JP6477897B2 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP6477897B2
JP6477897B2 JP2017539773A JP2017539773A JP6477897B2 JP 6477897 B2 JP6477897 B2 JP 6477897B2 JP 2017539773 A JP2017539773 A JP 2017539773A JP 2017539773 A JP2017539773 A JP 2017539773A JP 6477897 B2 JP6477897 B2 JP 6477897B2
Authority
JP
Japan
Prior art keywords
semiconductor
layer
semiconductor substrate
main surface
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017539773A
Other languages
English (en)
Other versions
JPWO2017047285A1 (ja
Inventor
弘治 向井
弘治 向井
崇一 吉田
崇一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2017047285A1 publication Critical patent/JPWO2017047285A1/ja
Application granted granted Critical
Publication of JP6477897B2 publication Critical patent/JP6477897B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/221Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities of killers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

この発明は、半導体装置および半導体装置の製造方法に関する。
従来、絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)と、このIGBTに逆並列に接続した還流ダイオード(FWD:Free Wheeling Diode)とを同一半導体基板上に一体化した逆導通型IGBT(RC(Reverse Conducting)−IGBT)が公知である。RC−IGBTなどのパワー半導体装置では、n-型ドリフト層のキャリアライフタイムを制御したり、n-型ドリフト層の内部にn型フィールドストップ(FS:Field Stop)層を形成したり、することが一般的である。
従来のFS型RC−IGBTの製造方法について説明する。図16は、従来のFS型RC−IGBTの製造方法の概要を示すフローチャートである。まず、通常採用される厚い状態の半導体ウエハのおもて面側に、一般的な方法により、MOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)、層間絶縁膜およびおもて面電極(電極パッド)などのおもて面素子構造を形成する(ステップS101)。次に、半導体ウエハを裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する(ステップS102)。次に、半導体ウエハの研削後の裏面からリン(P)やセレン(Se)をイオン注入し、半導体ウエハの裏面の表面層に、IGBT領域からダイオード領域にわたってn型FS層を形成する(ステップS103)。
次に、半導体ウエハの裏面からボロン(B)をイオン注入し、半導体ウエハの裏面の表面層の、n型FS層よりも浅い位置に、IGBT領域からダイオード領域にわたってp+型コレクタ領域を形成する(ステップS104)。次に、フォトリソグラフィにより、半導体ウエハの裏面に、ダイオード領域に対応する部分を開口したレジストマスクを形成する(ステップS105)。次に、このレジストマスクをマスクとして半導体ウエハの裏面からリンをイオン注入し、半導体ウエハの裏面の表面層の、ダイオード領域におけるp+型コレクタ領域をn型に反転させてn+型カソード領域を形成する(ステップS106)。次に、灰化(アッシング)処理によりレジストマスクを除去する(ステップS107)。
次に、半導体ウエハにイオン注入した不純物を熱処理により拡散させる(ステップS108)。次に、半導体ウエハのおもて面に、ポリイミド表面保護膜を形成する(ステップS109)。次に、半導体ウエハにヘリウム(He)または電子線を照射して、n-型ドリフト層にライフタイムキラーとなる格子欠陥(結晶欠陥)を導入する(ステップS110)。次に、熱処理(アニール)によりヘリウムまたは電子線による格子欠陥を回復させて半導体ウエハ中の格子欠陥量を調整する。これにより、キャリアライフタイムを調整する(ステップS111)。次に、半導体ウエハの裏面に、p+型コレクタ領域およびn+型カソード領域に接する裏面電極を形成する(ステップS112)。その後、半導体ウエハを切断(ダイシング)して個々のチップ状に個片化することで、従来のRC−IGBTが完成する。
RC−IGBTのキャリアライフタイムを制御する方法として、ダイオード側のn-型層中のpn接合近傍のキャリアライフタイム制御と、n-+接合近傍のキャリアライフタイム制御とを、それぞれプロトン(H+)を両主面から照射することによって制御する方法が提案されている(例えば、下記特許文献1(第0007,0014段落、第1図)参照。)。下記特許文献1では、n-型層中のpn接合およびn-+接合にそれぞれ近い側の主面からプロトンを照射している。また、n-型層中のpn接合近傍およびn-+接合近傍のキャリアライフタイムを、プロトンと電子線とを二重に照射することにより制御することが提案されている。
また、別の方法として、He線マスクで基板裏面のうちのダイオード領域を覆い、IGBT領域にヘリウムを打ち込み、その後、基板裏面のうちのIGBT領域の活性領域をHe線マスクで覆い、ダイオード領域およびIGBT領域の外縁部にヘリウムを打ち込むことでキャリアライフタイムを制御する方法が提案されている(例えば、下記特許文献2(第0053,0056〜0057段落、第4,5図)参照。)。下記特許文献2では、He線マスクによってヘリウムの飛程を調整し、IGBT領域のコレクタ層全域と、ダイオード領域のドリフト層、FS層およびカソード層の全域とに低ライフタイム領域を形成している。
また、RC−IGBTのキャリアライフタイムを制御する別の方法として、IGBT領域とダイオード領域の両方に亘り、おもて面のp型アノード層およびMOSゲート領域のトレンチゲートより少し深い位置に第1の低ライフタイム領域と、裏面のn型カソード層およびp型コレクタ層から少し基板内側の深い位置に第2の低ライフタイム領域と、を形成する方法が提案されている(例えば下記特許文献3、第0026,0035〜0040段落、第6図等を参照)。下記特許文献3では、第1の低ライフタイム領域は表面または裏面からヘリウム(He)を照射し、第2の低ライフタイム領域は裏面からヘリウム(He)を照射してそれぞれ所定の深さに結晶欠陥密度がピークとなるよう形成する方法が記載されている。また、第2の低ライフタイム領域がダイオード領域にも設けられていると、IGBT領域のスイッチング速度をさらに改善することができるとの記載がある。
さらに、ダイオードのキャリアライフタイムを制御する方法として、プロトン照射やヘリウム照射などの粒子線照射によりn+型カソード層内に第1の低キャリアライフタイム領域を形成し、プロトン照射などの粒子線照射によりp型アノード層のn-型カソード層内に第2の低キャリアライフタイム領域を形成する方法が提案されている(例えば下記特許文献4、第0047〜0052、第4図等を参照)。下記特許文献4には、粒子線照射は半導体基板のどちらの面から行ってもよいとの記載がある。
特開平08−102545号公報 特開2012−043891号公報 特開2011−238872号公報 特開平10−074959号公報
しかしながら、上述したようにリンやセレンのイオン注入でn型FS層を形成する場合は、ウエハ裏面から深い位置にn型FS層を制御性良く形成することが難しく、IGBTのターンオフ振動やダイオードの逆回復振動を抑制することができない。一方、プロトン照射であればn型FS層を制御性良く形成することができる。しかしながら、プロトンの照射深さは製造装置の能力に依存するため、ウエハ裏面から深い位置にまで達するn型FS層を形成するためには、高加速度でプロトンを照射可能な高価な製造装置を必要とし、コストが増大するという問題がある。
この発明は、上述した従来技術による問題点を解消するため、ドリフト層の内部に、ドリフト層と同導電型で、かつドリフト層よりもキャリア濃度の高い半導体層を有する半導体装置において、信頼性を向上させることができ、かつ低コスト化を図ることができる半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、次の特徴を有する。まず、第1導電型の半導体基板の一方の主面側から第1所定深さを飛程としてプロトンを照射し、プロトンを含み、前記第1所定深さにキャリア濃度のピークを有する第1導電型の第1半導体層を形成する第1照射工程を行う。次に、熱処理によりプロトンを活性化させる第1熱処理工程を行う。次に、前記半導体基板の一方の主面側から前記第1所定深さよりも深い第2所定深さを飛程としてヘリウムを照射し、前記半導体基板に格子欠陥を導入する第2照射工程を行う。次に、熱処理により、前記半導体基板中の前記格子欠陥の量を調整する第2熱処理工程を行う。前記第2熱処理工程では、前記第1半導体層よりも前記半導体基板の他方の主面側に、プロトンおよびヘリウムを含み、前記第1半導体層に接する第1導電型の第2半導体層を形成する。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2熱処理工程では、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の他方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有する前記第2半導体層を形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1照射工程の前に、前記半導体基板の他方の主面側に第2導電型半導体領域を形成する工程をさらに含む。前記第2導電型半導体領域と前記半導体基板との間のpn接合から前記半導体基板の一方の主面側に伸びる空乏層の伸びを抑制するフィールドストップ層として、前記第1半導体層および前記第2半導体層を形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第1照射工程では、異なる飛程でプロトンを複数回照射し、前記半導体基板の一方の主面からの深さの異なる複数の前記第1半導体層を形成する。複数の前記第1半導体層のうち、前記半導体基板の一方の主面から最も深い位置に形成する前記第1半導体層を、前記第1所定深さを飛程とするプロトン照射により形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2熱処理工程では、さらに、前記第1半導体層よりも前記半導体基板の一方の主面側に、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第3半導体層を形成することを特徴とする。
また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記第2熱処理工程では、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の一方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有する前記第3半導体層を形成することを特徴とする。
また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1導電型の半導体基板の内部に、プロトンを含む第1導電型の第1半導体層が設けられている。前記第1半導体層は、前記半導体基板の一方の主面から第1所定深さにキャリア濃度のピークを有する。前記第1半導体層よりも前記半導体基板の他方の主面側に、プロトンおよびヘリウムを含む第1導電型の第2半導体層が設けられている。前記第2半導体層は、前記第1半導体層に接する。前記半導体基板の一方の主面から前記第2半導体層よりも深い第2所定深さに設けられ、ヘリウムおよび空孔を含む格子欠陥からなる欠陥層、前記欠陥層と前記半導体基板の他方の主面との間に設けられた、前記半導体基板の一方の主面から照射されたヘリウムが達していない領域を備える。また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1導電型の半導体基板の内部に、プロトンを含む第1導電型の第1半導体層が設けられている。前記第1半導体層は、前記半導体基板の一方の主面から第1所定深さにキャリア濃度のピークを有する。前記第1半導体層よりも前記半導体基板の他方の主面側に、プロトンおよびヘリウムを含む第1導電型の第2半導体層が設けられている。前記第2半導体層は、前記第1半導体層に接する。前記半導体基板の一方の主面から前記第2半導体層よりも深い第2所定深さに含まれる、前記半導体基板の裏面から照射されたヘリウムにより導入された格子欠陥からなる欠陥層、前記欠陥層と前記半導体基板の他方の主面との間に設けられた、前記半導体基板の一方の主面から照射されたヘリウムが達していない領域を備える。また、上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1導電型の半導体基板の内部に、プロトンを含む第1導電型の第1半導体層が設けられている。前記第1半導体層は、前記半導体基板の一方の主面から第1所定深さにキャリア濃度のピークを有する。前記第1半導体層よりも前記半導体基板の他方の主面側に、プロトンおよびヘリウムを含む第1導電型の第2半導体層が設けられている。前記第2半導体層は、前記第1半導体層に接する。前記半導体基板の一方の主面から前記第1所定深さよりも深い第2所定深さに設けられ、ヘリウムおよび空孔を含む格子欠陥からなる欠陥層、前記欠陥層と前記半導体基板の他方の主面との間に設けられた、前記半導体基板の一方の主面から照射されたヘリウムが達していない領域を備える。前記半導体基板のキャリア濃度は、前記欠陥層を設けた部分で他の部分より低くなっている。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層は、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の他方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板の他方の主面側に設けられた第2導電型半導体領域をさらに備える。前記第1半導体層および前記第2半導体層は、前記第2導電型半導体領域と前記半導体基板との間のpn接合から前記半導体基板の一方の主面側に伸びる空乏層の伸びを抑制するフィールドストップ層であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板の一方の主面からの深さの異なる複数の前記第1半導体層を備える。複数の前記第1半導体層のうち、前記半導体基板の一方の主面から最も深い位置に設けられた前記第1半導体層は、前記第1所定深さにキャリア濃度のピークを有することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体層よりも前記半導体基板の一方の主面側に設けられ、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第3半導体層を備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第3半導体層は、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の一方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板のキャリア濃度は、前記欠陥層を設けた部分で他の部分より低くなっていることを特徴とする。また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体層のキャリア濃度のピークは、照射された前記プロトンの到達位置であり、前記第2半導体層はキャリア濃度のピークを有し、前記第2半導体層のキャリア濃度のピークは、前記到達位置よりも前記他方の主面側に位置する。また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層の厚さは、前記第1半導体層の厚さより厚いことを特徴とする。また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板の他方の主面側に設けられた第2導電型半導体領域と、前記第2導電型半導体領域の内部に選択的に設けられた第1導電型エミッタ領域と、前記第2導電型半導体領域および前記第1導電型エミッタ領域を貫通して前記半導体基板に達する第1トレンチと、前記第1トレンチの内部に第1ゲート絶縁膜を介して設けられた第1ゲート電極と、前記半導体基板の一方の主面側に設けられた第2導電型コレクタ領域と、を有する絶縁ゲート型バイポーラトランジスタが設けられた第1素子領域と、前記第2導電型半導体領域と、前記第2導電型半導体領域を貫通して前記半導体基板に達する第2トレンチと、前記第2トレンチの内部に第2ゲート絶縁膜を介して設けられた第2ゲート電極と、前記半導体基板の一方の主面側に設けられた第1導電型カソード領域と、を有するダイオードが設けられた第2素子領域と、前記第2導電型半導体領域および前記エミッタ領域に接する第1電極と、前記第2導電型コレクタ領域および第1導電型カソード領域に接する第2電極と、をさらに備え、前記第1半導体層は、前記第1素子領域と前記第2素子領域とに設けられ、前記第2半導体層は、前記第2素子領域に設けられ、前記第1素子領域の一部まで延在することを特徴とする。また、前記半導体基板の他方の主面側に設けられた第2導電型半導体領域と、前記第2導電型半導体領域の内部に選択的に設けられた第1導電型エミッタ領域と、前記第2導電型半導体領域および前記第1導電型エミッタ領域を貫通して前記半導体基板に達する第1トレンチと、前記第1トレンチの内部に第1ゲート絶縁膜を介して設けられた第1ゲート電極と、を有するMOSゲートをさらに備え、前記第2所定深さは、前記半導体基板の他方の主面側に設けられた前記MOSゲートに達しない深さであることを特徴とする。
上述した発明によれば、第2熱処理工程により第1半導体層中の活性化されていないプロトンが拡散されることで、この拡散されたプロトンと、当該第1半導体層付近にヘリウム照射により導入されたヘリウムと、を含む第2半導体層を、第1半導体層に接するように形成することができる。このため、例えばフィールドストップ層やブロードバッファ層として、第1,2半導体層からなる厚さの厚い半導体層をプロトン照射装置の性能によらず制御性よく形成することができる。
本発明にかかる半導体装置および半導体装置の製造方法によれば、ドリフト層の内部に、ドリフト層と同導電型で、かつドリフト層よりもキャリア濃度の高いフィールドストップ層やブロードバッファ層などの半導体層を有する半導体装置において、信頼性を向上させることができ、かつ低コスト化を図ることができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置の構造を示す説明図である。 図2Aは、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである(その1)。 図2Bは、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである(その2)。 図3は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図4は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。 図5は、実施例1にかかる半導体装置のFS層のキャリア濃度分布を示す特性図である。 図6は、比較例となる半導体装置のFS層のキャリア濃度分布を示す特性図である。 図7は、ヘリウム照射によるキャリア濃度分布を示す特性図である。 図8は、実施の形態2にかかる半導体装置の構造を示す説明図である。 図8は、実施の形態3にかかる半導体装置の構造を示す説明図である。 図10は、実施の形態3にかかる半導体装置の別の一例のキャリア濃度分布を示す説明図である。 図11は、実施の形態4にかかる半導体装置の構造を示す説明図である。 図12は、実施の形態5にかかる半導体装置の構造を示す説明図である。 図13は、実施の形態5にかかる半導体装置の製造途中の状態を示す断面図である。 図14は、実施の形態5にかかる半導体装置の製造途中の状態を示す断面図である。 図15は、実施の形態6にかかる半導体装置の製造方法の概要を示すフローチャートである。 図16は、従来のFS型RC−IGBTの製造方法の概要を示すフローチャートである。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、各実施の形態では第1導電型をn型とし、第2導電型をp型とする。
(実施の形態1)
実施の形態1にかかる半導体装置の構造について、RC−IGBTを例に説明する。図1は、実施の形態1にかかる半導体装置の構造を示す説明図である。図1(a)には断面構造を示し、図1(b)には図1(a)の切断線A−A'における基板裏面(半導体基板と裏面電極との境界)から深さ方向のキャリア濃度分布を示す。図1に示す実施の形態1にかかる半導体装置は、トレンチゲート構造のIGBTと、このIGBTに逆並列に接続したダイオードとを同一の半導体基板(半導体チップ)上に一体化したRC−IGBTである。具体的には、同一の半導体基板上に、IGBTの動作領域となるIGBT領域21と、ダイオードの動作領域となるダイオード領域22と、が並列に設けられている。
-型ドリフト層1となる半導体基板のおもて面の表面層には、IGBT領域21からダイオード領域22にわたってp型ベース層(第2導電型半導体領域)2が設けられている。p型ベース層2は、ダイオード領域22においてp型アノード領域として機能する。p型ベース層2を貫通してn-型ドリフト層1に達するトレンチ3が設けられている。トレンチ3は、IGBT領域21からダイオード領域22に向う方向に所定の間隔で例えばストライプ状の平面レイアウトに配置され、p型ベース層2を複数の領域(メサ部)に分離する。トレンチ3の内部には、トレンチ3の内壁に沿ってゲート絶縁膜4が設けられ、ゲート絶縁膜4の内側にゲート電極5が設けられている。
IGBT領域21において、p型ベース層2の内部には、各メサ部にそれぞれn+型エミッタ領域6およびp+型コンタクト領域7がそれぞれ選択的に設けられている。n+型エミッタ領域6は、トレンチ3の内壁に設けられたゲート絶縁膜4を挟んでゲート電極5に対向する。ダイオード領域22において、p型ベース層2の内部には、n+型エミッタ領域6は設けられていない。おもて面電極9は、コンタクトホールを介してn+型エミッタ領域6およびp+型コンタクト領域7に接するとともに、層間絶縁膜8によってゲート電極5と電気的に絶縁されている。おもて面電極9は、IGBT領域21においてエミッタ電極として機能し、ダイオード領域22においてアノード電極として機能する。
-型ドリフト層1の内部には、基板裏面側に、n型フィールドストップ(FS)層10が設けられている。n型FS層10は、オフ時にp型ベース層2とn-型ドリフト層1との間のpn接合からp+型コレクタ領域12側に伸びる空乏層の伸びを抑制する機能を有する。n型FS層10は、IGBT領域21からダイオード領域22にわたって、基板裏面からの深さの異なる複数段(ここでは4段とする)のn型層(第1半導体層)10a〜10dを有する。図1では、基板裏面に最も近い第1n型層10aから順に、基板裏面から深さ方向に符号10a〜10dを付す。これら複数段のn型層(以下、第1〜4n型層とする)10a〜10dは、飛程(射影飛程(入射角に沿った投影長))Rpの異なる複数回のプロトン(H+)照射により形成された、プロトンを含む拡散層である。
プロトンを含む拡散層とは、プロトンすなわち水素(H)と、主にプロトン照射時に形成された空孔(V)と、半導体基板に含まれている酸素(O)との複合欠陥(VOH)を含むドナー層である。VOH複合欠陥は、水素関連ドナーまたは水素ドナーと呼ばれるドナーで、シリコンあるいはシリコンを含む半導体においてドナーを示す欠陥である。以下、単に水素ドナーと呼ぶことにする。
第1〜4n型層10a〜10dは、それぞれ、プロトン照射のプロトンの到達位置(基板裏面から飛程Rp分の深さ位置)をピーク(極大値)とし、当該ピーク位置から基板両主面側(アノード側およびカソード側)にそれぞれ向うにしたがって急峻に減少するキャリア濃度分布を有する。基板裏面に最も近い第1n型層10aのキャリア濃度のピークは、後述するp+型コレクタ領域12およびn+型カソード領域13のキャリア濃度よりも低く、かつ他の第2〜4n型層10b〜10dのキャリア濃度のピークよりも高い。第1n型層10aは、p+型コレクタ領域12およびn+型カソード領域13に接していてもよい。第1〜4n型層10a〜10dは、基板裏面から深い位置に配置されるほど、キャリア濃度のピークが低くなっている。第2〜4n型層10b〜10dのキャリア濃度のピークはほぼ同程度であってもよい。プロトンを用いることで、制御性良く基板裏面から所定の深さに第1〜4n型層10a〜10dを形成することができる。
さらに、n型FS層10は、基板裏面から第4n型層10dよりも深い位置にn型層(以下、第5n型層(第2半導体層)とする)10eを有する。第5n型層10eは、ダイオード領域22に設けられている。第5n型層10eは、IGBT領域21の、ダイオード領域22との境界付近にまで延在していてもよい。また、第5n型層10eは、第4n型層10dを形成するためのプロトン照射と、例えばn-型ドリフト層1のキャリアライフタイムを制御するためのヘリウム(He)照射とにより形成された、プロトンおよびヘリウムを含む拡散層である。第5n型層10eは、第4n型層10dのアノード側に接し、基板裏面から第4n型層10dよりも深い位置にキャリア濃度のピークを有する。また、第5n型層10eは、プロトン照射による第1〜4n型層10a〜10dよりもキャリア濃度のピークが低く、かつ当該ピーク位置からアノード側に向うにしたがって第1〜4n型層10a〜10dよりもなだらかな傾斜で減少するほぼ平坦なキャリア濃度分布を有する。第5n型層10eの厚さt1は、第4n型層10dの厚さt2よりも厚い(t1>t2)。すなわち、基板裏面から最も深い位置には、n型FS層10として、第4,5n型層10d,10eからなる厚さ(=t1+t2)の厚いn型層が配置されている。
また、n-型ドリフト層1の内部には、ダイオード領域22において、基板裏面から第5n型層10eよりも深い位置に、ヘリウム(He)照射によりライフタイムキラーとなる空孔(V)などの格子欠陥(×印で示す)を導入してなる欠陥層(以下、第1欠陥層とする)11aが設けられている。第1欠陥層11aは、IGBT領域21の、ダイオード領域22との境界付近にまで延在していてもよい。n-型ドリフト層1のキャリア濃度は、第1欠陥層11aを設けた部分で他の部分より低くなっている。このため、ダイオード領域22においてn-型ドリフト層1のキャリアライフタイムが短くなり、ダイオードの逆回復時のキャリアの消滅を早めて逆回復損失を低減させることができる。
また、n-型ドリフト層1のキャリア濃度は、第1欠陥層11aを設けた部分で半導体基板のキャリア濃度(インゴットのキャリア濃度)より低く、かつn型FS層10を設けた部分で半導体基板のキャリア濃度よりも高くなっている。これにより、ダイオード領域22においてn-型ドリフト層1のアノード側よりもカソード側でキャリアライフタイムが長くなる。このため、ダイオードの逆回復時の電流・電圧波形Irp,Vrpの発振や、電圧波形Vrpの発振によるサージ(過渡的な異常電圧dV/dt)が生じにくい。そして、第5n型層10eが設けられることで、n型FS層10は従来よりも基板裏面から深い位置まで達する幅の広いキャリア濃度分布を有するため、従来よりもソフトリカバリーな逆回復電流・電圧波形Irp,Vrpが得られる。
さらに、ヘリウム照射による欠陥層(以下、第2欠陥層とする)11bを、n-型ドリフト層1の、p+型コレクタ領域12およびn+型カソード領域13との境界付近に形成してもよい。n-型ドリフト層1の、第2欠陥層11bを設けた部分付近のキャリア濃度を低減させて所定のキャリア濃度に調整することができるため、RC−IGBTのスイッチング特性を調整することができる。図1には、第2n型層10b付近に第2欠陥層11bを形成した状態を示す。この場合、第2n型層10b付近のキャリア濃度を低減させて調整することができる。
半導体基板の裏面の表面層の、n型FS層10よりも浅い位置には、IGBT領域21にp+型コレクタ領域12が設けられ、ダイオード領域22にn+型カソード領域13が設けられている。n+型カソード領域13は、p+型コレクタ領域12に隣接する。p+型コレクタ領域12およびn+型カソード領域13は、n型FS層10の最も基板裏面側の第1n型層10aに接していてもよい。裏面電極14は、p+型コレクタ領域12およびn+型カソード領域13の表面(n-型半導体基板の裏面全体)に設けられている。裏面電極14は、IGBT領域21においてコレクタ電極として機能し、ダイオード領域22においてカソード電極として機能する。
次に、実施の形態1にかかる半導体装置の製造方法について説明する。図2A,2Bは、実施の形態1にかかる半導体装置の製造方法の概要を示すフローチャートである。図3,4は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。まず、n-型ドリフト層1となるn-型の半導体基板(半導体ウエハ)のおもて面側に、一般的な方法により、トレンチ3、ゲート絶縁膜4およびゲート電極5を順に形成してMOSゲートを形成する(ステップS1)。次に、ボロン(B)などのp型不純物のイオン注入により、基板おもて面全体の表面層に、トレンチ3よりも浅い深さでp型ベース層2を形成する(ステップS2)。
次に、リン(P)や砒素(As)などのn型不純物のイオン注入により、IGBT領域21のp型ベース層2の内部にn+型エミッタ領域6を選択的に形成する(ステップS3)。次に、ボロンなどのp型不純物のイオン注入により、IGBT領域21のp型ベース層2の内部にp+型コンタクト領域7を選択的に形成する(ステップS4)。このとき、ダイオード領域22のp型ベース層2の内部にp+型コンタクト領域7を選択的に形成してもよい。n+型エミッタ領域6とp+型コンタクト領域7とを形成する順番を入れ替えてもよい。次に、ゲート電極5を覆うように例えばBPSG膜などの層間絶縁膜8を堆積(形成)する(ステップS5)。
次に、層間絶縁膜8をパターニングしてコンタクトホールを形成し、IGBT領域21においてn+型エミッタ領域6およびp+型コンタクト領域7を露出させ、ダイオード領域22のp型ベース層2を露出させる(ステップS6)。次に、コンタクトホールの内部に、バリアメタル(不図示)を介してプラグ電極(不図示)を形成する(ステップS7)。次に、例えばスパッタリング法により、コンタクトホールの内部のプラグ電極に接するように、層間絶縁膜8の表面全体におもて面電極9を形成する(ステップS8)。次に、半導体基板を裏面側から研削していき、半導体装置として用いる製品厚さの位置まで研削する(ステップS9)。次に、基板裏面全体に例えばボロンなどのp型不純物をイオン注入し、基板裏面全体の表面層にp+型コレクタ領域12を形成する(ステップS10)。
次に、フォトリソグラフィにより、基板裏面上に、ダイオード領域に対応する部分を開口したレジストマスク(不図示)を形成する(ステップS11)。次に、このレジストマスクをマスクとして例えばリンなどのn型不純物をイオン注入し、基板裏面の表面層の、ダイオード領域22におけるp+型コレクタ領域12をn型に反転させてn+型カソード領域13を形成する(ステップS12)。次に、灰化(アッシング)処理によりレジストマスクを除去する(ステップS13)。次に、レーザーアニールによりp+型コレクタ領域12およびn+型カソード領域13を活性化させる(ステップS14)。次に、基板おもて面全体を例えばポリイミド膜などの表面保護膜(不図示)で覆った後、表面保護膜をパターニングしておもて面電極9や各電極パッドを露出させる(ステップS15)。
次に、基板裏面側からプロトンを照射してn型FS層10を形成する(ステップS16)。ステップS16においては、例えば、基板裏面からの飛程Rpが異なる複数回(例えば、ここでは4回)のプロトン照射を行い、n型FS層10として基板裏面からの深さの異なる複数段のn型層を形成する。このとき、基板裏面から異なる加速電圧で直接プロトンを照射することで各プロトン照射の飛程Rpを調整してもよい。例えば、プロトン照射の加速電圧を3MeV程度とすることで、照射面から60μm程度の深さにキャリア濃度のピークを有する半値幅3μm程度のn型層が形成される。また、プロトン照射の加速電圧を8MeV程度とした場合、照射面から60μm程度の深さにキャリア濃度のピークを有する半値幅10μm程度のn型層が形成される。
また、ステップS16においては、例えば、加速電圧を一定とし、それぞれ異なる厚さのアブソーバーを介してプロトンを照射することで各プロトン照射の飛程Rpを調整してもよい。例えば、プロトン照射の加速電圧を4.3MeV程度で一定とし、アブソーバーの厚さを95μm程度とすることで、照射面から60μm程度の深さにキャリア濃度のピークを有する半値幅10μm程度のn型層が形成される。アブソーバーは、例えばアルミニウム(Al)など半導体基板と同程度の阻止能を有する材料でできた部材である。また、複数回のプロトン照射は、基板裏面からの飛程Rpが長くなるほど、ドーズ量を低く設定する。
なお、ステップS16においては、基板裏面に近い第1n型層10aを形成するためのプロトン照射のドーズ量が、他の第2〜4n型層10b〜10dを形成するためのプロトン照射のドーズ量よりも高ければよく、他の第2〜4n型層10b〜10dを形成するためのプロトン照射のドーズ量はほぼ同程度であってもよい。複数段のn型層を形成する順序は種々変更可能である。次に、熱処理(アニール)により、半導体基板中のプロトンを活性化させる(ステップS17)。
次に、図3に示すように、基板裏面からステップS16のプロトン照射の飛程Rpよりも深い位置を飛程とするヘリウム照射(以下、第1ヘリウム照射とする)31を行い、ダイオード領域22からIGBT領域21の、ダイオード領域22との境界付近にわたってn-型ドリフト層1にライフタイムキラーとなる格子欠陥を導入する(ステップS18)。例えば、第1ヘリウム照射31の飛程は、第4n型層10dのアノード側の端部よりも基板裏面から深い。このとき、ヘリウムが基板おもて面側のMOSゲートに達しないように、アブソーバー32を用いて第1ヘリウム照射31の飛程を調整することが好ましい。
また、ステップS18においては、IGBT領域21の格子欠陥を導入しない部分に格子欠陥が導入されないように、半導体基板とアブソーバー32との間に、例えばアルミニウムなど半導体基板と同程度の阻止能を有する材料でできた厚い金属板33を配置する。金属板33は、例えば、基板裏面全体を覆うことができる略円形状の平面形状を有する部材であり、基板裏面の第1ヘリウム照射31の照射領域を露出する開口部33aを有する。この第1ヘリウム照射31により、ヘリウムの到達位置(第1ヘリウム照射31の飛程Rp分の深さ位置(以下、第1ヘリウム到達位置とする))31aに格子欠陥が多く導入され、キャリア濃度が大幅に低下する。かつ、ヘリウムが通過した領域(基板裏面から第1ヘリウム到達位置31aまでの領域(以下、第1ヘリウム通過領域)とする)31b全体に格子欠陥が形成される。すなわち、第1ヘリウム到達位置31aに第1欠陥層11aが形成される。かつ、第1ヘリウム到達位置31aから離れた部分のキャリア濃度も若干低下する。ヘリウム到達位置から離れた部分とは、ヘリウム通過領域のうち、キャリア濃度が極小値となるヘリウム到達位置を中心とするキャリア濃度分布の凹みを示す部分よりも基板裏面側の部分である。
さらに、図4に示すように、ステップS18の処理において、基板裏面からヘリウムを照射(以下、第2ヘリウム照射とする)34し、n-型ドリフト層1の、p+型コレクタ領域12およびn+型カソード領域13との境界付近に格子欠陥を導入してRC−IGBTのスイッチング特性を調整してもよい。このとき、第2ヘリウム照射34の飛程Rpは、例えばアブソーバー35を用いて調整する。この第2ヘリウム照射34により、さらに、ヘリウムの到達位置(第2ヘリウム照射34の飛程Rp分の深さ位置(以下、第2ヘリウム到達位置とする))34aに格子欠陥が多く導入され、キャリア濃度が大幅に低下する。すなわち、第2ヘリウム到達位置34aに第2欠陥層11bが形成される。かつ、ヘリウムが通過した領域(基板裏面から第2ヘリウム到達位置34aまでの領域(以下、第2ヘリウム通過領域)とする)34b全体に格子欠陥が導入され、第2ヘリウム到達位置34aから離れた部分のキャリア濃度も若干低下する。図4において、斜線のハッチング部分は第1ヘリウム照射31による第1ヘリウム通過領域31bである。
次に、熱処理(アニール)により、第1,2ヘリウム照射31,34による格子欠陥を回復させて半導体基板中の格子欠陥量を調整することにより、キャリアライフタイムを調整する(ステップS19)。このとき、第4n型層10d中の活性化されていないプロトンが拡散され、第4n型層10dのアノード側に、第4n型層10dに接し、かつアノード側に向うにしたがって第4n型層10dよりもなだらかな傾斜で減少するキャリア濃度分布を有する第5n型層10eが形成される(図1参照)。
この第5n型層10eは第1ヘリウム通過領域31bに形成され、第5n型層10eの内部にはプロトンとヘリウムとが共存する。また、第1〜4n型層10a〜10d中の活性化されていないプロトンが拡散され、このプロトンの拡散により第1,2ヘリウム通過領域31b,34bの格子欠陥が回復される。かつ、第1,2ヘリウム到達位置31a,34aには格子欠陥が残り、キャリア濃度が大幅に低下した状態が維持される。これにより、ダイオード領域22においてアノード側でキャリアライフタイムが短く、かつカソード側の広い範囲でキャリアライフタイムが長くなるキャリア濃度分布を形成することができる。
次に、半導体基板の裏面全体に、p+型コレクタ領域12およびn+型カソード領域13に接する裏面電極14を形成する(ステップS20)。その後、半導体ウエハを切断(ダイシング)して個々のチップ状に個片化することで、図1に示すトレンチゲート構造のRC−IGBTが完成する。
(実施例1)
n型FS層10のキャリア濃度分布について検証した。図5は、実施例1にかかる半導体装置のFS層のキャリア濃度分布を示す特性図である。図6は、比較例となる半導体装置のFS層のキャリア濃度分布を示す特性図である。まず、上述した実施の形態1にかかる半導体装置の製造方法にしたがい、上記諸条件でトレンチゲート構造のRC−IGBTを作製(製造)した(以下、実施例1とする)。具体的には、実施例1においては、MCZ(Magnetic field applied Czochralski)法により作製したインゴットから切断(スライシング)したシリコンウエハ(半導体基板)を用いてRC−IGBTを作製した。シリコンウエハの比抵抗を38Ωcm(換算したキャリア濃度(インゴットのキャリア濃度)は1.13×1014/cm3)であり、厚さを70μmとした。
ステップS16において、n型FS層10として、加速電圧の異なる4回のプロトン照射により第1〜4n型層10a〜10dを形成した。第1n型層10aを形成するためのプロトン照射は、ウエハ裏面からの飛程Rpが4μm程度となるように加速電圧を0.40MeVとして、ドーズ量を3.0×1014/cm2とした。第2n型層10bを形成するためのプロトン照射は、ウエハ裏面からの飛程Rpが10μm程度となるように加速電圧を0.82MeVとして、ドーズ量を1.0×1013/cm2とした。第3n型層10cを形成するためのプロトン照射は、ウエハ裏面からの飛程Rpが18μm程度となるように加速電圧を1.10MeVとして、ドーズ量を7.0×1012/cm2とした。
第4n型層10dを形成するためのプロトン照射は、ウエハ裏面からの飛程Rpが28μm程度となるように加速電圧を1.45MeVとして、ドーズ量を1.0×1013/cm2とした。ステップS17において、プロトンを活性化させるためのアニールを380℃の温度で5時間行った。ステップS18において、第1,2ヘリウム照射31,34を行った。第1ヘリウム照射31は、ドーズ量を9.0×1010/cm2とし、ウエハ裏面からの飛程Rpが58μm程度となるようにアブソーバーで調整した。第2ヘリウム照射34は、ドーズ量を5.0×1010/cm2とし、ウエハ裏面からの飛程Rpが10μm程度となるようにアブソーバーで調整した。ステップS19において、第1,2ヘリウム照射31,34による格子欠陥を回復させるためのアニールを360℃の温度で1時間行った。
また、比較例となるトレンチゲート構造のRC−IGBTを作製した。比較例が実施例1と異なる点は、ステップS18の第1,2ヘリウム照射31,34およびステップS19のヘリウムによる格子欠陥を回復させる熱処理を行っていない点である。比較例の、ステップS18,S19の処理を行わない以外の条件は、実施例1と同様である。そして、これら実施例1および比較例について、拡がり抵抗測定(SR:Spreading Resistance)法によりキャリア濃度分布を測定した。その結果をそれぞれ図5,6に示す。図5には、第1,2ヘリウム照射31,34の第1,2ヘリウム通過領域31b,34bをウエハ裏面(深さ0μmの位置)から第1,2ヘリウム到達位置31a,34aに達する矢印で示す(図7においても同様)。
図6に示すように、比較例では、n型FS層として4つのn型層100a〜100dしか形成されず、ウエハ裏面から最も深い位置に配置された第4n型層100dよりも深い部分のキャリア濃度はシリコンウエハのキャリア濃度(n-型ドリフト層101のキャリア濃度)と同じであることが確認された。符号113はn+型カソード領域である。
一方、図5に示すように、実施例1では、ウエハ裏面から最も深い位置に配置された第4n型層10dよりもアノード側に深い位置に10μmの厚さ(幅)t1で、シリコンウエハのキャリア濃度(n-型ドリフト層101のキャリア濃度)よりもキャリア濃度の高い領域(第5n型層10e)が形成されていることが確認された。この第5n型層10eは、ウエハ裏面から最も深い位置に配置された第4n型層10dよりも深い位置(ウエハ裏面から35.1μmの深さ)にキャリア濃度のピークをもつことが確認された。また、第5n型層10eのキャリア濃度のピークは1.81×1014/cm3であり、第1〜4n型層10a〜10dのキャリア濃度のピークよりも低いことが確認された。また、第5n型層10eは、第4n型層10dの厚さ(半値幅)t2より厚く(広い幅)で、アノード側に向うにしたがって第4n型層10dよりもなだらかな傾斜で減少するキャリア濃度分布を有することが確認された。
(実施例2)
次に、第1ヘリウム照射31によるキャリア濃度変化について検証した。図7は、ヘリウム照射によるキャリア濃度分布を示す特性図である。まず、上述した実施の形態1にかかる半導体装置の製造方法のステップS18の第1,2ヘリウム照射31,34のみを行ったモニターウエハ(半導体基板)を用意した(以下、実施例2とする)。実施例2においては、モニターウエハとして、MCZ法により作製したインゴットから切断したシリコンウエハ(半導体基板)を用いた。シリコンウエハの比抵抗は54.6Ωcm(換算したキャリア濃度は7.9×1013/cm3)である。第1ヘリウム照射31は、ドーズ量を9.0×1010/cm2とし、ウエハ裏面からの飛程Rpが110μm程度となるようにアブソーバーで調整した。第2ヘリウム照射34は、ドーズ量を1.1×1011/cm2とし、ウエハ裏面からの飛程Rpが10μm程度となるようにアブソーバーで調整した。第1,2ヘリウム照射31,34ともにヘリウム3(3He)を用い、それぞれ半値幅7μmの第1,2欠陥層11a,11bを形成した。ステップS19のアニールは行っていない。そして、この実施例2についてSR法によりウエハ中心付近のキャリア濃度分布を測定した。その結果を図7に示す。
図7に示す結果より、第1ヘリウム照射31により第1欠陥層11aが形成される第1ヘリウム到達位置31aでキャリア濃度が大幅に低下することが確認された。かつ、第1ヘリウム照射31による第1ヘリウム通過領域31b全体に格子欠陥が形成され、第1ヘリウム到達位置31aから離れた部分のキャリア濃度が若干低下することが確認された。第1ヘリウム照射31による第1ヘリウム通過領域31bのうち、第1ヘリウム到達位置31aから離れた部分41のキャリア濃度分布は、ウエハ裏面側から第1ヘリウム到達位置31a側に向うにしたがってなだらかに減少していることが確認された。その第1ヘリウム到達位置31aからウエハ裏面側に向う方向の濃度傾斜は6.23×1013/cm3〜7.27×1013/cm3であった。実施例2においては、後述するように第2ヘリウム照射34により第1ヘリウム通過領域31bのウエハ裏面側の部分(第2ヘリウム到達位置34a)でキャリア濃度が大幅に低下している。第2ヘリウム照射34を行わない場合には、第1ヘリウム通過領域31bはウエハ裏面から第1ヘリウム到達位置31aに向うにしたがってなだらかに減少するキャリア濃度分布となる。
このように、例えばキャリアライフタイムを制御するために第1ヘリウム照射31を行うことで、第1ヘリウム到達位置31aのキャリア濃度を大幅に低下させることができるとともに、第1ヘリウム通過領域31bのうち、第1ヘリウム到達位置31aから離れた部分のキャリア濃度を若干低下させることができることが確認された。そして、ウエハ裏面から第1ヘリウム到達位置31aよりも深い部分42のキャリア濃度は、シリコンウエハのキャリア濃度(n-型ドリフト層1のキャリア濃度に相当)と同じであり、第1,2ヘリウム照射31,34による影響を受けないことが確認された。第2ヘリウム照射34により第2欠陥層11bが形成される第2ヘリウム到達位置34aにおいてもキャリア濃度が大幅に低下することが確認された。第2ヘリウム照射34による第2ヘリウム通過領域34b全体にも格子欠陥が形成され、第2ヘリウム到達位置34aから離れた部分のキャリア濃度が若干低下することが確認された。第2ヘリウム到達位置34aよりもウエハ裏面側の部分43のキャリア濃度は、5.0×1013/cm3であった。
以上、説明したように、実施の形態1によれば、基板裏面からプロトンを照射し、かつ当該プロトン照射よりも深い飛程でヘリウムを照射してアニールすることで、プロトン照射により形成したプロトンを含むn型層よりも基板裏面から深い位置に、n型FS層として、プロトンおよびヘリウムを含むn型層を形成することができる。このプロトンおよびヘリウムを含むn型層は、プロトン照射によるn型層に接し、かつ基板おもて面側に向うにしたがってプロトン照射によるn型層よりもなだらかな傾斜で減少するキャリア濃度分布を有する。すなわち、n-型ドリフト層の内部の基板裏面から深い位置に、プロトンを含むn型層と、プロトンおよびヘリウムを含むn型層と、からなる厚さの厚いn型FS層を形成することができる。
また、実施の形態1によれば、基板裏面から深い位置にまで達する厚いn型FS層を形成すること、および、ヘリウム照射による格子欠陥がプロトン照射により回復されること、により、dV/dtやサージ電圧を抑制することができ、ソフトリカバリーな電流・電圧波形とすることができる。また、実施の形態1によれば、プロトン照射およびヘリウム照射により基板裏面から深い位置にまで達するn型FS層を制御性良く形成することができるため、RC−IGBTの信頼性を向上させることができる。また、実施の形態1によれば、プロトン照射およびヘリウム照射により、一般的なプロトン照射装置の照射限界(プロトン照射装置によるプロトンの飛程の限界)よりも基板裏面から深い位置にまで達する厚いn型FS層を形成することができる。このため、一般的なプロトン照射装置よりもプロトンを高加速度で照射可能な高価な製造装置を用いる必要がなく、コストの増大を防止することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図8は、実施の形態2にかかる半導体装置の構造を示す説明図である。図8(a)には断面構造を示し、図8(b)には図8(a)の切断線B−B'における基板裏面から深さ方向のキャリア濃度分布を示す。実施の形態2にかかる半導体装置は、プロトン照射により形成するn型層(以下、第1n型層とする)50aを1段としたRC−IGBTに実施の形態1を適用したものである。実施の形態2においては、n型FS層50は、プロトン照射による1段の第1n型層50aと、プロトン照射およびヘリウム照射によるn型層(以下、第2n型層とする)50bと、を有する。
第1n型層50aは、n-型ドリフト層1の内部の基板裏面に近い位置、すなわちp+型コレクタ領域12およびn+型カソード領域13付近に設けられている。第1n型層50aは、実施の形態1においてn型FS層を構成する複数のn型層のうち、基板裏面に最も近いn型層と同様の条件で設けられていてもよい。第2n型層50bは、第1n型層50aを形成するためのプロトン照射と、第1ヘリウム照射31(または第2ヘリウム照射34、もしくはその両方)とにより形成された、プロトンおよびヘリウムを含む拡散層である。第2n型層50bの形成において、第1ヘリウム照射31の飛程(または第2ヘリウム照射34、もしくはその両方)はプロトン照射の飛程Rpよりも基板裏面から深い。
第2n型層50bは、基板裏面から第1n型層50aよりも深い位置に設けられている。また、第2n型層50bは、第1n型層50aのアノード側に接し、基板裏面から第1n型層50aよりも深い位置にキャリア濃度のピークを有する。また、第2n型層50bは、第1n型層50aよりもキャリア濃度のピークが低く、かつ当該ピーク位置からアノード側に向うにしたがって第1n型層50aよりもなだらかな傾斜で減少するほぼ平坦なキャリア濃度分布を有する。第2n型層50bの厚さt3は、第1n型層50aの厚さt4よりも厚くてもよい(t3>t4)。
実施の形態2にかかる半導体装置の製造方法は、実施の形態1にかかる半導体装置の製造方法においてステップS16のプロトン照射を1回のみ行えばよい(図2B参照)。
以上、説明したように、実施の形態2によれば、n-型ドリフト層の、p+型コレクタ領域およびn+型カソード領域付近においてn型FS層のアノード側のキャリア濃度分布を深さ方向に比較的広い幅(厚さ)でなだらかな不純物濃度分布にすることができる。このため、RC−IGBTのスイッチング特性を調整することができる。
(実施の形態3)
次に、実施の形態3にかかる半導体装置の構造について説明する。図9は、実施の形態3にかかる半導体装置の構造を示す説明図である。図9(a)には断面構造を示し、図9(b)には図9(a)の切断線C−C'における基板裏面から深さ方向のキャリア濃度分布を示す。実施の形態3にかかる半導体装置が実施の形態2にかかる半導体装置と異なる点は、n-型ドリフト層1の内部の基板裏面から深い所定位置(例えば基板裏面から例えば30μm〜60μm程度の深さ、または60μm以上程度の深さ)にブロードバッファ層として1つのn型FS層51を設けたブロードバッファ構造としている点である。ブロードバッファ構造とは、ピークを深さ方向の中心とし、当該ピーク位置から基板両主面側にそれぞれ向うにしたがって減少するキャリア濃度分布を有するブロードバッファ層を備えた構造である。
すなわち、実施の形態3においては、n型FS層51は、プロトン照射による第1n型層51aと、プロトン照射およびヘリウム照射によるn型層(以下、第2,3n型層(第2,3半導体層)とする)51b,51cと、を有する。具体的には、第1n型層51aは、IGBT領域21からダイオード領域22にわたって、n-型ドリフト層1の内部の基板裏面から深い位置に設けられている。第1n型層51aは、1回のプロトン照射により形成された、プロトンを含む拡散層である。さらに、n型FS層51は、第1n型層51aの基板両主面側にそれぞれ第2,3n型層51b,51cを有する。第2,3n型層51b,51cは、プロトン照射および第1ヘリウム照射31により形成された、プロトンおよびヘリウムを含む拡散層である。すなわち、第2,3n型層51b,51cは、第1ヘリウム照射31の飛程は実施の形態1と同様にプロトン照射の飛程Rpよりも基板裏面から深い位置に設けられる。
また、第2,3n型層51b,51cは、ダイオード領域22に設けられる。第2,3n型層51b,51cは、IGBT領域21の、ダイオード領域22との境界付近にまで延在していてもよい。第2n型層51bは、第1n型層51aのアノード側に接し、基板裏面から第1n型層51aよりも深い位置にキャリア濃度のピークを有する。また、第2n型層51bは、プロトン照射による第1n型層51aよりもキャリア濃度のピークが低く、かつ当該ピーク位置からアノード側に向うにしたがって第1n型層51aよりもなだらかな傾斜で減少するほぼ平坦なキャリア濃度分布を有する。
第3n型層51cは、第1n型層51aのカソード側に接し、基板裏面から第1n型層51aよりも浅い位置にキャリア濃度のピークを有する。また、第3n型層51cは、プロトン照射による第1n型層51aよりもキャリア濃度のピークが低く、かつ当該ピーク位置からカソード側に向うにしたがって第1n型層51aよりもなだらかな傾斜で減少するほぼ平坦なキャリア濃度分布を有する。第2,3n型層51b,51cの厚さt5,t6は、第1n型層51aの厚さt7よりも厚くてもよい(t5>t7、t6>t7)。また、n型FS層51は第2,3n型層51b,51cを有することで、その厚さt8は比較的厚くなっている。
実施の形態3にかかる半導体装置の製造方法は、実施の形態2にかかる半導体装置の製造方法において、実施の形態2よりも基板裏面から深い飛程RpでステップS16のプロトン照射を行えばよい。実施の形態3においては、ステップS19のアニールにより第1n型層51a中の活性化されていないプロトンがダイオード領域22において第1n型層51aの基板両主面側にそれぞれ拡散される。これにより、第1n型層51aの基板両主面側にそれぞれピークを有し、当該ピーク位置から基板両主面側にそれぞれ向うにしたがって第1n型層51aよりもなだらかな傾斜で減少するキャリア濃度分布を有する2つのn型層がダイオード領域22に形成される。この2つのn型層が第2,3n型層51b,51cである。
次に、実施の形態3にかかる半導体装置の別の一例の構造について説明する。図10は、実施の形態3にかかる半導体装置の別の一例のキャリア濃度分布を示す説明図である。図10では、欠陥層11bを図示省略する。図10(a),10(b)ともに、ダイオード領域22における基板裏面から深さ方向のキャリア濃度分布を示す。図10(a),10(b)ともに、横軸は基板裏面からの深さであり、縦軸はキャリア濃度である。図10(a)に示すように、第1ヘリウム照射31の飛程(第1ヘリウム照射31の第1ヘリウム通過領域31d)を、プロトン照射の飛程Rp付近で、かつプロトン照射の飛程Rpよりも基板裏面から浅くてもよい。この場合、第1n型層51aのカソード側にのみプロトンおよびヘリウムを含む第3n型層51cが形成される。第3n型層51cの構成は、例えば図9に示す実施の形態3にかかる半導体装置の第3n型層51cと同様である。
また、図10(b)に示すように、第1ヘリウム照射31の飛程(第1ヘリウム照射31の第1ヘリウム通過領域31e)を、プロトン照射の飛程Rp付近で、かつプロトン照射の飛程Rpよりも基板裏面から深くてもよい。この場合、第1n型層51aのアノード側およびカソード側にそれぞれプロトンおよびヘリウムを含む第2,3n型層51d,51cが形成される。アノード側の第2n型層51dは、第1ヘリウム照射31により形成される欠陥層のピークの半値幅の範囲内に位置し格子欠陥を多く含む。このため、第2n型層51dは、カソード側の第3n型層51cよりもキャリア濃度のピークが高く、かつ第3n型層51cよりも急峻で、アノード側に向うにしたがって第1n型層51aよりもなだらかな傾斜で減少するキャリア濃度分布を有する。第3n型層51cの構成は、例えば図9に示す実施の形態3にかかる半導体装置の第3n型層51cと同様である。
以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態3によれば、従来と同様にピーク位置から急峻な傾斜でキャリア濃度が減少するプロトン照射による第1n型層と、当該第1n型層に接し、かつ第1n型層よりもなだらかにキャリア濃度が減少する第2,3n型層と、を有するブロードバッファ層を形成することができる。ブロードバッファ構造の半導体装置は、高速動作においてソフトリカバリーな逆回復電流・電圧波形が得られ、かつ逆回復電流・電圧波形の発振を抑制する効果が高い。このため、高速・低損失で、かつソフトリカバリー特性を備えたIGBT等によるパワー半導体装置を提供することができ、電力制御装置等に有用である。
また、従来、ブロードバッファ構造の半導体装置の製造方法として、エピタキシャル成長により複数の半導体層を積層して半導体基板を作製する際に、基板裏面から深い所定位置にブロードバッファ層となる相対的にリン濃度の高い半導体層をエピタキシャル成長させる方法が提案されている(以下、従来例1とする)。別の方法として、半導体基板に照射したプロトンを、熱処理によりプロトン照射面から飛程Rpの深さ位置付近でドナー化させることでブロードバッファ層を形成する方法が提案されている(以下、従来例2とする)。従来例1では、従来例2に比べてコストが高く、従来例2では、ブロードバッファ層の深さ位置であるプロトン照射の飛程がプロトン照射装置の性能に依存する。それに対して、実施の形態3によれば、プロトン照射およびヘリウム照射により、プロトン照射装置の照射限界よりも基板裏面から深い位置にまで達する厚いブロードバッファ層を形成することができる。このため、従来例1に比べてコストが低く、かつ従来例2に比べて基板裏面から深い位置にまで達する厚いブロードバッファ層を形成することができる。
(実施の形態4)
次に、実施の形態4にかかる半導体装置の構造について説明する。図11は、実施の形態4にかかる半導体装置の構造を示す説明図である。図11(a)には断面構造を示し、図11(b)には図11(a)の切断線D−D'における基板裏面から深さ方向のキャリア濃度分布を示す。実施の形態4にかかる半導体装置が実施の形態3にかかる半導体装置と異なる点は、基板裏面からの深さが異なる2つのn型FS層(以下、第1,2n型FS層とする)51,52を設けている点である。
第1n型FS層51の構成は、例えば、実施の形態3のn型FS層と同様である。第2n型FS層52は、基板裏面からの深さの異なる複数段(ここでは4段とする)のn型層52a〜52dを有する。これら第2n型FS層52の複数段のn型層(以下、第1〜4n型層とする)52a〜52dは、飛程Rpの異なる複数回のプロトン照射により形成された拡散層である。第2n型FS層52の構成は、例えば、実施の形態1のn型FS層を構成する複数段のn型層のうち、プロトン照射により形成された第1〜4n型層と同様であってもよい。図11においては、第2n型FS層52について、基板裏面に最も近い第1n型層52aから順に、基板裏面から深さ方向に符号52a〜52dを付す。
実施の形態4にかかる半導体装置の製造方法は、実施の形態3にかかる半導体装置の製造方法において、ステップS16のプロトン照射(複数回のプロトン照射)で、第1n型FS層51の第1n型層51aを形成するとともに、第2n型FS層52の第1〜4n型層52a〜52dを形成すればよい。図11には、ステップS18の第2ヘリウム照射34による第2欠陥層11bを、第2n型層52b付近に形成した状態を示す(図12,14においても同様である)。
以上、説明したように、実施の形態4によれば、実施の形態1〜3と同様の効果を得ることができる。
(実施の形態5)
次に、実施の形態5にかかる半導体装置の構造について説明する。図12は、実施の形態5にかかる半導体装置の構造を示す説明図である。図13,14は、実施の形態5にかかる半導体装置の製造途中の状態を示す断面図である。実施の形態5にかかる半導体装置が実施の形態4にかかる半導体装置と異なる点は、第1n型FS層51を構成する第2,3n型層(プロトン照射およびヘリウム照射によるn型層)51e、51fを、IGBT領域21からダイオード領域22にわたって設けている点である。すなわち、第1n型FS層51の第1n型層(プロトン照射による)51aは、基板両主面側にそれぞれ配置された第2,3n型層51e、51fに挟まれた状態となっている。第1欠陥層11aは、IGBT領域21からダイオード領域22にわたって設けられている。
実施の形態5にかかる半導体装置の製造方法は、実施の形態4にかかる半導体装置の方法において、ステップS18の第1ヘリウム照射31を、IGBT領域21からダイオード領域22にわたって行えばよい。すなわち、図13に示すように、ステップS18の第1ヘリウム照射31において、半導体基板とアブソーバー32との間に厚い金属板(図3参照)を配置しない。これにより、図14に示すように、IGBT領域21およびダイオード領域22全体が第1ヘリウム通過領域31b(斜線のハッチング部分)となる。図14には、ステップS18において第2ヘリウム照射34を行っている状態を示す。このため、その後のステップS19のアニールで、第1n型層51aの基板両主面側にそれぞれ、ダイオード領域22からIGBT領域21にわたって第2,3n型層51e、51fが形成される。
実施の形態5を実施の形態1〜3に適用し、各実施の形態1〜3において形成されるプロトン照射およびヘリウム照射によるn型層を、IGBT領域21からダイオード領域22にわたって形成してもよい。
以上、説明したように、実施の形態5によれば、実施の形態1〜4と同様の効果を得ることができる。
(実施の形態6)
次に、実施の形態6にかかる半導体装置の製造方法について、図1,2A,15を参照しながら説明する。図15は、実施の形態6にかかる半導体装置の製造方法の概要を示すフローチャートである。実施の形態6にかかる半導体装置の製造方法が実施の形態1にかかる半導体装置の製造方法を異なる点は、プロトン照射とヘリウム照射との順序を入れ換えて行っている点である。すなわち、ヘリウム照射の後にプロトン照射を行っている。
具体的には、図2A,15に示すように、実施の形態1と同様に、MOSゲートの形成(ステップS1)から表面保護膜の形成(ステップS15)までの工程を順に行う。次に、ヘリウム照射を行う(ステップS21)。ステップS21のヘリウム照射の方法および条件は実施の形態1のヘリウム照射と同様である。次に、プロトン照射を行う(ステップS22)。ステップS22のプロトン照射の方法および条件は実施の形態1のプロトン照射と同様である。次に、熱処理(アニール)により、半導体基板中のプロトンを活性化させるとともに、ヘリウム照射による格子欠陥を回復させる(ステップS23)。
このように実施の形態6においては、ステップS21のヘリウム照射の後、ステップS22のプロトン照射の前に、ヘリウム照射による格子欠陥を回復させるための熱処理を行わない。これにより、プロトンと結合してドナー化される格子欠陥がステップS22のプロトン照射の前に回復され消滅することを回避することができ、実施の形態1と同様にプロトン照射による水素ドナーを形成することができる。ステップS23のアニール条件は、例えば実施の形態1のプロトンを活性化させるためのアニール条件と同様である。その後、実施の形態1と同様に、裏面電極14の形成(ステップS20)以降の工程を順に行い、図1に示すトレンチゲート構造のRC−IGBTが完成する。
実施の形態6にかかる半導体装置の製造方法を実施の形態2〜5にかかる半導体装置を製造する際に適用してもよい。
以上、説明したように、実施の形態6にかかる半導体装置の製造方法によれば、実施の形態1〜5にかかる半導体装置の構造による効果を得ることができる。
以上において本発明は、上述した各実施の形態に限らず、本発明の趣旨を逸脱しない範囲で種々変更可能である。例えば、上述した各実施の形態では、トレンチゲート構造のRC−IGBTを例に説明しているが、例えばIGBT単体やダイオード単体などn型FS層を備えた様々な半導体装置に適用可能である。また、上述した各実施の形態1,2では、キャリアライフタイムを制御するために第1ヘリウム照射を行う場合を例に説明しているが、n型FS層となるプロトンおよびヘリウムを含むn型層を形成することを目的として第1ヘリウム照射を行ってもよい。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、インバータなどの電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用である。
1 n-型ドリフト層
2 p型ベース層(p型アノード層)
3 トレンチ
4 ゲート絶縁膜
5 ゲート電極
6 n+型エミッタ領域
7 p+型コンタクト領域
8 層間絶縁膜
9 おもて面電極
10,50,51,52 n型FS層
10a〜10e,50a,50b,51a〜51d,52a〜52d n型FS層を構成するn型層
11a,11b 欠陥層
12 p+型コレクタ領域
13 n+型カソード領域
14 裏面電極
21 IGBT領域
22 ダイオード領域
31,34 ヘリウム照射
31a,34a ヘリウム到達位置
31b,34b ヘリウム通過領域
32,35 アブソーバー
33 金属板
33a 金属板の開口部

Claims (20)

  1. 第1導電型の半導体基板の一方の主面側から第1所定深さを飛程としてプロトンを照射し、プロトンを含み、かつ前記第1所定深さにキャリア濃度のピークを有する第1導電型の第1半導体層を形成する第1照射工程と、
    熱処理によりプロトンを活性化させる第1熱処理工程と、
    前記半導体基板の一方の主面側から前記第1所定深さよりも深い第2所定深さを飛程としてヘリウムを照射し、前記半導体基板に格子欠陥を導入する第2照射工程と、
    熱処理により、前記半導体基板中の前記格子欠陥の量を調整する第2熱処理工程と、
    を含み、
    前記第2熱処理工程では、前記第1半導体層よりも前記半導体基板の他方の主面側に、プロトンおよびヘリウムを含み、かつ前記第1半導体層に接する第1導電型の第2半導体層を形成することを特徴とする半導体装置の製造方法。
  2. 前記第2熱処理工程では、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の他方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有する前記第2半導体層を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第1照射工程の前に、前記半導体基板の他方の主面側に第2導電型半導体領域を形成する工程をさらに含み、
    前記第2導電型半導体領域と前記半導体基板との間のpn接合から前記半導体基板の一方の主面側に伸びる空乏層の伸びを抑制するフィールドストップ層として、前記第1半導体層および前記第2半導体層を形成することを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4. 前記第1照射工程では、
    異なる飛程でプロトンを複数回照射し、前記半導体基板の一方の主面からの深さの異なる複数の前記第1半導体層を形成し、
    複数の前記第1半導体層のうち、前記半導体基板の一方の主面から最も深い位置に形成する前記第1半導体層を、前記第1所定深さを飛程とするプロトン照射により形成することを特徴とする請求項1または2に記載の半導体装置の製造方法。
  5. 前記第2熱処理工程では、さらに、前記第1半導体層よりも前記半導体基板の一方の主面側に、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第3半導体層を形成することを特徴とする請求項1または2に記載の半導体装置の製造方法。
  6. 前記第2熱処理工程では、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の一方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有する前記第3半導体層を形成することを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 第1導電型の半導体基板の内部に設けられ、前記半導体基板の一方の主面から第1所定深さにキャリア濃度のピークを有する、プロトンを含む第1導電型の第1半導体層と、
    前記第1半導体層よりも前記半導体基板の他方の主面側に設けられ、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第2半導体層と、
    前記半導体基板の一方の主面から前記第2半導体層よりも深い第2所定深さに設けられ、ヘリウムおよび空孔を含む格子欠陥からなる欠陥層と、
    前記欠陥層と前記半導体基板の他方の主面との間に設けられた、前記半導体基板の一方の主面から照射されたヘリウムが達していない領域と、
    を備えることを特徴とする半導体装置。
  8. 第1導電型の半導体基板の内部に設けられ、前記半導体基板の一方の主面から第1所定深さにキャリア濃度のピークを有する、プロトンを含む第1導電型の第1半導体層と、
    前記第1半導体層よりも前記半導体基板の他方の主面側に設けられ、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第2半導体層と、
    前記半導体基板の一方の主面から前記第2半導体層よりも深い第2所定深さに含まれる、前記半導体基板の一方の主面から照射されたヘリウムにより導入された格子欠陥からなる欠陥層と、
    前記欠陥層と前記半導体基板の他方の主面との間に設けられた、前記半導体基板の一方の主面から照射されたヘリウムが達していない領域と、
    を備えることを特徴とする半導体装置。
  9. 第1導電型の半導体基板の内部に設けられ、前記半導体基板の一方の主面から第1所定深さにキャリア濃度のピークを有する、プロトンを含む第1導電型の第1半導体層と、
    前記第1半導体層よりも前記半導体基板の他方の主面側に設けられ、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第2半導体層と、
    前記半導体基板の一方の主面から前記第1所定深さよりも深い第2所定深さに設けられ、ヘリウムおよび空孔を含む格子欠陥からなる欠陥層と、
    前記欠陥層と前記半導体基板の他方の主面との間に設けられた、前記半導体基板の一方の主面から照射されたヘリウムが達していない領域と、
    を備え、
    前記半導体基板のキャリア濃度は、前記欠陥層を設けた部分で他の部分より低くなっていることを特徴とする半導体装置。
  10. 前記第2半導体層は、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の他方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有することを特徴とする請求項7〜9のいずれか一つに記載の半導体装置。
  11. 前記半導体基板の他方の主面側に設けられた第2導電型半導体領域をさらに備え、
    前記第1半導体層および前記第2半導体層は、前記第2導電型半導体領域と前記半導体基板との間のpn接合から前記半導体基板の一方の主面側に伸びる空乏層の伸びを抑制するフィールドストップ層であることを特徴とする請求項7〜9のいずれか一つに記載の半導体装置。
  12. 前記半導体基板の一方の主面からの深さの異なる複数の前記第1半導体層を備え、
    複数の前記第1半導体層のうち、前記半導体基板の一方の主面から最も深い位置に設けられた前記第1半導体層は、前記第1所定深さにキャリア濃度のピークを有することを特徴とする請求項7〜9のいずれか一つに記載の半導体装置。
  13. 前記第1半導体層よりも前記半導体基板の一方の主面側に設けられ、前記第1半導体層に接する、プロトンおよびヘリウムを含む第1導電型の第3半導体層を備えることを特徴とする請求項7〜9のいずれか一つに記載の半導体装置。
  14. 前記第3半導体層は、前記第1半導体層よりもキャリア濃度のピークが低く、かつ前記半導体基板の一方の主面側に向うにしたがって前記第1半導体層よりもなだらかな傾斜で減少するキャリア濃度分布を有することを特徴とする請求項13に記載の半導体装置。
  15. 前記半導体基板のキャリア濃度は、前記欠陥層を設けた部分で他の部分より低くなっていることを特徴とする請求項7または8に記載の半導体装置。
  16. 前記第1半導体層のキャリア濃度のピークは、照射された前記プロトンの到達位置であり、
    前記第2半導体層はキャリア濃度のピークを有し、前記第2半導体層のキャリア濃度のピークは、前記到達位置よりも前記他方の主面側に位置することを特徴とする請求項7〜15のいずれか一つに記載の半導体装置。
  17. 前記第2半導体層の厚さは、前記第1半導体層の厚さより厚いことを特徴とする請求項7〜16のいずれか一つに記載の半導体装置。
  18. 前記半導体基板の他方の主面側に設けられた第2導電型半導体領域と、前記第2導電型半導体領域の内部に選択的に設けられた第1導電型エミッタ領域と、前記第2導電型半導体領域および前記第1導電型エミッタ領域を貫通して前記半導体基板に達する第1トレンチと、前記第1トレンチの内部に第1ゲート絶縁膜を介して設けられた第1ゲート電極と、前記半導体基板の一方の主面側に設けられた第2導電型コレクタ領域と、を有する絶縁ゲート型バイポーラトランジスタが設けられた第1素子領域と、
    前記第2導電型半導体領域と、前記第2導電型半導体領域を貫通して前記半導体基板に達する第2トレンチと、前記第2トレンチの内部に第2ゲート絶縁膜を介して設けられた第2ゲート電極と、前記半導体基板の一方の主面側に設けられた第1導電型カソード領域と、を有するダイオードが設けられた第2素子領域と、
    前記第2導電型半導体領域および前記エミッタ領域に接する第1電極と、
    前記第2導電型コレクタ領域および第1導電型カソード領域に接する第2電極と、
    をさらに備え、
    前記第1半導体層は、前記第1素子領域と前記第2素子領域とに設けられ、
    前記第2半導体層は、前記第2素子領域に設けられ、前記第1素子領域の一部まで延在することを特徴とする請求項7〜17のいずれか一つに記載の半導体装置。
  19. 前記半導体基板は、MCZ(Magnetic field applied Czochralski)法により作製したインゴットから切断された半導体基板であることを特徴とする請求項7〜18のいずれか一つに記載の半導体装置。
  20. 前記半導体基板の他方の主面側に設けられた第2導電型半導体領域と、前記第2導電型半導体領域の内部に選択的に設けられた第1導電型エミッタ領域と、前記第2導電型半導体領域および前記第1導電型エミッタ領域を貫通して前記半導体基板に達する第1トレンチと、前記第1トレンチの内部に第1ゲート絶縁膜を介して設けられた第1ゲート電極と、を有するMOSゲートをさらに備え、
    前記第2所定深さは、前記半導体基板の他方の主面側に設けられた前記MOSゲートに達しない深さであることを特徴とする請求項7〜9のいずれか一つに記載の半導体装置。
JP2017539773A 2015-09-16 2016-08-08 半導体装置および半導体装置の製造方法 Active JP6477897B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015183481 2015-09-16
JP2015183481 2015-09-16
PCT/JP2016/073368 WO2017047285A1 (ja) 2015-09-16 2016-08-08 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017047285A1 JPWO2017047285A1 (ja) 2017-12-28
JP6477897B2 true JP6477897B2 (ja) 2019-03-06

Family

ID=58288853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017539773A Active JP6477897B2 (ja) 2015-09-16 2016-08-08 半導体装置および半導体装置の製造方法

Country Status (5)

Country Link
US (3) US10381225B2 (ja)
JP (1) JP6477897B2 (ja)
CN (1) CN107408576B (ja)
DE (1) DE112016001611B4 (ja)
WO (1) WO2017047285A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777028B2 (en) 2020-12-11 2023-10-03 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237921B2 (ja) * 2014-09-30 2017-11-29 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2016051973A1 (ja) * 2014-10-03 2016-04-07 富士電機株式会社 半導体装置および半導体装置の製造方法
CN107408576B (zh) 2015-09-16 2020-11-13 富士电机株式会社 半导体装置及半导体装置的制造方法
JP6610768B2 (ja) * 2016-02-23 2019-11-27 富士電機株式会社 半導体装置
KR20180104236A (ko) * 2017-03-10 2018-09-20 매그나칩 반도체 유한회사 전력 반도체 소자의 제조 방법
US20190006461A1 (en) * 2017-06-29 2019-01-03 Alpha And Omega Semiconductor (Cayman) Ltd. Semiconductor device incorporating epitaxial layer field stop zone
WO2019017104A1 (ja) * 2017-07-18 2019-01-24 富士電機株式会社 半導体装置
DE102017118975B4 (de) * 2017-08-18 2023-07-27 Infineon Technologies Ag Halbleitervorrichtung mit einem cz-halbleiterkörper und verfahren zum herstellen einer halbleitervorrichtung mit einem cz-halbleiterkörper
DE102017128247A1 (de) * 2017-11-29 2019-05-29 Infineon Technologies Ag Verfahren zum Herstellen einer Halbleitervorrichtung mit ersten und zweiten Feldstoppzonenbereichen
WO2019111572A1 (ja) 2017-12-06 2019-06-13 富士電機株式会社 半導体装置
US11393812B2 (en) * 2017-12-28 2022-07-19 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP6835291B2 (ja) * 2018-03-19 2021-02-24 富士電機株式会社 半導体装置および半導体装置の製造方法
DE112018007456B4 (de) 2018-04-11 2024-01-25 Mitsubishi Electric Corporation Halbleitervorrichtung, Halbleiterwafer und Verfahren zum Herstellen einer Halbleitervorrichtung
JP6958740B2 (ja) 2018-08-14 2021-11-02 富士電機株式会社 半導体装置および製造方法
JP6964566B2 (ja) * 2018-08-17 2021-11-10 三菱電機株式会社 半導体装置およびその製造方法
CN111886682A (zh) 2018-10-18 2020-11-03 富士电机株式会社 半导体装置及制造方法
WO2020100995A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
WO2020100997A1 (ja) * 2018-11-16 2020-05-22 富士電機株式会社 半導体装置および製造方法
CN112204710B (zh) * 2018-12-28 2024-07-09 富士电机株式会社 半导体装置及制造方法
CN112652661A (zh) * 2019-10-10 2021-04-13 珠海格力电器股份有限公司 一种晶体管及其制备方法
WO2021070539A1 (ja) 2019-10-11 2021-04-15 富士電機株式会社 半導体装置および半導体装置の製造方法
CN113875016A (zh) * 2019-12-17 2021-12-31 富士电机株式会社 半导体装置
US11996452B2 (en) 2020-01-17 2024-05-28 Fuji Electric Co., Ltd. Semiconductor device including an IGBT with reduced variation in threshold voltage
JP7367856B2 (ja) * 2020-04-01 2023-10-24 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2021201235A1 (ja) * 2020-04-01 2021-10-07 富士電機株式会社 半導体装置および半導体装置の製造方法
DE102020110072A1 (de) * 2020-04-09 2021-10-14 Infineon Technologies Ag Vertikale leistungs-halbleitervorrichtung und herstellungsverfahren
CN113809147A (zh) 2020-06-17 2021-12-17 富士电机株式会社 半导体装置以及半导体装置的制造方法
JP7439929B2 (ja) * 2020-07-14 2024-02-28 富士電機株式会社 半導体装置
JP7405261B2 (ja) * 2020-07-15 2023-12-26 富士電機株式会社 半導体装置
CN111900087B (zh) * 2020-08-31 2022-09-20 华虹半导体(无锡)有限公司 Igbt器件的制造方法
WO2023145805A1 (ja) * 2022-01-28 2023-08-03 富士電機株式会社 半導体装置および製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102545A (ja) 1994-09-30 1996-04-16 Meidensha Corp 半導体素子のライフタイム制御方法
JPH1074959A (ja) 1996-07-03 1998-03-17 Toshiba Corp 電力用半導体素子
DE102004004045B4 (de) 2004-01-27 2009-04-02 Infineon Technologies Ag Halbleiterbauelement mit temporärem Feldstoppbereich und Verfahren zu dessen Herstellung
US7557386B2 (en) 2006-03-30 2009-07-07 Infineon Technologies Austria Ag Reverse conducting IGBT with vertical carrier lifetime adjustment
JP5695343B2 (ja) 2010-05-13 2015-04-01 株式会社豊田中央研究所 半導体装置
JP5605073B2 (ja) * 2010-08-17 2014-10-15 株式会社デンソー 半導体装置
DE102011113549B4 (de) 2011-09-15 2019-10-17 Infineon Technologies Ag Ein Halbleiterbauelement mit einer Feldstoppzone in einem Halbleiterkörper und ein Verfahren zur Herstellung einer Feldstoppzone in einem Halbleiterkörper
JP2013074181A (ja) * 2011-09-28 2013-04-22 Toyota Motor Corp 半導体装置とその製造方法
EP2800143B1 (en) 2011-12-28 2020-04-08 Fuji Electric Co., Ltd. Semiconductor device and method for producing semiconductor device
US9214521B2 (en) 2012-06-21 2015-12-15 Infineon Technologies Ag Reverse conducting IGBT
US9263271B2 (en) 2012-10-25 2016-02-16 Infineon Technologies Ag Method for processing a semiconductor carrier, a semiconductor chip arrangement and a method for manufacturing a semiconductor device
US9627517B2 (en) 2013-02-07 2017-04-18 Infineon Technologies Ag Bipolar semiconductor switch and a manufacturing method therefor
US9041096B2 (en) 2013-04-16 2015-05-26 Rohm Co., Ltd. Superjunction semiconductor device and manufacturing method therefor
JP6234696B2 (ja) * 2013-04-16 2017-11-22 ローム株式会社 半導体装置
JP6119593B2 (ja) * 2013-12-17 2017-04-26 トヨタ自動車株式会社 半導体装置
JP5895950B2 (ja) 2014-01-20 2016-03-30 トヨタ自動車株式会社 半導体装置の製造方法
US9312135B2 (en) 2014-03-19 2016-04-12 Infineon Technologies Ag Method of manufacturing semiconductor devices including generating and annealing radiation-induced crystal defects
US9754787B2 (en) 2014-06-24 2017-09-05 Infineon Technologies Ag Method for treating a semiconductor wafer
US9312120B2 (en) 2014-08-29 2016-04-12 Infineon Technologies Ag Method for processing an oxygen containing semiconductor body
DE102014117538A1 (de) 2014-11-28 2016-06-02 Infineon Technologies Ag Verfahren zum Herstellen von Halbleitervorrichtungen unter Verwendung von Implantation leichter Ionen und Halbleitervorrichtung
DE102015107085A1 (de) 2015-05-06 2016-11-10 Infineon Technologies Ag Verfahren zum Herstellen von Halbleitervorrichtungen und Sauerstoffkorrelierte thermische Donatoren enthaltende Halbleitervorrichtung
CN107004723B (zh) * 2015-06-17 2021-03-09 富士电机株式会社 半导体装置及半导体装置的制造方法
CN107408576B (zh) * 2015-09-16 2020-11-13 富士电机株式会社 半导体装置及半导体装置的制造方法
DE102016120771B3 (de) 2016-10-31 2018-03-08 Infineon Technologies Ag Verfahren zum Herstellen von Halbleitervorrichtungen und Halbleitervorrichtung, die wasserstoff-korrelierte Donatoren enthält

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777028B2 (en) 2020-12-11 2023-10-03 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
DE112016001611B4 (de) 2022-06-30
US10381225B2 (en) 2019-08-13
WO2017047285A1 (ja) 2017-03-23
US11508581B2 (en) 2022-11-22
US20210028019A1 (en) 2021-01-28
CN107408576B (zh) 2020-11-13
CN107408576A (zh) 2017-11-28
DE112016001611T5 (de) 2017-12-28
US20190362975A1 (en) 2019-11-28
US20180012762A1 (en) 2018-01-11
JPWO2017047285A1 (ja) 2017-12-28
US10840099B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6477897B2 (ja) 半導体装置および半導体装置の製造方法
US10629678B2 (en) Semiconductor device and method of manufacturing semiconductor device
US10847609B2 (en) Method of manufacturing a semiconductor device in which a lifetime of carriers is controlled
JP5754545B2 (ja) 半導体装置および半導体装置の製造方法
JP6237902B2 (ja) 半導体装置および半導体装置の製造方法
JP6078961B2 (ja) 半導体装置の製造方法
JP5641055B2 (ja) 半導体装置およびその製造方法
US7485920B2 (en) Process to create buried heavy metal at selected depth
JP5807724B2 (ja) 半導体装置および半導体装置の製造方法
JP2001160559A (ja) 半導体装置の製造方法
WO2016204098A1 (ja) 半導体装置
TW201306254A (zh) 用於製備陽極短路的場欄絕緣閘雙極電晶體之方法
JP2018082007A (ja) 半導体装置の製造方法
JP2018078216A (ja) 半導体装置およびその製造方法
JP2002314084A (ja) 半導体装置の製造方法
JP3952452B2 (ja) 半導体装置の製造方法
US10580653B2 (en) Method of forming a semiconductor device
US11107887B2 (en) Semiconductor device
US10755933B2 (en) Method of manufacturing semiconductor device
JP2015041720A (ja) 半導体装置の製造方法
JP2022000882A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20170901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6477897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250