JP6474075B2 - Power generation equipment - Google Patents

Power generation equipment Download PDF

Info

Publication number
JP6474075B2
JP6474075B2 JP2015019682A JP2015019682A JP6474075B2 JP 6474075 B2 JP6474075 B2 JP 6474075B2 JP 2015019682 A JP2015019682 A JP 2015019682A JP 2015019682 A JP2015019682 A JP 2015019682A JP 6474075 B2 JP6474075 B2 JP 6474075B2
Authority
JP
Japan
Prior art keywords
power generation
power
steam
generation facility
generation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015019682A
Other languages
Japanese (ja)
Other versions
JP2016142213A (en
Inventor
吉葉 史彦
史彦 吉葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2015019682A priority Critical patent/JP6474075B2/en
Publication of JP2016142213A publication Critical patent/JP2016142213A/en
Application granted granted Critical
Publication of JP6474075B2 publication Critical patent/JP6474075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力系統に対して並列、解列が選択される発電設備であって、解列の状態の時に、効率を低下させることなく短時間で出力を高めて並列の状態にすることができる発電設備に関する。   The present invention is a power generation facility in which parallel or disengagement is selected with respect to the power system, and when in the disengagement state, the output can be increased in a short time without lowering the efficiency to be in the parallel state. It relates to power generation equipment that can be used.

また、本発明は、出力が低下する発電設備に対して、効率の低下を抑制して出力を高めるための運転を補助することができる外部発電設備に関する。   Moreover, this invention relates to the external power generation equipment which can assist the driving | operation for suppressing the fall of efficiency and raising an output with respect to the power generation equipment in which an output falls.

化石燃料を使用しない再生可能エネルギーを用いた再生エネルギー発電設備が導入されつつある。再生可能エネルギー発電設備は、自然環境により出力が大きく変化するため、電力需要に対応するためには、天然ガス等を燃料とした火力発電設備(単に火力発電設備と称する)を同時に用い、火力発電設備での出力を追従させる必要がある。自然環境の変化により再生可能エネルギー発電設備の出力が変化(低下)した場合、需用電力を賄うために、火力発電設備の出力を短時間で増加させる必要がある。   Renewable energy power generation facilities using renewable energy that does not use fossil fuels are being introduced. Since the output of renewable energy power generation facilities varies greatly depending on the natural environment, thermal power generation using natural gas as a fuel (simply called thermal power generation equipment) is used at the same time to meet power demand. It is necessary to follow the output of the equipment. When the output of the renewable energy power generation facility changes (decreases) due to changes in the natural environment, it is necessary to increase the output of the thermal power generation facility in a short time in order to cover the power demand.

このため、再生可能エネルギー発電設備と火力発電設備を併用している電力供給システムでは、再生可能エネルギー発電設備で出力を得ている場合には、火力発電設備を解列状態にしている。そして、再生可能エネルギー発電設備の出力の変化(低下)による電力需要に対応させる際には、解列状態にある火力発電設備の出力を上昇させてから並列状態にしているのが現状である。   For this reason, in the power supply system using both the renewable energy power generation facility and the thermal power generation facility, when the output is obtained from the renewable energy power generation facility, the thermal power generation facility is disconnected. And when it respond | corresponds to the electric power demand by the change (decrease) of the output of renewable energy power generation equipment, it is the present condition that it is made into the parallel state after raising the output of the thermal power generation equipment in a disconnected state.

このような状況から、系統の急激な負荷変化に対して、迅速に対応できる蒸気発電プラントが提案されている(特許文献1)。特許文献1に開示された技術は、ボイラで発生した蒸気をアキュムレータに貯蔵し、通常時にはアキュムレータからの蒸気により非常用蒸気タービンを無負荷もしくは低負荷で運転を行い、緊急に発電が必要になった時にはアキュムレータからの蒸気により全負荷の運転に移行するようにした技術である。   From such a situation, a steam power plant that can quickly respond to a rapid load change in the system has been proposed (Patent Document 1). The technique disclosed in Patent Document 1 stores steam generated in a boiler in an accumulator, and normally operates an emergency steam turbine with no load or low load by steam from the accumulator, so that power generation is urgently required. In some cases, the steam is transferred from the accumulator to full load operation.

特許文献1の技術を適用することにより、系統の出力を短時間で上昇させることができ、再生可能エネルギー発電設備の出力が変化(低下)した場合でも、電力需要に追従させることができる。   By applying the technique of Patent Document 1, the output of the system can be increased in a short time, and even when the output of the renewable energy power generation facility changes (decreases), the power demand can be followed.

しかし、系統(火力発電設備)を低い出力で運転するためには、天然ガス等の燃料を用いてボイラで蒸気を発生させ、低圧蒸気タービンを駆動する必要がある。このため、蒸気発生のための燃料が必要になり、火力発電設備の効率(燃費)が低下する問題があると共に、環境条件を守ることができない虞がある。   However, in order to operate the system (thermal power generation facility) at a low output, it is necessary to generate steam in a boiler using fuel such as natural gas and drive a low-pressure steam turbine. For this reason, fuel for generating steam is required, and there is a problem in that the efficiency (fuel consumption) of the thermal power generation facility is lowered, and environmental conditions may not be protected.

特開平8−232608号公報JP-A-8-232608

本発明は上記状況に鑑みてなされたもので、電力系統に対して並列、解列が選択される発電設備であって、解列の状態の時に、効率を低下させることなく短時間で出力を高めて並列の状態にすることができる発電設備を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a power generation facility that is selected to be parallel and disconnected from the power system, and in a disconnected state, outputs power in a short time without reducing efficiency. An object of the present invention is to provide a power generation facility that can be raised in parallel.

また、出力が低下される発電設備に対して、効率の低下を抑制して出力を高めるための運転を補助する外部発電設備を提供することができる。 Further, it is possible to output provides to power generation equipment to be reduced, the efficiency external power facilities you assist operation for increasing the output by suppressing the reduction of.

上記目的を達成するための請求項1に係る本発明の発電設備は、電力系統に接続される並列、前記電力系統から遮断される解列が選択されて運転され、蒸気タービンの駆動により電力を得る第1発電手段と、前記電力系統に接続される前記第1発電手段とは独立して所望の需要負荷に電力を供給し、発電機器による発電の排熱により蒸気を発生させる蒸気発生手段を備え、前記第1発電手段が前記電力系統に対して解列された時に、前記蒸気発生手段で発生した蒸気を前記蒸気タービンに供給して前記蒸気タービンの暖機を行う外部発電手段とを備えたことを特徴とする。 In order to achieve the above object, a power generation facility according to a first aspect of the present invention is operated by selecting a parallel connection connected to an electric power system and a disconnection cut off from the electric power system, and generating electric power by driving a steam turbine. Steam generating means for supplying electric power to a desired demand load independently of the first power generating means to be obtained and the first power generating means connected to the power system and generating steam by exhaust heat generated by the power generation equipment And an external power generation means for warming up the steam turbine by supplying steam generated by the steam generation means to the steam turbine when the first power generation means is disconnected from the power system. It is characterized by that.

請求項1に係る本発明では、発電を行う外部発電手段により蒸気を発生させ、発生させた蒸気を第1発電手段の蒸気タービンに供給して蒸気タービンの暖機を実施することができる。このため、第1発電手段では、暖機のための燃料を必要とせず、別途発電を行っている外部発電手段の排熱を利用して、電力系統に対して解列の状態にある第1発電手段を短時間で出力を高めて、電力系統に並列させる状態にすることができる。   In the first aspect of the present invention, steam is generated by the external power generation means that generates power, and the generated steam can be supplied to the steam turbine of the first power generation means to warm up the steam turbine. For this reason, the first power generation means does not require fuel for warm-up, and the first power generation means is in a state of being disconnected from the power system using the exhaust heat of the external power generation means that is separately generating power. The output of the power generation means can be increased in a short time and placed in parallel with the power system.

このため、電力系統に対して並列、解列が選択される発電設備であって、解列の状態の時に、効率を低下させることなく短時間で出力を高めて並列の状態にすることが可能になる。   For this reason, it is a power generation facility that is selected to be parallel and disconnected from the power system, and when in the disconnected state, it is possible to increase the output in a short time without reducing the efficiency and to make it parallel. become.

そして、請求項2に係る本発明の発電設備は、請求項1に記載の発電設備において、前記第1発電手段は、燃料を投入して蒸気を発生させるボイラと、前記ボイラで発生した蒸気が導入されて駆動力を得る前記蒸気タービンと、前記蒸気タービンの排気蒸気が冷却されて凝縮水を得る復水手段と、前記復水手段で得られた凝縮水を前記ボイラに循環させる循環路とを有し、前記蒸気タービンは、前記外部発電手段の前記蒸気発生手段からの蒸気が導入される低圧蒸気タービンを有していることを特徴とする。   The power generation facility of the present invention according to claim 2 is the power generation facility according to claim 1, wherein the first power generation means includes a boiler for supplying steam to generate steam, and steam generated in the boiler. The steam turbine introduced to obtain driving force, condensate means for obtaining condensed water by cooling the exhaust steam of the steam turbine, and a circulation path for circulating the condensed water obtained by the condensate means to the boiler; The steam turbine has a low-pressure steam turbine into which steam from the steam generation means of the external power generation means is introduced.

請求項2に係る本発明では、ボイラで発生した蒸気が導入されて駆動力を得る低圧蒸気タービンを備えた火力発電設備において、外部発電手段により蒸気を発生させた蒸気により低圧蒸気タービンの暖機運転を行うことができる。   According to the second aspect of the present invention, in a thermal power generation facility including a low-pressure steam turbine in which steam generated in a boiler is introduced to obtain driving force, warm-up of the low-pressure steam turbine by steam generated by external power generation means You can drive.

また、請求項3に係る本発明の発電設備は、請求項2に記載の発電設備において、前記ボイラの燃料は石炭であり、前記外部発電手段による発電の排熱の一部により前記石炭を乾燥させることを特徴とする。   The power generation facility according to a third aspect of the present invention is the power generation facility according to the second aspect, wherein the boiler fuel is coal, and the coal is dried by a part of exhaust heat generated by the external power generation means. It is characterized by making it.

請求項3に係る本発明では、外部発電手段による発電の排熱の一部で、ボイラの燃料である石炭を乾燥させることができる。例えば、外部発電手段としてガスエンジンを適用した場合、ガスエンジンの排気ガス中には酸素がほとんど存在しないため、排熱により石炭を乾燥させても発火することがない。   In this invention which concerns on Claim 3, coal which is a fuel of a boiler can be dried with a part of waste heat of the electric power generation by an external power generation means. For example, when a gas engine is applied as the external power generation means, oxygen hardly exists in the exhaust gas of the gas engine, so that even if the coal is dried by exhaust heat, it does not ignite.

また、請求項4に係る本発明の発電設備は、請求項1から請求項3のいずれか一項に記載の発電設備において、前記外部発電手段の発電機器は、ガスエンジンであり、前記外部発電手段の蒸気発生手段は、前記ガスエンジンの排熱により蒸気を発生させる排熱回収ボイラであることを特徴とする。   The power generation facility according to a fourth aspect of the present invention is the power generation facility according to any one of the first to third aspects, wherein the power generation device of the external power generation means is a gas engine, and the external power generation The steam generating means is an exhaust heat recovery boiler that generates steam by exhaust heat of the gas engine.

請求項4に係る本発明では、ガスエンジンの排熱により蒸気を発生させ、第1発電手段の蒸気タービンに供給することができる。   In the present invention according to claim 4, steam can be generated by exhaust heat of the gas engine and supplied to the steam turbine of the first power generation means.

また、請求項5に係る本発明の発電設備は、請求項1から請求項4のいずれか一項に記載の発電設備において、前記電力系統には、再生可能エネルギー発電設備が接続され、前記第1発電手段は、前記再生可能エネルギー発電設備の出力で前記電力系統の要求電力の発電が行われている時に、前記電力系統から解列されることを特徴とする。   A power generation facility according to a fifth aspect of the present invention is the power generation facility according to any one of the first to fourth aspects, wherein a renewable energy power generation facility is connected to the power system. The one power generation means is disconnected from the power system when the required power of the power system is generated by the output of the renewable energy power generation facility.

請求項5に係る本発明では、再生可能エネルギー発電設備の出力で電力系統の要求電力の発電が行われている時に、第1発電手段が電力系統から解列され、再生可能エネルギー発電設備の出力が低下した際に(脱落した際に)、第1発電手段の出力を高めて電力系統に並列して要求電力を発電する。つまり、再生可能エネルギー発電設備の出力が低下(脱落)して第1発電手段の出力を高めて電力系統に並列にする際に、専用の燃料を用いずに暖機運転されている、即ち、発電電力を得ている外部発電手段による熱エネルギーが用いられて暖機運転されている第1発電手段の出力を、短時間で高めることができる。   In the present invention according to claim 5, when the required power of the power system is generated by the output of the renewable energy power generation facility, the first power generation means is disconnected from the power system, and the output of the renewable energy power generation facility Is reduced (when dropped), the output of the first power generation means is increased to generate the required power in parallel with the power system. That is, when the output of the renewable energy power generation facility is reduced (dropped) and the output of the first power generation means is increased to be parallel to the power system, the engine is warmed up without using a dedicated fuel, that is, The output of the first power generation means that is warmed up using the thermal energy from the external power generation means that obtains the generated power can be increased in a short time.

従って、自然環境により出力が変動する再生可能エネルギー発電設備が併用されている電力系統に電力を供給する第1発電手段であっても、暖機のための燃料を用いることなく待機運転を実施することができ、再生可能エネルギー発電設備の出力の低下(脱落)に対し、燃料使用効率を低下させることなく、第1発電手段の出力を高めて電力系統に並列させることができる。   Therefore, even if it is the 1st electric power generation means which supplies electric power to the electric power grid | system with which the renewable energy power generation facility from which an output is fluctuate | varied with natural environments is used, standby operation is implemented without using the fuel for warming up It is possible to increase the output of the first power generation means in parallel with the power system without lowering the fuel use efficiency with respect to the reduction (dropout) of the output of the renewable energy power generation facility.

また、外部発電設備は、発電出力を得る発電手段と、前記発電手段による発電の排熱により蒸気を発生させる蒸気発生手段と、他の発電設備が所定出力以下で運転されている時に、前記蒸気発生手段で発生した蒸気を前記他の発電設備に供給して前記他の発電設備の機器の暖機を行わせる供給系とを備えることができる。 The external power generation facility includes a power generation means for obtaining a power generation output, a steam generation means for generating steam by exhaust heat generated by the power generation means, and another steam generator when the other power generation facilities are operated at a predetermined output or less. can Rukoto a the generated steam is supplied to the other power equipment supply system to perform warming-up of the other power plant equipment generating means.

これにより、他の発電設備が所定出力以下で運転されている時に、発生した蒸気を他の発電設備に供給して機器の暖機を行わせることができ、発電電力のエネルギーを生み出すと同時に、発電された電力以上のエネルギー価値(熱エネルギーによる暖機)を生み出すことができる。 As a result, when other power generation facilities are operating at a predetermined output or lower, the generated steam can be supplied to the other power generation facilities to warm up the equipment, and at the same time generating the energy of the generated power, Energy value (warm-up due to thermal energy) more than the generated power can be created.

このため、出力が低下される発電設備に対して、効率の低下を抑制するための運転を補助することが可能になる。   For this reason, it becomes possible to assist the operation | movement for suppressing the fall of efficiency with respect to the power generation installation in which an output is reduced.

本発明の発電設備は、電力系統に対して並列、解列が選択される発電設備であって、解列の状態の時に、効率を低下させることなく短時間で出力を高めて並列の状態にすることが可能になる。   The power generation facility of the present invention is a power generation facility that is selected in parallel and disconnected from the power system, and when in the disconnected state, the output is increased in a short time without reducing the efficiency, and the parallel state is obtained. It becomes possible to do.

また、外部発電設備は、出力が低下される発電設備に対して、効率の低下を抑制して出力を高めるための運転を補助することが可能になる。 The outer portion power generation equipment, to the power generating plant output is reduced, thereby suppressing the decrease in efficiency becomes possible to assist the operation for increasing the output.

本発明の一実施例に係る発電設備の概略系統図である。1 is a schematic system diagram of a power generation facility according to an embodiment of the present invention. 第1発電手段の概略系統図である。It is a schematic system diagram of a 1st electric power generation means. 電力の需要出力の経時変化を表すグラフである。It is a graph showing the time-dependent change of the demand output of electric power. 電力の需要出力の経時変化を表すグラフである。It is a graph showing the time-dependent change of the demand output of electric power.

図1には本発明の一実施例に係る発電設備の全体の構成を説明する概略系統、図2には第1発電手段である火力発電設備の概略系統、図3には再生可能エネルギー発電設備による発電が充分な場合の電力の需要出力における電力供給分布を説明するグラフ、図4には再生可能エネルギー発電設備による発電が不充分な場合の電力の需要出力における電力供給分布を説明するグラフを示してある。   1 is a schematic system for explaining the overall configuration of a power generation facility according to an embodiment of the present invention, FIG. 2 is a schematic system of a thermal power generation facility as a first power generation means, and FIG. 3 is a renewable energy power generation facility. FIG. 4 is a graph explaining the power supply distribution at the power demand output when the power generation by the renewable energy power generation facility is insufficient. It is shown.

図1に示すように、発電設備1は、石炭を燃料とするボイラ2が備えられ、ボイラ2により生成された蒸気を駆動源とする蒸気タービン3が備えられている。蒸気タービン3により発電機4が駆動され、電力が得られるようになっている(第1発電手段)。   As shown in FIG. 1, the power generation facility 1 includes a boiler 2 that uses coal as a fuel, and includes a steam turbine 3 that uses steam generated by the boiler 2 as a drive source. The generator 4 is driven by the steam turbine 3 to obtain electric power (first power generation means).

また、発電設備1に対し、外部発電手段としてガスエンジン5が備えられ、ガスエンジン5により発電機6が駆動され、電力が得られるようになっている。ガスエンジン5の排気ガスの熱を回収する排熱回収ボイラ7が備えられ、排熱回収ボイラ7で発生した蒸気が蒸気タービン3に送られるようになっている(他の発電設備の機器の暖機を行わせる供給系)。   The power generation facility 1 is provided with a gas engine 5 as an external power generation means, and the generator 6 is driven by the gas engine 5 to obtain electric power. An exhaust heat recovery boiler 7 that recovers the heat of the exhaust gas of the gas engine 5 is provided, and steam generated in the exhaust heat recovery boiler 7 is sent to the steam turbine 3 (warming of other power generation equipment). Supply system).

発電設備1は複数系統に備えられ、発電設備1の発電機4で発電された電力は、開閉手段8を介して電力系統9に接続されている。ガスエンジン5の発電機6で発電された電力は、所望の需要負荷に供給される(電力系統9に供給される場合もある)。電力系統9からは外部の負荷10に電力が供給される。   The power generation facility 1 is provided in a plurality of systems, and the power generated by the generator 4 of the power generation facility 1 is connected to the power system 9 via the opening / closing means 8. The electric power generated by the generator 6 of the gas engine 5 is supplied to a desired demand load (may be supplied to the electric power system 9). Power is supplied from the power system 9 to an external load 10.

開閉手段8が閉状態の時に、第1発電手段は電力系統9に接続されて並列の状態になり、開閉手段8が開状態の時に、第1発電手段は電力系統9から遮断されて解列の状態になる。開閉手段8の操作により、第1発電手段は電力系統9に対して並列の状態と解列の状態が選択されて運転される。   When the opening / closing means 8 is in the closed state, the first power generation means is connected to the power system 9 and is in a parallel state. When the opening / closing means 8 is in the open state, the first power generation means is disconnected from the power system 9 and disconnected. It becomes the state of. By operating the opening / closing means 8, the first power generation means is operated by selecting a parallel state and a disconnected state with respect to the power system 9.

一方、電力系統9には、電力量検出手段15を介して再生可能エネルギー発電設備11からの電力が供給される。再生可能エネルギー発電設備11は、例えば、複数の太陽光発電手段12、複数の風力発電手段13が適用される。尚、再生可能エネルギー発電設備11の発電手段としては、水力、地熱、潮流、バイオマス燃料等、化石燃料を使用しない発電設備が適用される。   On the other hand, the power from the renewable energy power generation facility 11 is supplied to the power system 9 via the power amount detection means 15. As the renewable energy power generation facility 11, for example, a plurality of solar power generation means 12 and a plurality of wind power generation means 13 are applied. As the power generation means of the renewable energy power generation facility 11, a power generation facility that does not use fossil fuel, such as hydropower, geothermal heat, tidal current, and biomass fuel, is applied.

発電設備1と再生可能エネルギー発電設備11は、多数の設備が並列して運用される。例えば、電力の需用状況により、夏季の日中は、再生可能エネルギー発電設備11による電力が主に電力系統9に供給されて負荷10の電力(要求電力)が賄われる。この場合、開閉手段8は開状態にされ、発電設備1の発電機4は電力系統9から解列された状態にされている。   A large number of facilities are operated in parallel in the power generation facility 1 and the renewable energy power generation facility 11. For example, depending on the power demand situation, during the summer day, power from the renewable energy power generation facility 11 is mainly supplied to the power grid 9 to cover the power of the load 10 (required power). In this case, the opening / closing means 8 is opened, and the generator 4 of the power generation facility 1 is disconnected from the power system 9.

電力量検出手段15により電力の低下が検出されて、再生可能エネルギー発電設備11の出力が脱落したと判断された際には、開閉手段8が閉状態にされて発電設備1の発電機4の電力が電力系統9に供給され(発電設備1が並列の状態にされ)、負荷10の電力(要求電力)が発電設備1からの電力で賄われる。   When a decrease in power is detected by the power amount detection means 15 and it is determined that the output of the renewable energy power generation facility 11 has dropped, the opening / closing means 8 is closed and the generator 4 of the power generation facility 1 is closed. Electric power is supplied to the electric power system 9 (the power generation equipment 1 is placed in parallel), and the electric power (required power) of the load 10 is covered by the electric power from the power generation equipment 1.

このため、発電設備1は、再生可能エネルギー発電設備11の発電出力に応じて、電力系統9に対し、並列の状態と解列の状態が選択して運転される。発電設備1を解列の状態から並列の状態にする場合、短時間で出力を高める必要があるため、発電設備1は、短時間で出力を高めることが可能な状態になっている。   For this reason, the power generation facility 1 is operated by selecting a parallel state and a disconnected state with respect to the power system 9 according to the power generation output of the renewable energy power generation facility 11. When the power generation facility 1 is changed from the disconnected state to the parallel state, since it is necessary to increase the output in a short time, the power generation facility 1 is in a state where the output can be increased in a short time.

図2に基づいて、発電設備1を具体的に説明する。   The power generation facility 1 will be specifically described based on FIG.

図2に示すように、ボイラ2には燃料として石炭(微粉炭)が投入され、石炭の燃焼により蒸気が生成される。蒸気タービン3は、高圧タービン21、中圧タービン22、低圧タービン23を備え、ボイラで発生した蒸気が蒸気タービン3に導入されて駆動力が得られる。蒸気タービン3の排気蒸気は復水器24で凝縮されて復水され、復水器24からの復水はボイラ2に給水される。   As shown in FIG. 2, coal (pulverized coal) is input to the boiler 2 as fuel, and steam is generated by combustion of the coal. The steam turbine 3 includes a high-pressure turbine 21, an intermediate-pressure turbine 22, and a low-pressure turbine 23, and steam generated in the boiler is introduced into the steam turbine 3 to obtain driving force. The exhaust steam from the steam turbine 3 is condensed and condensed in the condenser 24, and the condensed water from the condenser 24 is supplied to the boiler 2.

一方、ガスエンジン5により発電機6が駆動され、ガスエンジン5の排気ガスの熱が排熱回収ボイラ7で回収される。復水器24からの復水の一部が排熱回収ボイラ7に送られ、排熱回収ボイラ7で発生した蒸気は低圧タービン23に供給可能とされている。また、ガスエンジン5の排気ガスの熱により、ボイラ2の燃料である石炭(微粉炭)が乾燥される。   On the other hand, the generator 6 is driven by the gas engine 5, and the heat of the exhaust gas of the gas engine 5 is recovered by the exhaust heat recovery boiler 7. A part of the condensate from the condenser 24 is sent to the exhaust heat recovery boiler 7, and steam generated in the exhaust heat recovery boiler 7 can be supplied to the low-pressure turbine 23. Further, the coal (pulverized coal) as the fuel of the boiler 2 is dried by the heat of the exhaust gas of the gas engine 5.

再生可能エネルギー発電設備11(図1参照)の出力で負荷10の要求電力の発電が行われている時に、即ち、発電設備1が解列の状態の時に、ボイラ2の運転が停止され(停止とみなす運転状態とされ)、排熱回収ボイラ7で発生した蒸気が低圧タービン23に供給されて低圧タービン23が暖機運転される。   When the required power of the load 10 is generated by the output of the renewable energy power generation facility 11 (see FIG. 1), that is, when the power generation facility 1 is disconnected, the operation of the boiler 2 is stopped (stopped) The steam generated in the exhaust heat recovery boiler 7 is supplied to the low-pressure turbine 23 and the low-pressure turbine 23 is warmed up.

図3、図4に基づいて電力の需要(出力)の例を説明し、発電設備1、及び、再生可能エネルギー発電設備11の運転状況を具体的に説明する。   An example of power demand (output) will be described based on FIGS. 3 and 4, and the operation status of the power generation facility 1 and the renewable energy power generation facility 11 will be specifically described.

図3に示すように、例えば、夏季の好天時では、再生可能エネルギー発電設備11による発電が充分になるので、朝から昼間、夕方にかけて、電力の需要(出力)に対する再生可能エネルギー発電設備11による発電の出力の割合が多くなる(図中網目で示してある)。この場合、発電設備1が電力系統9に対して解列の状態になり、朝から昼間にかけて、発電設備1による発電の割合が僅かとなる(図中斜線で示してある)。   As shown in FIG. 3, for example, in the summertime when the weather is sunny, the power generation by the renewable energy power generation facility 11 is sufficient, so the renewable energy power generation facility 11 for the power demand (output) from morning to daytime and evening. The ratio of the output of power generated by is increased (indicated by the mesh in the figure). In this case, the power generation facility 1 is disconnected from the power system 9, and the ratio of power generation by the power generation facility 1 becomes small from morning to daytime (indicated by diagonal lines in the figure).

発電設備1による発電の出力の割合が僅かとなる(図中斜線で示してある)時間帯では、再生可能エネルギー発電設備11の出力で負荷10の要求電力の発電が行われる。この時、ボイラ2の運転が停止されて排熱回収ボイラ7で発生した蒸気が低圧タービン23に供給され、低圧タービン23が暖機運転されている。   In the time zone in which the ratio of the output of power generation by the power generation facility 1 is small (shown by hatching in the figure), the required power of the load 10 is generated by the output of the renewable energy power generation facility 11. At this time, the operation of the boiler 2 is stopped, the steam generated in the exhaust heat recovery boiler 7 is supplied to the low pressure turbine 23, and the low pressure turbine 23 is warmed up.

図4に示すように、例えば、12時頃に天気が急変して、再生可能エネルギー発電設備11による発電が不十分になった場合、即ち、電力量検出手段15により電力の低下が検出されて、再生可能エネルギー発電設備11の出力が脱落したと判断された際には、発電設備1による発電の出力の割合を急激に増加させて(発電設備1を電力系統9に並列の状態にして)図中網目で示してある割合を低くする必要がある。   As shown in FIG. 4, for example, when the weather suddenly changes around 12:00 and the power generation by the renewable energy power generation facility 11 becomes insufficient, that is, a decrease in power is detected by the power amount detection means 15. When it is determined that the output of the renewable energy power generation facility 11 has dropped, the ratio of the output of the power generation by the power generation facility 1 is rapidly increased (the power generation facility 1 is placed in parallel with the power system 9). The ratio indicated by the mesh in the figure needs to be lowered.

発電設備1における蒸気タービン3の低圧タービン23は、電力系統9に対して解列の状態にある時に暖機運転されているため、ボイラ2の運転を再開して蒸気を投入することにより、短時間で蒸気タービン3の出力を上昇させることができる。そして、電力系統9に対して並列の状態にすることができる。   Since the low-pressure turbine 23 of the steam turbine 3 in the power generation facility 1 is warmed up when it is disconnected from the power system 9, the operation of the boiler 2 is resumed and steam is introduced. The output of the steam turbine 3 can be increased over time. And it can be made into a parallel state with respect to the electric power grid | system 9. FIG.

つまり、再生可能エネルギー発電設備11の出力で要求電力の発電が行われている時に、発電設備1は電力系統9から解列された状態で暖機運転されている。再生可能エネルギー発電設備11の出力が低下して脱落した際に、発電設備1の出力を短時間で高め、電力系統9に対して並列状態にして要求電力が電力系統9に供給される。   That is, when the required power is generated by the output of the renewable energy power generation facility 11, the power generation facility 1 is warmed up while being disconnected from the power system 9. When the output of the renewable energy power generation facility 11 drops and drops, the output of the power generation facility 1 is increased in a short time, and the required power is supplied to the power system 9 in parallel with the power system 9.

発電設備1は、発電電力を得ているガスエンジン5による熱エネルギーが用いられて暖機運転されているので、専用の燃料を用いずに暖機運転させることができ、再生可能エネルギー発電設備11の出力が脱落し、発電設備1を電力系統9に対して並列にする際に、効率を低下させることなく短時間で出力を高めることができる。   Since the power generation facility 1 is warmed up using heat energy from the gas engine 5 that is generating generated power, the power generation facility 1 can be warmed up without using a dedicated fuel. When the power generation facility 1 is parallel to the power system 9, the output can be increased in a short time without reducing the efficiency.

発電設備1は、短時間で出力を高めることが可能な状態で、電力系統9に対して解列の状態とされているため、再生可能エネルギー発電設備11による発電が脱落した場合、必要な需要(出力)に対する電力を短時間で得て電力系統9に対して並列の状態にすることができる。   Since the power generation facility 1 is in a state of being disconnected from the power system 9 in a state where the output can be increased in a short time, if the power generation by the renewable energy power generation facility 11 drops, the necessary demand It is possible to obtain power for (output) in a short time and to make the power system 9 parallel.

従って、自然環境により出力が低下(脱落)する再生可能エネルギー発電設備11が接続される電力系統9に用いられ、再生可能エネルギー発電設備11で要求電力を賄っている場合には解列の状態にされる発電設備1であっても、暖機のための燃料を用いることなく待機運転を実施することができ、再生可能エネルギー発電設備11の脱落に対し、燃料使用効率を低下させることなく、短時間で出力を高めて電力系統9に対して並列の状態にすることが可能になる。   Therefore, when the renewable energy power generation facility 11 is used for the power system 9 to which the renewable energy power generation facility 11 whose output is reduced (dropped) due to the natural environment is connected and the required power is covered by the renewable energy power generation facility 11, the state is disconnected. Even if the power generation equipment 1 is operated, standby operation can be performed without using fuel for warm-up, and the drop in the renewable energy power generation equipment 11 can be reduced without reducing the fuel use efficiency. It becomes possible to increase the output in time and to make it parallel to the power system 9.

上述した構成の発電設備1では、別途発電を行うガスエンジン5により蒸気を発生させ、発生させた蒸気を蒸気タービン3の低圧タービン23に供給して蒸気タービン3の暖機を実施することができる。このため、発電設備1では、暖機のための燃料を必要とせず、別途発電を行っているガスエンジン5の排熱を利用して、発電設備1の出力を高めることができる。   In the power generation facility 1 having the above-described configuration, steam can be generated by the gas engine 5 that separately generates power, and the generated steam can be supplied to the low-pressure turbine 23 of the steam turbine 3 to warm up the steam turbine 3. . For this reason, the power generation facility 1 does not require fuel for warm-up, and the output of the power generation facility 1 can be increased by utilizing the exhaust heat of the gas engine 5 that is separately generating power.

従って、電力系統9に対して並列、解列が選択される発電設備であって、効率を低下させることなく短時間で出力を高めて電力系統9に対して並列の状態にすることが可能になる。   Therefore, it is a power generation facility that is selected to be parallel and disconnected with respect to the power system 9, and it is possible to increase the output in a short time without reducing the efficiency and to make it parallel to the power system 9. Become.

そして、ガスエンジン5の排熱の一部で、ボイラ2の燃料である石炭を乾燥させることができるので、酸素がほとんど存在しない排熱により、発火の虞がない状態で石炭を乾燥させることができる。   And since the coal which is the fuel of the boiler 2 can be dried with a part of the exhaust heat of the gas engine 5, it is possible to dry the coal in a state where there is no possibility of ignition by exhaust heat with almost no oxygen. it can.

外部発電設備である、ガスエンジン5、発電機6、排熱回収ボイラ7は、他の発電設備であるボイラ2、蒸気タービン3、発電機4が、電力系統9に対して解列の状態にされている時に(所定出力以下で運転されている時に)、発生した蒸気を蒸気タービン3に供給し機器の暖機を行わせることができる。このため、自身で発電電力のエネルギーを生み出すと同時に、発電された電力以上のエネルギー価値(熱エネルギーによる暖機)を生み出すことができる。   The gas engine 5, the generator 6, and the exhaust heat recovery boiler 7 that are external power generation facilities are in a state where the boiler 2, the steam turbine 3, and the power generator 4 that are other power generation facilities are disconnected from the power system 9. The generated steam can be supplied to the steam turbine 3 to warm up the equipment when it is being operated (when operating at a predetermined output or less). For this reason, the energy of generated electric power can be generated by itself, and at the same time, the energy value (warm-up by thermal energy) more than the generated electric power can be generated.

このため、出力が低下される発電設備に対して、効率の低下を抑制して出力を高めるための運転を補助することが可能になる。   For this reason, it becomes possible to assist the operation | movement for suppressing the fall of efficiency and raising an output with respect to the power generation installation in which an output is reduced.

尚、外部発電設備としては、ガスエンジン5に限らず、マイクロガスタービン、燃料電池発電機等、他の発電設備を適用することが可能である。   The external power generation facility is not limited to the gas engine 5, and other power generation facilities such as a micro gas turbine and a fuel cell generator can be applied.

本発明は、電力系統に対して並列、解列が選択される発電設備であって、解列の状態の時に、効率を低下させることなく短時間で出力を高めて並列の状態にすることができる発電設備の産業分野で利用することができる。   The present invention is a power generation facility in which parallel or disengagement is selected with respect to the power system, and when in the disengagement state, the output can be increased in a short time without lowering the efficiency to be in the parallel state. It can be used in the industrial field of power generation facilities.

また、本発明は、出力が低下される発電設備に対して、効率の低下を抑制して出力を高めるための運転を補助することができる外部発電設備の産業分野で利用することができる。   Moreover, this invention can be utilized in the industrial field | area of the external power generation equipment which can assist the driving | operation for suppressing the fall of efficiency and raising an output with respect to the power generation equipment in which an output is reduced.

1 発電設備
2 ボイラ
3 蒸気タービン
4、6 発電機
5 ガスエンジン
7 排熱回収ボイラ
8 開閉手段
9 電力系統
10 負荷
11 再生可能エネルギー発電設備
12 太陽光発電手段
13 風力発電手段
15 電力量計測手段
21 高圧タービン
22 中圧タービン
23 低圧タービン
24 復水器
DESCRIPTION OF SYMBOLS 1 Power generation equipment 2 Boiler 3 Steam turbine 4, 6 Generator 5 Gas engine 7 Waste heat recovery boiler 8 Opening and closing means 9 Electric power system 10 Load 11 Renewable energy power generation equipment 12 Solar power generation means 13 Wind power generation means 15 Electric energy measurement means 21 High pressure turbine 22 Medium pressure turbine 23 Low pressure turbine 24 Condenser

Claims (5)

電力系統に接続される並列、前記電力系統から遮断される解列が選択されて運転され、蒸気タービンの駆動により電力を得る第1発電手段と、
前記電力系統に接続される前記第1発電手段とは独立して所望の需要負荷に電力を供給し、発電機器による発電の排熱により蒸気を発生させる蒸気発生手段を備え、前記第1発電手段が前記電力系統に対して解列された時に、前記蒸気発生手段で発生した蒸気を前記蒸気タービンに供給して前記蒸気タービンの暖機を行う外部発電手段とを備えた
ことを特徴とする発電設備。
A first power generation means that is operated by selecting a parallel connection connected to the power system, a disconnection cut off from the power system, and obtaining power by driving a steam turbine;
The first power generation means includes steam generation means for supplying power to a desired demand load independently of the first power generation means connected to the power system and generating steam by exhaust heat generated by the power generation equipment. And an external power generating means for warming up the steam turbine by supplying steam generated by the steam generating means to the steam turbine when the power is disconnected from the power system. Facility.
請求項1に記載の発電設備において、
前記第1発電手段は、
燃料を投入して蒸気を発生させるボイラと、
前記ボイラで発生した蒸気が導入されて駆動力を得る前記蒸気タービンと、
前記蒸気タービンの排気蒸気が冷却されて凝縮水を得る復水手段と、
前記復水手段で得られた凝縮水を前記ボイラに循環させる循環路とを有し、
前記蒸気タービンは、
前記外部発電手段の前記蒸気発生手段からの蒸気が導入される低圧蒸気タービンを有している
ことを特徴とする発電設備。
The power generation facility according to claim 1,
The first power generation means includes
A boiler that generates fuel by supplying fuel;
The steam turbine in which steam generated in the boiler is introduced to obtain driving force;
Condensate means for obtaining condensed water by cooling the exhaust steam of the steam turbine;
A circulation path for circulating the condensed water obtained by the condensing means to the boiler,
The steam turbine is
A power generation facility comprising: a low-pressure steam turbine into which steam from the steam generation means of the external power generation means is introduced.
請求項2に記載の発電設備において、
前記ボイラの燃料は石炭であり、
前記外部発電手段による発電の排熱の一部により前記石炭を乾燥させる
ことを特徴とする発電設備。
The power generation facility according to claim 2,
The boiler fuel is coal,
The power generation facility characterized in that the coal is dried by a part of the exhaust heat generated by the external power generation means.
請求項1から請求項3のいずれか一項に記載の発電設備において、
前記外部発電手段の発電機器は、ガスエンジンであり、
前記外部発電手段の蒸気発生手段は、前記ガスエンジンの排熱により蒸気を発生させる排熱回収ボイラである
ことを特徴とする発電設備。
In the power generation facility according to any one of claims 1 to 3,
The power generation device of the external power generation means is a gas engine,
The steam generation means of the external power generation means is an exhaust heat recovery boiler that generates steam by exhaust heat of the gas engine.
請求項1から請求項4のいずれか一項に記載の発電設備において、
前記電力系統には、
再生可能エネルギー発電設備が接続され、
前記第1発電手段は、
前記再生可能エネルギー発電設備の出力で前記電力系統の要求電力の発電が行われている時に、前記電力系統から解列される
ことを特徴とする発電設備。
In the power generation facility according to any one of claims 1 to 4,
The power system includes
Renewable energy power generation facilities are connected,
The first power generation means includes
The power generation facility is disconnected from the power system when the required power of the power system is generated by the output of the renewable energy power generation facility.
JP2015019682A 2015-02-03 2015-02-03 Power generation equipment Active JP6474075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019682A JP6474075B2 (en) 2015-02-03 2015-02-03 Power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019682A JP6474075B2 (en) 2015-02-03 2015-02-03 Power generation equipment

Publications (2)

Publication Number Publication Date
JP2016142213A JP2016142213A (en) 2016-08-08
JP6474075B2 true JP6474075B2 (en) 2019-02-27

Family

ID=56569053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019682A Active JP6474075B2 (en) 2015-02-03 2015-02-03 Power generation equipment

Country Status (1)

Country Link
JP (1) JP6474075B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028584B (en) * 2018-06-01 2020-07-24 益阳茶厂有限公司 Boiler waste heat collector

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149501A (en) * 1991-11-28 1993-06-15 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas re-combustion type combined cycle plant
JPH08232608A (en) * 1995-02-28 1996-09-10 Toshiba Corp Steam accumulated power generating plant
JP2002135979A (en) * 2000-10-30 2002-05-10 Toshiba Corp Stand-alone hybrid generator system
JP2002339709A (en) * 2001-05-17 2002-11-27 Mitsubishi Heavy Ind Ltd Refuse incinerating power plant
JP4053965B2 (en) * 2003-11-18 2008-02-27 株式会社日立製作所 Combined heat and power system control method and combined heat and power system controller
JP4581563B2 (en) * 2004-08-31 2010-11-17 株式会社日立製作所 Combined cycle power generation facilities, steam power generation facilities
US8276382B2 (en) * 2009-03-17 2012-10-02 General Electric Company Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP2013167380A (en) * 2012-02-14 2013-08-29 Mitsubishi Heavy Ind Ltd Fluidized bed drying device and gasification complex power generation system using coal
JP6315431B2 (en) * 2012-04-27 2018-04-25 一般財団法人電力中央研究所 Combined heat and power supply for adjustment

Also Published As

Publication number Publication date
JP2016142213A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
Yang et al. An efficient way to use medium-or-low temperature solar heat for power generation–integration into conventional power plant
US8833051B2 (en) Method for operation of an integrated solar combined-cycle power station, and a solar combined-cycle power station for carrying out this method
JP6482021B2 (en) Power generation equipment
Aichmayer et al. Thermoeconomic analysis of a solar dish micro gas-turbine combined-cycle power plant
Kosmadakis et al. Renewable and conventional electricity generation systems: Technologies and diversity of energy systems
Turchi et al. Co-located gas turbine/solar thermal hybrid designs for power production
Gopstein Energy Storage & the Grid-From Characteristics to Impact [Point of View]
Le Moullec et al. Shouhang-EDF 10MWe supercritical CO2 cycle+ CSP demonstration project
Dabwan et al. A novel integrated solar tri-generation system for cooling, freshwater and electricity production purpose: Energy, economic and environmental performance analysis
JP2005291112A (en) Temperature difference power generation device
KR20210081846A (en) Combined heat and power system with load following operation
JP6474075B2 (en) Power generation equipment
Tyagi et al. Effect of gas turbine exhaust temperature, stack temperature and ambient temperature on overall efficiency of combine cycle power plant
Kunickis et al. Flexibility options of Riga CHP-2 plant operation under conditions of open electricity market
Zaporowski Energy Effectiveness and Economic Performance of Gas and Gas-Steam Combined Heat and Power Plants Fired with Natural Gas
JP6445494B2 (en) Geothermal power generation equipment
More et al. Thermal analysis of energy and exergy of back pressure steam turbine in sugar cogeneration plant
JP6733964B2 (en) Cogeneration system
CN110259531B (en) Combined power generation system based on waste incineration waste heat and photo-thermal and operation method thereof
Rossi et al. Ambient temperature impact on micro gas turbines: experimental characterization
Dennis et al. Hybrid power: a 2003 perspective for the decade
Cicconardi et al. Steam power-plants fed by high pressure electrolytic hydrogen
Hossain et al. Prospect of combined cycle power plant over conventional single cycle power plants in Bangladesh: A case study
JP2017180350A (en) Composite power generation facility
US10100681B2 (en) System and method for increasing the responsiveness of a duct fired, combined cycle, power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6474075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150