JP6451204B2 - Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these - Google Patents

Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these Download PDF

Info

Publication number
JP6451204B2
JP6451204B2 JP2014215509A JP2014215509A JP6451204B2 JP 6451204 B2 JP6451204 B2 JP 6451204B2 JP 2014215509 A JP2014215509 A JP 2014215509A JP 2014215509 A JP2014215509 A JP 2014215509A JP 6451204 B2 JP6451204 B2 JP 6451204B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
component
resin composition
prepreg according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014215509A
Other languages
Japanese (ja)
Other versions
JP2016079367A (en
Inventor
貴代 北嶋
貴代 北嶋
健一 富岡
健一 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014215509A priority Critical patent/JP6451204B2/en
Publication of JP2016079367A publication Critical patent/JP2016079367A/en
Application granted granted Critical
Publication of JP6451204B2 publication Critical patent/JP6451204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂組成物、プリプレグ、樹脂付き金属箔、及びこれらを用いた積層板及びプリント配線板に関する。   The present invention relates to a resin composition, a prepreg, a metal foil with a resin, and a laminate and a printed wiring board using these.

情報電子機器の急速な普及に伴って、電子機器の小型化及び薄型化が進んでいる。その中に搭載されるプリント配線板も高密度化、高機能化の要求が高まっている。   With the rapid spread of information electronic devices, electronic devices are becoming smaller and thinner. There is a growing demand for higher density and higher functionality of printed wiring boards installed in the board.

プリント配線板の高密度化は、基材となるガラスクロスの厚さをより薄くすること、例えば30μm以下の厚さにすることで更に好適に成し遂げられるため、そのようなガラスクロスを備えたプリプレグが、昨今開発及び上市されている。これにより、プリント配線板の高密度化はますます進行しているものの、それに伴い、プリント配線板における十分な耐熱性、絶縁信頼性及び配線層と絶縁層との接着性等を確保することが困難になってきている。   Densification of printed wiring boards can be achieved more suitably by reducing the thickness of the glass cloth serving as a base material, for example, by making the thickness to 30 μm or less. Therefore, a prepreg having such a glass cloth is used. However, it has been developed and marketed recently. As a result, although the density of printed wiring boards is increasing, it is possible to ensure sufficient heat resistance, insulation reliability, and adhesion between the wiring layer and the insulating layer. It has become difficult.

このような高機能プリント配線板に使用される配線板材料には、耐熱性、電気絶縁性、長期信頼性、及び接着性等が要求されている。また、これらの高機能プリント配線板の中の1つに挙げられるフレキシブルな配線板材料には、上記の特性に加え、低弾性であることも要求されている。   A wiring board material used for such a high-performance printed wiring board is required to have heat resistance, electrical insulation, long-term reliability, adhesion, and the like. In addition to the above characteristics, the flexible wiring board material listed as one of these high-performance printed wiring boards is also required to have low elasticity.

さらには、セラミック部品を搭載したプリント配線板においては、セラミック部品とプリント配線板の熱膨張係数の差や、外的な衝撃によって発生する部品接続信頼性の問題がある。この問題の解決方法として、プリント配線板側からの応力緩和が挙げられる。   Furthermore, a printed wiring board on which a ceramic component is mounted has a problem of component connection reliability that occurs due to a difference in thermal expansion coefficient between the ceramic component and the printed wiring board or an external impact. As a solution to this problem, stress relaxation from the printed wiring board side can be mentioned.

これらの要求を満たす配線板材料としては、例えば、アクリロニトリルブタジエン系樹脂、カルボキシ含有アクリロニトリルブタジエン樹脂等の架橋性官能基を共重合した高分子アクリルポリマーに熱硬化性樹脂を配合した樹脂組成物が提案されている(例えば、特許文献1〜3参照)。   As a wiring board material satisfying these requirements, for example, a resin composition in which a thermosetting resin is blended with a polymer acrylic polymer copolymerized with a crosslinkable functional group such as acrylonitrile butadiene resin or carboxy-containing acrylonitrile butadiene resin is proposed. (For example, see Patent Documents 1 to 3).

特開平8−283535号公報JP-A-8-283535 特開2002−134907号公報JP 2002-134907 A 特開2002−371190号公報JP 2002-371190 A

架橋性官能基を共重合した高分子アクリルポリマーと、熱硬化性樹脂を混合してなるポリアクリレートエポキシ樹脂は、あたかもお互いに連結しあって規則正しく分散した状態の構造であり、主成分が高分子アクリルポリマーである高分子アクリルポリマーの海相と、主成分がポリアクリレートエポキシ樹脂であるエポキシ樹脂の島相との相分離構造を形成する。相分離構造を形成した高分子アクリルポリマーとポリアクリレートエポキシ樹脂を含有する樹脂組成物は、高分子アクリルポリマーとエポキシ樹脂の双方の優れた特徴を兼ね備えることが望まれているが、十分に双方の優れた特徴を兼ね備えるものはなかった。
架橋性官能基を共重合した高分子アクリルポリマーの特徴は、低弾性、伸び率が高い、及び官能基を入れ易い等である。一方、熱硬化性樹脂であるエポキシ樹脂の特徴は、高い絶縁信頼性、高い耐熱性、及び高Tg等である。
Polyacrylate epoxy resin, which is a mixture of polymer acrylic polymer copolymerized with crosslinkable functional groups and thermosetting resin, is as if it is connected to each other and regularly dispersed. A phase-separated structure is formed between the sea phase of the polymer acrylic polymer, which is an acrylic polymer, and the island phase of the epoxy resin, the main component of which is a polyacrylate epoxy resin. A resin composition containing a polymer acrylic polymer having a phase-separated structure and a polyacrylate epoxy resin is desired to have the excellent characteristics of both a polymer acrylic polymer and an epoxy resin. None of them had excellent characteristics.
The characteristics of the polymer acrylic polymer copolymerized with a crosslinkable functional group are low elasticity, high elongation, and easy insertion of a functional group. On the other hand, the characteristics of an epoxy resin that is a thermosetting resin are high insulation reliability, high heat resistance, high Tg, and the like.

本発明の目的は、架橋性官能基を共重合した高分子アクリルポリマーと熱硬化性樹脂を配合した樹脂組成物であって、低弾性、絶縁信頼性、耐熱性、及び金属箔との接着性に優れる、樹脂組成物、プリプレグ、樹脂付き金属箔、及びプリント配線板を提供することである。   An object of the present invention is a resin composition in which a polymer acrylic polymer copolymerized with a crosslinkable functional group and a thermosetting resin are blended, and has low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil. Providing a resin composition, a prepreg, a resin-coated metal foil, and a printed wiring board.

本発明は以下に記載の各事項に関する。
[1]架橋性官能基を共重合した高分子アクリルポリマー(A)を含む第1相と、熱硬化性樹脂組成物(B)を含む第2相とが相分離構造を形成する樹脂組成物であって、前記第2相が島相であり、前記島相の平均ドメインサイズが1μm〜10μmであり、架橋性官能基を共重合した高分子アクリルポリマー(A)の配合量が、架橋性官能基を共重合した高分子アクリルポリマー(A)と熱硬化性樹脂組成物(B)の総量を100質量部としたとき10〜70質量部である樹脂組成物。
[2]前記熱硬化性樹脂組成物(B)がエポキシ樹脂とフェノール樹脂を含む[1]に記載の樹脂組成物。
[3]前記エポキシ樹脂が、エポキシ基を1分子当たり2個以上含有する多官能エポキシ樹脂である[2]の樹脂組成物。
[4]前記エポキシ樹脂の重量平均分子量が、200〜1000である[2]又は[3]の樹脂組成物。
[5]前記エポキシ樹脂のエポキシ当量が、150〜500である[2]〜[4]のいずれかの樹脂組成物。
[6]前記エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リン含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アラルキレン骨格含有エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、多官能グリシジルアミン型エポキシ樹脂、多官能脂環式エポキシ樹脂、及びテトラブロモビスフェノールA型エポキシ樹脂、から選ばれる1種以上を含む[2]〜[5]のいずれかの樹脂組成物。
[7]前記架橋性官能基を共重合した高分子アクリルポリマー(A)の重量平均分子量が、10000〜1500000である[1]〜[6]のいずれかの樹脂組成物。
[8]前記フェノール樹脂が、フェノール性水酸基を1分子当たり2個以上含有する多官能フェノール樹脂である[2]〜[7]のいずれかの樹脂組成物。
[9]更に、硬化促進剤(D)を含む[1]〜[8]のいずれかの樹脂組成物。
[10]前記硬化促進剤(D)がアミン類又はイミダゾール類である[9]の樹脂組成物。
[11]更に、フィラー(E)を含む[1]〜[10]のいずれかの樹脂組成物。
[12]前記フィラー(E)が第2相に含まれる[11]の樹脂組成物。
[13]前記フィラー(E)が無機フィラーである[11]又は[12]の樹脂組成物。
[14]前記フィラー(E)がシリカである[11]〜[13]のいずれかの樹脂組成物。
[15]前記フィラー(E)の平均粒径が0.1〜3.0μmである[11]〜[14]のいずれかの樹脂組成物。
[16][1]〜[15]のいずれかの樹脂組成物を繊維基材に含浸し、乾燥してなるプリプレグ。
[17][1]〜[15]のいずれかの樹脂組成物と金属箔とを積層してなる樹脂付き金属箔。
[18][16]のプリプレグを積層し加熱加圧してなる積層板。
[19][18]の積層板を回路加工してなるプリント配線板。
The present invention relates to each item described below.
[1] A resin composition in which a first phase containing a polymer acrylic polymer (A) copolymerized with a crosslinkable functional group and a second phase containing a thermosetting resin composition (B) form a phase-separated structure. The second phase is an island phase, the average domain size of the island phase is 1 μm to 10 μm, and the blending amount of the polymer acrylic polymer (A) copolymerized with a crosslinkable functional group is crosslinkable. The resin composition which is 10-70 mass parts when the total amount of the high molecular acrylic polymer (A) copolymerized with the functional group and the thermosetting resin composition (B) is 100 mass parts.
[2] The resin composition according to [1], wherein the thermosetting resin composition (B) includes an epoxy resin and a phenol resin.
[3] The resin composition according to [2], wherein the epoxy resin is a polyfunctional epoxy resin containing two or more epoxy groups per molecule.
[4] The resin composition according to [2] or [3], wherein the epoxy resin has a weight average molecular weight of 200 to 1,000.
[5] The resin composition according to any one of [2] to [4], wherein the epoxy equivalent of the epoxy resin is 150 to 500.
[6] The epoxy resin is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, Phosphorus-containing epoxy resin, naphthalene skeleton-containing epoxy resin, aralkylene skeleton-containing epoxy resin, phenol biphenyl aralkyl-type epoxy resin, phenol salicylaldehyde novolak-type epoxy resin, lower alkyl group-substituted phenol salicylaldehyde novolak-type epoxy resin, dicyclopentadiene skeleton-containing epoxy Resin, polyfunctional glycidylamine type epoxy resin, polyfunctional alicyclic epoxy resin, and tetrabromobisphenol A type epoxy A resin, comprising one or more selected from [2] to one of the resin composition of [5].
[7] The resin composition according to any one of [1] to [6], wherein the polymer acrylic polymer (A) copolymerized with the crosslinkable functional group has a weight average molecular weight of 10,000 to 1500,000.
[8] The resin composition according to any one of [2] to [7], wherein the phenol resin is a polyfunctional phenol resin containing two or more phenolic hydroxyl groups per molecule.
[9] The resin composition according to any one of [1] to [8], further comprising a curing accelerator (D).
[10] The resin composition according to [9], wherein the curing accelerator (D) is an amine or an imidazole.
[11] The resin composition according to any one of [1] to [10], further comprising a filler (E).
[12] The resin composition according to [11], wherein the filler (E) is contained in the second phase.
[13] The resin composition according to [11] or [12], wherein the filler (E) is an inorganic filler.
[14] The resin composition according to any one of [11] to [13], wherein the filler (E) is silica.
[15] The resin composition according to any one of [11] to [14], wherein the filler (E) has an average particle size of 0.1 to 3.0 μm.
[16] A prepreg obtained by impregnating a fiber substrate with the resin composition of any one of [1] to [15] and drying.
[17] A metal foil with a resin obtained by laminating the resin composition according to any one of [1] to [15] and a metal foil.
[18] A laminate obtained by laminating and heating and pressing the prepreg of [16].
[19] A printed wiring board obtained by subjecting the laminated board of [18] to circuit processing.

本発明によれば、架橋性官能基を共重合した高分子アクリルポリマーと熱硬化性樹脂を配合した樹脂組成物であって、低弾性、絶縁信頼性、耐熱性、及び金属箔との接着性に優れる、樹脂組成物、プリプレグ、樹脂付き金属箔、及びプリント配線板を提供することができる。   According to the present invention, a resin composition comprising a polymer acrylic polymer copolymerized with a crosslinkable functional group and a thermosetting resin, having low elasticity, insulation reliability, heat resistance, and adhesion to a metal foil. It is possible to provide a resin composition, a prepreg, a resin-attached metal foil, and a printed wiring board that are excellent in the above.

樹脂組成物の相分離構造が連続球状構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a continuous spherical structure. 樹脂組成物の相分離構造が海島構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a sea-island structure. 樹脂組成物の相分離構造が複合分散相構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a composite dispersed phase structure. 樹脂組成物の相分離構造が共連続相構造である場合を表すモデル図である。It is a model figure showing the case where the phase-separation structure of a resin composition is a bicontinuous phase structure. 本発明で得られる海島構造を有する樹脂組成物の一例としての断面構造を表す電子顕微鏡写真である。It is an electron micrograph showing the cross-sectional structure as an example of the resin composition which has the sea island structure obtained by this invention. 本発明で得られる複合分散相構造を有する樹脂組成物の一例としての断面構造を表す電子顕微鏡写真である。It is an electron micrograph showing the cross-sectional structure as an example of the resin composition which has the composite dispersed phase structure obtained by this invention.

以下、本発明の一実施形態について詳述するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, one embodiment of the present invention will be described in detail, but the present invention is not limited to the following embodiment.

(樹脂組成物)
本発明の実施の形態に係る樹脂組成物は、架橋性官能基を共重合した高分子アクリルポリマー(A)(以下、(A)成分と呼ぶことがある)を含む第1相と、熱硬化性樹脂組成物(B)(以下、(B)成分と呼ぶことがある)を含む第2相とが相分離構造を形成する樹脂組成物であって、第2相が島相であり、島相の平均ドメインサイズが1〜10μmであり、(A)成分の配合量が、(A)成分と(B)成分の総量を100質量部としたとき10〜70質量部である。
(A)成分と(B)成分が見かけ上、均一に混ざり合い、相溶に近い構造を有している場合、海相である(A)成分の網目に(B)成分がナノサイズで分散しているため、(A)成分の特性に偏り、(B)成分の持つ高い絶縁信頼性、高い耐熱性、及び高Tgが十分に発現できない。また、比較的金属箔との接着強度が弱い(A)成分の表面積が大きくなり、絶縁層と金属箔との接着強度が低下してしまう。
一方、相分離構造が荒い場合は、島相の(B)成分の特性に偏り、金属箔との接着強度は向上するものの、(A)成分の持つ低弾性が十分に発現できない。
なお、(A)成分が島相ではなくて海相を形成する理由については、必ずしも明らかではないが、分子量が大きくて絡み合いが多い(A)成分中で、(B)成分の相分離が起こる際、(A)成分が島相となるためにはその絡み合いや架橋網目を切断しなくてはならず、島相にはなりにくいためと考えられる。
(Resin composition)
A resin composition according to an embodiment of the present invention includes a first phase containing a polymer acrylic polymer (A) copolymerized with a crosslinkable functional group (hereinafter sometimes referred to as component (A)), and thermosetting. And the second phase containing the conductive resin composition (B) (hereinafter sometimes referred to as the component (B)) form a phase separation structure, and the second phase is an island phase, The average domain size of the phase is 1 to 10 μm, and the blending amount of the component (A) is 10 to 70 parts by mass when the total amount of the component (A) and the component (B) is 100 parts by mass.
When the (A) component and the (B) component are apparently mixed together and have a structure close to compatibility, the (B) component is dispersed in a nano size in the network of the (A) component that is the sea phase. Therefore, it is biased toward the characteristics of the component (A), and the high insulation reliability, high heat resistance, and high Tg possessed by the component (B) cannot be sufficiently exhibited. In addition, the surface area of the component (A), which has a relatively weak adhesive strength with the metal foil, increases, and the adhesive strength between the insulating layer and the metal foil decreases.
On the other hand, when the phase separation structure is rough, the characteristics of the (B) component of the island phase are biased and the adhesive strength with the metal foil is improved, but the low elasticity of the (A) component cannot be sufficiently exhibited.
The reason why the component (A) forms a sea phase instead of an island phase is not necessarily clear, but phase separation of the component (B) occurs in the component (A) having a large molecular weight and high entanglement. At this time, in order for the component (A) to become the island phase, it is considered that the entanglement and the crosslinked network must be cut, and the island phase is difficult to be formed.

(A)成分は、通常(メタ)アクリル酸アルキルエステルをモノマーとする共重合体である。共重合体は一般に、(メタ)アクリル酸アルキルエステルと架橋性官能基を有する共重合モノマーとを共重合することにより生成される。架橋性官能基を有する共重合モノマーとしては、(メタ)アクリル酸アルキルエステルと共重合できる化合物であれば特に制限されものではなく、架橋性官能基としては、グリシジル基、エポキシ基等が挙げられる。(メタ)アクリル酸アルキルエステルにおいて、アルキル基は炭素数1〜20のアルキル基であることが好ましく、アルキル基は置換基を有していてもよい。アルキル基の置換基としては、例えば、脂環基、グリシジル基、水酸基を有する炭素数1〜6のアルキル基、含窒素環状基等が挙げられる。
(メタ)アクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2−エチルヘキシル、アクリル酸イソブチル、アクリル酸エチレングリコールメチルエーテル、アクリル酸シクロヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸イソボルニル、アクリル酸アミド、アクリル酸イソデシル、アクリル酸オクタデシル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸N−ビニルピロリドン、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2−エチルヘキシル、メタクリル酸イソブチル、メタクリル酸エチレングリコールメチルエーテル、メタクリル酸シクロヘキシル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸イソボルニル、メタクリル酸アミド、メタクリル酸イソデシル、メタクリル酸オクタデシル、メタクリル酸ラウリル、メタクリル酸アリル、メタクリル酸N−ビニルピロリドン、アクリロニトリル等が挙げられる。
(A) A component is a copolymer which uses a (meth) acrylic-acid alkylester as a monomer normally. The copolymer is generally produced by copolymerizing a (meth) acrylic acid alkyl ester and a copolymerizable monomer having a crosslinkable functional group. The copolymerizable monomer having a crosslinkable functional group is not particularly limited as long as it is a compound copolymerizable with (meth) acrylic acid alkyl ester. Examples of the crosslinkable functional group include a glycidyl group and an epoxy group. . In the (meth) acrylic acid alkyl ester, the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and the alkyl group may have a substituent. Examples of the substituent of the alkyl group include an alicyclic group, a glycidyl group, an alkyl group having 1 to 6 carbon atoms having a hydroxyl group, and a nitrogen-containing cyclic group.
Examples of the (meth) acrylic acid alkyl ester include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, ethylene glycol methyl ether acrylate, acrylic Cyclohexyl acid, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, amide acrylate, isodecyl acrylate, octadecyl acrylate, lauryl acrylate, allyl acrylate, N-vinylpyrrolidone acrylate, methacrylic acid Methyl, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, methacrylate Lenglycol methyl ether, cyclohexyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, isobornyl methacrylate, methacrylic acid amide, isodecyl methacrylate, octadecyl methacrylate, lauryl methacrylate, allyl methacrylate, N methacrylate -Vinylpyrrolidone, acrylonitrile, etc. are mentioned.

(A)成分は、架橋性官能基としてエポキシ基を有することが好ましく、グリシジル基を有することがより好ましい。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸グリシジルを用いることが好ましい。   The component (A) preferably has an epoxy group as a crosslinkable functional group, and more preferably has a glycidyl group. As the (meth) acrylic acid ester, glycidyl (meth) acrylate is preferably used.

(A)成分のエポキシ価は、2〜18当量/kgであることが好ましく、2〜8当量/kgであることがより好ましい。エポキシ価が2当量/kg以上であると、硬化物のガラス転移温度の低下が抑えられて基板の耐熱性が十分に保たれ、18当量/kg以下であると、貯蔵弾性率が大きくなりすぎることなく、基板の寸法安定性が保持される傾向にある。(A)成分のエポキシ価は、(メタ)アクリル酸グリシジルとこれと共重合可能な他のモノマーとを共重合する際、共重合比を適宜調整することで調節可能である。通常、(メタ)アクリル酸グリシジル100質量部に対して、これ以外のモノマーの比率を5〜15質量部とすることで、2〜18当量/kgのエポキシ価を有する高分子アクリルポリマーが得られる。   The epoxy value of the component (A) is preferably 2 to 18 equivalent / kg, and more preferably 2 to 8 equivalent / kg. When the epoxy value is 2 equivalents / kg or more, a decrease in the glass transition temperature of the cured product is suppressed, and the heat resistance of the substrate is sufficiently maintained. When the epoxy value is 18 equivalents / kg or less, the storage elastic modulus becomes too large. Without tending, the dimensional stability of the substrate tends to be maintained. The epoxy value of the component (A) can be adjusted by appropriately adjusting the copolymerization ratio when copolymerizing glycidyl (meth) acrylate and another monomer copolymerizable therewith. Usually, a polymer acrylic polymer having an epoxy value of 2 to 18 equivalents / kg is obtained by setting the ratio of other monomers to 5 to 15 parts by mass with respect to 100 parts by mass of glycidyl (meth) acrylate. .

エポキシ基を有する(A)成分の市販品としては、例えば「HTR−860」(ナガセケムテックス株式会社製、商品名、エポキシ価3.1)、「KH−CT−865」(日立化成株式会社製、商品名、エポキシ価3.0)、「HAN5−M90S」(根上工業株式会社製、商品名、エポキシ価2.2)が入手可能である。(A)成分の重量平均分子量は、伸び率を向上させる観点、及び低弾性を向上させる観点から、10000〜1500000であることが好ましく、50000〜1500000であることがより好ましく、300000〜1500000であることがさらに好ましい。(A)成分の重量平均分子量が1500000以下であると、溶剤に溶けやすくて扱いやすい傾向にある。また、(A)成分の重量平均分子量が1500000以下であると、(B)成分を配合したときにドメインの比較的大きな共連続相を有する相分離構造を形成しにくい傾向にあり、高い絶縁信頼性、高耐熱性、金属箔との高い接着性を発現しやすくなる傾向にある。(A)成分の重量平均分子量が10000以上であると、(A)成分の有する低弾性を発現しやすい傾向となる。
上記の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)分析によって測定される値であって、標準ポリスチレン換算値のことを意味する。GPC分析は、テトラヒドロフラン(THF)を溶解液として用いて行うことができる。
Commercially available products of the component (A) having an epoxy group include, for example, “HTR-860” (manufactured by Nagase ChemteX Corporation, trade name, epoxy value 3.1), “KH-CT-865” (Hitachi Chemical Co., Ltd.) Manufactured, trade name, epoxy value 3.0), “HAN5-M90S” (manufactured by Negami Kogyo Co., Ltd., trade name, epoxy value 2.2) are available. The weight average molecular weight of the component (A) is preferably 10,000 to 1,000,000, more preferably 50,000 to 1,000,000, and more preferably 300,000 to 1500,000, from the viewpoint of improving elongation and improving low elasticity. More preferably. When the weight average molecular weight of the component (A) is 1500,000 or less, it tends to be soluble in a solvent and easy to handle. Further, when the weight average molecular weight of the component (A) is 1500000 or less, when the component (B) is blended, it tends to be difficult to form a phase-separated structure having a co-continuous phase having a relatively large domain. , High heat resistance, and high adhesiveness with metal foil tend to be easily developed. When the weight average molecular weight of the component (A) is 10,000 or more, the low elasticity of the component (A) tends to be easily developed.
The weight average molecular weight is a value measured by gel permeation chromatography (GPC) analysis and means a standard polystyrene equivalent value. The GPC analysis can be performed using tetrahydrofuran (THF) as a solution.

また、(A)成分は、プレッシャークッカーバイアステスト(PCBT)等の絶縁信頼性の加速試験において十分な特性を得るためには、そのアルカリ金属イオン濃度が500ppm以下であることが好ましく、より好ましくは200ppm以下、さらに好ましくは100ppm以下である。   The component (A) preferably has an alkali metal ion concentration of 500 ppm or less, more preferably, in order to obtain sufficient characteristics in an insulation reliability acceleration test such as a pressure cooker bias test (PCBT). 200 ppm or less, more preferably 100 ppm or less.

(A)成分は、一般的にはラジカルを発生させるラジカル重合開始剤を用いたラジカル重合により得られる。ラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)、過安息香酸tert−ブチル、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等の過硫酸塩、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、ジクミルペルオキシド、ジt―ブチルペルオキシド、2、2’−アゾビス−2、4−ジメチルバレロニトリル、t―ブチルペルイソブチレート、t―ブチルペルピバレート、過酸化水素/第一鉄塩、過硫酸塩/酸性亜硫酸ナトリウム、クメンヒドロペルオキシド/第一鉄塩、過酸化ベンゾイル/ジメチルアニリン等が挙げられる。ラジカル開始剤として、これらを単独で用いてもよいし、2種以上を組み合わせてもよい。   The component (A) is generally obtained by radical polymerization using a radical polymerization initiator that generates radicals. Examples of radical initiators include azobisisobutyronitrile (AIBN), tert-butyl perbenzoate, benzoyl peroxide, lauroyl peroxide, persulfates such as potassium persulfate, cumene hydroperoxide, t-butyl hydroperoxide, Dicumyl peroxide, di-t-butyl peroxide, 2,2′-azobis-2,4-dimethylvaleronitrile, t-butyl perisobutyrate, t-butyl perpivalate, hydrogen peroxide / ferrous salt, peroxy Examples thereof include sulfate / sodium acid sulfite, cumene hydroperoxide / ferrous salt, benzoyl peroxide / dimethylaniline, and the like. As the radical initiator, these may be used alone or in combination of two or more.

(A)成分には、必要に応じて、イソシアネート、メラミン等の架橋剤、エポキシ樹脂等の高分子化合物、ゴム系エラストマ、リン系化合物等の難燃剤、シリカ等の無機充填剤、導電性粒子、カップリング剤、顔料、レベリング剤、消泡剤、イオントラップ剤などを配合して用いてもよい。   Component (A) includes, if necessary, cross-linking agents such as isocyanate and melamine, polymer compounds such as epoxy resins, flame retardants such as rubber elastomers and phosphorus compounds, inorganic fillers such as silica, and conductive particles. , Coupling agents, pigments, leveling agents, antifoaming agents, ion trapping agents and the like may be used in combination.

本発明において用いられる(B)成分としては、(A)成分と組み合わせて硬化したときに相分離構造を有するものが適宜選択される。(B)成分としては、特に限定されるものではないが、例えば、エポキシ樹脂、シアネート樹脂、ビスマレイミド類、ビスマレイミド類とジアミンとの付加重合物、フェノール樹脂、レゾール樹脂、イソシアネート、トリアリルイソシアヌレート、トリアリルシアヌレート、及びビニル基含有ポリオレフィン化合物等が挙げられる。これらの中でも耐熱性、絶縁性等の性能のバランスを考慮すると、エポキシ樹脂又はシアネート樹脂が好ましい。本発明で使用されるエポキシ樹脂としては、公知のものを用いることができるが、このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リン含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アラルキレン骨格含有エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、多官能グリシジルアミン型エポキシ樹脂、多官能脂環式エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。
これらの中でも、(B)成分としては、エポキシ基を1分子当たり2個以上有する多官能エポキシ樹脂であることが好ましい。エポキシ基を1分子当たり2個以上有する多官能エポキシ樹脂としては市販品を用いてもよく、市販品としては、例えば、フェノールノボラック型エポキシ樹脂である「N770」(DIC株式会社製、商品名)、テトラブロモビスフェノールA型エポキシ樹脂である「EPICLON 153」(DIC株式会社製、商品名)、ビフェニルアラルキル型エポキシ樹脂である「NC−3000H」(日本化薬株式会社製、商品名)、ビスフェノールA型エポキシ樹脂である「エピコート1001」(三菱化学株式会社製、商品名)、リン含有エポキシ樹脂である「ZX−1548」(東都化成株式会社製、商品名)、クレゾールノボラック型エポキシ樹脂である「EPICLON N−660」(DIC株式会社製、商品名)等が挙げられる。
As the component (B) used in the present invention, one having a phase separation structure when cured in combination with the component (A) is appropriately selected. Although it does not specifically limit as (B) component, For example, an epoxy resin, cyanate resin, bismaleimides, the addition polymerization product of bismaleimides and diamine, a phenol resin, a resole resin, isocyanate, triallyl isocyania Examples thereof include nurate, triallyl cyanurate, and a vinyl group-containing polyolefin compound. Among these, an epoxy resin or a cyanate resin is preferable in consideration of a balance of performance such as heat resistance and insulation. As the epoxy resin used in the present invention, known resins can be used. Examples of such an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and biphenyl. Type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, phosphorus containing epoxy resin, naphthalene skeleton containing epoxy resin, aralkylene skeleton containing epoxy resin, phenol biphenyl aralkyl type epoxy resin, phenol salicylaldehyde Novolac epoxy resin, lower alkyl group-substituted phenol salicylaldehyde novolac epoxy resin, epoxy resin containing dicyclopentadiene skeleton, multifunctional glycidyl Amine epoxy resin, a polyfunctional alicyclic epoxy resin, tetrabromobisphenol A type epoxy resins. These 1 type (s) or 2 or more types can be used.
Among these, the component (B) is preferably a polyfunctional epoxy resin having two or more epoxy groups per molecule. A commercially available product may be used as the polyfunctional epoxy resin having two or more epoxy groups per molecule. Examples of the commercially available product include “N770” (trade name, manufactured by DIC Corporation) which is a phenol novolac type epoxy resin. Tetrabromobisphenol A type epoxy resin “EPICLON 153” (trade name, manufactured by DIC Corporation), biphenyl aralkyl type epoxy resin “NC-3000H” (trade name, manufactured by Nippon Kayaku Co., Ltd.), bisphenol A Type epoxy resin “Epicoat 1001” (trade name, manufactured by Mitsubishi Chemical Corporation), phosphorus-containing epoxy resin “ZX-1548” (trade name, manufactured by Tohto Kasei Co., Ltd.), and cresol novolac type epoxy resin “ EPICLON N-660 "(manufactured by DIC Corporation, trade name).

(B)成分として用いられるエポキシ樹脂の重量平均分子量は、200〜1000であることが好ましく、300〜900であることがより好ましい。重量平均分子量が200以上であると、(A)成分と相分離構造を形成する傾向があり、1000以下であるとドメインの比較的小さな第2相を有する相分離構造を形成しやすい傾向があり、低弾性を発現しやすい傾向がある。
(B)成分として用いられるエポキシ樹脂のエポキシ当量としては、150〜500であることが好ましく、150〜450であることがより好ましく、150〜300であることがより好ましい。エポキシ樹脂のエポキシ当量が上記の範囲内にあると、第2相の平均ドメインサイズが大きくなり過ぎない傾向にある。
(B) It is preferable that the weight average molecular weight of the epoxy resin used as a component is 200-1000, and it is more preferable that it is 300-900. When the weight average molecular weight is 200 or more, there is a tendency to form a phase separation structure with the component (A), and when it is 1000 or less, a phase separation structure having a second phase having a relatively small domain tends to be formed. , Tends to develop low elasticity.
(E) As an epoxy equivalent of the epoxy resin used as a component, it is preferable that it is 150-500, It is more preferable that it is 150-450, It is more preferable that it is 150-300. When the epoxy equivalent of the epoxy resin is within the above range, the average domain size of the second phase tends not to be too large.

本発明の樹脂組成物は、(B)成分の硬化剤(C)を含んでもよい。硬化剤(C)として、熱硬化性樹脂を用いる場合は、硬化剤(C)は(B)成分とみなされる。
(B)成分として、エポキシ樹脂を用いる場合には、公知のエポキシ樹脂硬化剤を用いることができる。エポキシ樹脂硬化剤としては、例えば、フェノールノボラック等の多価フェノール類、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン系硬化剤、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸等の酸無水物硬化剤又はこれらの混合物などが挙げられる。
エポキシ樹脂硬化剤としてはフェノール樹脂が好ましく、フェノール性水酸基を1分子当たり2個以上有する多官能フェノール樹脂であることがより好ましい。中でも、低吸水性の点からフェノールノボラック等の多価フェノール類の使用が特に好ましい。フェノール樹脂の市販品として、例えば、クレゾールノボラック型フェノール樹脂である「KA−1165」(DIC株式会社製、商品名)及び、ビフェニルノボラック型フェノール樹脂である「MEH−7851」(明和化成株式会社製、商品名)等が挙げられる。
前述のように(B)成分としてはエポキシ樹脂が好ましく、その硬化剤(C)としてはフェノール樹脂が好ましい。すなわち、(B)成分としては、エポキシ樹脂とフェノール樹脂を含むことが好ましい。
The resin composition of the present invention may contain a curing agent (C) as the component (B). When a thermosetting resin is used as the curing agent (C), the curing agent (C) is regarded as the component (B).
When an epoxy resin is used as the component (B), a known epoxy resin curing agent can be used. Examples of the epoxy resin curing agent include polyhydric phenols such as phenol novolac, amine curing agents such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenylsulfone, acids such as pyromellitic anhydride, trimellitic anhydride, and benzophenonetetracarboxylic acid. An anhydride curing agent or a mixture thereof may be used.
As the epoxy resin curing agent, a phenol resin is preferable, and a polyfunctional phenol resin having two or more phenolic hydroxyl groups per molecule is more preferable. Among these, the use of polyhydric phenols such as phenol novolac is particularly preferable from the viewpoint of low water absorption. As a commercial product of a phenol resin, for example, “KA-1165” (trade name, manufactured by DIC Corporation) which is a cresol novolac type phenol resin and “MEH-7851” (manufactured by Meiwa Kasei Co., Ltd.) which is a biphenyl novolac type phenol resin. , Product name) and the like.
As described above, the component (B) is preferably an epoxy resin, and the curing agent (C) is preferably a phenol resin. That is, the component (B) preferably contains an epoxy resin and a phenol resin.

エポキシ樹脂硬化剤の配合割合は、エポキシ樹脂との組み合わせで任意の割合で使用することができる。通常、ガラス転移温度が高くなるようにその配合比が決定される。例えばエポキシ樹脂硬化剤としてフェノールノボラックを用いる場合は、エポキシ当量とフェノール性水酸基当量が1:1になるように配合することが好ましい。   The compounding ratio of the epoxy resin curing agent can be used in any ratio in combination with the epoxy resin. Usually, the compounding ratio is determined so that the glass transition temperature becomes high. For example, when phenol novolac is used as the epoxy resin curing agent, it is preferable to blend so that the epoxy equivalent and the phenolic hydroxyl group equivalent are 1: 1.

本発明に使用される(A)成分の配合量は、(A)成分と(B)成分の総量を100質量部としたとき10〜70質量部である。10質量部未満であれば、(A)成分の優れた特徴である低弾性が効果的に発現しない傾向にある。また70質量部を超えると、良好な金属箔との接着強度が得られない傾向にある。
また、特に低弾性とする観点からは、(A)成分と(B)成分の総量を100質量部における(A)成分の配合量が20質量部以上であることが好ましく、30質量部以上であることがより好ましく、40質量部以上であることがさらに好ましい。
また、特に良好な金属箔との接着強度を得る観点からは、(A)成分と(B)成分の総量100質量部における(A)成分の配合量が60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。
The compounding quantity of (A) component used for this invention is 10-70 mass parts when the total amount of (A) component and (B) component is 100 mass parts. If it is less than 10 mass parts, it exists in the tendency for the low elasticity which is the outstanding characteristic of (A) component not to express effectively. Moreover, when it exceeds 70 mass parts, it exists in the tendency for adhesive strength with favorable metal foil not to be obtained.
Further, from the viewpoint of particularly low elasticity, the blending amount of the component (A) in the total amount of the component (A) and the component (B) in 100 parts by mass is preferably 20 parts by mass or more, and 30 parts by mass or more. More preferably, it is more preferably 40 parts by mass or more.
In addition, from the viewpoint of obtaining particularly good adhesive strength with the metal foil, the blending amount of the component (A) in the total amount of 100 parts by mass of the component (A) and the component (B) is preferably 60 parts by mass or less. The amount is more preferably 50 parts by mass or less, and further preferably 40 parts by mass or less.

本発明における(B)成分とその硬化剤(C)との組み合わせは、使用する(A)成分、硬化条件、硬化剤、及び硬化触媒により種々の組み合わせが考えられる。
一般的に、樹脂硬化物の相構造は相分離速度と架橋反応速度の競争反応で決定される。エポキシ樹脂を例として挙げれば、触媒種及び骨格構造等をコントロールして、特性のそれぞれ異なるエポキシ樹脂を混合し、硬化させることで、平均ドメインサイズが約1〜10μm以下という相分離構造である海島構造を形成することが可能となる。
Various combinations of the component (B) and the curing agent (C) in the present invention are conceivable depending on the component (A) to be used, the curing conditions, the curing agent, and the curing catalyst.
In general, the phase structure of the cured resin is determined by a competitive reaction between the phase separation rate and the crosslinking reaction rate. Taking an epoxy resin as an example, Umijima is a phase-separated structure having an average domain size of about 1 to 10 μm or less by mixing and curing epoxy resins having different characteristics by controlling the catalyst species and skeleton structure, etc. A structure can be formed.

本発明の樹脂組成物は、硬化促進剤(D)を含んでもよい。硬化促進剤(D)としては、特に限定されるものではないが、アミン類、又はイミダゾール類が好ましい。アミン類は、ジシアンジアミド、ジアミノジフェニルエタン、グアニル尿素等を例示することができる。イミダゾール類は、2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、ベンゾイミダゾール等を例示することができる。硬化促進剤(D)の配合量は、樹脂組成物におけるオキシラン環の総量に応じて決定することができるが、一般的に樹脂組成物の樹脂固形分100質量部中、0.01〜10質量部とすることが好ましい。   The resin composition of the present invention may contain a curing accelerator (D). Although it does not specifically limit as a hardening accelerator (D), Amines or imidazoles are preferable. Examples of amines include dicyandiamide, diaminodiphenylethane, guanylurea and the like. Imidazoles include 2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, A benzimidazole etc. can be illustrated. Although the compounding quantity of a hardening accelerator (D) can be determined according to the total amount of the oxirane ring in a resin composition, generally 0.01-10 mass in 100 mass parts of resin solid content of a resin composition. Part.

本発明の樹脂組成物は、フィラー(E)を含有してもよい。フィラー(E)は、主に(B)成分からなる第2相に含まれる。本発明に用いられるフィラー(E)としては、特に限定されるものではなく、公知のものを使用できる。フィラー(E)としては、熱膨張率を下げる目的や難燃性を確保する観点から、無機フィラーを用いることが好ましい。無機フィラーとしては、シリカ、アルミナ、及び酸化チタン等を挙げることができる。中でも、シリカフィラーは、誘電率が低いこと、線膨張率が低いこと等からより好ましい。
シリカフィラーとしては、特に限定されるものではないが、湿式法、又は乾式法等で合成された合成シリカや珪石を破砕した破砕シリカ、一度溶融させた溶融シリカ等を用いることができる。
The resin composition of the present invention may contain a filler (E). The filler (E) is contained in the second phase mainly composed of the component (B). It does not specifically limit as a filler (E) used for this invention, A well-known thing can be used. As the filler (E), it is preferable to use an inorganic filler from the viewpoint of reducing the coefficient of thermal expansion and ensuring flame retardancy. Examples of the inorganic filler include silica, alumina, and titanium oxide. Among these, silica filler is more preferable because of its low dielectric constant and low linear expansion coefficient.
Although it does not specifically limit as a silica filler, The synthetic | combination silica synthesize | combined with the wet method or the dry method, the crushed silica which crushed the silica, the fused silica once melted, etc. can be used.

また、フィラー(E)の平均粒径は、0.1〜3.0μmであることが好ましい。平均粒径が、0.1μm以上であると、フィラー同士が分散しやすくなることや、ワニスの粘度が低下し、取り扱い易くなるため作業性がよくなる。また、平均粒径が、3μm以下であると、相分離構造が細かくなる傾向となり、低弾性を発現し易い傾向となる。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。   Moreover, it is preferable that the average particle diameter of a filler (E) is 0.1-3.0 micrometers. When the average particle size is 0.1 μm or more, the fillers are easily dispersed, the viscosity of the varnish is lowered, and the handling becomes easy because the handling becomes easy. Further, when the average particle size is 3 μm or less, the phase separation structure tends to be fine, and low elasticity tends to be easily exhibited. Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the particles as 100%, and a laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.

本発明において、フィラー(E)の配合比は、フィラー(E)の含量が全樹脂固形分の5〜40質量%であることが好ましい。フィラー(E)の配合比が5質量%以上であると、線膨張率が低くなり、十分な耐熱性も得られる傾向にある。また、フィラー(E)の配合比が40質量%以下であると樹脂組成物の硬化物が脆くなることが少なく、(A)成分の有する低弾性が十分に得られる傾向にある。   In the present invention, the blending ratio of the filler (E) is preferably such that the content of the filler (E) is 5 to 40% by mass of the total resin solid content. When the blending ratio of the filler (E) is 5% by mass or more, the linear expansion coefficient is lowered, and sufficient heat resistance tends to be obtained. Moreover, when the compounding ratio of the filler (E) is 40% by mass or less, the cured product of the resin composition is less likely to become brittle, and the low elasticity of the component (A) tends to be sufficiently obtained.

本発明の樹脂組成物を用いて、プリプレグ等を製造する場合、本発明の樹脂組成物の成分が有機溶媒に溶解又は分散した状態のワニスにしてもよい。
本発明の樹脂組成物をワニスにする際に用いられる有機溶剤としては、特に制限されるものではないが、ケトン系、芳香族炭化水素系、エステル系、アミド系、アルコール系等が用いられる。
ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられる。
芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン等が挙げられる。
エステル系溶剤としては、例えば、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等が挙げられる。
アミド系溶剤としては、例えば、N−メチルピロリドン、ホルムアミド、N−メチルホルムアミド、N、N−ジメチルアセトアミド等が挙げられる。
アルコール系溶剤としては、例えば、メタノール、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル等が挙げられる。
これらの有機溶剤は1種又は2種以上を混合して用いてもよい。
When manufacturing a prepreg etc. using the resin composition of this invention, you may make it the varnish in which the component of the resin composition of this invention melt | dissolved or disperse | distributed to the organic solvent.
Although it does not restrict | limit especially as an organic solvent used when making the resin composition of this invention a varnish, Ketone type, aromatic hydrocarbon type, ester type, amide type, alcohol type etc. are used.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
Examples of the aromatic hydrocarbon solvent include toluene and xylene.
Examples of the ester solvent include methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, and ethyl acetate.
Examples of the amide solvent include N-methylpyrrolidone, formamide, N-methylformamide, N, N-dimethylacetamide and the like.
Examples of alcohol solvents include methanol, ethanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol, propylene glycol monomethyl ether, Examples include dipropylene glycol monomethyl ether, propylene glycol monopropyl ether, and dipropylene glycol monopropyl ether.
These organic solvents may be used alone or in combination of two or more.

本発明における相分離構造とは、海島構造、連続球状構造、複合分散相構造、共連続相構造であって、島相の平均ドメインサイズが好ましくは1〜10μmである。
島相の平均ドメインサイズが1μm未満であると、熱硬化性樹脂組成物(B)の持つ良好な絶縁信頼性や高耐熱性が発現し難い傾向にある。また、比較的金属箔との接着強度が弱い高分子アクリルポリマーの表面積が大きくなり、絶縁層と金属箔との良好な接着強度が得られない傾向にある。
また、島相の平均ドメインサイズが10μmを超えると、(A)成分の持つ低弾性が発現し難い傾向にある。
The phase separation structure in the present invention is a sea-island structure, a continuous spherical structure, a composite dispersed phase structure, or a co-continuous phase structure, and the average domain size of the island phase is preferably 1 to 10 μm.
When the average domain size of the island phase is less than 1 μm, the good insulation reliability and high heat resistance of the thermosetting resin composition (B) tend not to be expressed. In addition, the surface area of the polymer acrylic polymer, which has a relatively weak adhesive strength with the metal foil, tends to increase, and a good adhesive strength between the insulating layer and the metal foil tends not to be obtained.
Moreover, when the average domain size of an island phase exceeds 10 micrometers, it exists in the tendency for the low elasticity which (A) component has to express easily.

なお、相分離構造としての海島構造、連続球状構造、複合分散相構造、及び共連続相構造(連続相構造ともいう)については、例えば、「ポリマーアロイ」第325頁(1993)東京化学同人に、連続球状構造については、例えば、Keizo Yamanaka and Takashi Iniue,POLYMER,Vol.30,pp.662(1989)に詳しく述べられている。   Regarding the sea-island structure, continuous spherical structure, composite dispersed phase structure, and co-continuous phase structure (also referred to as continuous phase structure) as the phase separation structure, for example, “Polymer Alloy” page 325 (1993) The continuous spherical structure is described in detail, for example, in Keizo Yamanaka and Takashi Iniue, POLYMER, Vol. 30, pp. 662 (1989).

図1〜図4に、それぞれ連続球状構造、海島構造、複合分散相構造、及び共連続相構造を表すモデル図を示す。   1 to 4 show model diagrams showing a continuous spherical structure, a sea-island structure, a composite dispersed phase structure, and a co-continuous phase structure, respectively.

このような微細な相分離構造は、絶縁性樹脂組成物の触媒種や反応温度等の硬化条件、あるいは絶縁性樹脂組成物の各成分間の相溶性を制御することにより得られる。相分離を発生しやすくするためには、例えば、アルキル基置換のエポキシ樹脂を用いて高分子アクリルポリマーとの相溶性を低下させたり、同一の組成系の場合には、硬化温度を高くしたり、触媒種の選択によって硬化速度を遅くすることによって達成できる。   Such a fine phase separation structure can be obtained by controlling the curing conditions such as the catalyst type and reaction temperature of the insulating resin composition, or the compatibility between the components of the insulating resin composition. In order to facilitate the occurrence of phase separation, for example, using an alkyl group-substituted epoxy resin to reduce the compatibility with the polymer acrylic polymer, or in the case of the same composition system, the curing temperature is increased. This can be achieved by slowing the curing rate by the choice of catalyst species.

図5に、このようにして得られた海島構造を有する絶縁性樹脂の一例の断面構造を表す電子顕微鏡写真を示す。図示するように、絶縁性樹脂は、高分子アクリルポリマー相とエポキシ樹脂リッチ相とからなる海島構造を有している。また、エポキシ樹脂からなる島相の平均ドメインサイズは、約1〜10μmである。このような相分離構造を有することにより、高分子アクリルポリマーの有する低弾性と、熱硬化性樹脂の有する高い絶縁信頼性、高耐熱性、金属箔との高い接着性の双方の優れた特徴を兼ね備えることができる。   FIG. 5 shows an electron micrograph showing a cross-sectional structure of an example of the insulating resin having the sea-island structure thus obtained. As illustrated, the insulating resin has a sea-island structure composed of a polymer acrylic polymer phase and an epoxy resin-rich phase. Moreover, the average domain size of the island phase which consists of an epoxy resin is about 1-10 micrometers. By having such a phase separation structure, it has excellent characteristics of both low elasticity of the polymer acrylic polymer, high insulation reliability, high heat resistance, and high adhesion to the metal foil of the thermosetting resin. Can be combined.

上述のように、本発明の樹脂組成物は、これにフィラー(E)を添加しない場合は、海島構造又は連続球状構造を形成するが、フィラー(E)を添加することにより微細な共連続相構造や複合分散相構造の樹脂絶縁層が形成され得る。図6に、複合分散相構造を有する絶縁性樹脂の一例の断面構造を表す電子顕微鏡写真を示す。   As described above, when the filler (E) is not added to the resin composition of the present invention, a sea-island structure or a continuous spherical structure is formed, but by adding the filler (E), a fine co-continuous phase is formed. A resin insulating layer having a structure or a composite dispersed phase structure can be formed. FIG. 6 shows an electron micrograph showing a cross-sectional structure of an example of an insulating resin having a composite dispersed phase structure.

(プリプレグ)
本発明のプリプレグは、本発明の樹脂組成物を繊維基材に含浸し、乾燥してなるものである。
本発明のプリプレグは、例えば、本発明の樹脂組成物のワニスを繊維基材に含浸させ、80〜180℃の範囲で乾燥させて製造することができる。
繊維基材は、金属張積層板やプリント配線板を製造する際に用いられるものであれば特に制限されないが、通常、織布や不織布等の繊維基材が用いられる。繊維基材の材質としては、例えば、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維、アラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維及びこれら混抄系などが挙げられる。これらの中でも、ガラスクロスが好ましく、厚みが100μm以下のガラスクロスがより好ましく、厚みが50μm以下のガラスクロスが特に好ましい。ガラスクロスの厚みが50μm以下であると、任意に折り曲げ可能なプリント配線板を得ることができ、製造プロセス上での温度、吸湿等に伴う寸法変化が小さいため好ましい。
(Prepreg)
The prepreg of the present invention is obtained by impregnating a fiber base material with the resin composition of the present invention and drying it.
The prepreg of the present invention can be produced, for example, by impregnating a fiber base material with the varnish of the resin composition of the present invention and drying it in the range of 80 to 180 ° C.
Although a fiber base material will not be restrict | limited especially if it is used when manufacturing a metal tension laminated board and a printed wiring board, Usually, fiber base materials, such as a woven fabric and a nonwoven fabric, are used. Examples of the material of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyether ether ketone, polyether imide, Examples thereof include organic fibers such as polyethersulfone, carbon and cellulose, and mixed papers thereof. Among these, a glass cloth is preferable, a glass cloth having a thickness of 100 μm or less is more preferable, and a glass cloth having a thickness of 50 μm or less is particularly preferable. When the thickness of the glass cloth is 50 μm or less, a printed wiring board that can be bent arbitrarily can be obtained, and the dimensional change associated with temperature, moisture absorption, etc. in the manufacturing process is small, which is preferable.

プリプレグの製造条件は特に制限するものではないが、ワニスに使用した有機溶剤が80質量%以上揮発していることが好ましい。ワニスに使用した有機溶剤が80質量%以上揮発していれば、製造方法や乾燥条件等も制限はなく、乾燥時の温度は80〜180℃、時間はワニスのゲル化時間との兼ね合いで適宜設定される。また、ワニスの含浸量は、ワニス固形分と基材の総量に対して、ワニス固形分が30〜80質量%になるようにされることが好ましい。   The production conditions of the prepreg are not particularly limited, but it is preferable that 80% by mass or more of the organic solvent used for the varnish is volatilized. If the organic solvent used for the varnish is volatilized by 80% by mass or more, the production method and drying conditions are not limited, the drying temperature is 80 to 180 ° C., and the time is appropriately determined in consideration of the gelling time of the varnish Is set. Moreover, it is preferable that the amount of impregnations of a varnish shall be 30-80 mass% with respect to the total amount of a varnish solid content and a base material.

(樹脂付き金属箔)
本発明の樹脂付き金属箔は、本発明の樹脂組成物と金属箔とを積層してなるものである。
本発明の樹脂付き金属箔は、例えば、本発明の樹脂組成物のワニスを金属箔に塗工し、乾燥させることで樹脂付き金属箔を製造することができる。乾燥条件は、特に限定されるものではないが、例えば、80〜180℃の範囲で乾燥させて製造することができる。
本発明の積層板は、本発明のプリプレグを積層し加熱加圧してなるものである。
(Metal foil with resin)
The metal foil with resin of the present invention is formed by laminating the resin composition of the present invention and a metal foil.
The metal foil with resin of the present invention can be produced, for example, by applying the varnish of the resin composition of the present invention to a metal foil and drying it. The drying conditions are not particularly limited, and for example, they can be produced by drying in the range of 80 to 180 ° C.
The laminate of the present invention is obtained by laminating the prepreg of the present invention and heating and pressing.

(積層板)
本発明の積層板は、本発明のプリプレグを積層し加熱加圧してなるものである。
本発明の積層板は、例えば、本発明のプリプレグを1枚又複数枚積層し、必要に応じてその片面又は両面に金属箔を重ね、通常130〜250℃、好ましくは150〜230℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で加熱加圧することで製造することができる。加熱加圧の方法についても、特に限定されるものではなく、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用することができる。
また、本発明の積層板を製造する際に用いられる金属箔としては、特に限定されるものではないが、例えば、銅箔、アルミニウム箔が一般的に用いられる。金属箔の厚みも特に限定されるものではなく、積層板に用いられている1〜200μmのものを使用できる。その他にも、例えば、ニッケル、ニッケル‐リン、ニッケル‐スズ合金、ニッケル‐鉄合金、鉛、鉛‐スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。
(Laminated board)
The laminate of the present invention is obtained by laminating the prepreg of the present invention and heating and pressing.
The laminate of the present invention is, for example, a laminate of one or more prepregs of the present invention, and a metal foil is laminated on one or both sides as necessary, usually in the range of 130 to 250 ° C, preferably 150 to 230 ° C. At a temperature of 0.5 to 20 MPa, preferably 1 to 8 MPa. The method of heating and pressing is not particularly limited, and for example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, or the like can be used.
Moreover, it does not specifically limit as metal foil used when manufacturing the laminated board of this invention, For example, copper foil and aluminum foil are generally used. The thickness of the metal foil is not particularly limited, and those having a thickness of 1 to 200 [mu] m used for laminated plates can be used. In addition, for example, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a copper layer of 0.5-15 μm and 10-300 μm on both sides A composite foil having a three-layer structure provided with a copper layer or a composite foil having a two-layer structure in which aluminum and a copper foil are combined can be used.

(プリント配線板)
本発明のプリント配線板は、本発明の積層板を回路加工してなるものである。
本発明のプリント配線板の製造方法は、特に限定されるものではないが、片面又は両面に金属箔が設けられた本発明の積層板(金属張積層板)の金属箔に回路(配線)加工を施すことによって製造することができる。
(Printed wiring board)
The printed wiring board of the present invention is obtained by subjecting the laminated board of the present invention to circuit processing.
The manufacturing method of the printed wiring board of the present invention is not particularly limited, but circuit (wiring) processing is performed on the metal foil of the laminated board (metal-clad laminated board) of the present invention in which the metal foil is provided on one side or both sides. It can manufacture by giving.

以下、実施例を示し、本発明について具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記例中の数値は特に断らない限り、質量%を意味する。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to these. In addition, the numerical value in the following example means the mass% unless there is particular notice.

[実施例1]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてフェノールノボラック型エポキシ樹脂の「N770」(DIC株式会社製、商品名,エポキシ当量190)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名,フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Example 1]
As component (A), epoxy group-containing acrylic rubber “KH-CT-865” (manufactured by Hitachi Chemical Co., Ltd., trade name), and as component (B), phenol novolac epoxy resin “N770” (manufactured by DIC Corporation, product) Name, epoxy equivalent 190), cresol novolac resin “KA-1165” (trade name, phenol equivalent 119) as component (C), and crushed silica “F05-12” as component (E) ( Fukushima Ceramics Co., Ltd., trade name) is blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, 2-phenylimidazole is blended as component (D) according to Table 1, and a resin composition having a nonvolatile content of 40% A varnish was obtained.

[実施例2]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてテトラブロモビスフェノールA型エポキシ樹脂の「EPICLON 153」(DIC株式会社製、商品名、エポキシ当量400)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Example 2]
As component (A), epoxy group-containing acrylic rubber “KH-CT-865” (trade name, manufactured by Hitachi Chemical Co., Ltd.), as component (B), tetrabromobisphenol A type epoxy resin “EPICLON 153” (DIC Corporation). Product name, epoxy equivalent 400), “KA-1165” of cresol novolac type resin as component (C) (manufactured by DIC Corporation, product name, phenol equivalent of 119), and “F05-” of crushed silica as component (E). 12 ”(trade name, manufactured by Fukushima Ceramics Co., Ltd.) was blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, and then 2-phenylimidazole was blended as a component (D) according to Table 1, with a nonvolatile content of 40%. A resin composition varnish was obtained.

[実施例3]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてテトラブロモビスフェノールA型エポキシ樹脂の「EPICLON 153」(DIC株式会社製、商品名、エポキシ当量400)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名,フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Example 3]
As component (A), epoxy group-containing acrylic rubber “KH-CT-865” (trade name, manufactured by Hitachi Chemical Co., Ltd.), as component (B), tetrabromobisphenol A type epoxy resin “EPICLON 153” (DIC Corporation). Product name, epoxy equivalent 400), cresol novolac type resin “KA-1165” (product name, phenol equivalent 119) as component (C), and (F) crushed silica “F05-” as component (E). 12 ”(trade name, manufactured by Fukushima Ceramics Co., Ltd.) was blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, and then 2-phenylimidazole was blended as a component (D) according to Table 1, with a nonvolatile content of 40%. A resin composition varnish was obtained.

[実施例4]
(A)成分としてエポキシ基含有アクリルゴムの「HAN5−M90S」(根上工業株式会社製、商品名)、(B)成分としてフェノールノボラック型エポキシ樹脂の「N770」(DIC株式会社製、商品名,エポキシ当量190)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Example 4]
(A) Epoxy group-containing acrylic rubber “HAN5-M90S” (manufactured by Negami Kogyo Co., Ltd., trade name) and (B) component as phenol novolac epoxy resin “N770” (manufactured by DIC Corporation, trade name, Epoxy equivalent 190), “KA-1165” of cresol novolac type resin as component (C) (manufactured by DIC Corporation, trade name, phenol equivalent 119), “F05-12” of crushed silica as component (E) (Fukushima Ceramics) (Trade name, manufactured by Co., Ltd.) was blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, 2-phenylimidazole was blended as component (D) according to Table 1, and a resin composition varnish having a nonvolatile content of 40% was obtained. Obtained.

[実施例5]
(A)成分としてエポキシ基含有アクリルゴムの「HAN5−M90S」(根上工業株式会社製、商品名)、(B)成分としてビフェニルアラルキル型エポキシ樹脂の「NC−3000H」(日本化薬株式会社製、商品名、エポキシ当量288)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表1に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表1に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Example 5]
(A) Epoxy group-containing acrylic rubber “HAN5-M90S” (manufactured by Negami Kogyo Co., Ltd., trade name) and (B) component biphenylaralkyl epoxy resin “NC-3000H” (Nippon Kayaku Co., Ltd.) (Trade name, epoxy equivalent 288), “KA-1165” of cresol novolac type resin (product name, phenol equivalent 119) as component (C), and “F05-12” of crushed silica as component (E). "(Fukushima Ceramics Co., Ltd., trade name)" is blended in the blending amounts shown in Table 1, dissolved in methyl ethyl ketone, 2-phenylimidazole is blended as component (D) according to Table 1, and a resin having a nonvolatile content of 40% A composition varnish was obtained.

[比較例1]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてテトラブロモビスフェノールA型エポキシ樹脂の「EPICLON 153」(DIC株式会社製、商品名、エポキシ当量400)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表2に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Example 1]
As component (A), epoxy group-containing acrylic rubber “KH-CT-865” (trade name, manufactured by Hitachi Chemical Co., Ltd.), as component (B), tetrabromobisphenol A type epoxy resin “EPICLON 153” (DIC Corporation). Product name, epoxy equivalent 400), “KA-1165” of cresol novolac type resin as component (C) (manufactured by DIC Corporation, product name, phenol equivalent of 119), and “F05-” of crushed silica as component (E). 12 ”(trade name, manufactured by Fukushima Ceramics Co., Ltd.) was blended in the blending amounts shown in Table 2, dissolved in methyl ethyl ketone, and then 2-phenylimidazole was blended as component (D) according to Table 2, and the nonvolatile content was 40%. A resin composition varnish was obtained.

[比較例2]
(A)成分としてエポキシ基含有アクリルゴムの「HAN5−M90S」(根上工業株式会社製、商品名)、(B)成分としてビスフェノールA型エポキシ樹脂の「エピコート1002」(三菱化学株式会社製、商品名、エポキシ当量600)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表2に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Example 2]
(A) Epoxy group-containing acrylic rubber “HAN5-M90S” (trade name, manufactured by Negami Kogyo Co., Ltd.) as component (B), “Epicoat 1002” (product made by Mitsubishi Chemical Corporation, product) of bisphenol A type epoxy resin as component (B) Name, epoxy equivalent 600), “KA-1165” of cresol novolac type resin (product name, phenol equivalent 119) as component (C), and “F05-12” of crushed silica as component (E) ( Fukushima Ceramic Co., Ltd., trade name) was blended in the blending amounts shown in Table 2, dissolved in methyl ethyl ketone, and then 2-phenylimidazole was blended as component (D) according to Table 2, and a resin composition having a nonvolatile content of 40%. A varnish was obtained.

[比較例3]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてビスフェノールF型エポキシ樹脂の「4005P」(三菱化学株式会社製、商品名、エポキシ当量1070)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表2に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Example 3]
(A) Epoxy group-containing acrylic rubber “KH-CT-865” (manufactured by Hitachi Chemical Co., Ltd., trade name) and (B) component bisphenol F-type epoxy resin “4005P” (Mitsubishi Chemical Corporation, Product name, epoxy equivalent 1070), “KA-1165” of cresol novolac-type resin as component (C) (manufactured by DIC Corporation, product name, phenol equivalent of 119), “F05-12” of crushed silica as component (E) (Product name, manufactured by Fukushima Ceramics Co., Ltd.) was blended in the blending amounts shown in Table 2, dissolved in methyl ethyl ketone, 2-phenylimidazole was blended as component (D) according to Table 2, and a resin composition having a nonvolatile content of 40% A varnish was obtained.

[比較例4]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてフェノールノボラック型エポキシ樹脂の「N770」(DIC株式会社製、商品名、エポキシ当量190)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、(E)成分として破砕シリカの「F05−12」(福島窯業株式会社製、商品名)、を表2に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Example 4]
As component (A), epoxy group-containing acrylic rubber “KH-CT-865” (manufactured by Hitachi Chemical Co., Ltd., trade name), and as component (B), phenol novolac epoxy resin “N770” (manufactured by DIC Corporation, product) Name, epoxy equivalent 190), “KA-1165” of cresol novolac type resin (product name, phenol equivalent 119) as component (C), and “F05-12” of crushed silica as component (E) ( Fukushima Ceramic Co., Ltd., trade name) was blended in the blending amounts shown in Table 2, dissolved in methyl ethyl ketone, and then 2-phenylimidazole was blended as component (D) according to Table 2, and a resin composition having a nonvolatile content of 40%. A varnish was obtained.

[比較例5]
(A)成分としてエポキシ基含有アクリルゴムの「KH−CT−865」(日立化成株式会社製、商品名)、(B)成分としてフェノールノボラック型エポキシ樹脂の「N770」(DIC株式会社製、商品名,エポキシ当量190)、(C)成分としてクレゾールノボラック型樹脂の「KA−1165」(DIC株式会社製、商品名、フェノール当量119)、を表2に示す配合量で配合し、メチルエチルケトンに溶解後、(D)成分として2−フェニルイミダゾールを表2に従って配合し、不揮発分40%の樹脂組成物ワニスを得た。
[Comparative Example 5]
As component (A), epoxy group-containing acrylic rubber “KH-CT-865” (manufactured by Hitachi Chemical Co., Ltd., trade name), and as component (B), phenol novolac epoxy resin “N770” (manufactured by DIC Corporation, product) (Name, epoxy equivalent 190), and “C-1165” (trade name, phenol equivalent 119), a cresol novolac resin as component (C), is blended in the blending amounts shown in Table 2 and dissolved in methyl ethyl ketone. Then, 2-phenylimidazole was mix | blended according to Table 2 as (D) component, and the resin composition varnish of 40% of non volatile matters was obtained.

[プリプレグ、樹脂付き金属箔、銅張積層板の作製]
(1)プリプレグの作製
厚さ0.028mmのガラス布「1037」(旭シュエーベル株式会社製、商品名)に実施例1〜5、比較例1〜5で作製したワニスを含浸後、120℃にて20分間加熱して、乾燥しプリプレグを得た。
(2)樹脂付き金属箔の作製
実施例1〜5、比較例1〜5で作製したワニスを厚さ18μmの電解銅箔「YGP−18」( 日本電解株式会社製、商品名)に塗工機により塗工し、135℃ にて6分熱風乾燥させ、塗布厚さ50μmの樹脂付き金属箔を作製した。
(3)両面銅張積層板の作製
4枚重ねたプリプレグの両側に厚さ18μmの電解銅箔「YGP−18」( 日本電解株式会社製、商品名)を接着面がプリプレグと合わさるように重ね、200℃にて30分間、4MPaの真空プレス条件で両面銅張積層板を作製した。
また、作製した樹脂付き金属箔を2枚用意し、樹脂面が向き合うように重ね、200℃30分間4MPaの真空プレス条件で両面銅張積層板を作製した。
[Preparation, metal foil with resin, production of copper clad laminate]
(1) Production of prepreg After impregnating the varnish produced in Examples 1 to 5 and Comparative Examples 1 to 5 into a glass cloth “1037” (trade name, manufactured by Asahi Sebel Co., Ltd.) having a thickness of 0.028 mm, the temperature was increased to 120 ° C. For 20 minutes and dried to obtain a prepreg.
(2) Production of resin-coated metal foil The varnish produced in Examples 1 to 5 and Comparative Examples 1 to 5 was applied to an electrolytic copper foil “YGP-18” (trade name, manufactured by Nippon Electrolytic Co., Ltd.) having a thickness of 18 μm. The film was coated with a machine and dried with hot air at 135 ° C. for 6 minutes to prepare a metal foil with a resin having a coating thickness of 50 μm.
(3) Fabrication of double-sided copper-clad laminate Overlaid on both sides of the four prepregs, an 18 μm thick electrolytic copper foil “YGP-18” (trade name, manufactured by Nihon Electrolytic Co., Ltd.) is laminated. A double-sided copper-clad laminate was produced at 200 ° C. for 30 minutes under a 4 MPa vacuum press condition.
Moreover, the two metal foils with resin produced were prepared, it piled up so that the resin surface might face, and the double-sided copper clad laminated board was produced on 200 degreeC for 30 minutes and 4 MPa vacuum press conditions.

[プリプレグ及び両面銅張積層板の評価方法]
(1)弾性率
弾性率の評価は、樹脂付き金属箔を樹脂面が向き合うように重ね作製した両面銅張積層板を全面エッチングした積層板を、幅5mm×長さ30mmに切断し、動的粘弾性測定装置(株式会社UBM製)を用いて貯蔵弾性率を算出した。結果を表1 、2 に示す。
(2)耐熱性
4枚重ねたプリプレグから作製した両面銅張積層板を50mm四方の正方形に切り出して試験片を得た。その試験片を288℃のはんだ浴中に浸漬して、その時点から試験片の膨れが目視で認められる時点までに経過した時間を測定した。経過時間の測定は300秒までとし、300秒以上は耐熱性が十分であると判断した。結果を表1、2に示す。
(3)基板に対する銅箔接着性の評価
4枚重ねたプリプレグから作製した両面銅張積層板の銅箔を部分的にエッチングして、3mm幅の銅箔ラインを形成した。次に、銅箔ラインを、接着面に対して90°方向に50mm/分の速度で引き剥がした際の荷重を測定し、銅箔引き剥がし強さとした。結果を表1、2に示す。
(4)相構造観察試験
樹脂付き金属箔を樹脂面が向き合うように重ね作製した両面銅張積層板の樹脂絶縁層の断面をミクロトームにて平滑化した後、過硫酸塩溶液で軽くエッチングし、SEM観察を行い、微細相分離構造の島相のドメイン径を測定した。結果を表1、2に示す。
(5)電気絶縁信頼性
電気絶縁信頼性は、4枚重ねたプリプレグから作製した両面銅張積層板をスルーホール穴壁間隔が350μmとなるよう加工したテストパターンを用いて、各試料について400穴の絶縁抵抗を経時的に測定した。測定条件は、85℃/85%RH雰囲気中100V印加して行い、導通破壊が発生するまでの時間を測定した。測定時間は2000時間までとし、2000時間以上は電気絶縁信頼性が十分であると判断した。結果を表1、2に示す。
[Evaluation method of prepreg and double-sided copper-clad laminate]
(1) Elastic modulus Elastic modulus was evaluated by cutting a laminated board obtained by etching a double-sided copper-clad laminated board made of a metal foil with resin so that the resin faces face each other into a width of 5 mm and a length of 30 mm. The storage elastic modulus was calculated using a viscoelasticity measuring device (manufactured by UBM). The results are shown in Tables 1 and 2.
(2) Heat resistance A double-sided copper clad laminate produced from four prepregs was cut into a 50 mm square to obtain a test piece. The test piece was immersed in a solder bath at 288 ° C., and the time elapsed from that point to the point when the swelling of the test piece was visually observed was measured. The elapsed time was measured up to 300 seconds, and it was judged that the heat resistance was sufficient for 300 seconds or more. The results are shown in Tables 1 and 2.
(3) Evaluation of adhesion of copper foil to substrate A copper foil of a double-sided copper clad laminate prepared from four prepregs was partially etched to form a 3 mm wide copper foil line. Next, the load when the copper foil line was peeled off at a speed of 50 mm / min in the direction of 90 ° with respect to the bonding surface was measured, and the copper foil peeling strength was obtained. The results are shown in Tables 1 and 2.
(4) Phase structure observation test After smoothing the cross section of the resin insulation layer of the double-sided copper-clad laminate produced by laminating resin-coated metal foils so that the resin faces face each other, lightly etch with a persulfate solution, SEM observation was performed, and the domain diameter of the island phase of the fine phase separation structure was measured. The results are shown in Tables 1 and 2.
(5) Electrical insulation reliability Electrical insulation reliability is 400 holes for each sample using a test pattern in which a double-sided copper-clad laminate made from four prepregs is processed so that the through-hole hole wall spacing is 350 μm. The insulation resistance was measured over time. The measurement was performed by applying 100 V in an 85 ° C./85% RH atmosphere, and measuring the time until conduction breakdown occurred. The measurement time was up to 2000 hours, and it was judged that the electrical insulation reliability was sufficient for 2000 hours or more. The results are shown in Tables 1 and 2.

表1から明らかなように、本発明の実施例は低弾性、耐熱性、金属箔との接着性、絶縁信頼性の全てに優れている。一方、比較例は低弾性、耐熱性、金属箔との接着性、絶縁信頼性の全てに優れるものはない。   As is apparent from Table 1, the examples of the present invention are excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability. On the other hand, none of the comparative examples is excellent in all of low elasticity, heat resistance, adhesion to metal foil, and insulation reliability.

本発明の樹脂組成物、プリプレグ、樹脂付き金属箔、積層板、及びプリント配線板によれば、低弾性、高い絶縁信頼性、高耐熱性、金属箔との高い密着性を有する。   According to the resin composition, prepreg, resin-attached metal foil, laminate and printed wiring board of the present invention, it has low elasticity, high insulation reliability, high heat resistance and high adhesion to the metal foil.

Claims (17)

架橋性官能基を共重合した高分子アクリルポリマー(A)を含む第1相と、熱硬化性樹脂組成物(B)を含む第2相とが相分離構造を形成する樹脂組成物であって、
前記第2相が島相であり、
前記島相の平均ドメインサイズが1μm〜10μmであり、
架橋性官能基を共重合した高分子アクリルポリマー(A)の配合量が、架橋性官能基を共重合した高分子アクリルポリマー(A)と熱硬化性樹脂組成物(B)の総量を100質量部としたとき10〜70質量部である樹脂組成物を含有してなるプリプレグ
A resin composition in which a first phase containing a polymer acrylic polymer (A) copolymerized with a crosslinkable functional group and a second phase containing a thermosetting resin composition (B) form a phase-separated structure. ,
The second phase is an island phase;
The average domain size of the island phase is 1 μm to 10 μm,
The blending amount of the polymer acrylic polymer (A) copolymerized with the crosslinkable functional group is 100 mass of the total amount of the polymer acrylic polymer (A) copolymerized with the crosslinkable functional group and the thermosetting resin composition (B). A prepreg containing a resin composition that is 10 to 70 parts by mass.
前記熱硬化性樹脂組成物(B)がエポキシ樹脂とフェノール樹脂を含む請求項1に記載のプリプレグThe prepreg according to claim 1, wherein the thermosetting resin composition (B) contains an epoxy resin and a phenol resin. 前記エポキシ樹脂が、エポキシ基を1分子当たり2個以上含有する多官能エポキシ樹脂である請求項2に記載のプリプレグThe prepreg according to claim 2, wherein the epoxy resin is a polyfunctional epoxy resin containing two or more epoxy groups per molecule. 前記エポキシ樹脂の重量平均分子量が、200〜1000である請求項2又は3に記載のプリプレグThe prepreg according to claim 2 or 3, wherein the epoxy resin has a weight average molecular weight of 200 to 1,000. 前記エポキシ樹脂のエポキシ当量が、150〜500である請求項2〜4のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 2 to 4, wherein an epoxy equivalent of the epoxy resin is 150 to 500. 前記エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、リン含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アラルキレン骨格含有エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、多官能グリシジルアミン型エポキシ樹脂、多官能脂環式エポキシ樹脂、及びテトラブロモビスフェノールA型エポキシ樹脂、から選ばれる1種以上を含む請求項2〜5のいずれか1項に記載のプリプレグThe epoxy resin is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, phosphorus-containing epoxy Resin, naphthalene skeleton-containing epoxy resin, aralkylene skeleton-containing epoxy resin, phenol biphenyl aralkyl type epoxy resin, phenol salicylaldehyde novolak type epoxy resin, lower alkyl group-substituted phenol salicylaldehyde novolak type epoxy resin, dicyclopentadiene skeleton containing epoxy resin, many Functional glycidylamine type epoxy resin, polyfunctional alicyclic epoxy resin, and tetrabromobisphenol A type epoxy resin The prepreg according to any one of claims 2-5 containing one or more selected from. 前記架橋性官能基を共重合した高分子アクリルポリマー(A)の重量平均分子量が、10000〜1500000である請求項1〜6のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 1 to 6, wherein the polymer acrylic polymer (A) copolymerized with the crosslinkable functional group has a weight average molecular weight of 10,000 to 1,000,000. 前記フェノール樹脂が、フェノール性水酸基を1分子当たり2個以上含有する多官能フェノール樹脂である請求項2〜7のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 2 to 7, wherein the phenol resin is a polyfunctional phenol resin containing two or more phenolic hydroxyl groups per molecule. 前記樹脂組成物が、更に、硬化促進剤(D)を含む請求項1〜8のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 1 to 8, wherein the resin composition further contains a curing accelerator (D). 前記硬化促進剤(D)がアミン類又はイミダゾール類である請求項9に記載のプリプレグThe prepreg according to claim 9, wherein the curing accelerator (D) is an amine or an imidazole. 前記樹脂組成物が、更に、フィラー(E)を含む請求項1〜10のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 1 to 10 , wherein the resin composition further contains a filler (E). 前記フィラー(E)が第2相に含まれる請求項11に記載のプリプレグThe prepreg according to claim 11, wherein the filler (E) is contained in the second phase. 前記フィラー(E)が無機フィラーである請求項11又は12に記載のプリプレグThe prepreg according to claim 11 or 12, wherein the filler (E) is an inorganic filler. 前記フィラー(E)がシリカである請求項11〜13のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 11 to 13, wherein the filler (E) is silica. 前記フィラー(E)の平均粒径が0.1〜3.0μmである請求項11〜14のいずれか1項に記載のプリプレグThe prepreg according to any one of claims 11 to 14, wherein an average particle size of the filler (E) is 0.1 to 3.0 µm. 請求項1〜15のいずれか1項に記載のプリプレグを積層し加熱加圧してなる積層板。 The laminated board formed by laminating | stacking the prepreg of any one of Claims 1-15, and heat-pressing. 請求項16に記載の積層板を回路加工してなるプリント配線板。 The printed wiring board formed by carrying out circuit processing of the laminated board of Claim 16 .
JP2014215509A 2014-10-22 2014-10-22 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these Active JP6451204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014215509A JP6451204B2 (en) 2014-10-22 2014-10-22 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014215509A JP6451204B2 (en) 2014-10-22 2014-10-22 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these

Publications (2)

Publication Number Publication Date
JP2016079367A JP2016079367A (en) 2016-05-16
JP6451204B2 true JP6451204B2 (en) 2019-01-16

Family

ID=55957800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014215509A Active JP6451204B2 (en) 2014-10-22 2014-10-22 Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these

Country Status (1)

Country Link
JP (1) JP6451204B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947246B2 (en) * 2015-12-16 2021-10-13 味の素株式会社 Prepreg
JP6710955B2 (en) * 2015-12-16 2020-06-17 味の素株式会社 Prepreg
WO2017195344A1 (en) * 2016-05-13 2017-11-16 日立化成株式会社 Prepreg, metal-foil-equipped prepreg, laminate plate, metal-clad laminate plate, and printed circuit board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032227B1 (en) * 2000-02-15 2011-05-02 히다치 가세고교 가부시끼가이샤 Adhesive Composition, Process for Producing the Same, Adhesive Film Made with the Same, Substrate for Semiconductor Mounting, and Semiconductor Device
KR100970063B1 (en) * 2005-04-27 2010-07-16 히다치 가세고교 가부시끼가이샤 Composite, prepreg, laminated plate clad with metal foil, material for connecting circuit board, and multilayer printed wiring board and method for manufacture thereof
JP5723505B2 (en) * 2011-03-31 2015-05-27 東邦テナックス株式会社 Resin composition, cured product, prepreg, and fiber reinforced composite material
JP5942261B2 (en) * 2012-09-28 2016-06-29 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board

Also Published As

Publication number Publication date
JP2016079367A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP7287432B2 (en) Resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and method for producing resin composition
JP5082373B2 (en) Resin composition for printed wiring board, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
JP4586609B2 (en) Curable resin composition, prepreg, substrate, metal foil-clad laminate and printed wiring board
WO2014132654A1 (en) Resin composition for printed wiring board, prepreg and metal-clad laminate
JP5260458B2 (en) Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same
JP2011162615A (en) Prepreg and metal-clad laminated plate
JP6996500B2 (en) Prepreg, prepreg with metal foil, laminated board, metal-clad laminated board and printed circuit board
JP2010209140A (en) Prepreg, metal-clad laminate and printed circuit board
JP6451204B2 (en) Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these
JP6972651B2 (en) Resin composition, prepreg, metal foil with resin, laminated board and printed wiring board
JP2009185170A (en) Prepreg, metal-clad laminate and printed wiring board
JP4839934B2 (en) Curable resin composition, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
JP5056099B2 (en) Curable resin composition, resin-impregnated base material, prepreg, substrate, metal foil with adhesive layer and printed wiring board
JP2008266513A (en) Curable resin composition, prepreg, laminate, metal foil with adhesive layer, film sheet, and printed wiring board using these materials
TWI778410B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
TWI777919B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
JP7070074B2 (en) Resin composition, prepreg, metal leaf with resin, laminated board and printed wiring board
WO2023145473A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded laminated board, and printed wiring board
JP2006219664A (en) Curable resin composition, prepreg, substrate, metal foil-clad laminated plate, metal foil with resin, and printed wiring board
KR101095171B1 (en) Resin composition for printed circuit board and printed circuit board using the same
JP2008108955A (en) Wiring board material, resin impregnated base, prepreg, metal foil with resin, laminate sheet, and printed circuit board
JP2012025161A (en) Metal foil with resin
JP2006219669A (en) Curable resin composition, prepreg, substrate, metal foil-clad laminated plate, metal foil with resin, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R151 Written notification of patent or utility model registration

Ref document number: 6451204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350