33内の仕切壁74の上端部の高さが、暖房運転時に、滞留室71に流入した冷媒と潤滑油の混合液内に没する高さに設定されているため、暖房運転には、滞留室71内の広いスペースで冷媒と潤滑油が充分に混合されることになる。したがって、この空調装置10では、冷媒と潤滑油が充分に混合した状態でコンプレッサ21に吸い込まれることになるため、暖房運転時に冷媒回路内を流れる潤滑油の流量を安定させることができる。
また、この実施形態に係る空調装置10は、気液分離器33の潤滑油導入部が滞留室71を含むハウジング65の内周面65aによって構成されるとともに、気液分離器33の仕切壁74が滞留室71の底部側を径方向内外で仕切る筒体によって構成され、仕切壁74の径方向外側部分が第1室75とされ、仕切壁74の径方向内側部分が第2室76とされている。このため、製造の容易な極めて簡単な構造でありながら、冷房運転時に、潤滑油を第1室75内に確実に滞留させることができる。
次に、図6に示す他の実施形態について説明する。
この他の実施形態は、冷媒回路の構成だけが異なり、気液分離器33等の回路内の機器の基本構成はほぼ同様とされている。図6においては、上記の実施形態と共通部分に同一符号を付してある。
この実施形態の空調装置10の冷媒回路は、上記の実施形態と同様に暖房用冷媒回路と冷房用冷媒回路で、コンプレッサ21と室外熱交換器24と気液分離器33とを共用している。
室外熱交換器の下流部には、冷房用膨張弁29とエバポレータ53を経由して気液分離器33に接続される冷房用主通路43と、冷房用膨張弁29とエバポレータ53を迂回して気液分離器33に接続される暖房用バイパス通路44とが、冷房弁26と暖房弁32によって切り換え可能に接続されている。
また、コンプレッサ21の吐出部には、暖房用室内熱交換器55と暖房用膨張弁22を経由して室外熱交換器24の上流部に接続される暖房用主通路94と、暖房用室内熱交換器55と暖房用膨張弁22を迂回して室外熱交換器24の上流部に接続される冷房用バイパス通路96とが、コンプレッサ21の吐出部に設けられた三方弁95を介して切り換え可能に接続されている。
この実施形態では、冷房運転時には、三方弁95がコンプレッサ21の吐出部を冷房用バイパス通路96側に接続し、暖房弁32が閉じ冷房弁26が開くことにより、室外熱交換器24の下流部を冷房用主通路43側に接続する。これにより、冷房運転時には、コンプレッサ21の吐出部から吐出された冷媒が、冷房用バイパス通路96と冷房用主通路43を通って気液分離器33に流入する。
また、暖房運転時には、三方弁95がコンプレッサ21の吐出部を暖房用主通路94側に接続し、冷房弁26が閉じ暖房弁32が開くことにより、室外熱交換器24の下流部を暖房用バイパス通路44側に接続する。これにより、暖房運転時には、コンプレッサ21の吐出部から吐出された冷媒が、暖房用主通路94と暖房用バイパス通路44を通って気液分離器33に流入する。
この実施形態の場合、上記の実施形態と異なり、冷房運転時には、三方弁95による通路の切り換えによってコンプレッサ21から吐出された冷媒が暖房用室内熱交換器55の内部を通過することなく直接室外熱交換器24の上流部に流入する。このため、冷房運転時に暖房用室内熱交換器55で不要な熱損失を生じないため、冷房効率をより高めることができる。
さらに、実施形態では、冷房運転時に暖房用室内熱交換器55内に冷媒が流れないことから、冷房運転時に暖房用室内熱交換器55での放熱によって暖房用室内熱交換器55の内部に液化した冷媒や潤滑油が滞留するのを防ぐことができる。また、この実施形態の場合、冷房運転時には、冷媒が通路長の短い冷房用バイパス通路96を通過するため、通路長の長い通路を冷媒が流通することによる不要な圧力損失を低減することができる。
なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
10…空調装置(ヒートポンプ式空調装置)
21…コンプレッサ
22…暖房用膨張弁
24…室外熱交換器
29…冷房用膨張弁
33…気液分離器
43…冷房用主通路
44…暖房用バイパス通路
53…エバポレータ(冷房用室内熱交換器)
55…暖房用室内熱交換器
65a…内周面(潤滑油導入部)
70a…導出孔
71…滞留室
72…ガイドパイプ
74…仕切壁
75…第1室
76…第2室
94…暖房用主通路
95…三方弁
96…冷房用バイパス通路

Claims (5)

  1. コンプレッサによって圧縮した冷媒を暖房用室内熱交換器で室内空気と熱交換した後に暖房用膨張弁で減圧し、その冷媒を室外熱交換器で外気と熱交換した後に気液分離器を経由して前記コンプレッサに戻す暖房用冷媒回路と、
    コンプレッサによって圧縮した冷媒を室外熱交換器で外気と熱交換した後に冷房用膨張弁で減圧し、その冷媒を冷房用室内熱交換器で室内空気と熱交換した後に気液分離器を経由して前記コンプレッサに戻す冷房用冷媒回路と、
    を備え、
    前記暖房用冷媒回路と前記冷房用冷媒回路とが前記コンプレッサと前記気液分離器を共用するヒートポンプ式空調装置であって、
    前記気液分離器は、
    分離された液体分が滞留する滞留室と、
    前記滞留室内に上下方向に略沿うように配置され、冷媒の気体分が上部から内部に流入するようにガイドするガイドパイプと、
    前記ガイドパイプの内側に配置されて気体分を主に前記コンプレッサに戻す導出孔と、を有し、
    前記滞留室内には、
    前記ガイドパイプ及び前記導出孔の配置されない第1室と前記ガイドパイプ及び前記導出孔の配置される第2室とに隔成する仕切壁と、
    冷房運転時に、冷媒に混入している前記潤滑油を前記気液分離器内で前記第1室に流入させる潤滑油導入部と、が設けられ、
    前記仕切壁の高さは、前記導出孔の高さよりも高く設定されていることを特徴とするヒートポンプ式空調装置。
  2. 前記仕切壁は、暖房運転時に、前記滞留室に流入した冷媒と潤滑油の混合液内に没する高さに設定されていることを特徴とする請求項1に記載のヒートポンプ式空調装置。
  3. 前記潤滑油導入部は、前記滞留室の内周面によって構成され、
    前記仕切壁は、前記滞留室内の底部側を径方向内外で仕切る筒体によって構成され、
    前記仕切壁によって仕切られた前記滞留室内の外側部分が前記第1室とされるとともに、内側部分が前記第2室とされていることを特徴とする請求項1または2に記載のヒートポンプ式空調装置。
  4. 前記暖房用冷媒回路と前記冷房用冷媒回路は、前記コンプレッサと前記室外熱交換器と前記気液分離器とを共用し、
    前記室外熱交換器の下流部には、前記冷房用膨張弁と前記冷房用室内熱交換器を経由して前記気液分離器に接続される冷房用主通路と、前記冷房用膨張弁と前記冷房用室内熱交換器を迂回して前記気液分離器に接続される暖房用バイパス通路と、が切り換え可能に接続され、
    前記コンプレッサの吐出部には、前記暖房用室内交換器と前記暖房用膨張弁を経由して前記室外熱交換器の上流部に接続される暖房用主通路と、前記暖房用室内交換器と前記暖房用膨張弁を迂回して前記室外熱交換器の上流部に接続される冷房用バイパス通路と、が切り換え可能に接続されていることを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ式空調装置。
  5. 前記コンプレッサの吐出部には、前記暖房用主通路と前記冷房用バイパス通路を選択的に切り換える三方弁が設けられていることを特徴とする請求項4に記載のヒートポンプ式空調装置。
JP2015101671A 2015-05-19 2015-05-19 ヒートポンプ式空調装置 Expired - Fee Related JP6481824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101671A JP6481824B2 (ja) 2015-05-19 2015-05-19 ヒートポンプ式空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101671A JP6481824B2 (ja) 2015-05-19 2015-05-19 ヒートポンプ式空調装置

Publications (2)

Publication Number Publication Date
JP2016217590A JP2016217590A (ja) 2016-12-22
JP6481824B2 true JP6481824B2 (ja) 2019-03-13

Family

ID=57580658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101671A Expired - Fee Related JP6481824B2 (ja) 2015-05-19 2015-05-19 ヒートポンプ式空調装置

Country Status (1)

Country Link
JP (1) JP6481824B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021125240A1 (de) * 2020-11-20 2022-05-25 Hanon Systems Vorrichtung zum Trennen einer gasförmigen und einer flüssigen Phase eines Arbeitsstoffes und zum Speichern der flüssigen Phase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114201A (ja) * 1997-06-20 1999-01-22 Matsushita Refrig Co Ltd アキュムレータ
JP4042220B2 (ja) * 1997-09-24 2008-02-06 株式会社デンソー 冷凍サイクル装置
JP4376470B2 (ja) * 2001-01-30 2009-12-02 三菱電機株式会社 冷凍サイクル装置およびその運転方法
JP4179231B2 (ja) * 2004-06-09 2008-11-12 株式会社デンソー 圧力制御弁と蒸気圧縮式冷凍サイクル

Also Published As

Publication number Publication date
JP2016217590A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
JP5768784B2 (ja) 統合弁
JP5610984B2 (ja) ヒートポンプ式車両用空調装置
JP6075058B2 (ja) 冷凍サイクル装置
JPH1130445A (ja) 冷凍サイクル装置
WO2018047540A1 (ja) 機器温調装置
JP2015128916A (ja) 冷凍サイクル装置
JP6225709B2 (ja) 空調装置
CN111433538B (zh) 制冷循环装置
JP2014156143A (ja) 車両用空調装置
JP5999624B2 (ja) アキュムレータ及びこれを用いた空調装置
JP5510374B2 (ja) 熱交換システム
JP6430465B2 (ja) 気液分離器
JP6481824B2 (ja) ヒートポンプ式空調装置
JP2013189179A (ja) 車両用空気調和装置
JP2017058070A (ja) 空気調和装置
JP2019105422A (ja) 車両用ジョイントブロック
WO2018079122A1 (ja) 車両用空気調和装置及びその製造方法
WO2021157286A1 (ja) 冷凍サイクル装置
JP6507453B2 (ja) 車両用空調装置
JPH11159920A (ja) 冷凍サイクル装置
JP6606254B2 (ja) 気液分離器
CN110160290B (zh) 空气调节装置
CN109996691B (zh) 空调装置
WO2023218834A1 (ja) 圧縮機モジュール
JP6606253B2 (ja) 気液分離器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6481824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees