JP6472191B2 - Plug connector - Google Patents

Plug connector Download PDF

Info

Publication number
JP6472191B2
JP6472191B2 JP2014172752A JP2014172752A JP6472191B2 JP 6472191 B2 JP6472191 B2 JP 6472191B2 JP 2014172752 A JP2014172752 A JP 2014172752A JP 2014172752 A JP2014172752 A JP 2014172752A JP 6472191 B2 JP6472191 B2 JP 6472191B2
Authority
JP
Japan
Prior art keywords
plating layer
alloy
thickness
pure
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014172752A
Other languages
Japanese (ja)
Other versions
JP2015165483A (en
Inventor
服部 哲也
哲也 服部
伸明 金城
伸明 金城
三宅 毅
毅 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Leadmikk Co Ltd
Original Assignee
Shinko Leadmikk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Leadmikk Co Ltd filed Critical Shinko Leadmikk Co Ltd
Priority to JP2014172752A priority Critical patent/JP6472191B2/en
Publication of JP2015165483A publication Critical patent/JP2015165483A/en
Application granted granted Critical
Publication of JP6472191B2 publication Critical patent/JP6472191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主として自動車に使用される差し込みコネクタに関する。   The present invention relates to a plug connector used mainly in an automobile.

例えば、自動車のエンジン周りの部品は、通常ボルトを用いて固定すると共に、電気的な接続がなされている。なお、ボルトの表面には、通電性を高めるため、Sn(すず)めっきがなされている。
このように、ボルトを用いることで、取り付け部分の接触面積を広げることができると共に、電気的な接続信頼性を高めることができる。
For example, parts around an automobile engine are usually fixed with bolts and electrically connected. In addition, Sn (tin) plating is made on the surface of the bolt in order to improve electrical conductivity.
Thus, by using the bolt, the contact area of the attachment portion can be increased, and the electrical connection reliability can be increased.

しかし、ボルトを用いる場合、例えば、上記した部品のメンテナンス時、この部品の取り付け取り外し作業を行う際に、ボルトを締めたり緩めたりする作業を行う必要があり、作業性が悪かった。
そこで、雌端子に雄端子を嵌め込む差し込みコネクタが提案されている(例えば、特許文献1参照)。
However, when bolts are used, for example, when performing the above-described maintenance of the parts, it is necessary to perform the work of tightening or loosening the bolts when performing the work of attaching and detaching the parts.
Therefore, an insertion connector has been proposed in which a male terminal is fitted into a female terminal (see, for example, Patent Document 1).

特開2009−59479号公報JP 2009-59479 A

しかしながら、差し込みコネクタは、上記したボルトと比較して接続信頼性が低い。このため、差し込みコネクタの表面に、通電性の良い金属、例えば、純Ag(銀)を被覆していたが、差し込みコネクタの使用により、被覆層が磨耗しても下地めっきが露出しないように、被覆厚みを厚くする(純Agの使用量を増やす)必要があり、製造コストの上昇を招いていた。   However, the plug connector has low connection reliability compared to the above-described bolt. For this reason, the surface of the plug connector was coated with a metal having good electrical conductivity, for example, pure Ag (silver), but by using the plug connector, even if the coating layer was worn, the base plating was not exposed. It was necessary to increase the coating thickness (increase the amount of pure Ag used), leading to an increase in manufacturing cost.

本発明はかかる事情に鑑みてなされたもので、安定した電気的な接続信頼性と、繰り返し摺動に対する耐磨耗性を備え、経済性にも優れる差し込みコネクタを提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a plug connector that has stable electrical connection reliability, wear resistance against repeated sliding, and is excellent in economy.

前記目的に沿う発明に係る差し込みコネクタは、雌端子に雄端子を嵌め込むことによって、電流路が形成される差し込みコネクタにおいて、
前記雌端子及び前記雄端子の少なくとも一方の接続部分の母材に、下地めっき層を介して、厚みが0.2μm以上2μm以下でBi含有率が0.01at%以上3at%以下のAg−Bi合金めっき層と、厚みが0.5μm以上2μm以下の純Agめっき層が順に形成されている。
The plug connector according to the present invention that meets the above-mentioned object is a plug connector in which a current path is formed by fitting a male terminal into a female terminal.
Ag—Bi having a thickness of 0.2 μm or more and 2 μm or less and a Bi content of 0.01 at% or more and 3 at% or less via a base plating layer on a base material of at least one connection portion of the female terminal and the male terminal. an alloy plating layer, pure Ag plating layer thickness of 0.5μm or more 2μm or less are formed in this order.

発明に係る差し込みコネクタにおいて、前記下地めっき層は厚みが0.5μm以上2μm以下のNiめっき層であることが好ましい。 In the plug connector according to the present invention, the base plating layer is preferably a Ni plating layer having a thickness of 0.5 μm to 2 μm.

発明に係る差し込みコネクタにおいて、前記下地めっき層と前記Ag−Bi合金めっき層との間に、Cuめっき層が形成されていることが好ましい。 In the plug connector according to the present invention, it is preferable that a Cu plating layer is formed between the base plating layer and the Ag—Bi alloy plating layer.

発明に係る差し込みコネクタにおいて、前記Cuめっき層の厚みは0.05μm以上1μm以下の範囲にあるのがよい。 In the plug connector according to the present invention, the thickness of the Cu plating layer may be in the range of 0.05 μm to 1 μm.

本発明に係る差し込みコネクタは、接続部分の母材に、下地めっき層を介して、Ag−Bi合金めっき層と純Agめっき層が順に形成されている。この純Agめっき層の下層となるAg−Bi合金めっき層は、純Agめっき層よりも硬度が高い。これにより、差し込みコネクタを繰り返し摺動させた際に、純Agめっき層の磨耗の進行を抑制できるので、純Agめっき層の厚みを従来よりも薄くできる。
従って、安定した電気的な接続信頼性と、繰り返し摺動に対する耐磨耗性を備え、経済性にも優れる差し込みコネクタを提供できる。
In the plug connector according to the present invention, an Ag—Bi alloy plating layer and a pure Ag plating layer are sequentially formed on the base material of the connection portion via a base plating layer. The Ag—Bi alloy plating layer, which is the lower layer of the pure Ag plating layer, has higher hardness than the pure Ag plating layer. Thereby, when the plug connector is repeatedly slid, the progress of the wear of the pure Ag plating layer can be suppressed, so that the thickness of the pure Ag plating layer can be made thinner than before.
Therefore, it is possible to provide a plug connector that has stable electrical connection reliability, wear resistance against repeated sliding, and is excellent in economy.

また、下地めっき層とAg−Bi合金めっき層との間に、Cuめっき層が形成されている場合、下地めっき層とAg−Bi合金めっき層との密着性を高めることができる。 Between the lower plating layer and the Ag-Bi alloy plating layer, if Cu plating layer is formed, it is possible to enhance the adhesion between the lower plating layer and A g-Bi alloy plating layer.

(A)はAgめっきを行った試験片の摺動後の磨耗形態を示す説明図、(B)はAg−Bi合金めっきを行った試験片の摺動後の磨耗形態を示す説明図である。(A) is explanatory drawing which shows the wear form after sliding of the test piece which Ag-plated, (B) is explanatory drawing which shows the wear form after sliding of the test piece which performed Ag-Bi alloy plating. . 摺動回数の増加に伴う接触抵抗値の推移を示すグラフである。It is a graph which shows transition of the contact resistance value accompanying the increase in the frequency | count of sliding. 耐熱性試験の前後における接触抵抗値の変化を示すグラフである。It is a graph which shows the change of the contact resistance value before and behind a heat resistance test. 耐熱性試験の前後におけるAgめっき層へのCuの拡散状況を示すグラフである。It is a graph which shows the diffusion condition of Cu to the Ag plating layer before and behind a heat resistance test. 摺動回数の増加に伴う接触抵抗値の推移を示す他のグラフである。It is another graph which shows transition of the contact resistance value accompanying the increase in the frequency | count of sliding.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る差し込みコネクタ(以下、単にコネクタともいう)は、雌端子に雄端子を嵌め込むことによって、電流路が形成される差し込みコネクタであり、安定した電気的な接続信頼性と、繰り返し摺動に対する耐磨耗性を備え、経済性にも優れるコネクタである。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
An insertion connector (hereinafter also simply referred to as a connector) according to an embodiment of the present invention is an insertion connector in which a current path is formed by fitting a male terminal into a female terminal, and stable electrical connection reliability. It is a connector that is excellent in economy and wear resistance against repeated sliding. This will be described in detail below.

差し込みコネクタは、主として自動車に使用されるものであるが、これに限定されるものではない。
なお、差し込みコネクタの雄端子としては、例えば、従来自動車のエンジン周りの部品に使用していた前記したボルトの代わりに使用するもの(ボルトの周囲のねじ山がないもの)や、充電用プラグに使用するもの等がある。また、差し込みコネクタの雌端子としては、例えば、上記した雄端子が嵌め込まれるもの等がある。
The plug-in connector is mainly used for an automobile, but is not limited thereto.
In addition, as a male terminal of a plug connector, for example, a plug that is used in place of the above-described bolt used for parts around an engine of a conventional automobile (one that does not have a screw thread around the bolt) or a charging plug is used. There are things to use. Moreover, as a female terminal of an insertion connector, there exists a thing etc. in which the above-mentioned male terminal is inserted, for example.

上記した雌端子及び雄端子の少なくとも一方(双方でもよい)の接続部分の母材には、下地めっき層を介してAg−Bi(銀/ビスマス)合金めっき層と純Agめっき層(純度が、例えば、99.99質量%以上)が順に形成されている。
接続部分の母材としては、Cu(銅)合金を使用できるが、使用用途に応じて種々変更でき、例えば、Cu系(Cu又はCu合金)、Fe(鉄)系(Fe又はFe合金(ステンレス等))、及びAl(アルミニウム)系(Al又はAl合金)のいずれか1種を使用することもできる。
The base material of the connection part of at least one of the female terminal and the male terminal (or both) may be an Ag-Bi (silver / bismuth) alloy plating layer and a pure Ag plating layer (purity is For example, 99.99 mass% or more) are formed in order.
A Cu (copper) alloy can be used as the base material of the connection portion, but various changes can be made depending on the intended use. For example, Cu-based (Cu or Cu alloy), Fe (iron) -based (Fe or Fe alloy (stainless steel) Etc.)) and Al (aluminum) type (Al or Al alloy) can also be used.

また、下地めっき層としては、母材からの元素の拡散を抑制するため、Ni(ニッケル)又はNi合金を使用することが好ましい。
ここで、下地めっき層にNiを使用する場合、その厚みを0.5μm以上2μm以下にすることにより、母材からの元素の拡散を抑制する効果が向上する。
In addition, as the base plating layer, it is preferable to use Ni (nickel) or Ni alloy in order to suppress diffusion of elements from the base material.
Here, when Ni is used for the base plating layer, the effect of suppressing the diffusion of elements from the base material is improved by setting the thickness to 0.5 μm or more and 2 μm or less.

Ag−Bi合金めっき層と純Agめっき層は、以下の理由により、母材の表面に形成した。
まず、図1(A)、(B)を参照しながら説明する。
図1(A)、(B)は、それぞれAgめっき層、Ag−Bi合金めっき層が形成された半球状の凸部表面を、試験片に対して往復摺動させた場合の摺動後の試験片の磨耗形態を示す説明図である。なお、図1(A)の試験片は、めっき層としてAgめっきを使用し、図1(B)の試験片は、めっき層としてAg−Bi合金めっきを使用している。
The Ag—Bi alloy plating layer and the pure Ag plating layer were formed on the surface of the base material for the following reason.
First, a description will be given with reference to FIGS.
1 (A) and 1 (B) show the results after sliding when a hemispherical convex surface on which an Ag plating layer and an Ag-Bi alloy plating layer are formed is slid back and forth with respect to a test piece. It is explanatory drawing which shows the wear form of a test piece. In addition, the test piece of FIG. 1 (A) uses Ag plating as a plating layer, and the test piece of FIG. 1 (B) uses Ag-Bi alloy plating as a plating layer.

図1(A)に示すように、Agめっき層の厚みが十分に厚い場合、Agの自己潤滑と相互転写の特性が得られる。このため、凸部表面を試験片に対して摺動させると、Agめっき層の磨耗速度は速いが、ある程度の深さで磨耗が進行しなくなる。
一方、Ag−Bi合金はAgと比較して硬質であるため、凸部表面を試験片に対して摺動させると、磨耗の進行は遅いものの、図1(B)に示すように、磨耗の深さが摺動回数に比例し、下地が表面に露出することになる。
As shown in FIG. 1A, when the Ag plating layer is sufficiently thick, Ag self-lubrication and mutual transfer characteristics can be obtained. For this reason, when the convex surface is slid with respect to the test piece, the wear rate of the Ag plating layer is fast, but the wear does not proceed at a certain depth.
On the other hand, since the Ag-Bi alloy is harder than Ag, when the convex surface is slid with respect to the test piece, the wear progresses slowly, but as shown in FIG. The depth is proportional to the number of sliding times, and the base is exposed on the surface.

以上の結果を基に、摺動回数の増加に伴う接触抵抗値の推移について検討した結果を、図2を参照しながら説明する。なお、接触抵抗値の増加は、雌端子と雄端子との間の通電特性の低下を意味する(以下、同様)。
試験は、厚み1μmのAgめっき層(下地めっき層:Ni)が形成された直径3mmの半球状の凸部(厚み0.2mm)表面を、試験片に対して往復摺動(ストローク:0.05mm、温度:室温)させることで行った。なお、試験片としては、Agめっき層(厚み:2μmと10μm)がNiの下地めっき層を介して母材の表面に形成されたものと、Ag−Bi合金めっき層(Bi含有量:0.2at%(原子%))と純Agめっき層(厚み:2μm)が順に、Niの下地めっき層を介して母材の表面に形成されたものを使用した(合計3種類)。
Based on the above results, the results of examining the transition of the contact resistance value with the increase in the number of sliding times will be described with reference to FIG. Note that an increase in the contact resistance value means a decrease in current-carrying characteristics between the female terminal and the male terminal (the same applies hereinafter).
In the test, the surface of a hemispherical convex part (thickness 0.2 mm) having a diameter of 3 mm on which an Ag plating layer (underlying plating layer: Ni) having a thickness of 1 μm was formed was slid back and forth (stroke: 0. 0 mm). (05 mm, temperature: room temperature). In addition, as a test piece, the Ag plating layer (thickness: 2 μm and 10 μm) is formed on the surface of the base material through the Ni base plating layer, and the Ag—Bi alloy plating layer (Bi content: 0.0. 2 at% (atomic%)) and a pure Ag plating layer (thickness: 2 μm) were sequentially formed on the surface of the base material via a Ni base plating layer (three types in total).

図2に示すように、厚み2μmのAgめっき層が形成された試験片は、Agめっき層の厚みが薄過ぎたため、摺動試験の途中で、下地めっき層であるNiが表面に露出し、接触抵抗値の上昇を招いた。
また、厚み10μmのAgめっき層が形成された試験片は、Agめっき層の厚みが十分であったため、下地めっき層であるNiが表面に露出することなく、接触抵抗値を低い値で推移させることができた(図1(A)参照)。しかし、この場合、Agめっき層の厚みが厚くなるため、製造コストの上昇を招く。
一方、Ag−Bi合金めっき層と純Agめっき層が順に形成された試験片は、純Agめっき層の厚みが薄かったにも関わらず、上記した厚み2μmのAgめっき層が形成された試験片と比較して、接触抵抗値を低い値で推移させることができた。
As shown in FIG. 2, since the thickness of the Ag plating layer was too thin in the test piece on which the 2 μm thick Ag plating layer was formed, Ni as the base plating layer was exposed on the surface during the sliding test, Increased contact resistance.
Moreover, since the thickness of the Ag plating layer was sufficient for the test piece on which the 10 μm-thick Ag plating layer was formed, the contact resistance value was shifted to a low value without exposing Ni as the underlying plating layer to the surface. (See FIG. 1 (A)). However, in this case, since the thickness of the Ag plating layer is increased, the manufacturing cost is increased.
On the other hand, the test piece in which the Ag—Bi alloy plating layer and the pure Ag plating layer were formed in this order, the test piece in which the above-described Ag plating layer having a thickness of 2 μm was formed even though the pure Ag plating layer was thin. Compared with, the contact resistance value could be changed at a low value.

また、耐熱性試験の前後における接触抵抗値の変化を、図3を参照しながら説明する。
試験は、めっき層形成直後の試験片(耐熱性試験前の試験片)と、この試験片を150℃で1000時間加熱した試験片(耐熱性試験後の試験片)を用い、前記した往復摺動により行った。なお、試験片としては、Ag−Bi合金めっき層(Bi含有量:0.2at%)と純Agめっき層が順に、Niの下地めっき層を介して母材の表面に形成されたもの(Ag−Bi合金+Ag)と、純Agめっき層のみがNiの下地めっき層を介して母材の表面に形成されたもの(Ag)と、Ag−Bi合金めっき層(Bi含有量:0.2at%のみがNiの下地めっき層を介して母材の表面に形成されたもの(Ag−Bi合金)を使用した(合計3種類)。
Further, changes in the contact resistance value before and after the heat resistance test will be described with reference to FIG.
The test was performed using the test piece immediately after the plating layer was formed (test piece before the heat resistance test) and the test piece obtained by heating the test piece at 150 ° C. for 1000 hours (the test piece after the heat resistance test). It was done by movement. In addition, as a test piece, the Ag-Bi alloy plating layer (Bi content: 0.2 at%) and the pure Ag plating layer were formed in order on the surface of the base material through the Ni base plating layer (Ag -Bi alloy + Ag), a pure Ag plating layer formed on the surface of the base material through a Ni undercoat layer (Ag), and an Ag-Bi alloy plating layer (Bi content: 0.2 at%) Only the one (Ag—Bi alloy) formed on the surface of the base material through the Ni base plating layer was used (three types in total).

図3から明らかなように、耐熱性試験前の試験片はいずれも、接触抵抗値が略同等で、しかも低い値であった。
一方、耐熱性試験後の試験片は、「Ag−Bi合金」の場合、接触抵抗値の急激な上昇が確認されたが、「Ag−Bi合金+Ag」については、耐熱性試験前と略同等の接触抵抗値が得られ、しかも、その接触抵抗値は「Ag」と略同等であった。
更に、上記した「Ag」と「Ag−Bi合金+Ag」については、曲げ加工試験(曲げ試験又はW曲げ試験)を行ったが、「Ag−Bi合金+Ag」のAg−Bi合金めっき層とAgめっき層は、共に母材から剥がれることなく、曲げ加工性は「Ag」のAgめっき層と略同等であった。
As can be seen from FIG. 3, all of the test pieces before the heat resistance test had substantially the same contact resistance value and a low value.
On the other hand, when the test piece after the heat resistance test was “Ag—Bi alloy”, a rapid increase in the contact resistance value was confirmed, but “Ag—Bi alloy + Ag” was almost the same as before the heat resistance test. The contact resistance value was obtained, and the contact resistance value was substantially equivalent to “Ag”.
Further, the above-mentioned “Ag” and “Ag—Bi alloy + Ag” were subjected to a bending test (bending test or W bending test), but the Ag—Bi alloy plating layer of “Ag—Bi alloy + Ag” and Ag The plating layers were not peeled off from the base material, and the bending workability was substantially the same as the Ag plating layer of “Ag”.

以上のことから、Agの自己潤滑及び相互転写と、Ag―Bi合金の硬質性を備える構成として、前記した構成、即ち、母材の表面に、下地めっき層を介してAg−Bi合金めっき層と純Agめっき層を順に形成した構成とした。
上記したAg―Bi合金は、Ag中にBiが固溶しているため、Ag−Bi合金めっき層の硬度が、純Agめっきの場合と比較して上昇する。例えば、Ag−Bi合金めっき層のマイクロビッカース硬度(MHv)は、上記した耐熱性試験後も110以上である(Agめっき層の硬度は80程度)。このAg−Bi合金めっき層の耐熱性試験前のマイクロビッカース硬度は、120以上180以下程度である。
From the above, as a configuration having Ag self-lubrication and mutual transfer and Ag-Bi alloy hardness, the above-described configuration, that is, the Ag-Bi alloy plating layer on the surface of the base material via the base plating layer. And a pure Ag plating layer were sequentially formed.
In the above-described Ag—Bi alloy, since Bi is dissolved in Ag, the hardness of the Ag—Bi alloy plating layer is increased as compared with the case of pure Ag plating. For example, the micro Vickers hardness (MHv) of the Ag—Bi alloy plating layer is 110 or more even after the above heat resistance test (the hardness of the Ag plating layer is about 80). The micro Vickers hardness before the heat resistance test of this Ag—Bi alloy plating layer is about 120 or more and 180 or less.

なお、この場合、Ag−Bi合金めっき層中のBiの含有率は、例えば、0.01at%以上3at%以下(下限を0.05at%、更には0.1at%とすることが好ましく、上限を1at%、更には0.5at%とすることが好ましい)でよい。
ここで、Ag−Bi合金めっき層中のBi含有率が0.01at%未満の場合、Bi量が少な過ぎて皮膜硬度が不足し、耐摺動磨耗性に十分に寄与せず、一方、Bi含有率が3at%超の場合、Bi量が多過ぎて皮膜が硬くなり、曲げ加工性が劣る。
また、Ag−Bi合金めっきは、Biを除けば全てAgであるが、不可避的不純物が含まれている場合もある。
In this case, the Bi content in the Ag—Bi alloy plating layer is, for example, 0.01 at% or more and 3 at% or less (the lower limit is preferably 0.05 at%, more preferably 0.1 at%, 1 at%, more preferably 0.5 at%).
Here, when the Bi content in the Ag—Bi alloy plating layer is less than 0.01 at%, the amount of Bi is too small and the film hardness is insufficient and does not sufficiently contribute to the sliding wear resistance. When the content is more than 3 at%, the amount of Bi is too large, the film becomes hard, and the bending workability is inferior.
Moreover, although Ag-Bi alloy plating is all Ag except Bi, inevitable impurities may be contained.

このAg―Bi合金めっき層の厚みは、特に限定されるものではないが、0.2μm以上2μm以下(好ましくは、下限を0.5μm、上限を1.5μm)の範囲にあることが好ましい。
Ag―Bi合金めっき層の厚みを、上記した範囲に規定することで、Ag―Bi合金めっき層の特性、即ち純Agめっき層の下層に硬質層を存在させるという特性を、十分に発揮できる。
The thickness of the Ag—Bi alloy plating layer is not particularly limited, but is preferably in the range of 0.2 μm to 2 μm (preferably, lower limit is 0.5 μm, upper limit is 1.5 μm).
By defining the thickness of the Ag—Bi alloy plating layer in the above-described range, the characteristics of the Ag—Bi alloy plating layer, that is, the characteristic that the hard layer is present under the pure Ag plating layer can be sufficiently exhibited.

また、純Agめっき層の厚みも、特に限定されるものではないが、0.5μm以上5μm以下の範囲にあることが好ましい。
ここで、純Agめっき層の厚みが0.5μm未満の場合、厚みが薄過ぎて、コネクタの使用時に純Agめっき層が磨耗し、下層のAg―Bi合金めっき層が露出して、接触抵抗値の上昇を招く(図1(B)参照)。一方、純Agめっき層の厚みが厚ければ、Agの自己潤滑と相互転写の効果が得られるため、上限値については特に限定されないが、製造コストの低減を図るためには、5μm(好ましくは3μm、更に好ましくは2μm)程度がよい。
The thickness of the pure Ag plating layer is not particularly limited, but is preferably in the range of 0.5 μm or more and 5 μm or less.
Here, when the thickness of the pure Ag plating layer is less than 0.5 μm, the thickness is too thin, the pure Ag plating layer is worn when the connector is used, and the lower Ag—Bi alloy plating layer is exposed, and the contact resistance The value increases (see FIG. 1B). On the other hand, if the thickness of the pure Ag plating layer is large, the effect of self-lubricating Ag and mutual transfer can be obtained, so the upper limit value is not particularly limited. However, in order to reduce the manufacturing cost, 5 μm (preferably About 3 μm, more preferably about 2 μm).

上記したAg―Bi合金めっき層は、下地めっき層の表面に直接形成できるが、下地めっき層とAg―Bi合金めっき層との密着性を高めるため、特に、高温(150℃超)の使用環境下では、下地めっき層とAg−Bi合金めっき層との間に、Cuめっき層を形成することが好ましい。
このCuめっき層の厚みは、特に限定されるものではないが、0.05μm以上1μm以下の範囲にあることが好ましい。
The above-mentioned Ag-Bi alloy plating layer can be directly formed on the surface of the undercoat plating layer. However, in order to improve the adhesion between the undercoat plating layer and the Ag-Bi alloy plating layer, it is used particularly at high temperatures (over 150 ° C). Below, it is preferable to form a Cu plating layer between the base plating layer and the Ag—Bi alloy plating layer.
The thickness of the Cu plating layer is not particularly limited, but is preferably in the range of 0.05 μm to 1 μm.

Cuめっき層の厚みが0.05μm未満の場合、Cuめっき層の厚みが薄過ぎて、下地めっき層が拡散し、Ag−Bi合金めっき層が剥がれ易くなる。このため、Cuめっき層の厚みを0.05μm以上としたが、0.08μm以上とすることが好ましい。
一方、Cuめっき層の厚みが厚くなっても、Ag−Bi合金めっき層により、純Agめっき層へのCuの拡散を抑制、更には防止できるため、上限値については特に限定されるものではないが、経済性を考慮すれば、1μm(更には、0.5μm)である。
When the thickness of the Cu plating layer is less than 0.05 μm, the thickness of the Cu plating layer is too thin, the base plating layer diffuses, and the Ag—Bi alloy plating layer is easily peeled off. For this reason, although the thickness of the Cu plating layer is 0.05 μm or more, it is preferably 0.08 μm or more.
On the other hand, even if the thickness of the Cu plating layer is increased, the Ag-Bi alloy plating layer can suppress and further prevent the diffusion of Cu into the pure Ag plating layer, and thus the upper limit value is not particularly limited. However, considering the economical efficiency, it is 1 μm (further 0.5 μm).

ここで、耐熱性試験の前後におけるAgめっき層へのCuの拡散状況について、図4を参照しながら説明する。
試験は、めっき層形成直後の試験片(耐熱性試験前の試験片)と、この試験片を150℃で1000時間加熱した試験片(耐熱性試験後の試験片)を用い、Agめっき層中のCu量の割合(Cu/Ag)を算出することで行った(AES分析結果:分析面の最表面層を高精度に分析可能)。なお、試験片としては、Ag−Bi合金めっき層(Bi含有量:0.2at%)と純Agめっき層が順に、Cuめっき層の表面に形成されたもの(Ag−Bi合金+Ag)と、純Agめっき層のみがCuめっき層の表面に形成されたもの(Ag)を使用した(合計2種類)。
Here, the diffusion state of Cu into the Ag plating layer before and after the heat resistance test will be described with reference to FIG.
The test uses a test piece immediately after the plating layer is formed (test piece before the heat resistance test) and a test piece (test piece after the heat resistance test) obtained by heating the test piece at 150 ° C. for 1000 hours. (Cu / Ag) was calculated (AES analysis result: the outermost surface layer of the analysis surface can be analyzed with high accuracy). In addition, as a test piece, the Ag-Bi alloy plating layer (Bi content: 0.2 at%) and the pure Ag plating layer are sequentially formed on the surface of the Cu plating layer (Ag-Bi alloy + Ag), Only pure Ag plating layer (Ag) formed on the surface of the Cu plating layer was used (two types in total).

図4から明らかなように、耐熱性試験前の試験片は、「Ag」の場合、Agめっき層へのCuの拡散が僅かに発生したが、「Ag−Bi合金+Ag」の場合、Agめっき層へのCuの拡散は全くなかった。
また、耐熱性試験後の試験片は、「Ag」の場合、Agめっき層へのCuの拡散が顕著に発生したが、「Ag−Bi合金+Ag」の場合、Agめっき層へのCuの拡散は全くなかった。
As is clear from FIG. 4, when the specimen before the heat resistance test was “Ag”, a slight diffusion of Cu into the Ag plating layer occurred, but in the case of “Ag—Bi alloy + Ag”, the Ag plating was performed. There was no diffusion of Cu into the layer.
In addition, when the test piece after the heat resistance test was “Ag”, the diffusion of Cu into the Ag plating layer occurred remarkably, but when “Ag—Bi alloy + Ag”, the diffusion of Cu into the Ag plating layer There was no.

なお、差し込みコネクタには、上記したAg−Bi合金めっき層の代わりに、光沢Agめっき層を形成したものを使用することもできる。
ここで、摺動回数の増加に伴う接触抵抗値の推移について検討した他の結果を、図5を参照しながら説明する。
試験は、エンボス材に形成された直径3mmの半球状の凸部表面を、試験片に対して往復摺動(加重:4N、ストローク:10mm、温度:室温)させることで行った。なお、エンボス材と試験片の母材は共に、Cuで構成されている。また、母材の表面にはそれぞれ、半光沢Niの下地めっき層(厚み:1.0μm)を介して、同一構成(組成と厚みが同一)のめっき層が形成されている。
In addition, the plug connector may be formed with a bright Ag plating layer instead of the above-described Ag—Bi alloy plating layer.
Here, another result of examining the transition of the contact resistance value with the increase in the number of sliding times will be described with reference to FIG.
The test was performed by reciprocally sliding the surface of a hemispherical convex portion having a diameter of 3 mm formed on the embossed material with respect to the test piece (load: 4 N, stroke: 10 mm, temperature: room temperature). Both the embossed material and the base material of the test piece are made of Cu. In addition, plating layers having the same configuration (the same composition and thickness) are formed on the surface of the base material via a semi-gloss Ni underplating layer (thickness: 1.0 μm), respectively.

なお、めっき層が形成された母材として、以下の3種類を使用した。
・めっき層として純Agめっき層(厚み:1.0μm)が、下地めっき層を介して、母材の表面に形成されたもの
・めっき層としてAg−Bi合金めっき層(Bi含有量:0.2at%、厚み:0.3μm)と純Agめっき層(厚み:1.0μm)が順に、下地めっき層を介して、母材の表面に形成されたもの
・めっき層として光沢Agめっき層(厚み:0.3μm)と純Agめっき層(厚み:1.0μm)が順に、下地めっき層を介して、母材の表面に形成されたもの
In addition, the following three types were used as the base material on which the plating layer was formed.
A pure Ag plating layer (thickness: 1.0 μm) as a plating layer is formed on the surface of the base material via a base plating layer. An Ag—Bi alloy plating layer (Bi content: 0.00) as a plating layer. 2 at%, thickness: 0.3 μm) and a pure Ag plating layer (thickness: 1.0 μm) are sequentially formed on the surface of the base material via the base plating layer. Glossy Ag plating layer (thickness) : 0.3 μm) and a pure Ag plating layer (thickness: 1.0 μm) sequentially formed on the surface of the base material through the base plating layer

図5に示すように、下地めっき層の表面に純Agめっき層のみが形成された試験片は、純Agめっき層の厚みが薄過ぎたため、純Agめっき層が摺動回数4回程度で剥がれてしまい(母材表面が露出していまい)、接触抵抗値の上昇を招いた。
一方、下地めっき層の表面に、Ag−Bi合金めっき層と純Agめっき層が順に形成された試験片は、前記した図2の結果と同様、純Agめっき層の厚みが薄かったにも関わらず、接触抵抗値を低い値で推移させることができた。
また、下地めっき層の表面に、光沢Agめっき層と純Agめっき層が順に形成された試験片は、摺動回数20回程度まで、上記したAg−Bi合金めっき層が形成された場合と同様、接触抵抗値が低い値で推移していた。
As shown in FIG. 5, in the test piece in which only the pure Ag plating layer was formed on the surface of the base plating layer, since the thickness of the pure Ag plating layer was too thin, the pure Ag plating layer was peeled off after sliding about 4 times. (The surface of the base material was not exposed), leading to an increase in contact resistance.
On the other hand, the test piece in which the Ag—Bi alloy plating layer and the pure Ag plating layer were formed in this order on the surface of the base plating layer is similar to the result of FIG. 2 described above, although the thickness of the pure Ag plating layer was thin. Therefore, the contact resistance value could be changed at a low value.
Moreover, the test piece in which the bright Ag plating layer and the pure Ag plating layer are formed in order on the surface of the base plating layer is the same as the case where the above-described Ag-Bi alloy plating layer is formed up to about 20 times of sliding. The contact resistance value remained low.

従って、差し込みコネクタには、Ag−Bi合金めっき層の代わりに、光沢Agめっき層が形成されたものを使用することもできる。
ここで、光沢Agめっきとは、光沢剤の添加による電気化学反応の抑制により、Agの結晶組織が微細化され、表面平滑度が向上して、光沢が得られるものである。また、この微細な結晶の粒界には、添加された物質や水素が不純物として析出している結果、硬質のめっき膜となる(マイクロビッカース硬度:120以上180以下程度)。
なお、Ag中に含まれる上記した光沢剤としては、Se(セレン)及びSb(アンチモン)のいずれか一方又は双方がある。
Accordingly, a plug connector having a bright Ag plating layer can be used instead of the Ag-Bi alloy plating layer.
Here, the glossy Ag plating means that the Ag crystal structure is refined by suppressing the electrochemical reaction due to the addition of the brightener, the surface smoothness is improved, and the gloss is obtained. In addition, as a result of the addition of added substances and hydrogen as impurities in the grain boundaries of the fine crystals, a hard plating film is formed (micro Vickers hardness: about 120 or more and about 180 or less).
In addition, as the above-mentioned brightener contained in Ag, there exists one or both of Se (selenium) and Sb (antimony).

なお、光沢剤として、SeとSbの双方を含む場合、光沢Agめっき層中のSeとSbの各含有率は、例えば、以下の割合であることが好ましい。
・Se:0.05at%以上0.09at%以下
・Sb:0.15at%以上0.30at%以下
これにより、皮膜硬度が高められ、耐摺動磨耗性を備えることができると共に、必要な曲げ加工性も備えることができる。
なお、光沢Agめっきは、SeとSbの双方を含む場合、SeとSbの双方(Se及びSbのいずれか一方のみを含む場合、その一方)を除けば全てAgであるが、不可避的不純物が含まれている場合もある。
In addition, when both Se and Sb are included as a brightener, it is preferable that each content rate of Se and Sb in a gloss Ag plating layer is the following ratios, for example.
-Se: 0.05 at% or more and 0.09 at% or less-Sb: 0.15 at% or more and 0.30 at% or less This makes it possible to increase the film hardness and to provide sliding wear resistance, as well as necessary bending. Workability can also be provided.
In addition, gloss Ag plating is all Ag except when both Se and Sb are included, except for both Se and Sb (when only one of Se and Sb is included), but unavoidable impurities are present. May be included.

また、光沢Agめっきは、上記硬度が得れる構成であれば、特に限定されるものではなく、例えば、以下に示す光沢剤が含まれるものでもよい。
(1)二酸化炭素とケトン類の縮合生成物
(2)キサントゲン塩
(3)ASK化合物(アクロレイン−二硫化硫黄縮合生成物)
(4)チオカクバジッド縮合生成物
(5)チオ硫酸塩
(6)セレニウムとテルリウム化合物
(7)アンチモン−ビスマス化合物
Further, the gloss Ag plating is not particularly limited as long as the hardness can be obtained. For example, the gloss Ag plating described below may be included.
(1) Condensation product of carbon dioxide and ketones (2) Xanthogen salt (3) ASK compound (Acrolein-sulfur disulfide condensation product)
(4) Thiocabazide condensation product (5) Thiosulfate (6) Selenium and tellurium compound (7) Antimony-bismuth compound

この光沢Agめっき層の厚みは、特に限定されるものではないが、0.2μm以上2μm以下(好ましくは、下限を0.5μm、上限を1.5μm、更には1.0μm)の範囲にあることが好ましい。
光沢Agめっき層の厚みを、上記した範囲に規定することで、光沢Agめっき層の特性、即ち純Agめっき層の下層に硬質層を存在させるという特性を、十分に発揮できる。
また、上記した光沢Agめっき層は、下地めっき層の表面に直接形成できるが、下地めっき層と光沢Agめっき層との密着性を高めるため、下地めっき層と光沢Agめっき層との間に、前記したCuめっき層(例えば、厚みが0.05μm以上1μm以下)を形成することが好ましい。
The thickness of the bright Ag plating layer is not particularly limited, but is in the range of 0.2 μm or more and 2 μm or less (preferably, the lower limit is 0.5 μm, the upper limit is 1.5 μm, and further 1.0 μm). It is preferable.
By defining the thickness of the bright Ag plating layer in the above-described range, the characteristics of the bright Ag plating layer, that is, the characteristic that the hard layer is present under the pure Ag plating layer can be sufficiently exhibited.
Moreover, although the above-mentioned glossy Ag plating layer can be directly formed on the surface of the base plating layer, in order to improve the adhesion between the base plating layer and the bright Ag plating layer, between the base plating layer and the bright Ag plating layer, It is preferable to form the Cu plating layer described above (for example, the thickness is 0.05 μm or more and 1 μm or less).

以上に示した本発明の差し込みコネクタは、安定した電気的な接続信頼性と、繰り返し摺動に対する耐磨耗性を備え、経済性にも優れる。   The plug connector according to the present invention described above has stable electrical connection reliability, wear resistance against repeated sliding, and is excellent in economy.

続いて、本発明の一実施の形態に係る差し込みコネクタの製造方法について説明する。
まず、母材を準備する。この母材は、製品と略同一形状に加工されたものである。
そして、この母材をめっき浴中に浸漬して、めっき処理する。
このめっき処理は、Niめっき、Ag−Bi合金めっき、及び純Agめっきを、順次行う。ここで、Ag−Bi合金めっきは、Bi濃度を調整しためっき浴を使用し、陽極にPt(白金電極)を用いて行う。
なお、Cuめっきを行う場合は、Niめっきを行った後、Cuめっきを行う。
これにより、母材に、下地めっき層を介して(場合によってはCuめっき層と)Ag−Bi合金めっき層と純Agめっき層を順に形成できる。
Then, the manufacturing method of the insertion connector which concerns on one embodiment of this invention is demonstrated.
First, prepare the base material. This base material is processed into substantially the same shape as the product.
And this base material is immersed in a plating bath, and is plated.
In this plating process, Ni plating, Ag—Bi alloy plating, and pure Ag plating are sequentially performed. Here, the Ag—Bi alloy plating is performed using a plating bath in which the Bi concentration is adjusted, and Pt (platinum electrode) as the anode.
In addition, when performing Cu plating, after performing Ni plating, Cu plating is performed.
Thereby, an Ag-Bi alloy plating layer and a pure Ag plating layer can be sequentially formed on the base material via a base plating layer (in some cases, a Cu plating layer).

また、Ag−Bi合金めっき層の代わりに、光沢Agめっき層を形成する場合も、上記した方法と同様に、母材をめっき浴中に浸漬して、Niめっき、光沢Agめっき、及び純Agめっきの各めっき処理を、順次行う。
なお、光沢Agめっき層として、Ag中にSeとSbの双方が含まれる場合のめっき液には、例えば、めっき液1リットル中に、Ag:60g、Se:20mg以上40mg以下、Sb:100mg以上200mg以下のものを使用できる。
これにより、母材に、下地めっき層を介して(場合によってはCuめっき層と)光沢Agめっき層と純Agめっき層を順に形成できる。
Further, when forming a bright Ag plating layer instead of the Ag-Bi alloy plating layer, similarly to the above method, the base material is immersed in a plating bath, Ni plating, bright Ag plating, and pure Ag. Each plating process of plating is performed sequentially.
In addition, as a luster Ag plating layer, when both Se and Sb are contained in Ag, for example, in 1 liter of plating solution, Ag: 60 g, Se: 20 mg or more, 40 mg or less, Sb: 100 mg or more 200 mg or less can be used.
Accordingly, a bright Ag plating layer and a pure Ag plating layer can be sequentially formed on the base material via a base plating layer (in some cases, a Cu plating layer).

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の差し込みコネクタを構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the plug connector of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

Claims (4)

雌端子に雄端子を嵌め込むことによって、電流路が形成される差し込みコネクタにおいて、
前記雌端子及び前記雄端子の少なくとも一方の接続部分の母材に、下地めっき層を介して、厚みが0.2μm以上2μm以下でBi含有率が0.01at%以上3at%以下のAg−Bi合金めっき層と、厚みが0.5μm以上2μm以下の純Agめっき層が順に形成されたことを特徴とする差し込みコネクタ。
In a plug connector in which a current path is formed by fitting a male terminal into a female terminal,
Ag—Bi having a thickness of 0.2 μm or more and 2 μm or less and a Bi content of 0.01 at% or more and 3 at% or less via a base plating layer on a base material of at least one connection portion of the female terminal and the male terminal. A plug connector comprising an alloy plating layer and a pure Ag plating layer having a thickness of 0.5 μm or more and 2 μm or less formed in this order.
請求項1記載の差し込みコネクタにおいて、前記下地めっき層は厚みが0.5μm以上2μm以下のNiめっき層であることを特徴とする差し込みコネクタ。 The plug connector according to claim 1, wherein the base plating layer is a Ni plating layer having a thickness of 0.5 μm to 2 μm. 請求項1又は2記載の差し込みコネクタにおいて、前記下地めっき層と前記Ag−Bi合金めっき層との間に、Cuめっき層が形成されていることを特徴とする差し込みコネクタ。 In Plug connector according to claim 1 or 2, wherein, between the lower plating layer and the Ag-Bi alloy plating layer, plug connector, characterized in that the Cu plating layer is formed. 請求項記載の差し込みコネクタにおいて、前記Cuめっき層の厚みは0.05μm以上1μm以下の範囲にあることを特徴とする差し込みコネクタ。 4. The plug connector according to claim 3 , wherein the thickness of the Cu plating layer is in a range of 0.05 μm to 1 μm.
JP2014172752A 2014-02-07 2014-08-27 Plug connector Active JP6472191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172752A JP6472191B2 (en) 2014-02-07 2014-08-27 Plug connector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014022174 2014-02-07
JP2014022174 2014-02-07
JP2014172752A JP6472191B2 (en) 2014-02-07 2014-08-27 Plug connector

Publications (2)

Publication Number Publication Date
JP2015165483A JP2015165483A (en) 2015-09-17
JP6472191B2 true JP6472191B2 (en) 2019-02-20

Family

ID=54187902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172752A Active JP6472191B2 (en) 2014-02-07 2014-08-27 Plug connector

Country Status (1)

Country Link
JP (1) JP6472191B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054432B2 (en) 2017-07-12 2022-04-14 株式会社オートネットワーク技術研究所 Male terminal fittings and female terminal fittings
JP7121881B2 (en) * 2017-08-08 2022-08-19 三菱マテリアル株式会社 Terminal material with silver film and terminal with silver film
JP2020047500A (en) * 2018-09-20 2020-03-26 矢崎総業株式会社 Terminal mating structure
JP2022092093A (en) * 2020-12-10 2022-06-22 Dowaメタルテック株式会社 Ag COATING MATERIAL, PRODUCTION METHOD OF Ag COATING MATERIAL, AND TERMINAL COMPONENT
JP2023079476A (en) * 2021-11-29 2023-06-08 矢崎総業株式会社 Plated material for terminal, terminal using the same, and electric wire with terminal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175381B2 (en) * 1993-01-20 2001-06-11 古河電気工業株式会社 Electrical contact material and its manufacturing method
JP2008169408A (en) * 2007-01-09 2008-07-24 Auto Network Gijutsu Kenkyusho:Kk Silver-plated terminal for connector
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
JP5481282B2 (en) * 2010-06-07 2014-04-23 神鋼リードミック株式会社 Electronic component materials
JP5387742B2 (en) * 2012-04-06 2014-01-15 株式会社オートネットワーク技術研究所 Plating member, plating terminal for connector, method for manufacturing plating member, and method for manufacturing plating terminal for connector
WO2014199837A1 (en) * 2013-06-11 2014-12-18 株式会社Kanzacc Contact terminal structure

Also Published As

Publication number Publication date
JP2015165483A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6472191B2 (en) Plug connector
CN108352639B (en) Tin-plated copper terminal material, terminal and electric wire terminal structure
TWI794263B (en) Terminal material with silver film and terminal with silver film
JP2008270192A (en) Silver coating material for movable contact component, and manufacturing method thereof
TWI719093B (en) Manufacturing method of tinned copper terminal material
CN104619883A (en) Surface-treated plated material and method for producing same, and electronic component
TW201812108A (en) Tinned copper terminal material, terminal, and electrical wire end part structure
CN100576366C (en) Zinc-plated Cu-Ni-Si-Zn-Sn is alloy bar and zinc-plated
KR102102583B1 (en) Electrical contact material and manufacturing method thereof
JP2020202101A (en) Terminal and electric wire with terminal including the same, and wire harness
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
US10998108B2 (en) Electrical contact material, method of producing an electrical contact material, and terminal
JP6086531B2 (en) Silver plating material
JP6825360B2 (en) Plated copper terminal material and terminals
JP6134557B2 (en) Copper strip or copper alloy strip and heat dissipating part provided with the strip
TW201934320A (en) Surface treated metal material for burn-in test socket, connector for burn-in test socket and burn-in test socket using the same
TW201907622A (en) Tinned copper terminal material, terminal and wire end structure
JP2014095139A (en) Silver plated laminate
WO2023234015A1 (en) Surface-coated material for electrical contacts, and electrical contact, switch and connector terminal each using same
US11901659B2 (en) Terminal material for connectors
JP7083662B2 (en) Plating material
JP2011080117A (en) Conductive member and method of manufacturing the same
JP2012049042A (en) Silver coated composite material for movable contact component and method of producing the same and movable contact component
JP2009245659A (en) Slide contact material for electric motor
WO2019031549A1 (en) Terminal material with silver coating film, and terminal with silver coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190122

R150 Certificate of patent or registration of utility model

Ref document number: 6472191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250