JP4053965B2 - Combined heat and power system control method and combined heat and power system controller - Google Patents

Combined heat and power system control method and combined heat and power system controller Download PDF

Info

Publication number
JP4053965B2
JP4053965B2 JP2003387950A JP2003387950A JP4053965B2 JP 4053965 B2 JP4053965 B2 JP 4053965B2 JP 2003387950 A JP2003387950 A JP 2003387950A JP 2003387950 A JP2003387950 A JP 2003387950A JP 4053965 B2 JP4053965 B2 JP 4053965B2
Authority
JP
Japan
Prior art keywords
power
power supply
heat
load
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003387950A
Other languages
Japanese (ja)
Other versions
JP2005151746A (en
Inventor
尚之 永渕
晋 中野
康則 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003387950A priority Critical patent/JP4053965B2/en
Publication of JP2005151746A publication Critical patent/JP2005151746A/en
Application granted granted Critical
Publication of JP4053965B2 publication Critical patent/JP4053965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、自然変動電源と熱電併給機器を含む多種類の電源機器が連系された系統の制御に係り、特に、電力系統に連系された風力発電設備や太陽光発電設備、自家発電設備、独立電気事業者(IPP)による発電設備、燃料電池などの分散型電源設備と、これに系統化されている熱電併給システムに有効な熱電併給型系統制御方法及び熱電併給型系統制御装置に関する。   The present invention relates to control of a system in which various types of power supply devices including a natural power source and a cogeneration device are connected, and in particular, wind power generation equipment, solar power generation equipment, and private power generation equipment connected to an electric power system. The present invention relates to a distributed power source facility such as a power generation facility and a fuel cell by an independent electric power company (IPP), a combined heat and power system control method and a combined heat and power system controller for a combined heat and power system.

近年、自然環境保全の見地から、風力発電機器や太陽光発電機器の使用が叫ばれているが、更に近年、新エネルギー利用特別法(RPS法)の施行に伴い、電力供給系統に接続されている風力発電や太陽光発電などの自然変動型発電設備の設置台数も、今後は大きく増加してゆくであろうことが予想される。   In recent years, the use of wind power generation equipment and solar power generation equipment has been screamed from the standpoint of conservation of the natural environment, but in recent years, it has been connected to the power supply system with the enforcement of the New Special Law on the Use of Energy (RPS Law). The number of installed natural power generation facilities such as wind power generation and solar power generation is expected to increase significantly in the future.

そして、これに伴って、電力供給系統の電力品質を保証するためには、高負荷追従性能発電機器による系統安定化技術や、自然変動発電設備が連系する局所系統の独立運用技術の適用が必須となる。   Along with this, in order to guarantee the power quality of the power supply system, it is necessary to apply system stabilization technology with high load following performance power generation equipment and independent operation technology of local system connected with natural fluctuation power generation facilities. Required.

ここで、同一の局所系統に各種の電源機器が連系される場合、従来は、該機器の総発電量が系統の最大電力需要に対応するように設置していた。   Here, when various power supply devices are interconnected to the same local system, conventionally, the power generation device has been installed so that the total power generation amount of the devices corresponds to the maximum power demand of the system.

しかも、このときは、例えば蓄電設備など、電力供給開始立ち上げ時間が短い電源機器の併用も必要であると考えられていた(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。
特開2002−10500号公報 特開平8−223799号公報 特開2003−120505号公報 特開平9−215225号公報
In addition, at this time, it is considered necessary to use a power supply device such as a power storage facility with a short power supply start-up start-up time (for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). reference.).
JP 2002-10500 A JP-A-8-223799 JP 2003-120505 A JP-A-9-215225

上記従来技術は、熱電負荷が連系された系統に多様な電源機器を含む点に配慮がされておらず、系統規模の適正化に問題があった。   The above-mentioned prior art does not give consideration to the point that various power supply devices are included in a system in which thermoelectric loads are connected, and there is a problem in optimizing the system scale.

従来技術の場合、例えばガスエンジン発電機やディーゼルエンジン発電機のような低環境適合性電源機器からNOx、ススなどの有害物質が排出されてしまうので、その抑制が必要である。   In the case of the prior art, for example, harmful substances such as NOx and soot are discharged from a low environment compatible power supply device such as a gas engine generator or a diesel engine generator.

また、従来技術では、例えばガスタービン発電機のような排ガス中の有害物資発生量が少ない高環境適合性電源機器の場合でも、起動から電力供給開始までの時間遅れを補償しなければならないので、蓄電設備が必要になってしまう。   In addition, in the prior art, even in the case of a highly environmentally compatible power supply device that generates a small amount of harmful substances in the exhaust gas such as a gas turbine generator, it is necessary to compensate for the time delay from the start to the start of power supply. Power storage facilities will be required.

従って、従来技術では系統規模が大になり、規模の適正化に問題が生じてしまうのである。   Therefore, in the prior art, the system scale becomes large, and there is a problem in optimizing the scale.

本発明の目的は、自然変動電源による不定期電力の発生に際して適正な規模のもとで安定した運用が得られるようにした熱電併給型系統制御方法及び熱電併給型系統制御装置を提供することにある。   An object of the present invention is to provide a combined heat and power system control method and a combined heat and power system controller that can obtain a stable operation at an appropriate scale when generating irregular power from a natural power source. is there.

本発明は、前記課題を解決するために、以下の手段を設けたものである。   The present invention is provided with the following means in order to solve the above-mentioned problems.

・ 系統内の熱電需要に応じて、比較的起動時間が短く、且つ低環境適合性で、しかも系統の最大需要量より小さい発電容量の電源機器を低負荷時に運転させる制御手段を設ける。 -In accordance with the thermoelectric demand in the system, a control means is provided for operating a power supply device having a relatively short start-up time, low environmental compatibility, and having a power generation capacity smaller than the maximum demand of the system at low load.

・ 比較的起動時間が長く、且つ高環境適合性で、しかも系統の最大需要量と同等の電源機器を電力負荷に追従して運転させる制御手段を設ける。 ・ A control means is provided for operating a power supply device that has a relatively long start-up time and high environmental compatibility and is equivalent to the maximum demand of the system following the power load.

・ 電源機器としては、例えば風力発電や太陽光発電のような自然変動電源と、例えばガスエンジンやディーゼルエンジン(ガス/ディーゼルと記す)などを駆動源とする低環境適合性電源機器と、例えばガスタービンなどを駆動源とする高環境適合性電源機器を設ける。 ・ As power supply equipment, for example, natural power sources such as wind power generation and solar power generation, low environmental compatibility power supply equipment that uses a gas engine or diesel engine (referred to as gas / diesel) as a drive source, and gas A highly environmentally compatible power supply device using a turbine or the like as a drive source will be provided.

・ 熱負荷対応機器には、オフィスが設置されているような比較的大型の建造体の例えば地下部分に補助熱発生装置と蓄熱装置を設ける。 ・ For heat load equipment, an auxiliary heat generator and a heat storage device are installed in a relatively large building such as an office, for example, in the basement.

・ 高環境適合性電源に排熱回収設備を設け、熱負荷が小さい場合は、この排熱回収設備で回収した熱量を蓄熱装置に入力する制御手段を設ける。 ・ A high-environment compatible power supply will be provided with a waste heat recovery facility, and if the heat load is small, control means will be provided to input the amount of heat recovered by this waste heat recovery facility into the heat storage device.

・ 熱負荷が大きい場合は蓄熱装置の熱を放出し、熱需要が蓄熱装置の容量を越えた場合には、補助熱発生装置から不足熱量を供給するような制御手段を設ける。 -Control means is provided to release heat from the heat storage device when the heat load is large, and to supply insufficient heat from the auxiliary heat generator when the heat demand exceeds the capacity of the heat storage device.

・ 基幹系統である無限大母線と局所系統の間に開閉装置を設け、局所系統内の電気負荷が電源容量を越えた場合は瞬時に局所系統を無限大母線に接続させ、無限大母線から電力を供給する制御手段を設ける。 ・ A switchgear is installed between the infinite bus that is the main system and the local system, and when the electrical load in the local system exceeds the power capacity, the local system is instantly connected to the infinite bus and power is supplied from the infinite bus. A control means for supplying is provided.

本発明によれば、自然変動電源による不定期電力の発生に際しても、適正な規模のもとで安定した運用を得ることができる。   According to the present invention, it is possible to obtain a stable operation under an appropriate scale even when irregular power is generated by a naturally varying power source.

以下、本発明による熱電併給型系統制御方法及び熱電併給型系統制御装置について、図示の実施の形態により詳細に説明すると、ここで、まず、図1は、本発明を局所系統に適用した場合の一実施形態によるシステム構成の概要を示したものである。   Hereinafter, the combined heat and power system control method and the combined heat and power system control apparatus according to the present invention will be described in detail with reference to the illustrated embodiment. First, FIG. 1 shows a case where the present invention is applied to a local system. 1 shows an overview of a system configuration according to an embodiment.

ここで、局所系統とは、図1では符号4で表わされているもので、開閉器(遮断器)3を介して電力会社が設置した、通称、無限大母線Mと呼ばれる基幹電力系統に連系され、この開閉器3を開放することにより、無限大母線Mから独立して局所的に系統を構成するシステムのことを指し、このとき無限大母線Mには送変電所2が設けられている。   Here, the local system is represented by reference numeral 4 in FIG. 1 and is a basic power system called an infinite bus M installed by an electric power company via a switch (breaker) 3. By connecting this switch 3 and opening the switch 3, it refers to a system that forms a local system independently of the infinite bus M. At this time, the infinite bus M is provided with a transmission substation 2. ing.

そして、この局所系統4には、まず、電力供給側の設備として、風力発電機5、太陽光発電機6などからなる自然変動電源と、ガス/ディーゼル発電機7、小容量ガスタービン発電機8などからなる分散型電源とが各々連系されている。   The local system 4 includes a natural power source including a wind power generator 5 and a solar power generator 6, a gas / diesel generator 7, and a small capacity gas turbine generator 8. Are connected to each other.

このとき、風力発電機5には風力発電機電力計14が、そして太陽光発電機6には太陽光発電機電力計15が、各々設けてあり、また、ガス/ディーゼル発電機7にはエンジン制御装置16が、そして、小容量ガスタービン発電機8には排熱回収装置9とガスタービン制御装置17が、各々設けてある。   At this time, the wind power generator 5 is provided with a wind power generator watt meter 14, the solar power generator 6 is provided with a solar power generator watt meter 15, and the gas / diesel generator 7 is provided with an engine. The control device 16 is provided, and the small capacity gas turbine generator 8 is provided with an exhaust heat recovery device 9 and a gas turbine control device 17, respectively.

次に、この局所系統4には、負荷側の設備として、広域小電力負荷である住宅10と、集中電力負荷であるオフィスビル11とが夫々熱電負荷として連系されている。ここで、熱電負荷とは、熱と電力の双方の供給を要する負荷を意味する。   Next, as a load-side facility, the local system 4 includes a house 10 that is a wide-area small power load and an office building 11 that is a concentrated power load, each linked as a thermoelectric load. Here, the thermoelectric load means a load that requires supply of both heat and electric power.

このとき、住宅10には住宅用熱/電負荷計測装置18が、そしてオフィスビル11には補助ボイラ12とオフィス用熱/電負荷計測装置19、及び補助ボイラ制御装置20が各々設けられ、更に補助ボイラ12には例えば温水タンクなどの蓄熱設備23が設けてある。   At this time, the house 10 is provided with a residential heat / electric load measuring device 18, the office building 11 is provided with an auxiliary boiler 12, an office heat / electric load measuring device 19, and an auxiliary boiler control device 20. The auxiliary boiler 12 is provided with a heat storage facility 23 such as a hot water tank.

ここで、この実施形態の場合、まず、ガス/ディーゼル発電機7については、それらが低環境適合性電源機器であることから、対象とする局所系統4における最大電力需要量の5〜19%程度の発電容量を持った設備とし、次に、小容量ガスタービン発電機8については、それが高環境適合性電源機器であることから、局所系統4の最大電力需要量と同等の発電容量を持った設備とする。   Here, in the case of this embodiment, first, about the gas / diesel generator 7, since they are low-environment compatible power supply devices, about 5 to 19% of the maximum power demand in the target local system 4 Next, the small-capacity gas turbine generator 8 has a power generation capacity equivalent to the maximum power demand of the local system 4 because it is a high-environment compatible power supply device. Equipment.

このとき、ガス/ディーゼル発電機などの電源機器は、排ガスにススを含むなどの理由により低環境適合性電源機器として位置付けされているが、起動時間が比較的短いという特性をもち、他方、ガスタービン発電機などの電源機器は、排ガスに比較的問題がなく、高環境適合性電源機器として認識されているが、起動時間が比較的長くなってしまうという特性をもつ。   At this time, power supply devices such as gas / diesel generators are positioned as low-environment compatible power supply devices due to the fact that soot is included in the exhaust gas. A power supply device such as a turbine generator has a relatively low problem with exhaust gas and is recognized as a highly environmentally compatible power supply device, but has a characteristic that a startup time is relatively long.

また、局所系統4には、図示のように、熱輸送設備21が付帯して設けられていて、これに排熱回収装置9と蓄熱設備23などの熱供給設備と、住宅10とオフィス11などの熱負荷が連結され、これにより、全体として熱電併給システムを構成している。   Further, as shown in the figure, the local system 4 is provided with a heat transport facility 21, and heat supply facilities such as an exhaust heat recovery device 9 and a heat storage facility 23, a residence 10 and an office 11, etc. As a result, the combined heat and power system is configured.

ここで、熱輸送設備21は、例えば断熱処理された管路で構成され、排熱回収装置9で発生された蒸気を住宅10とオフィスビル11に供給する働きをするもので、住宅10に供給された蒸気は各戸で給湯用や暖房用に使用され、オフィスビル11では蓄熱設備23に熱を供給するために使用される。このとき、蓄熱設備23の蓄熱量もオフィス用熱/電負荷計測装置19により計測されるようになっている。   Here, the heat transport facility 21 is configured by, for example, a heat-insulated pipe line, and serves to supply steam generated by the exhaust heat recovery device 9 to the house 10 and the office building 11. The steam thus used is used for hot water supply or heating in each house, and is used for supplying heat to the heat storage facility 23 in the office building 11. At this time, the heat storage amount of the heat storage facility 23 is also measured by the office heat / electric load measuring device 19.

そして、風力発電機電力計14と太陽光発電機電力計15、エンジン制御装置16とガスタービン制御装置17、住宅用熱/電負荷計測装置18とオフィス用熱/電負荷計測装置19、それに補助ボイラ制御装置20は、夫々、制御信号線23を介して制御装置1に接続され、当該制御装置1により系統供給電力量及び熱供給量が調整される。   And the wind power generator wattmeter 14 and the solar power generator wattmeter 15, the engine control device 16 and the gas turbine control device 17, the heat / electric load measuring device 18 for the house, the heat / electric load measuring device 19 for the office, and the auxiliary The boiler control device 20 is connected to the control device 1 via the control signal line 23, respectively, and the system supply power amount and the heat supply amount are adjusted by the control device 1.

更に、この制御信号線22には開閉器制御装置13が接続されていて、制御装置1により開閉器2の開閉が制御できるようになっている。   Further, a switch control device 13 is connected to the control signal line 22 so that the control device 1 can control the opening and closing of the switch 2.

なお、図1では省かれているが、本発明の実施形態では、局所系統4に更に蓄電設備を設ける場合もあるが、この場合、該蓄電設備の容量は、局所系統4における電力需要量の1〜5%程度に設定される。   Although omitted in FIG. 1, in the embodiment of the present invention, there may be a case where a power storage facility is further provided in the local system 4. In this case, the capacity of the power storage facility is the power demand amount in the local system 4. It is set to about 1 to 5%.

次に、この実施形態による制御処理について、図2により説明する。このとき、制御装置1は所定のプログラムにより働くコンピュータで構成され、これにより図2に示した処理を所定の頻度、例えば数分から数10分に1回の頻度で繰り返し実行するようになっているものである。   Next, the control processing according to this embodiment will be described with reference to FIG. At this time, the control device 1 is composed of a computer that operates according to a predetermined program, whereby the processing shown in FIG. 2 is repeatedly executed at a predetermined frequency, for example, once every several minutes to several tens of minutes. Is.

そこで、制御装置1は、この図2に従った処理を開始したら、まず、住宅用熱/電負荷計測装置18及びオフィス用熱/電負荷計測装置19で計測されている系統負荷電力24と、風力発電機電力計14及び太陽光発電機電力計15で計測されている自然変動電源電力25とを減算処理26に取込み、不足電力量ΔMWD(kW)27を算出する。   Therefore, when the control device 1 starts the processing according to FIG. 2, first, the system load power 24 measured by the residential heat / electric load measuring device 18 and the office heat / electric load measuring device 19, The natural power supply power 25 measured by the wind power generator wattmeter 14 and the solar power generator wattmeter 15 is taken into the subtraction process 26 to calculate the insufficient power amount ΔMWD (kW) 27.

そして、この不足電力量ΔMWDから不足電力量信号と局所系統4内の電源機器の運転状態を認識し、判定処理28に必要な信号を発する。このとき、この判定処理28には、予め自然変動電源以外の電源機器を起動するための閾値(しきい値)XX(kW)が許容値として設定してある。   Then, the insufficient power amount signal and the operating state of the power supply device in the local system 4 are recognized from the insufficient power amount ΔMWD, and a signal necessary for the determination process 28 is issued. At this time, in this determination process 28, a threshold value (threshold value) XX (kW) for starting a power supply device other than the naturally varying power source is set as an allowable value in advance.

そこで、まず、判定処理28で不足電力量ΔMWDが許容値XXを越えないと判断された場合は開閉器閉処理と自然変動電源による系統運用処理29に進む、そして、まず開閉器3(図1)を開操作した上で自然変動電源による系統運用を継続させ、或いは自然変動電源による系統運用に移行した後、熱発生量演算処理35に進む。   Therefore, when it is determined in the determination process 28 that the insufficient power amount ΔMWD does not exceed the allowable value XX, the process proceeds to the switch closing process and the system operation process 29 using the naturally varying power source, and first, the switch 3 (FIG. 1). ) Is opened, and the system operation with the natural fluctuation power source is continued, or the system proceeds to the system operation with the natural fluctuation power source, and then the process proceeds to the heat generation amount calculation process 35.

なお、風力発電機5と太陽光発電機6については特に制御する必要は無く、従って、処理29では、それらから得られた電力がそのまま局所系統4に供給されている状態に保持しているだけである。なお、熱発生量演算処理35以降の処理については、後述する。   Note that the wind power generator 5 and the solar power generator 6 do not need to be controlled in particular, and therefore, in the process 29, the power obtained from the wind power generator 5 and the solar power generator 6 is simply maintained in a state where it is supplied to the local system 4 as it is. It is. The processes after the heat generation amount calculation process 35 will be described later.

一方、判定処理28で不足電力量ΔMWDが許容値XXを越えたと判断された場合は、処理30によりガスタービン起動信号を発生させ、これと並行して、処理31によりガス/ディーゼルエンジン起動信号を発生させ、各々の制御装置16、17に出力する処理を実行する。   On the other hand, when it is determined in the determination process 28 that the insufficient power amount ΔMWD exceeds the allowable value XX, a gas turbine start signal is generated by the process 30, and in parallel with this, a gas / diesel engine start signal is generated by the process 31. A process of generating and outputting to each of the control devices 16 and 17 is executed.

これにより、ガス/ディーゼル発電機7による発電とガスタービン発電機8による発電が同時に開始されることになるが、ここで、比較的起動時間が短いというガス/ディーゼル発電機7の特性が活かされ、電力不足の発生に直ちに対応することができる。   As a result, the power generation by the gas / diesel generator 7 and the power generation by the gas turbine generator 8 are started at the same time. Here, the characteristic of the gas / diesel generator 7 that the start-up time is relatively short is utilized. It is possible to respond immediately to the occurrence of power shortage.

この後、判定処理32は、各電源の運転状況と出力を各制御装置16、17から取込んで、不足電力量ΔMWDが予め設定された閾値YY(kW)以上であり(但しYY>XX)、且つガスタービン発電機8の系統併入が確立していない間は、処理33によりガス/ディーゼルエンジン負荷(発電量)上昇信号を制御装置16にフィードバックする。   Thereafter, the determination process 32 takes in the operation status and output of each power source from the respective control devices 16 and 17, and the insufficient power amount ΔMWD is equal to or greater than a preset threshold YY (kW) (provided that YY> XX). In addition, while the system combination of the gas turbine generator 8 is not established, a gas / diesel engine load (power generation amount) increase signal is fed back to the control device 16 by the processing 33.

一方、比較的起動時間が長いとはいえ、やがてガスタービン発電機8の動作が追い付いて全出力が可能になり、ガスタービン発電機8の系統併入が完了していた場合は、信号発生処理34からガス/ディーゼルエンジン停止信号を出力して制御装置16に供給すると共に、ガスタービン負荷追従運転開始信号を出力して制御装置17に供給すると同時に、前述の開閉器3(図1)を開操作する。   On the other hand, although the start-up time is relatively long, the operation of the gas turbine generator 8 catches up and all the output is possible, and if the system integration of the gas turbine generator 8 has been completed, signal generation processing is performed. 34 outputs a gas / diesel engine stop signal and supplies it to the control device 16, and outputs a gas turbine load follow-up operation start signal and supplies it to the control device 17, and simultaneously opens the switch 3 (FIG. 1). Manipulate.

この結果、自然変動電源による不定期電力の発生に応じて、ガス/ディーゼルエンジン、ガスタービンなどの安定電力供給機器が最適に運用され、自然変動電源による不定期電力の発生に際しても安定して局所系統を運用することができる。   As a result, stable power supply devices such as gas / diesel engines and gas turbines are optimally operated in response to the occurrence of irregular power from a natural power source, and stable and local power can be generated even when irregular power from a natural power source is generated. The system can be operated.

また、この結果、低環境適合性電源であるガス/ディーゼル発電機7は、ガスタービン発電機8の起動立ち上げ時に短時間だけ運用されることになり、設備の小容量化と運転時間の削減が実現でき、設備全体の環境適合性を向上させることができる。   As a result, the gas / diesel generator 7, which is a low-environment compatible power supply, is operated only for a short time when the gas turbine generator 8 is started up and started, thereby reducing the capacity of the facility and reducing the operation time. Can be realized, and the environmental compatibility of the entire facility can be improved.

ここで、信号発生処理34の後は、熱発生量演算処理35に進み、制御装置17からガスタービン発電機8の運転状態を取込み、この運転状態に基づいて排熱回収装置9の発生熱量を演算する。また、処理29の後も、この熱発生量演算処理35に進むことは、前述した通りである。   Here, after the signal generation process 34, the process proceeds to a heat generation amount calculation process 35, the operation state of the gas turbine generator 8 is taken from the control device 17, and the generated heat amount of the exhaust heat recovery device 9 is calculated based on this operation state. Calculate. Further, as described above, the process proceeds to the heat generation amount calculation process 35 even after the process 29.

そして、まず、減算処理37では、熱発生量演算処理35から入力された演算値と、熱/電負荷計測装置18、19(図1)から入力されている熱需要量36の差分を演算し、それをΔ熱量として判定処理38に出力する。   First, in the subtraction process 37, the difference between the calculated value input from the heat generation amount calculation process 35 and the heat demand 36 input from the heat / electric load measuring devices 18, 19 (FIG. 1) is calculated. This is output to the determination process 38 as Δ heat quantity.

そこで、判定処理38は、差分であるΔ熱量が予め設定してある閾値ZZ以上であるか否かを調べ、熱需要量が排熱回収装置9の発生熱量以上の場合は、信号発生処理39に進み、制御装置20に補助ボイラ12の起動信号を出力する。   Therefore, the determination process 38 checks whether or not the Δ heat quantity that is the difference is equal to or greater than a preset threshold value ZZ. If the heat demand is equal to or greater than the generated heat quantity of the exhaust heat recovery device 9, the signal generation process 39 is performed. Then, the start signal of the auxiliary boiler 12 is output to the control device 20.

一方、熱需要量より小さい場合は信号発生処理40を実行し、制御装置20に補助ボイラ12の停止信号を出力すると共に、蓄熱設備23の放熱運転開始を指令し、熱輸送設備21に熱を送出させ、この熱輸送設備21に連系されている他の熱負荷による利用を可能にした後、余剰熱量演算処理41を実行し、余剰熱量を演算してから更に判定処理42に移行する。   On the other hand, if it is smaller than the heat demand, a signal generation process 40 is executed, a stop signal of the auxiliary boiler 12 is output to the control device 20, and a heat radiation operation start of the heat storage facility 23 is instructed, and the heat transport facility 21 is heated. After being sent out and made available for use by another heat load linked to the heat transport facility 21, a surplus heat amount calculation process 41 is executed, and after calculating the surplus heat amount, the process further proceeds to a determination process.

そして、この判定処理42では、オフィス用熱/電負荷計測装置19で計測されている蓄熱設備23の蓄熱量、つまり現状蓄熱量に基いて判定を行い、現状蓄熱量が蓄熱設備23の蓄熱容量以下の場合は蓄熱運転開始処理43に進み、蓄熱設備23の蓄熱運転を開始させる。   In this determination process 42, determination is made based on the heat storage amount of the heat storage facility 23 measured by the office heat / electric load measuring device 19, that is, the current heat storage amount, and the current heat storage amount is the heat storage capacity of the heat storage facility 23. In the following cases, the process proceeds to the heat storage operation start process 43, and the heat storage operation of the heat storage facility 23 is started.

一方、この判定処理42で現状蓄熱量が蓄熱設備23の蓄熱容量以上と判定された場合は、更に判定処理48により、系統負荷電力とガスタービン発電量の差が0.0以下となっているか否かを判定する。   On the other hand, if it is determined in this determination process 42 that the current heat storage amount is greater than or equal to the heat storage capacity of the heat storage facility 23, whether or not the difference between the system load power and the gas turbine power generation amount is 0.0 or less by the determination process 48. Determine whether or not.

そして、結果がNoのときは、まず開閉器開処理44を実行して開閉器3の閉操作信号を制御装置13に出力し、これにより、この局所系統4が開閉器3を介して無限大母線Mに連系されるようにする。一方、Yesの場合は、開閉器3は開状態のままとなる。   When the result is No, the switch opening process 44 is first executed to output a closing operation signal of the switch 3 to the control device 13, whereby the local system 4 is infinite via the switch 3. Be connected to the bus M. On the other hand, in the case of Yes, the switch 3 remains open.

次に、判定処理46で、Δ熱量が0になっているか否かを調べ、結果がNoのときは、ガスタービン負荷降下処理45を実行し、ガスタービン発電機8に掛かる負荷を所定値だけ降下させる信号を制御装置17に出力し、ガスタービン発電機8の排ガス流量を減少させ、排熱回収装置9による回収熱量を所定値だけ抑制する。   Next, in the determination process 46, it is checked whether or not the Δ heat quantity is 0. If the result is No, the gas turbine load drop process 45 is executed, and the load applied to the gas turbine generator 8 is set to a predetermined value. A signal to be lowered is output to the control device 17, the exhaust gas flow rate of the gas turbine generator 8 is decreased, and the amount of heat recovered by the exhaust heat recovery device 9 is suppressed by a predetermined value.

このときのガスタービン負荷降下処理45によるガスタービン発電機8の運転状態は、図示のように熱発生量演算処理35にフィードバックされ、ここから判定処理46に至る制御ループを形成し、ガスタービン発電機8の運転状態が判定処理46による判定結果に反映される。   The operating state of the gas turbine generator 8 by the gas turbine load drop process 45 at this time is fed back to the heat generation amount calculation process 35 as shown in the figure, and a control loop from here to the determination process 46 is formed. The operating state of the machine 8 is reflected in the determination result by the determination process 46.

そして、この結果、Δ熱量を0に収斂させるフィードバック制御、つまりガスタービン発電機8の排熱回収装置9による回収熱量と熱需要量24の偏差を0に収斂させるフィードバック制御が実行され、このフィードバック制御は、判定処理46による判定結果がYes、すなわちΔ熱量が0になるまで繰り返されることになる。   As a result, feedback control for converging the Δ heat amount to 0, that is, feedback control for converging the deviation between the recovered heat amount by the exhaust heat recovery device 9 of the gas turbine generator 8 and the heat demand amount 24 to 0 is executed. The control is repeated until the determination result by the determination process 46 is Yes, that is, the Δ heat quantity becomes zero.

こうして判定処理46による判定結果がYesになったら、ここでガスタービン負荷保持処理47に移行し、このときのガスタービン発電機8の負荷状態が保持されるようにした上で、1回分の処理を終了するのである。   When the determination result by the determination process 46 becomes Yes in this way, the process proceeds to the gas turbine load holding process 47, and the load state of the gas turbine generator 8 at this time is held, and then the process for one time. Is finished.

ここで、以上に説明した実施形態による制御結果について、図3により説明すると、まず、上記実施形態では、風力発電機5、太陽光発電機6などからなる自然変動電源から電力が得られている限り、その電力が局所系統4に供給されるようになっているので、図3(a) に示すように、自然変動電源を有効に活用することができ、省エネ化に寄与することができる。   Here, the control results according to the above-described embodiment will be described with reference to FIG. 3. First, in the above-described embodiment, power is obtained from a natural fluctuation power source including the wind power generator 5 and the solar power generator 6. As long as the power is supplied to the local system 4, as long as the power is supplied to the local system 4, as shown in FIG. 3 (a), the natural fluctuation power source can be used effectively, which contributes to energy saving.

次に、上記実施形態によれば、低環境適合性電源であるガス/ディーゼル発電機7は、図3(b) に示すように、ガスタービン発電機8の起動立ち上げ時と負荷急増時に短時間だけ運用されるので、設備の小容量化と運転時間の削減が実現でき、設備全体の環境適合性を向上させることができる。   Next, according to the above-described embodiment, the gas / diesel generator 7 which is a low environmental compatibility power source is short when the gas turbine generator 8 is started up and when the load suddenly increases, as shown in FIG. Since it is operated only for hours, the capacity of the equipment can be reduced and the operation time can be reduced, and the environmental compatibility of the whole equipment can be improved.

更に、上記実施形態によれば、ガスタービン発電機8(図3ではμGTと記載してある)が、自然変動電源から得られる電力を勘案して運用されるので、図3(c) に示すように、省エネ効果と設備運転負荷低減による機器寿命延長が図られる。   Furthermore, according to the above-described embodiment, the gas turbine generator 8 (described as μGT in FIG. 3) is operated in consideration of the electric power obtained from the natural fluctuation power source. As described above, the device life can be extended by the energy saving effect and the reduction of the equipment operation load.

従って、上記実施形態によれば、以下の効果が得られる。   Therefore, according to the above embodiment, the following effects can be obtained.

・ 自然変動電源を連系した系統において、ガス/ディーゼルエンジン、ガスタービンなどの安定電力供給機器を最適に運用することにより、当該自然変動電源による不定期電力の発生に際しても安定した局所系統の運用ができる。 ・ In a system connected to a natural power source, the stable power supply equipment such as a gas / diesel engine or gas turbine is optimally operated, so that a stable local system can be operated even when irregular power is generated by the natural power source. Can do.

・ 低環境適合性電源を局所系統での低負荷時だけ運用することにより、設備の小容量化と運転時間の削減が実現でき、当該設備全体の環境適合性を向上させることができる。 ・ By operating a low-environment compatible power supply only when the local system is under low load, the capacity of the equipment can be reduced and the operation time can be reduced, and the environmental compatibility of the equipment as a whole can be improved.

・ 発電機器の排熱回収装置と蓄放熱機器の付帯により、一次エネルギーの有効活用が得られ、省エネが図れる。 ・ By using the waste heat recovery device for power generation equipment and storage and heat storage equipment, the primary energy can be used effectively and energy can be saved.

・ 自然変動電源の発電量を考慮したガス/ディーゼルエンジン、ガスタービンなどの設備の運転負荷の軽減により、設備に内包される機器寿命の延長が図れる。 ・ By reducing the operating load of equipment such as gas / diesel engines and gas turbines that take into account the amount of power generated by a natural power source, the life of equipment included in the equipment can be extended.

・ 局所系統内に二次電池のような高価格の設備が不要、又は設備容量の低減化が図れるので、初期投資が軽減できる。 ・ High-cost equipment such as secondary batteries is not required in the local system, or the equipment capacity can be reduced, so the initial investment can be reduced.

本発明による熱電併給型系統制御方法及び熱電併給型系統制御装置の一実施形態が適用対象とした局所系統の一例を示すシステム構成図である。1 is a system configuration diagram illustrating an example of a local system to which an embodiment of a combined heat and power system control method and a combined heat and power system controller according to the present invention is applied. FIG. 本発明による熱電併給型系統制御方法及び熱電併給型系統制御装置の一実施形態の動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement of one Embodiment of the cogeneration system control method and cogeneration system control apparatus by this invention. 本発明の一実施形態による動作の説明図である。It is explanatory drawing of the operation | movement by one Embodiment of this invention.

符号の説明Explanation of symbols

1:電制御装置
2:送変電所
3:開閉器
4:局所系統
5:風力発電機
6:太陽光発電機
7:ガス/ディーゼル発電機
8:小容量ガスタービン発電機(μGT
9:排熱回収装置
10:住宅
11:オフィス
12:補助ボイラ
13:開閉器制御装置
14:風力発電機電力計
15:太陽光発電機電力計
16:エンジン制御装置
17:ガスタービン制御装置
18:住宅用熱/電負荷計測装置
19:オフィス用熱/電負荷計測装置
20:補助ボイラ制御装置
21:熱輸送設備
22:制御信号回路
23:蓄熱設備
24:系統負荷電力
25:自然電源電力
26:減算処理
27:不足電力量ΔMWD
28:判定処理
29:開閉器閉処理と自然変動電源による系統運用処理
30:ガスタービン起動処理
31:ガス/ディーゼルエンジン起動処理
32:判定処理
33:ガス/ディーゼルエンジン負荷上昇処理
34:ガス/ディーゼルエンジン停止処理とガスタービン負荷追従運転開始処理
35:熱発生量演算処理
36:熱需要量
37:減算処理
38:判定処理
39:補助ボイラ起動処理
40:補助ボイラ停止処理と放熱運転開始処理
41:余剰熱量演算処理
42:判定処理
43:蓄熱運転開始処理
44:開閉器閉操作処理
45:ガスタービン負荷降下処理
46:判定処理
47:ガスタービン負荷保持処理
1: Electric control device 2: Transmission / substation 3: Switch 4: Local system 5: Wind generator 6: Solar power generator 7: Gas / diesel generator 8: Small capacity gas turbine generator (μGT
9: Waste heat recovery device 10: House 11: Office 12: Auxiliary boiler 13: Switch control device 14: Wind generator watt meter 15: Solar power generator watt meter 16: Engine control device 17: Gas turbine control device 18: Residential heat / electric load measuring device 19: office heat / electric load measuring device 20: auxiliary boiler control device 21: heat transport equipment 22: control signal circuit 23: heat storage equipment 24: grid load power 25: natural power supply power 26: Subtraction process 27: insufficient power amount ΔMWD
28: Judgment process 29: Switch closing process and system operation process by natural fluctuation power supply 30: Gas turbine start process 31: Gas / diesel engine start process 32: Judgment process 33: Gas / diesel engine load increase process 34: Gas / diesel Engine stop process and gas turbine load following operation start process 35: heat generation amount calculation process 36: heat demand 37: subtraction process 38: determination process 39: auxiliary boiler start process 40: auxiliary boiler stop process and heat radiation operation start process 41: Surplus heat amount calculation process 42: determination process 43: heat storage operation start process 44: switch closing operation process 45: gas turbine load drop process 46: determination process 47: gas turbine load holding process

Claims (11)

自然変動電源を含む複数種類の電源機器と熱電負荷が連系された系統の制御方法において、
前記各電源機器の運転特性と環境適合性能に応じて系統負荷に追従する発電指令値を発生させると同時に、前記発電機器排熱回収量および蓄熱量を調整する制御装置を設け、
前記制御装置は、系統内の熱電需要に応じて、比較的起動時間が短くかつ低環境適合性の電源機器を低負荷時に運転し、比較的起動時間が長くかつ高環境適合性の電源機器にて電力負荷追従運転すると同時に、電源機器の排熱回収量と蓄熱機器の蓄/放熱量調整を実施することを特徴とする熱電併給型系統制御方法。
In a control method of a system in which a plurality of types of power supply devices including a naturally varying power source and a thermoelectric load are interconnected,
In addition to generating a power generation command value that follows the system load according to the operating characteristics and environmental compatibility performance of each power supply device, a control device that adjusts the power generation device exhaust heat recovery amount and the heat storage amount is provided,
The control device operates a power supply device having a relatively short start-up time and low environmental suitability at a low load according to the thermoelectric demand in the system, and becomes a power supply device having a relatively long start-up time and high environmental suitability. power load following operation to the Te simultaneously, cogeneration type system control method characterized that you implement蓄/ heat radiation amount adjustment with the heat storage equipment heat recovery amount of power device.
請求項1の熱電併給型系統制御方法において、
前記電源機器が、少なくとも自然変動電源と低環境適合性電源機器、それに高環境適合性電源機器であることを特徴とする熱電併給型系統制御方法。
In the cogeneration type system control method of Claim 1,
The power supply device, at least natural variability power and low environmental compatibility power device, it cogeneration type system control method for a high environmental compatibility power device der wherein Rukoto.
請求項1の熱電併給型系統制御方法において、
前記熱電負荷が、少なくとも住宅地のような比較的低容量の熱電負荷とオフィスのような比較的大容量の熱電負荷であり、
前記比較的大容量の熱電負荷は、蓄熱装置の設置が可能なものであることを特徴とする熱電併給型系統制御方法。
In the cogeneration type system control method of Claim 1,
The thermoelectric load is at least a relatively low capacity thermoelectric load such as a residential area and a relatively large capacity thermoelectric load such as an office,
The combined heat and power system control method, wherein the relatively large-capacity thermoelectric load can be installed with a heat storage device .
請求項2の熱電併給型系統制御方法において、
前記低環境適合性電源機器は、対象系統の最大電力需要量より少ない電力容量をもち、
前記高環境適合性電源機器は、対象系統の最大電力需要量と同等の電力容量をもつことを特徴とする熱電併給型系統制御方法。
In the cogeneration type system control method according to claim 2 ,
The low environmental compatibility power supply device has a power capacity smaller than the maximum power demand of the target system,
The high-environment compatible power supply device has a power capacity equivalent to the maximum power demand of the target system .
請求項2の熱電併給型系統制御方法において、
前記高環境適合性電源機器が排熱回収設備を備え、
前記熱電負荷の熱負荷が小さい場合は、前記排熱回収設備による余剰熱量を前記蓄熱装置に入力することを特徴とする熱電併給型系統制御方法。
In the cogeneration type system control method according to claim 2 ,
The high environmental compatibility power supply device includes a waste heat recovery facility,
When the heat load of the said thermoelectric load is small, the surplus heat amount by the said waste heat recovery equipment is input into the said heat storage apparatus, The combined heat and power system control method characterized by the above-mentioned .
請求項5の熱電併給型系統制御方法において、
前記熱電負荷の熱負荷が大きい場合は、前記蓄熱装置の熱を放出し、
前記熱負荷が前記蓄熱装置の容量を越える場合には、予め設置された補助熱発生装置により、不足熱量が供給されることを特徴とする熱電併給型系統制御方法。
In the cogeneration type | system | group control method of Claim 5 ,
When the heat load of the thermoelectric load is large, the heat of the heat storage device is released,
If the heat load exceeds the capacity of the heat storage device, the pre-installed auxiliary heat generator, cogeneration type system control method is insufficient heat, characterized in Rukoto supplied.
請求項1の熱電併給型系統制御方法において、
前記系統は、基幹系統である無限大母線と切り離し、局所系統を形成できることを特徴とする熱電併給型系統制御方法。
In the cogeneration type system control method of Claim 1 ,
The system disconnects the infinite bus which are key systems, cogeneration type system control method according to claim Rukoto can form a local system.
請求項7の熱電併給型系統制御方法において、
前記局所系統と前記無限大母線の間に開閉器を備え、
前記熱電負荷の電気負荷需要が前記複数の電源容量を越えた場合には、瞬時に前記開閉器を閉操作して無限大母線から電力が供給されることを特徴とする熱電併給型系統制御方法。
In the cogeneration system control method according to claim 7 ,
A switch is provided between the local system and the infinite bus,
If an electrical load demand of the thermoelectric load exceeds said plurality of power supply capacity, cogeneration type system control method power from the infinite bus the switch instantaneously and closing operation, characterized in Rukoto supplied .
自然変動電源を含む複数種類の電源機器と熱電負荷が連系された系統とを制御する熱電併給型系統制御装置において、
前記各電源機器の運転特性と環境適合性能に応じて系統負荷に追従する発電指令値を発生させると同時に、前記発電機器排熱回収量および蓄熱量を調整する制御装置とを設け、
前記制御装置は、系統内の熱電需要に応じて、比較的起動時間が短くかつ低環境適合性の電源機器を低負荷時に運転し、比較的起動時間が長くかつ高環境適合性の電源機器にて電力負荷追従運転すると同時に、電源機器の排熱回収量と蓄熱機器の蓄/放熱量調整を実施することを特徴とする熱電併給型系統制御装置
In a combined heat and power system controller that controls a plurality of types of power supply equipment including a natural power supply and a system in which thermoelectric loads are connected ,
A power generation command value that follows the system load according to the operating characteristics and environmental compatibility performance of each power supply device is generated, and at the same time, a control device that adjusts the power generation device exhaust heat recovery amount and the heat storage amount is provided,
The control device operates a power supply device having a relatively short start-up time and low environmental suitability at a low load according to the thermoelectric demand in the system, and becomes a power supply device having a relatively long start-up time and high environmental suitability. Te operating power load following and at the same time, cogeneration type system controller characterized that you performed with heat recovery amount of power equipment蓄/ heat radiation amount adjusting heat storage equipment.
自然変動電源を含む複数種類の電源機器と熱電負荷が連系された系統の制御方法において、
前記各電源機器の運転特性と環境適合性能に応じて系統負荷に追従する発電指令値を発生させると同時に、前記発電機器排熱回収量および蓄熱量を調整する制御装置設けられ
前記電源機器が、少なくとも自然変動電源と低環境適合性電源機器、それに高環境適合性電源機器であり、
前記低環境適合性電源機器は、対象系統の最大電力需要量より少ない電力容量をもち、
前記高環境適合性電源機器は、対象系統の最大電力需要量と同等の電力容量をもつことを特徴とする熱電併給型系統制御方法。
In a control method of a system in which a plurality of types of power supply devices including a naturally varying power source and a thermoelectric load are interconnected,
At the same time as generating a power generation command value to follow the system load according to the operating characteristics and environmental compatibility performance of each power supply device, a control device is provided for adjusting the power generation device exhaust heat recovery amount and the heat storage amount ,
The power supply device is at least a naturally variable power supply, a low environmental compatibility power supply device, and a high environmental compatibility power supply device,
The low environmental compatibility power supply device has a power capacity smaller than the maximum power demand of the target system,
The high-environment compatible power supply device has a power capacity equivalent to the maximum power demand of the target system.
自然変動電源を含む複数種類の電源機器と熱電負荷が連系された系統の制御方法において、In a control method of a system in which a plurality of types of power supply devices including a naturally varying power source and a thermoelectric load are interconnected,
前記各電源機器の運転特性と環境適合性能に応じて系統負荷に追従する発電指令値を発生させると同時に、前記発電機器排熱回収量および蓄熱量を調整する制御装置が設けられ、At the same time as generating a power generation command value to follow the system load according to the operating characteristics and environmental compatibility performance of each power supply device, a control device is provided for adjusting the power generation device exhaust heat recovery amount and the heat storage amount,
前記系統は、基幹系統である無限大母線と切り離し、局所系統を形成できるものであり、The system is one that can be separated from an infinite bus that is a main system, and can form a local system,
前記局所系統と前記無限大母線の間に開閉器を備え、A switch is provided between the local system and the infinite bus,
前記熱電負荷の電気負荷需要が前記複数の電源容量を越えた場合には、瞬時に前記開閉器を閉操作して無限大母線から電力が供給されることを特徴とする熱電併給型系統制御方法。When the electric load demand of the thermoelectric load exceeds the plurality of power supply capacities, the electric power is supplied from an infinite bus by instantaneously closing the switch and supplying power from an infinite bus. .
JP2003387950A 2003-11-18 2003-11-18 Combined heat and power system control method and combined heat and power system controller Expired - Fee Related JP4053965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387950A JP4053965B2 (en) 2003-11-18 2003-11-18 Combined heat and power system control method and combined heat and power system controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387950A JP4053965B2 (en) 2003-11-18 2003-11-18 Combined heat and power system control method and combined heat and power system controller

Publications (2)

Publication Number Publication Date
JP2005151746A JP2005151746A (en) 2005-06-09
JP4053965B2 true JP4053965B2 (en) 2008-02-27

Family

ID=34695170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387950A Expired - Fee Related JP4053965B2 (en) 2003-11-18 2003-11-18 Combined heat and power system control method and combined heat and power system controller

Country Status (1)

Country Link
JP (1) JP4053965B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950962A (en) * 2010-08-24 2011-01-19 西安交通大学 System and method for saving energy and shaving peak by coordinating cogeneration set and wind energy generator set
WO2014073059A1 (en) * 2012-11-07 2014-05-15 株式会社日立製作所 Gas turbine power generation equipment
WO2015079508A1 (en) * 2013-11-27 2015-06-04 株式会社日立製作所 Gas turbine suitable for renewable energy and control method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546389B2 (en) * 2005-11-30 2010-09-15 日本電信電話株式会社 System coordination type fluctuation suppression system and output fluctuation suppression method
JP4592659B2 (en) * 2006-08-30 2010-12-01 株式会社東芝 Power system interconnection system
JP4776475B2 (en) * 2006-08-31 2011-09-21 株式会社東芝 Power grid interconnection system
JP2009247049A (en) * 2008-03-28 2009-10-22 Toshiba Corp Thermoelectric power generation system and method
JP5546206B2 (en) * 2009-11-05 2014-07-09 日立造船株式会社 Power generation system
EP2693588B1 (en) * 2011-03-30 2016-03-30 Hitachi, Ltd. System control apparatus for facilities
CN102506519B (en) * 2011-10-23 2013-12-11 重庆市电力公司电力科学研究院 Heat and power cogenerator unit and wind power generator unit combined heat supply system and scheduling method thereof
CN102520675B (en) * 2011-10-23 2014-03-12 西安交通大学 Gas-steam combined cycle and solar power generation combined heating system and scheduling method thereof
JP5529176B2 (en) * 2012-01-12 2014-06-25 中国電力株式会社 Distributed power supply control device and distributed power supply control method
US10094297B2 (en) 2014-09-09 2018-10-09 Hitachi, Ltd. Power generation system and power generation method
JP6474075B2 (en) * 2015-02-03 2019-02-27 一般財団法人電力中央研究所 Power generation equipment
JP6482021B2 (en) * 2015-03-26 2019-03-13 一般財団法人電力中央研究所 Power generation equipment
JP2018204601A (en) * 2017-05-30 2018-12-27 一般財団法人電力中央研究所 Power generation system producing fuel and raw material
CN110929405B (en) * 2019-11-28 2023-08-04 国网辽宁省电力有限公司经济技术研究院 Electro-pneumatic dynamic analysis method considering wind turbine unit and gas turbine unit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2001296904A (en) * 2000-04-12 2001-10-26 Yamatake Building Systems Co Ltd Energy control system
JP4187907B2 (en) * 2000-06-15 2008-11-26 東芝プラントシステム株式会社 Electric power supply and demand control system
JP2002101558A (en) * 2000-09-26 2002-04-05 Matsushita Electric Works Ltd Electric power supply feeder and electric power supply feed system and method of support for electric power supply feed system
JP3780838B2 (en) * 2000-09-26 2006-05-31 株式会社日立製作所 Green power supply system and green power supply method
JP2002262458A (en) * 2001-03-02 2002-09-13 Toshiba Eng Co Ltd Electric power supply system utilizing weather forecast information
JP2002281568A (en) * 2001-03-22 2002-09-27 Mitsui Oil & Gas Co Ltd Cogeneration system
JP4132706B2 (en) * 2001-03-28 2008-08-13 大阪瓦斯株式会社 Power consignment system, management device, and computer program
JP3776010B2 (en) * 2001-07-11 2006-05-17 大阪瓦斯株式会社 Energy supply system and method for local community
JP2003052127A (en) * 2001-08-03 2003-02-21 Toho Gas Co Ltd Network system of cogeneration apparatuses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950962A (en) * 2010-08-24 2011-01-19 西安交通大学 System and method for saving energy and shaving peak by coordinating cogeneration set and wind energy generator set
CN101950962B (en) * 2010-08-24 2012-05-23 西安交通大学 System and method for saving energy and shaving peak by coordinating cogeneration set and wind energy generator set
WO2014073059A1 (en) * 2012-11-07 2014-05-15 株式会社日立製作所 Gas turbine power generation equipment
JPWO2014073059A1 (en) * 2012-11-07 2016-09-08 三菱日立パワーシステムズ株式会社 Gas turbine power generation equipment
US10174683B2 (en) 2012-11-07 2019-01-08 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine power generation equipment
WO2015079508A1 (en) * 2013-11-27 2015-06-04 株式会社日立製作所 Gas turbine suitable for renewable energy and control method thereof
JPWO2015079508A1 (en) * 2013-11-27 2017-03-16 株式会社日立製作所 Renewable energy compatible gas turbine and control method thereof

Also Published As

Publication number Publication date
JP2005151746A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4053965B2 (en) Combined heat and power system control method and combined heat and power system controller
Sun et al. Coordinated control strategies for fuel cell power plant in a microgrid
Das et al. Optimisation of stand-alone hybrid CHP systems meeting electric and heating loads
CN102474104B (en) Power supply system, power supply method, program, recording medium, and power supply controller
US20120283888A1 (en) Seamless Transition Method and Apparatus for Micro-grid Connect/Disconnect from Grid
JP6190185B2 (en) Microgrid control apparatus and control method thereof
Zhou et al. Operation of stand-alone microgrids considering the load following of biomass power plants and the power curtailment control optimization of wind turbines
CN101425688A (en) Method and system for power plant block loading
JP2008278700A (en) Distributed generating set, and method for controlling and retaining power quality
JP2016031932A (en) Solid oxide fuel cell-based power generation and delivery system, and method of operating the same
CN110188460B (en) Energy balance simulation method for off-grid state of distributed comprehensive energy system
CN110941799A (en) Energy hub random planning method considering system comprehensive uncertainty factors
Guo et al. Distributed model predictive control for efficient operation of islanded microgrid
JP6754880B2 (en) Power supply system
Shankar et al. Load-following performance analysis of a microturbine for islanded and grid connected operation
CN107730032B (en) Universal energy network electricity-cooling-heating triple co-generation optimized scheduling system and method
Mohamed et al. Modelling and environmental/economic power dispatch of microgrid using multiobjective genetic algorithm optimization
Hachmann et al. Power system restoration and operation of island grids with frequency dependent active power control of distributed generation
Vournas et al. Analysis of a voltage instability incident in the Greek power system
Dalmau et al. Decentralized voltage control coordination of on-load tap changer transformers, distributed generation units and flexible loads
Baudoin et al. Analysis and validation of a biogas hybrid SOFC/GT emulator
Obara Load Response Characteristics of a Fuel Cell Micro-grid with Control of the Number of Units
Lu et al. Increasing black start capacity by fast cut back function of thermal power plants
Barsali et al. Restoration islands supplied by gas turbines
RU61349U1 (en) SYSTEM OF AUTOMATIC REGULATION OF POWER OF STEAM-GAS UNIT WITH INFLUENCE ON THE REGULATING BODIES OF THE GAS-TURBINE UNIT AND STEAM TURBINE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees