JP6432207B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP6432207B2
JP6432207B2 JP2014165676A JP2014165676A JP6432207B2 JP 6432207 B2 JP6432207 B2 JP 6432207B2 JP 2014165676 A JP2014165676 A JP 2014165676A JP 2014165676 A JP2014165676 A JP 2014165676A JP 6432207 B2 JP6432207 B2 JP 6432207B2
Authority
JP
Japan
Prior art keywords
continuously variable
support plates
support
variable transmission
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014165676A
Other languages
Japanese (ja)
Other versions
JP2016041948A (en
Inventor
康治 靱
康治 靱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014165676A priority Critical patent/JP6432207B2/en
Publication of JP2016041948A publication Critical patent/JP2016041948A/en
Application granted granted Critical
Publication of JP6432207B2 publication Critical patent/JP6432207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Description

この発明は、自動車用変速装置として、或いはポンプ等の各種産業用機械の運転速度を調節する為の変速装置として利用する、トロイダル型無段変速機に関する。   The present invention relates to a toroidal continuously variable transmission that is used as a transmission for an automobile or as a transmission for adjusting the operating speed of various industrial machines such as pumps.

自動車用変速機を構成する変速機の一種としてトロイダル型無段変速機が、特許文献1等の多くの刊行物に記載される等により広く知られており、一部で実施されている。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて無段変速装置を構成し、このうちのトロイダル型無段変速機単体としての変速比(減速比)に比べて、無段変速装置全体としての速度比(増速比)の調節範囲を大きくする構造も、例えば特許文献2に記載される等により、従来から知られている。図3〜6は、この特許文献2に記載された、無段変速装置の従来構造の1例を示している。尚、以下の説明では、明瞭化の為、トロイダル型無段変速機単体に関しては変速比の語を使用し、無段変速装置に関しては速度比の語を使用する。   2. Description of the Related Art A toroidal continuously variable transmission is widely known as a kind of transmission constituting an automobile transmission, and is described in many publications such as Patent Document 1 and is partially implemented. Further, a continuously variable transmission is configured by combining a toroidal continuously variable transmission and a planetary gear mechanism, and the continuously variable transmission is compared with the transmission ratio (reduction ratio) of the toroidal continuously variable transmission alone. A structure for increasing the adjustment range of the speed ratio (speed increasing ratio) as a whole is also conventionally known, for example, as described in Patent Document 2. 3 to 6 show an example of a conventional structure of a continuously variable transmission described in Patent Document 2. FIG. In the following description, for the sake of clarity, the term “speed ratio” is used for the toroidal type continuously variable transmission alone, and the term “speed ratio” is used for the continuously variable transmission.

前記特許文献2に記載された無段変速装置は、トロイダル型無段変速機1と、前段、中段、後段の3段階のユニットを備えた遊星歯車式変速機2とを、低速用クラッチ3と高速用クラッチ4とを介して組み合わせて成る。そして、これら両クラッチ3、4の断接状態を切り換えると共に、前記トロイダル型無段変速機1の変速比を調節する事により、入力軸5と出力軸6との間の速度比を無限大に調節可能としている。即ち、前記低速用クラッチ3を接続すると共に前記高速用クラッチ4の接続を断った低速モード状態で、前記トロイダル型無段変速機1の変速比を調節する事により、前記入力軸5を一方向に回転させた状態のまま、前記出力軸6を、停止状態を挟んで、両方向に回転させられる様にしている。これに対して、前記高速用クラッチ4を接続すると共に前記低速用クラッチ3の接続を断った高速モード状態で、前記トロイダル型無段変速機1の変速比を増速側に変化させる程、前記無段変速装置全体としての速度比も増速側に変化させる様にしている。   The continuously variable transmission described in Patent Document 2 includes a toroidal-type continuously variable transmission 1 and a planetary gear type transmission 2 having a three-stage unit including a front stage, a middle stage, and a rear stage, and a low-speed clutch 3. It is combined through a high speed clutch 4. Then, the speed ratio between the input shaft 5 and the output shaft 6 is made infinite by switching the connection / disconnection state of both the clutches 3 and 4 and adjusting the gear ratio of the toroidal continuously variable transmission 1. It is adjustable. That is, by adjusting the gear ratio of the toroidal continuously variable transmission 1 in the low speed mode state in which the low speed clutch 3 is connected and the high speed clutch 4 is disconnected, the input shaft 5 is moved in one direction. The output shaft 6 can be rotated in both directions with the stopped state in a state where the output shaft 6 is rotated. On the other hand, in the high speed mode state in which the high speed clutch 4 is connected and the low speed clutch 3 is disconnected, the speed ratio of the toroidal continuously variable transmission 1 is changed to the speed increasing side. The speed ratio of the continuously variable transmission as a whole is also changed to the speed increasing side.

上述の様なトロイダル型無段変速機1は、特許請求の範囲に記載した外側ディスクに相当する1対の入力側ディスク7a、7bと、特許請求の範囲に記載した内側ディスクに相当する一体型の出力側ディスク8と、4個のパワーローラ9、9とを備える。そして、これら両入力側ディスク7a、7bは、前記入力軸5を介して互いに同心に、且つ、同期した回転を自在として結合されている。又、前記出力側ディスク8は、前記両入力側ディスク7a、7b同士の間に、これら両入力側ディスク7a、7bと同心に、且つ、これら両入力側ディスク7a、7bに対する相対回転を自在として支持されている。更に、前記各パワーローラ9、9は、これら各ディスク7a、7b、8の軸方向に関して、この出力側ディスク8の軸方向両側面とこれら両入力側ディスク7a、7bの軸方向片側面との間に、それぞれ2個ずつ、合計4個挟持されている。そして、これら両入力側ディスク7a、7bの回転に伴って回転しつつ、これら両入力側ディスク7a、7bから前記出力側ディスク8に動力を伝達する。   The toroidal type continuously variable transmission 1 as described above includes a pair of input side disks 7a and 7b corresponding to the outer disk described in the claims, and an integral type corresponding to the inner disk described in the claims. Output side disk 8 and four power rollers 9, 9. The two input side disks 7a and 7b are coupled to each other through the input shaft 5 so as to be concentric with each other and capable of synchronous rotation. The output side disk 8 is concentric with the input side disks 7a and 7b between the input side disks 7a and 7b, and is relatively rotatable with respect to the input side disks 7a and 7b. It is supported. Further, each of the power rollers 9, 9 has an axial direction of each of the discs 7a, 7b, 8 between the axial side surfaces of the output side disc 8 and the axial side surfaces of the input side discs 7a, 7b. A total of four are sandwiched between two each. Then, power is transmitted from the input disks 7a, 7b to the output disk 8 while rotating with the rotation of the input disks 7a, 7b.

前記出力側ディスク8はその軸方向両端部を、それぞれがスラストアンギュラである1対の玉軸受10、10等の転がり軸受により、回転自在に支持している。又、前記各パワーローラ9、9はそれぞれ、特許請求の範囲に記載した支持部材に相当するトラニオン11、11の内側面に、回転自在に支持している。又、これら各トラニオン11、11の両端部を支持する為に1対の支持板12a、12bをケーシング13の内側に、互いに平行に且つ上下方向に間隔を空けて配置されたアクチュエータボディー14及び連結板15と、1対の支柱16、16とを介して設けている。これら両支柱16、16はそれぞれ、前記入力軸5を挟んで径方向反対側に互いに同心に設けられた1対の支持ポスト部17a、17bを、環状乃至は枠状の支持部18により連結して成る。前記入力軸5は、この支持部18の内側を挿通している。   The output side disk 8 is rotatably supported at both ends in the axial direction by rolling bearings such as a pair of ball bearings 10 and 10 each having a thrust angular contact. The power rollers 9 and 9 are rotatably supported on inner surfaces of trunnions 11 and 11 corresponding to the supporting members described in the claims. Further, in order to support both ends of each trunnion 11 and 11, a pair of support plates 12a and 12b are connected to the inside of the casing 13 and connected to the actuator body 14 parallel to each other and spaced apart in the vertical direction. It is provided via a plate 15 and a pair of support columns 16 and 16. Each of these support columns 16 and 16 is connected to a pair of support post portions 17a and 17b concentrically provided on the opposite side in the radial direction across the input shaft 5 by an annular or frame-shaped support portion 18. It consists of The input shaft 5 is inserted through the inside of the support portion 18.

又、前記両支柱16、16の下端部は、前記アクチュエータボディー14の上面に凹凸嵌合により、取付位置並びに取付方向を規制した状態で、それぞれボルト19、19により結合固定している。これに対して前記両支柱16、16の上端部は前記連結板15の下面に、それぞれボルト20、20により、やはり凹凸嵌合に基づいて取付位置を規制した状態で結合固定している。この様にして前記アクチュエータボディー14の上面と前記連結板15の下面との間に掛け渡した前記1対の支柱16、16に設けた、前記各支持ポスト部17a、17bのうち、下側の支持ポスト部17a、17aを、前記1対の支持板12a、12bのうちの下側の支持板12aに形成した支持孔21a、21aに、がたつきなく内嵌している。又、上側の支持ポスト部17b、17bを、前記1対の支持板12a、12bのうちの上側の支持板12bに形成した支持孔21b、21bに、がたつきなく内嵌している。   Further, the lower ends of the support columns 16 and 16 are coupled and fixed by bolts 19 and 19, respectively, in a state where the mounting position and the mounting direction are regulated by the concave and convex fitting on the upper surface of the actuator body 14. On the other hand, the upper end portions of the support columns 16 and 16 are coupled and fixed to the lower surface of the connecting plate 15 by bolts 20 and 20 in a state where the mounting position is also restricted based on the uneven fitting. In this way, the lower side of the support post portions 17a and 17b provided on the pair of support columns 16 and 16 provided between the upper surface of the actuator body 14 and the lower surface of the connecting plate 15 is provided. The support post portions 17a and 17a are fitted into the support holes 21a and 21a formed in the lower support plate 12a of the pair of support plates 12a and 12b without rattling. Further, the upper support post portions 17b and 17b are fitted into the support holes 21b and 21b formed in the upper support plate 12b of the pair of support plates 12a and 12b without rattling.

前記各トラニオン11、11は、それぞれ、支持梁部22と、1対ずつの折れ曲がり部23a、23b及び傾転軸24a、24bとを備える。このうちの支持梁部22は、前記各パワーローラ9、9を支持する為の部分で、これら各パワーローラ9、9はこの支持梁部22の内側面に、偏心軸25と、複数の転がり軸受26a、26b、26c、26dとにより支持されている。この状態で前記各パワーローラ9、9は、前記偏心軸25の先半部を中心とする回転を自在に、且つ、この偏心軸25の基半部を中心とする、前記各ディスク7a、7b、8の軸方向の揺動変位を可能に支持される。又、前記両折れ曲がり部23a、23bは、前記支持梁部22の両端部から前記各ディスク7a、7b、8の径方向に関して内側に折れ曲がっている。そして、前記両折れ曲がり部23a、23bの互いに反対側の側面である外側面に前記両傾転軸24a、24bを、互いに同心に設けている。   Each of the trunnions 11, 11 includes a support beam portion 22, a pair of bent portions 23a, 23b, and tilting shafts 24a, 24b. Of these, the support beam portion 22 is a portion for supporting each of the power rollers 9, 9. It is supported by bearings 26a, 26b, 26c, and 26d. In this state, each of the power rollers 9, 9 can freely rotate about the front half of the eccentric shaft 25, and each of the disks 7a, 7b centered on the base half of the eccentric shaft 25. , 8 are supported so as to be capable of rocking displacement in the axial direction. Further, the two bent portions 23a and 23b are bent inward from the both ends of the support beam portion 22 in the radial direction of the respective disks 7a, 7b and 8. The tilting shafts 24a and 24b are provided concentrically with each other on the outer surface which is the opposite side surface of the bent portions 23a and 23b.

それぞれが上述の様に構成され、それぞれの支持梁部22の内側面に前記各パワーローラ9、9を支持した、前記各トラニオン11、11は、前記両支持板12a、12b同士の間に掛け渡す状態で、前記各傾転軸24a、24bを中心とする揺動及びこれら各傾転軸24a、24bの軸方向の変位を可能に支持している。この為に、前記両支持板12a、12bの四隅部分に、それぞれ円形の保持孔27a、27bを、これら両支持板12a、12bを貫通する状態で形成している。そして、これら各保持孔27a、27bの内周面と前記各傾転軸24a、24bの外周面との間に、それぞれラジアルニードル軸受28、28を設けている。これら各ラジアルニードル軸受28、28は、外周面が部分球面状の凸曲面である外輪29、29を備え、これら各外輪29、29を前記各保持孔27a、27bに、がたつきなく、且つ、これら各保持孔27a、27bの軸方向に関する変位及び若干の揺動変位を可能に内嵌している。前記各ラジアルニードル軸受28、28を構成するニードル30、30は、前記各傾転軸24a、24bの外周面に設けた内輪軌道と前記各外輪29、29の内周面に設けた外輪軌道との間に、転動自在に設けている。   Each of the trunnions 11 and 11 configured as described above and supporting the power rollers 9 and 9 on the inner side surfaces of the support beam portions 22 are hung between the support plates 12a and 12b. In the handed state, the tilting shafts 24a and 24b are pivotally supported, and the tilting shafts 24a and 24b are supported so as to be displaced in the axial direction. For this purpose, circular holding holes 27a and 27b are formed at the four corners of the support plates 12a and 12b so as to penetrate the support plates 12a and 12b, respectively. Radial needle bearings 28 and 28 are provided between the inner peripheral surfaces of the holding holes 27a and 27b and the outer peripheral surfaces of the tilt shafts 24a and 24b, respectively. Each of these radial needle bearings 28, 28 includes outer rings 29, 29 whose outer peripheral surfaces are convex curved surfaces having a partially spherical shape, and these outer rings 29, 29 are not rattled into the holding holes 27 a, 27 b, and These holding holes 27a and 27b are fitted in such a manner that they can be displaced in the axial direction and slightly oscillated. The needles 30, 30 constituting each radial needle bearing 28, 28 include an inner ring raceway provided on the outer peripheral surface of each tilt shaft 24 a, 24 b and an outer ring raceway provided on the inner peripheral surface of each outer ring 29, 29. It is provided so that it can roll freely.

尚、前記アクチュエータボディー14と前記連結板15とのうち、アクチュエータボディー14は、前記ケーシング13の下部に固定している。又、前記連結板15は前記ケーシング13内に、長さ方向(図3、4の左右方向、図5の表裏方向)及び幅方向の位置を規制した状態で設置している。この位置規制を行う為に、前記連結板15の上面と、前記ケーシング13の天板部31の下面との間に位置決めスリーブ32、32を掛け渡している。前記出力側ディスク8の軸方向両端部は、この様にして前記ケーシング13内の所定位置に固定した1対の支柱16、16の中間部に設けられた前記両支持部18、18に、前記両玉軸受10、10により、回転自在に支持している。   Of the actuator body 14 and the connecting plate 15, the actuator body 14 is fixed to the lower portion of the casing 13. Further, the connecting plate 15 is installed in the casing 13 in a state in which the position in the length direction (left and right direction in FIGS. 3 and 4, front and back direction in FIG. 5) and the width direction is regulated. In order to perform this position restriction, positioning sleeves 32 and 32 are spanned between the upper surface of the connecting plate 15 and the lower surface of the top plate portion 31 of the casing 13. Both end portions in the axial direction of the output side disk 8 are connected to the support portions 18, 18 provided in the middle portion of the pair of columns 16, 16 fixed in a predetermined position in the casing 13 in the above manner. The ball bearings 10 and 10 are rotatably supported.

上述の様なトロイダル型無段変速機1の変速比を調節するには、前記アクチュエータボディー14内に収納したアクチュエータ33a、33bにより、前記各トラニオン11、11を前記各傾転軸24a、24bの軸方向に変位させる。言い換えれば、これら各傾転軸24a、24bに関する前記各トラニオン11、11の位置を、中立位置から、変速比を調節すべき方向に応じた方向に変位させる。この変位により、前記各ディスク7a、7b、8の軸方向側面と前記各パワーローラ9、9の周面との転がり接触部(トラクション部)に作用する力の方向が変化する。具体的には、前記各ディスク7a、7b、8の回転方向に関する接線方向に対し傾斜した方向の分力が発生する。そして、この分力に基づいて前記各トラニオン11、11が前記各パワーローラ9、9と共に、前記各傾転軸24a、24bを中心として傾斜し、その結果、前記各ディスク7a、7b、8の径方向に関する前記各トラクション部の位置が変化し、前記変速比の調節が行われる。この変速比が所望値になった状態で、前記各トラニオン11、11の位置を前記中立位置に戻せば、前記変速比が調節後の値に保持される。   In order to adjust the gear ratio of the toroidal-type continuously variable transmission 1 as described above, the trunnions 11 and 11 are connected to the tilt shafts 24a and 24b by the actuators 33a and 33b housed in the actuator body 14, respectively. Displace in the axial direction. In other words, the positions of the trunnions 11 and 11 with respect to the tilt shafts 24a and 24b are displaced from the neutral position in a direction corresponding to the direction in which the gear ratio should be adjusted. Due to this displacement, the direction of the force acting on the rolling contact portion (traction portion) between the axial side surface of each of the disks 7a, 7b, 8 and the peripheral surface of each of the power rollers 9, 9 changes. Specifically, a component force in a direction inclined with respect to the tangential direction with respect to the rotational direction of the disks 7a, 7b, 8 is generated. Then, based on this component force, each trunnion 11, 11 is tilted around each tilt shaft 24 a, 24 b together with each power roller 9, 9. As a result, each of the disks 7 a, 7 b, 8 The position of each traction portion in the radial direction is changed, and the gear ratio is adjusted. If the positions of the trunnions 11 and 11 are returned to the neutral position in a state where the gear ratio has reached a desired value, the gear ratio is held at the adjusted value.

前記トロイダル型無段変速機1によるトルク伝達時には、駆動軸34により一方(図3、4の左方)の入力側ディスク7aを、押圧装置35を介して回転駆動する。この際、この押圧装置35が発生する押圧力に基づいて、前記トロイダル型無段変速機1のトルク伝達に寄与する部材である、前記各ディスク7a、7b、8や前記各パワーローラ9、9、並びに、これら各パワーローラ9、9を支持している前記各トラニオン11、11が弾性変形する。前記押圧装置35が発生する押圧力は、前記トロイダル型無段変速機1により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材7a、7b、8、9、11の弾性変形量も多くなる。この結果、これら各ディスク7a、7b、8の軸方向に関する、前記各パワーローラ9、9の位置が変動する。図3〜6に示した従来構造の1例の場合には、前記各偏心軸25、25の先半部の周囲に回転自在に支持された前記各パワーローラ9、9が、これら各偏心軸25、25の基半部を中心として、前記各ディスク7a、7b、8の軸方向に揺動変位する事で補償する。   When torque is transmitted by the toroidal continuously variable transmission 1, one input side disk 7 a (left side in FIGS. 3 and 4) is rotationally driven by the drive shaft 34 via the pressing device 35. At this time, the disks 7a, 7b, 8 and the power rollers 9, 9 which are members contributing to torque transmission of the toroidal type continuously variable transmission 1 based on the pressing force generated by the pressing device 35. In addition, the trunnions 11 and 11 supporting the power rollers 9 and 9 are elastically deformed. The pressing force generated by the pressing device 35 increases as the torque transmitted by the toroidal-type continuously variable transmission 1 increases, and the elastic deformation amounts of the members 7a, 7b, 8, 9, and 11 also increase accordingly. Become more. As a result, the positions of the power rollers 9 and 9 with respect to the axial direction of the disks 7a, 7b and 8 vary. In the case of one example of the conventional structure shown in FIGS. 3 to 6, the power rollers 9 and 9 rotatably supported around the front half portions of the eccentric shafts 25 and 25 are respectively connected to the eccentric shafts. Compensation is made by swinging and displacing the discs 7a, 7b, 8 in the axial direction around the base half portions of 25, 25.

尚、トロイダル型無段変速機を構成する各部材の弾性変形に拘らず、各ディスクの軸方向に関する各パワーローラの位置を適正に維持する為の構造として、特許文献3に記載された構造がある。この特許文献3に記載された構造の場合、トラニオンを構成する支持梁部の内側面(各ディスクの径方向に関する内側の側面)を円筒状凸面とすると共に、この支持梁部とパワーローラの外側面との間に設けるスラスト玉軸受を構成する外輪の外側面に、部分円筒面状の凹部を、この外側面を径方向に横切る状態で設けている。そして、前記円筒状凸面とこの凹部とを係合させ、前記トラニオンに対して前記外輪を、各ディスクの軸方向に関する揺動変位を可能に支持している。この様な特許文献3に記載された構造の場合には、前記パワーローラをこれら各ディスクの軸方向に変位させる必要が生じると、前記外輪を前記円筒状凸面の中心軸を中心として揺動変位させる事で、前記パワーローラの周面と前記各ディスクの軸方向側面との接触状態を適正に維持する事ができる。   Incidentally, as a structure for properly maintaining the position of each power roller with respect to the axial direction of each disk, regardless of the elastic deformation of each member constituting the toroidal-type continuously variable transmission, the structure described in Patent Document 3 is used. is there. In the case of the structure described in Patent Document 3, the inner side surface (the inner side surface in the radial direction of each disk) constituting the trunnion is a cylindrical convex surface, and the outer side of the support beam portion and the power roller A concave portion having a partial cylindrical surface is provided on the outer surface of the outer ring constituting the thrust ball bearing provided between the outer surface and the outer surface in a radial direction. And the said cylindrical convex surface and this recessed part are engaged, and the said outer ring is supported with respect to the said trunnion so that the rocking displacement regarding the axial direction of each disk is possible. In the case of such a structure described in Patent Document 3, if the power roller needs to be displaced in the axial direction of each of these disks, the outer ring is oscillated and displaced about the central axis of the cylindrical convex surface. By doing so, the contact state between the peripheral surface of the power roller and the axial side surface of each disk can be properly maintained.

各ディスク7a、7b、8の軸方向に関する各パワーローラ9、9の変位を許容する構造の如何に拘わらず、トロイダル型無段変速機1を構成する、各トラニオン11、11と1対の支持板12a、12bとの位置関係は頻繁に変化する。先ず、前記トロイダル型無段変速機1の変速比の調節開始時には、各保持孔27a、27bの内周面と各外輪29、29の外周面との摩擦により前記両支持板12a、12bに、各傾転軸24a、24bの軸方向の力が加わる。この力の作用方向は、図5の左右両側で、上下逆方向になるので、前記両支持板12a、12bが、この図5の左右方向に対して傾斜する傾向になる。又、実際に変速比が変化し始めると、前記各傾転軸24a、24bを中心として前記各トラニオン11、11が、前記両支持板12a、12bに対し揺動変位する。更に、大きなトルク伝達時には、前記各トラニオン11、11が前記各パワーローラ9、9から加わる大きなスラスト荷重により弾性変形し、これに伴って、前記各トラニオン11、11の両端部に設けた1対ずつの傾転軸24a、24bの同心性が損なわれる(これら両傾転軸24a、24bの中心軸同士が僅かに傾斜する)。この傾斜は、それぞれの外周面を部分球面状とした前記各外輪29、29の揺動変位により補償するが、この補償に伴って、前記各トラニオン11、11と前記両支持板12a、12bとの位置関係が僅かにずれる。この様な位置関係のずれが発生すると、これら両支持板12a、12bは、前記図5の左右方向に対して傾斜する傾向になるだけでなく、図4の左右方向(図5の表裏方向)に対しても傾斜する傾向になる。又、組み付け誤差等により、前記両支持板12a、12bが、前記図5の左右方向、或いは、図4の左右方向に傾斜した状態で、前記ケーシング13内に設置されている場合には、前記各トラニオン11、11から前記両支持板12a、12bに加わる力の釣り合いが取れず、これら両支持板12a、12bがより傾斜し易くなる。そして、前記両支持板12a、12bの傾斜角度が大きくなると、これら両支持板12a、12bの端縁と、前記各トラニオン11、11の両端面の一部で、前記各傾転軸24a、24bからそれぞれ支持梁部22側に外方に(前記各ディスク7a、7b、8の径方向外方に)外れた肩部と{又は、支持板12a、12bの内側面と、トラニオン11、11の肩部の外周縁(支持梁部22の外側面と肩部との連続部)と}が当接する可能性がある。   Regardless of the structure that allows the displacement of the power rollers 9 and 9 with respect to the axial direction of the disks 7a, 7b, and 8, the trunnions 11 and 11 and the pair of supports that constitute the toroidal continuously variable transmission 1 are supported. The positional relationship with the plates 12a and 12b frequently changes. First, at the start of adjustment of the gear ratio of the toroidal-type continuously variable transmission 1, both the support plates 12a, 12b are caused by friction between the inner peripheral surfaces of the holding holes 27a, 27b and the outer peripheral surfaces of the outer rings 29, 29. An axial force is applied to each of the tilt shafts 24a and 24b. The acting direction of this force is opposite in the up-and-down direction on both the left and right sides of FIG. When the gear ratio starts to change, the trunnions 11 and 11 are oscillated and displaced with respect to the support plates 12a and 12b around the tilt shafts 24a and 24b. Further, when a large torque is transmitted, each trunnion 11, 11 is elastically deformed by a large thrust load applied from each power roller 9, 9, and accordingly, a pair provided at both end portions of each trunnion 11, 11. The concentricity of each tilt axis 24a, 24b is impaired (the central axes of both tilt axes 24a, 24b are slightly tilted). This inclination is compensated by the oscillating displacement of the outer rings 29, 29 each having a partially spherical outer peripheral surface. With this compensation, the trunnions 11, 11 and the support plates 12a, 12b The positional relationship is slightly shifted. When such a positional shift occurs, the support plates 12a and 12b not only tend to be inclined with respect to the horizontal direction in FIG. 5, but also in the horizontal direction in FIG. 4 (front and back direction in FIG. 5). It tends to tilt. Further, when the support plates 12a and 12b are installed in the casing 13 in a state inclined in the left-right direction in FIG. 5 or the left-right direction in FIG. The forces applied to the support plates 12a and 12b from the trunnions 11 and 11 cannot be balanced, and the support plates 12a and 12b are more easily inclined. When the inclination angles of the support plates 12a and 12b are increased, the tilting shafts 24a and 24b are formed at the edges of the support plates 12a and 12b and a part of both end faces of the trunnions 11 and 11. To the support beam portion 22 side (outward in the radial direction of the respective disks 7a, 7b, 8) and {or the inner surface of the support plates 12a, 12b, and the trunnions 11, 11 There is a possibility that the outer peripheral edge of the shoulder portion (the continuous portion between the outer surface of the support beam portion 22 and the shoulder portion) abuts.

又、前記トロイダル型無段変速機1によるトルク伝達時には、押圧装置35が発生する押圧力に基づいて、トラクション部から前記各パワーローラ9、9、前記各転がり軸受26a、26b、26c、26dを介して前記各トラニオン11、11の支持梁部22、22にスラスト荷重(各ディスク7a、7b、8の径方向の力)が加わる。このスラスト荷重は、前記各トラニオン11、11の傾転軸24a、24bから前記各ラジアルニードル軸受28、28を介して前記両支持板12a、12bの保持孔27a、27bの内周面に加わる。従って、前記各トラニオン11、11と、これら両支持板12a、12bとの位置関係が中立状態にある場合には、前記スラスト荷重は、これら両支持板12a、12b内で打ち消し合う(相殺される)。尚、前記中立状態とは、前記トロイダル型無段変速機1の変速比を一定とした(変速動作を行っていない)状態で、前記各トラニオン11、11の位置が、前述した中立位置に存在する状態を言う。   Further, when torque is transmitted by the toroidal continuously variable transmission 1, the power rollers 9, 9, and the rolling bearings 26a, 26b, 26c, 26d are connected from the traction portion based on the pressing force generated by the pressing device 35. Through this, a thrust load (the radial force of each disk 7a, 7b, 8) is applied to the support beam portions 22, 22 of the trunnions 11, 11. The thrust load is applied to the inner peripheral surfaces of the holding holes 27a and 27b of the support plates 12a and 12b from the tilt shafts 24a and 24b of the trunnions 11 and 11 through the radial needle bearings 28 and 28, respectively. Therefore, when the positional relationship between the trunnions 11 and 11 and the support plates 12a and 12b is in a neutral state, the thrust load cancels out (cancels out) in the support plates 12a and 12b. ). The neutral state is a state in which the transmission ratio of the toroidal type continuously variable transmission 1 is constant (no transmission operation is performed), and the positions of the trunnions 11 and 11 are in the neutral position described above. Say the state to do.

一方、前記両支持板12a、12bの傾斜角度が大きくなって、これら両支持板12a、12bの端縁と、前記各トラニオン11、11の肩部とが当接した状態では、前記スラスト荷重により前記両支持板12a、12bの端縁が前記各トラニオン11、11の肩部に押し付けられ、前記当接部の面圧が大きくなる(両支持板12a、12bの端縁が各トラニオン11、11の肩部に食い込む傾向となる)。この押し付け力は、最大で、前記各トラニオン11、11の傾転軸24a、24bから前記両支持板12a、12bの保持孔27a、27bの内周面に加わるスラスト荷重に基づいて、これら各内周面に作用する摩擦力と同程度になる。前記当接部の面圧が大きくなった状態で、前記トロイダル型無段変速機1の変速比の調節を行い、前記各トラニオン11、11を前記各傾転軸24a、24bを中心として揺動変位させると、前記両支持板12a、12bの端縁と前記各トラニオン11、11の肩部とが互いに擦れ合い、この擦れ合い部に、金属接触に伴う著しい摩耗が生じる可能性がある。そして、この擦れ合い部の摩耗が進行すると、前記各トラニオン11、11と前記両支持板12a、12bとの位置関係を適正に維持し難くなって、前記トロイダル型無段変速機1の変速動作を安定して行う事が難しくなる可能性がある。   On the other hand, when the inclination angles of the support plates 12a and 12b are increased and the edges of the support plates 12a and 12b are in contact with the shoulder portions of the trunnions 11 and 11, the thrust load causes The edges of the support plates 12a and 12b are pressed against the shoulders of the trunnions 11 and 11, and the contact pressure of the abutment portion increases (the edges of the support plates 12a and 12b are the trunnions 11 and 11). Tend to bite into the shoulder). The maximum pressing force is based on the thrust load applied to the inner peripheral surfaces of the holding holes 27a and 27b of the support plates 12a and 12b from the tilt shafts 24a and 24b of the trunnions 11 and 11, respectively. It becomes the same level as the frictional force acting on the peripheral surface. With the surface pressure of the contact portion increased, the transmission ratio of the toroidal type continuously variable transmission 1 is adjusted, and the trunnions 11 and 11 are swung around the tilt shafts 24a and 24b. When displaced, the edges of the support plates 12a and 12b and the shoulder portions of the trunnions 11 and 11 rub against each other, and there is a possibility that significant wear due to metal contact occurs in the rubbed portions. When the wear of the rubbing portion progresses, it becomes difficult to properly maintain the positional relationship between the trunnions 11 and 11 and the support plates 12a and 12b, and the shifting operation of the toroidal continuously variable transmission 1 is performed. May be difficult to perform stably.

特許文献4には、各トラニオンの肩部に形成した有底の円孔に剛球を圧入固定し、これら各剛球をこれら各肩部から突出させ、これら各剛球を1対の支持板の内側面に当接させた構造が記載されている。これにより、前記各トラニオンとこれら両支持板との位置関係の変化を許容して、トロイダル型無段変速機の変速動作を安定して行わせる事ができる。但し、前記特許文献4に記載された構造の場合、前記各円孔を高精度に加工する必要があるだけでなく、部品管理及び組立作業が何れも面倒であり、更には、異物混入に就いても十分な注意を払う必要がある為、製造コストが嵩む事が避けられない。又、前記特許文献4に記載された構造の場合、球状である前記各剛球と、前記両支持板の内側面とを当接させている為、これら両支持板の傾斜方向によっては、前記各剛球と、これら両支持板の内側面との当接部の面圧が高くなる可能性がある。   In Patent Document 4, a rigid sphere is press-fitted and fixed in a bottomed circular hole formed in a shoulder portion of each trunnion, the rigid spheres protrude from the shoulder portions, and the rigid spheres are connected to the inner surfaces of a pair of support plates. The structure made to contact | abut is described. As a result, a change in the positional relationship between each trunnion and the two support plates is allowed, and the shifting operation of the toroidal continuously variable transmission can be performed stably. However, in the case of the structure described in Patent Document 4, it is not only necessary to process each circular hole with high accuracy, but both the parts management and the assembly work are troublesome, and further, contamination by foreign matters is caused. However, since it is necessary to pay sufficient attention, it is inevitable that the manufacturing cost increases. In the case of the structure described in Patent Document 4, the spherical hard balls and the inner surfaces of the two support plates are in contact with each other. There is a possibility that the surface pressure of the abutting portion between the hard sphere and the inner side surfaces of both of the support plates becomes high.

特開2003−214516号公報JP 2003-214516 A 特開2004−84712号公報JP 2004-84712 A 特開2008−25821号公報JP 2008-25821 A 特開2011−127631号公報Japanese Unexamined Patent Publication No. 2011-127631

本発明は、上述の様な事情に鑑み、長期間に亙って円滑な変速動作を確保し易くできる、トロイダル型無段変速機の構造を実現すべく発明したものである。   The present invention has been invented to realize a structure of a toroidal type continuously variable transmission that can easily ensure a smooth speed change operation over a long period of time in view of the circumstances as described above.

本発明のトロイダル型無段変速機は、1対の外側ディスクと、内側ディスクと、4個の支持部材と、1対の支持板と、4個のパワーローラとを備える。
このうちの1対の外側ディスクは、回転軸のうちで軸方向に互いに離隔した2箇所位置に、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で、前記回転軸と同期した回転を自在として支持している。
又、前記内側ディスクは、前記回転軸の中間部周囲に、断面円弧形である軸方向両側面を前記両外側ディスクの軸方向片側面に対向させた状態で、前記回転軸に対する相対回転を自在に支持されたもので、一体に構成するか、若しくは1対の素子を結合して成る。
又、前記各支持部材は、前記回転軸の軸方向に関して、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面との間位置にそれぞれ2個ずつ(合計4個)、前記回転軸に対し捩れの位置で、且つ、それぞれの両端部に設けられた傾転軸を中心とする揺動変位を可能に設けられている。
又、前記両支持板は、前記各支持部材を、前記各傾転軸の軸方向変位を可能に支持する為のものである。
又、前記各パワーローラは、前記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面とに当接している。
The toroidal continuously variable transmission according to the present invention includes a pair of outer disks, an inner disk, four support members, a pair of support plates, and four power rollers.
A pair of the outer disks are rotated in a state where the axial side surfaces of the rotating disks are opposed to each other at two positions separated from each other in the axial direction in the rotating shaft. Rotation synchronized with the shaft is supported freely.
In addition, the inner disk rotates relative to the rotating shaft around the middle portion of the rotating shaft, with both axial side surfaces having a circular arc cross section facing one axial side surface of the outer disks. It is supported freely, and is formed as a single unit or by combining a pair of elements.
In addition, two each of the support members are located at positions between both axial side surfaces of the inner disk and one axial side surface of the outer disks with respect to the axial direction of the rotating shaft (four in total), It is provided at a position twisted with respect to the rotating shaft and capable of swinging displacement about the tilting shafts provided at both ends.
The both support plates are for supporting the support members such that the tilting shafts can be displaced in the axial direction.
Each of the power rollers is rotatably supported by each of the support members, and has a spherical convex surface that is in contact with both axial sides of the inner disk and axial sides of the outer disks. It touches.

特に本発明のトロイダル型無段変速機に於いては、前記両支持板の互いに対向する内側面のうち、前記各傾転軸の軸方向に関する前記各支持部材の両端面の一部で、これら各傾転軸から前記各ディスクの径方向に外れた部分に対向する部分に、これら各ディスクの中心軸の軸方向に伸長する(長軸を有する)部分楕円球状の凸部を設けている。   Particularly in the toroidal-type continuously variable transmission according to the present invention, among the opposing inner surfaces of the two support plates, a part of both end surfaces of the support members in the axial direction of the tilt shafts. A portion having an elliptical spherical shape (having a major axis) extending in the axial direction of the central axis of each disk is provided at a portion facing a portion of each of the disks that deviates in the radial direction from each tilting axis.

更に、前記各凸部の断面形状のうち、前記各ディスクの中心軸と前記各支持部材の傾転軸とに平行な仮想平面に関する断面形状である部分凸円弧の周方向端部に於ける接線と、前記両支持板の内側面とのなす角度を、これら両支持板の内側面と前記各凸部とが当接した状態でのこれら両支持板の傾斜角度(前記各支持部材とこれら両支持板との位置関係が中立状態にある時のこれら両支持板に対する傾斜角度)よりも大きくしている Further , among the cross-sectional shapes of the respective convex portions, tangents at the circumferential end portions of the partial convex arcs that are cross-sectional shapes with respect to a virtual plane parallel to the central axis of each of the disks and the tilting axis of each of the supporting members. And the angle formed between the inner side surfaces of the two support plates and the angle of inclination of the two support plates in a state where the inner side surfaces of the two support plates are in contact with the convex portions (the support members and the two positional relationship between the supporting plate is greater than the angle of inclination) with respect to these two support plates when in the neutral state.

上述の様に構成する本発明のトロイダル型無段変速機によれば、長期間に亙り円滑な変速動作を確保し易くする事ができる。
即ち、1対の支持板の内側面のうち、各傾転軸の軸方向に関する各支持部材の両端面の一部で、これら各傾転軸から各ディスクの径方向に外れた部分に対向する部分に、これら各ディスクの中心軸の軸方向に伸長する部分楕円球状の凸部を設けている。従って、前記トロイダル型無段変速機の変速比を調節する事に伴い、前記両支持板が傾斜すると、前記各凸部と、前記各支持部材の端面のうち前記各傾転軸から前記各ディスクの径方向に外れた部分とが当接する。この為、前記両支持板が傾斜した場合であっても、これら両支持板の端縁が前記各支持部材の端面に食い込む事はなく、これら各支持部材が前記各傾転軸を中心に揺動変位した場合にも、前記両支持板の端縁とこれら各支持部材の端面とが擦れ合って、この擦れ合い部で著しい摩耗が発生するのを防止できる。従って、前記各支持部材と前記両支持板との位置関係を長期間に亙り適正に維持でき、前記トロイダル型無段変速機の変速動作を長期間に亙り安定して行う事ができる。
特に本発明の場合、前記凸部を、前記各ディスクの中心軸の軸方向に伸長する部分楕円球状としている為、前記両支持板の傾斜方向に拘わらず、前記凸部と、前記各支持部材の端面との当接部の面圧を抑えられて(適正な大きさに規制できて)、当該部分での摩耗の発生をより効果的に抑えられる。
更に、前記各凸部の断面形状のうち、前記各ディスクの中心軸と前記各支持部材の傾転軸とに平行な仮想平面に関する断面形状である部分凸円弧の周方向端部に於ける接線と、前記両支持板の内側面とのなす角度を、これら両支持板の内側面と前記各凸部とが当接した状態でのこれら両支持板の傾斜角度よりも大きくしている為、前記各凸部と、前記支持部材の端面との当接部の面圧をより低く抑える事ができる。
According to the toroidal type continuously variable transmission of the present invention configured as described above, it is possible to easily ensure a smooth speed change operation over a long period of time.
That is, of the inner side surfaces of the pair of support plates, a part of both end surfaces of each support member with respect to the axial direction of each tilting shaft is opposed to a portion that is deviated from each tilting shaft in the radial direction of each disk. The part is provided with a partially elliptical convex part extending in the axial direction of the central axis of each disk. Therefore, when the two support plates are inclined as the gear ratio of the toroidal-type continuously variable transmission is adjusted, the discs are separated from the tilt shafts of the convex portions and the end surfaces of the support members. The part which deviated from the diameter direction of this contact | abuts. For this reason, even when the two support plates are inclined, the edges of the two support plates do not bite into the end surfaces of the support members, and the support members swing around the tilt axes. Even in the case of dynamic displacement, it is possible to prevent the end edges of the both support plates from rubbing against the end surfaces of the respective support members and causing significant wear at the rubbing portions. Therefore, the positional relationship between the support members and the two support plates can be properly maintained over a long period of time, and the shifting operation of the toroidal type continuously variable transmission can be stably performed over a long period of time.
In particular, in the case of the present invention, since the convex portion is a partial oval shape extending in the axial direction of the central axis of each disk, the convex portion and each support member regardless of the inclination direction of the both support plates. The surface pressure of the abutting portion with the end surface can be suppressed (it can be regulated to an appropriate size), and the occurrence of wear at that portion can be more effectively suppressed.
Further, among the cross-sectional shapes of the respective convex portions, tangents at the circumferential end portions of the partial convex arcs that are cross-sectional shapes with respect to a virtual plane parallel to the central axis of each of the disks and the tilting axis of each of the supporting members. And because the angle formed between the inner side surfaces of the two support plates is larger than the inclination angle of the two support plates in a state where the inner side surfaces of the two support plates and the convex portions are in contact with each other , The surface pressure of the contact portion between each of the convex portions and the end surface of the support member can be further reduced.

本発明の実施の形態の1例のトロイダル型無段変速機を構成する支持板を、各ディスクの径方向内方から見た平面図(A)と、(A)のa−a断面図(B)と、(A)のb−b断面図(C)。The top view (A) which looked at the support plate which comprises the toroidal type continuously variable transmission of one example of embodiment of this invention from the radial inside of each disk, and aa sectional drawing of (A) ( B) and bb sectional view (C) of (A). 同じく支持板の凸部とトラニオンの肩部とが当接した状態を、図4と同方向から見た状態で示す模式図。The schematic diagram which shows the state which the convex part of the support plate and the shoulder part of the trunnion contact | abutted similarly in the state seen from the same direction as FIG. 本発明の対象となるトロイダル型無段変速機を組み込んだ、従来から知られている無段変速装置の1例を示す縦断側面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal side view showing an example of a conventionally known continuously variable transmission incorporating a toroidal type continuously variable transmission that is a subject of the present invention. 図3のc部拡大図。The c section enlarged view of FIG. 図3のd−d断面図。Dd sectional drawing of FIG. トロイダル型無段変速機のユニット部分を取り出して示す斜視図。The perspective view which takes out and shows the unit part of a toroidal type continuously variable transmission.

図1、2は、本発明の実施の形態の1例を示している。尚、本例を含めて、本発明の特徴は、長期間に亙って円滑な変速動作を確保し易くすべく、1対の支持板12cの内側面に、各ディスク7a、7b、8(図3参照)の中心軸αの軸方向に伸長する部分楕円球状の凸部36、36を設けた点にある。その他の部分の構成及び作用は、前述の図3〜6に記載した構造を含めて、従来から知られているトロイダル型無段変速機と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。尚、本例の場合、基本的には、1対の支持板12cが上下対称に配置される。そこで、以下の説明では、上側の支持板12cの構造に就いてのみ説明する。   1 and 2 show an example of an embodiment of the present invention. It should be noted that the characteristics of the present invention, including this example, are such that each disk 7a, 7b, 8 (on the inner surface of the pair of support plates 12c is easy to ensure a smooth shifting operation over a long period of time. 3), partially elliptical convex portions 36 extending in the axial direction of the central axis α are provided. Since the configuration and operation of the other parts are the same as those of the conventionally known toroidal continuously variable transmission including the structure described in FIGS. 3 to 6, the illustration and explanation of the equivalent parts are omitted. Or, for simplicity, the following description will focus on the features of this example. In the case of this example, basically, a pair of support plates 12c are arranged vertically symmetrically. Therefore, in the following description, only the structure of the upper support plate 12c will be described.

本例のトロイダル型無段変速機は、支持板12cの互いに対向する内側面のうち、各トラニオン11の肩部37に対向する部分、即ち、この支持板12cの四隅部分に設けた円形の保持孔27c、27cの左右両側に隣接する部分に、前記各ディスク7a、7b、8の中心軸αの軸方向{図1の(A)の上下方向}に伸長する(中心軸αと平行な長軸を有する)部分楕円球状の凸部36、36を設けている。即ち、これら各凸部36、36の前記中心軸αに直交する仮想平面に関する断面形状{図1の(A)のa−a断面}の曲率半径rを、同じく前記中心軸αと前記各トラニオン11の傾転軸24a、24bとに平行な仮想平面に関する断面形状{図1の(A)のb−b断面}の曲率半径rよりも小さくしている(r<r)。そして、この様な凸部36、36を、前記各トラニオン11の肩部37に隙間を介して対向させている。この隙間の大きさ{各傾転軸24a、24b(図5参照)の軸方向に関する厚さ}は、前記各凸部36、36の形状等の条件によって変化するが、一般的な乗用車用のトロイダル型無段変速機の場合で、1.5mm程度以下である。 The toroidal-type continuously variable transmission of this example is a circular holding portion provided on a portion facing the shoulder portion 37 of each trunnion 11 among inner surfaces facing each other of the support plate 12c, that is, four corner portions of the support plate 12c. The portions adjacent to the left and right sides of the holes 27c, 27c extend in the axial direction {vertical direction in FIG. 1A) of the discs 7a, 7b, 8 (length parallel to the central axis α). Protrusions 36 and 36 having a partially elliptical shape (having an axis) are provided. That is, the they curvature radius r a of the cross-sectional shape projected on a virtual plane that is orthogonal to the central axis α of the convex portions 36, 36 {a-a cross section of FIG. 1 (A)}, and also the central axis α each tilting axis 24a of the trunnion 11 is made smaller than the radius of curvature r b of the cross-sectional shape about the imaginary plane parallel to and 24b {b-b cross section of (a) Fig 1} (r a <r b ). And such convex parts 36 and 36 are made to oppose the shoulder part 37 of each said trunnion 11 through the clearance gap. The size of this gap {thickness in the axial direction of each tilting shaft 24a, 24b (see FIG. 5)} varies depending on conditions such as the shape of each convex portion 36, 36, but for general passenger cars. In the case of a toroidal type continuously variable transmission, it is about 1.5 mm or less.

特に本例の場合、前記各凸部36、36の断面形状のうち、前記中心軸αと前記各トラニオン11の傾転軸24a、24bとに平行な仮想平面に関する断面形状である部分凸円弧の周方向端部に於ける接線βと、前記支持板12cの内側面との成す角度θを、この支持板12cが、図2の左右方向に対し傾斜する事で、この支持板12cの内側面と前記各凸部36、36とが当接した状態に於けるこの支持板12cの傾斜角度(前記各トラニオン11とこの支持板12cとの位置関係が中立状態にある時のこの支持板12cに対する傾斜角度)φよりも大きくしている(θ>φ)。   Particularly in the case of this example, among the cross-sectional shapes of the respective convex portions 36, 36, partial convex arcs that are cross-sectional shapes relating to a virtual plane parallel to the central axis α and the tilt axes 24a, 24b of the trunnions 11 are provided. The angle θ between the tangent line β at the end in the circumferential direction and the inner surface of the support plate 12c is inclined with respect to the left-right direction in FIG. And the inclination angle of the support plate 12c in a state where the projections 36 and 36 are in contact with each other (relative to the support plate 12c when the positional relationship between the trunnions 11 and the support plate 12c is in a neutral state). (Inclination angle) is larger than φ (θ> φ).

尚、前記角度θは、前記各凸部36、36の断面形状のうち、前記中心軸αと前記各トラニオン11の傾転軸24a、24bとに平行な仮想平面に関する断面形状である部分凸円弧の曲率半径をrとし、前記各凸部36、36の前記中心軸αの軸方向長さをLとした場合、次の(1)で表される。

Figure 0006432207
このうちの軸方向長さLは、前記関係(θ>φ)を満たす限り、できるだけ小さくする事が、前記各凸部36、36のうちで、前記中心軸αの軸方向に関する中央部付近を、前記各トラニオン11の肩部37と当接させる面から好ましい。尚、一般的な乗用車用のトロイダル型無段変速機の場合、例えば、前記曲率半径rは300〜650mm程度であり、前記各凸部36、36の軸方向長さLは16〜30mm程度である。 Note that the angle θ is a partial convex arc that is a cross-sectional shape related to a virtual plane parallel to the central axis α and the tilt axes 24 a and 24 b of the trunnions 11 among the cross-sectional shapes of the convex portions 36 and 36. the radius of curvature and r b of the case where the central axis axial length of α of each convex section 36 is L, is expressed by the following (1).
Figure 0006432207
Of these protrusions 36, 36, the axial length L of these is as small as possible as long as the relationship (θ> φ) is satisfied. From the surface to be brought into contact with the shoulder portion 37 of each trunnion 11. In the case of a general toroidal-type continuously variable transmission for passenger cars, for example, the curvature radius r b is about 300~650Mm, the axial length L of the respective convex portions 36 and 36 about 16~30mm It is.

又、前記各凸部36、36の断面形状のうち、前記中心軸αの軸方向に直交する仮想平面に関する断面形状である部分凸円弧の曲率半径r(及び各凸部36、36の幅w)は、次の様に規制する。即ち、前記両支持板12cが、前述した図5の左右方向に対して傾斜し、前記各凸部36、36と前記各トラニオン11の肩部37とが当接した(各凸部36、36が各トラニオン11の肩部37に押し付けられた)場合でも、これら各凸部36、36と各トラニオン11の肩部37との当接部の最大ヘルツ圧力Pmaxが、これら各トラニオン11の塑性面圧(これら各トラニオン11の肩部37が塑性変形し始める面圧)Plimを超えない(Pmax<Plim)様に、前記曲率半径rを定める。ここで、前記最大ヘルツ圧力Pmaxは、前記各凸部36、36と前記各トラニオン11の肩部37との当接部の接触楕円の長半径をaとし、同じく短半径をbとし、前記各凸部36、36から前記各トラニオン11の肩部37に加わる荷重をFとすると、次の(2)式で表される。

Figure 0006432207
尚、前記当接部の長半径a及び短半径bは、ヘルツの接触理論に基づき、前記各凸部36、36の形状(曲率半径)や、前記支持板12c及び前記各トラニオン11の材質(ヤング率、ポアソン比)等から算出できる。 Further, the one of the cross-sectional shape of the convex portions 36, 36, the central axis a cross-sectional shape about the imaginary plane perpendicular to the axial direction is partially convex arc of curvature radius r a (and the width of each convex section 36 of the α w) is regulated as follows. That is, the both support plates 12c are inclined with respect to the left-right direction in FIG. 5 described above, and the projections 36 and 36 and the shoulder portions 37 of the trunnions 11 are in contact with each other (projections 36 and 36). Is pressed against the shoulder portion 37 of each trunnion 11), the maximum Hertz pressure P max at the contact portion between each of the convex portions 36, 36 and the shoulder portion 37 of each trunnion 11 is the plasticity of each trunnion 11. the surface pressure does not exceed P lim (these shoulders 37 of each trunnion 11 is a surface pressure starts to plastically deform) (P max <P lim) like, defining the radius of curvature r a. Here, the maximum Hertz pressure P max is set such that the major radius of the contact ellipse of the contact portion between the convex portions 36, 36 and the shoulder portion 37 of each trunnion 11 is a, and the short radius is b, When a load applied to the shoulder portion 37 of the trunnions 11 from the protrusions 36, 36 and F c, it is expressed by the following equation (2).
Figure 0006432207
The major radius a and minor radius b of the contact portion are based on the Hertzian contact theory, and the shape (curvature radius) of the convex portions 36, 36, the material of the support plate 12c and the trunnion 11 ( (Young's modulus, Poisson's ratio) etc.

一方、前記各トラニオン11の降伏応力をσとすると、前記各肩部37の硬度を平均接触圧力に換算した値であるPは、テイバー(Tabor)の関係から次の(3)式の様になる。

Figure 0006432207
更に、前記塑性面圧Plimは、前記各凸部36、36と前記各肩部37との接触状態を点接触と仮定した場合、次の(4)式の様にして求められる。
Figure 0006432207
そして、上述の様に前記曲率半径r及び軸方向長さLを求めた上で、前記曲率半径rを、前記最大ヘルツ圧力Pmaxが前記塑性面圧Plimよりも小さくなる(Pmax<Plim)範囲の値となる様に、計算により求める。これにより、前記支持板12cが、前記図5の左右方向に対し傾斜する事で、前記各凸部36、36が前記各トラニオン11の肩部37に押し付けられた場合にも、これら各肩部37が塑性変形しない様にする。尚、前記曲率半径rは、一般的な乗用車用のトロイダル型無段変速機で、5mm程度以下(好ましくは、3mm程度以下)となる。一方、前記各凸部36、36の幅wに関しては、前記曲率半径rが定まれば、必然的に定まる。 On the other hand, assuming that the yield stress of each trunnion 11 is σ y , P m , which is a value obtained by converting the hardness of each shoulder portion 37 into an average contact pressure, is expressed by the following equation (3) from the Taber relationship. It becomes like.
Figure 0006432207
Further, the plastic surface pressure P lim is obtained as shown in the following equation (4), assuming that the contact state between the projections 36 and 36 and the shoulders 37 is point contact.
Figure 0006432207
Then, after asking the curvature radius r b and the axial length L as described above, the curvature radius r a, the maximum Hertzian pressure P max is smaller than the plastic surface pressure P lim (P max <P lim ) The value is calculated so as to be in the range. As a result, the support plate 12c is inclined with respect to the left-right direction of FIG. 5 so that the shoulder portions 37 and 36 are pressed against the shoulder portions 37 of the trunnions 11. 37 is prevented from plastic deformation. Incidentally, the curvature radius r a is a common toroidal-type continuously variable transmission for passenger cars, more than about 5 mm (preferably, more than about 3mm) becomes. Meanwhile, the with respect to the width w of the convex portions 36 and 36, if the radius of curvature r a is determined, determined inevitably.

上述の様な凸部36、36を設けた支持板12cを組み込んだ本例のトロイダル型無段変速機によれば、長期間に亙り円滑な変速動作を確保し易くする事ができる。
即ち、前記支持板12cの内側面のうち、前記各傾転軸24a、24bの軸方向に関して前記各トラニオン11の肩部37に対向する部分に、前記各ディスク7a、7b、8の中心軸αの軸方向に伸長する部分楕円球状の凸部36、36を設けている。従って、前記トロイダル型無段変速機の変速比を調節する事に伴い、前記支持板12cが傾斜すると、前記各凸部36、36と、前記各肩部37とが当接する。この為、この支持板12cが傾斜した場合であっても、この支持板12cの端縁が前記各トラニオン11の肩部37に食い込む事はなく、これら各トラニオン11が前記各傾転軸24a、24bを中心に揺動変位した場合にも、前記支持板12cの端縁とこれら各トラニオン11の肩部37とが強く擦れ合って、この擦れ合う部で著しい摩耗が発生するのを防止できる。
According to the toroidal continuously variable transmission of this example incorporating the support plate 12c provided with the convex portions 36, 36 as described above, it is possible to easily ensure a smooth speed change operation over a long period of time.
That is, on the inner surface of the support plate 12c, the central axis α of each of the disks 7a, 7b, 8 is placed on the portion of the inner surface of the support plate 12c that faces the shoulder 37 of each trunnion 11 with respect to the axial direction of the tilt shafts 24a, 24b. Protrusions 36, 36 having partial elliptical shapes extending in the axial direction are provided. Accordingly, when the support plate 12c is inclined as the gear ratio of the toroidal type continuously variable transmission is adjusted, the convex portions 36 and 36 and the shoulder portions 37 come into contact with each other. For this reason, even when the support plate 12c is inclined, the end edge of the support plate 12c does not bite into the shoulder portion 37 of each trunnion 11, and each trunnion 11 has the tilt shaft 24a, Even in the case of rocking displacement about 24b, it is possible to prevent the end edge of the support plate 12c and the shoulder portion 37 of each trunnion 11 from rubbing strongly, and the occurrence of significant wear at the rubbing portion.

特に本例の場合、前記各凸部36、36を、前記中心軸αの軸方向に伸長する部分楕円球状としている為、前記支持板12cの傾斜方向(図5の左右方向、或いは、図2、4の左右方向)に拘わらず、前記各凸部36、36と、前記各トラニオン11の肩部37との当接部の面圧を抑えられて(適正な大きさに規制できて)、当該部分での摩耗の発生をより効果的に抑えられる。
特に本例の場合、前記各凸部36、36の断面形状のうち、前記中心軸αと前記各トラニオン11の傾転軸24a、24bとに平行な仮想平面に関する断面形状である部分円弧の曲率半径rを、前記関係(θ>φ)を満たす様に規制している。この為、前記支持板12cが、前記図2の左右方向に対して傾斜した場合の、前記各凸部36、36と前記各トラニオン11の肩部37との当接部の面圧をより低く抑えられる。
In particular, in the case of this example, each of the convex portions 36, 36 has a partial elliptical shape extending in the axial direction of the central axis α, so that the inclination direction of the support plate 12c (the left-right direction in FIG. 5 or FIG. 4), the surface pressure of the contact portion between each of the convex portions 36, 36 and the shoulder portion 37 of each trunnion 11 can be suppressed (can be regulated to an appropriate size) The occurrence of wear at that portion can be more effectively suppressed.
In particular, in the case of this example, the curvature of the partial arc that is a cross-sectional shape related to a virtual plane parallel to the central axis α and the tilting axes 24 a and 24 b of the trunnions 11 among the cross-sectional shapes of the convex portions 36 and 36. the radius r b, are regulated so as to satisfy the relationship (θ> φ). For this reason, when the support plate 12c is inclined with respect to the left-right direction in FIG. 2, the contact pressure between the convex portions 36 and 36 and the shoulder portion 37 of each trunnion 11 is lowered. It can be suppressed.

更に、本例の場合には、前記軸方向長さLを、前記関係(θ>φ)を満たす事ができる範囲でできる限り小さくし、前記各凸部36、36のうち、前記中心軸αの軸方向に関する中央部付近と、前記各トラニオン11の肩部37とが当接する様にしている。この為、前記各凸部36、36とこれら各肩部37との当接部の面圧が高くなった場合にも、前記各凸部36、36の一部に応力が集中する事を防止できる。   Furthermore, in the case of this example, the axial length L is made as small as possible within a range that can satisfy the relationship (θ> φ), and the central axis α The vicinity of the central part in the axial direction of the trunnion 11 is in contact with the shoulder 37 of each trunnion 11. For this reason, even when the surface pressure of the contact portion between the convex portions 36 and 36 and the shoulder portions 37 is increased, stress is prevented from concentrating on a part of the convex portions 36 and 36. it can.

本発明のトロイダル型無段変速機は、前述の図3〜6に示した様な、遊星歯車式変速機と組み合わせて大きな速度比を得られる無段変速装置を構成するトロイダル型無段変速機として利用するだけでなく、遊星歯車式変速機と組み合わせる事なく、単独で自動車用自動変速機等を構成するトロイダル型無段変速機として利用する事もできる。
又、トラニオンとパワーローラとの係合部の構造に関しても、スラスト玉軸受の外輪をトラニオンの支持梁部に対し、部分円筒面同士の係合により揺動変位可能に支持する構造と、スラスト玉軸受の外輪の外側面とトラニオンの支持梁部の内側面との間にスラスト軸受を設けて、各ディスクの軸方向に関するパワーローラの変位を可能にする構造との何れの構造でも実施する事もできる。
The toroidal type continuously variable transmission of the present invention is a toroidal type continuously variable transmission that constitutes a continuously variable transmission capable of obtaining a large speed ratio in combination with a planetary gear type transmission as shown in FIGS. In addition, it can be used as a toroidal continuously variable transmission that constitutes an automatic transmission for automobiles alone without being combined with a planetary gear type transmission.
In addition, regarding the structure of the engaging portion between the trunnion and the power roller, a structure in which the outer ring of the thrust ball bearing is supported by the supporting beam portion of the trunnion so as to be able to swing and displace by engagement of the partial cylindrical surfaces, and the thrust ball A thrust bearing may be provided between the outer surface of the outer ring of the bearing and the inner surface of the support beam portion of the trunnion so that the power roller can be displaced in the axial direction of each disk. it can.

1 トロイダル型無段変速機
2 遊星歯車式変速機
3 低速用クラッチ
4 高速用クラッチ
5 入力軸
6 出力軸
7a、7b 入力側ディスク
8 出力側ディスク
9 パワーローラ
10 玉軸受
11 トラニオン
12a〜12c 支持板
13 ケーシング
14 アクチュエータボディー
15 連結板
16 支柱
17a、17b 支持ポスト部
18 支持部
19 ボルト
20 ボルト
21a、21b 支持孔
22 支持梁部
23a、23b 折れ曲がり部
24a、24b 傾転軸
25 偏心軸
26a〜26d 転がり軸受
27a、27b 保持孔
28 ラジアルニードル軸受
29 外輪
30 ニードル
31 天板部
32 位置決めスリーブ
33a、33b アクチュエータ
34 駆動軸
35 押圧装置
36 凸部
37 肩部
DESCRIPTION OF SYMBOLS 1 Toroidal type continuously variable transmission 2 Planetary gear type transmission 3 Low speed clutch 4 High speed clutch 5 Input shaft 6 Output shaft 7a, 7b Input side disk 8 Output side disk 9 Power roller 10 Ball bearing 11 Trunnion 12a-12c Support plate DESCRIPTION OF SYMBOLS 13 Casing 14 Actuator body 15 Connection board 16 Support | pillar 17a, 17b Support post part 18 Support part 19 Bolt 20 Bolt 21a, 21b Support hole 22 Support beam part 23a, 23b Bending part 24a, 24b Tilt shaft 25 Eccentric shaft 26a-26d Rolling Bearing 27a, 27b Holding hole 28 Radial needle bearing 29 Outer ring 30 Needle 31 Top plate part 32 Positioning sleeve 33a, 33b Actuator 34 Drive shaft 35 Press device 36 Convex part 37 Shoulder part

Claims (1)

回転軸のうちで軸方向に互いに離隔した2箇所位置に、それぞれが断面円弧形である互いの軸方向片側面同士を対向させた状態で、前記回転軸と同期した回転を自在として支持された1対の外側ディスクと、
前記回転軸の中間部周囲に、断面円弧形である軸方向両側面をこれら両外側ディスクの軸方向片側面に対向させた状態で、前記回転軸に対する相対回転を自在に支持された、一体の、若しくは1対の素子を結合して成る内側ディスクと、
前記回転軸の軸方向に関して、この内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面との間位置にそれぞれ2個ずつ、前記回転軸に対し捩れの位置で、且つ、それぞれの両端部に設けられた傾転軸を中心とする揺動変位を可能に設けられた支持部材と、
これら各支持部材を、前記各傾転軸の軸方向変位を可能に支持する為の1対の支持板と、
前記各支持部材に回転自在に支持され、球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記両外側ディスクの軸方向片側面とに当接させた4個のパワーローラと
を備えるトロイダル型無段変速機に於いて、
前記両支持板の互いに対向する内側面のうち、前記各傾転軸の軸方向に関する前記各支持部材の両端面の一部で、これら各傾転軸から前記各ディスクの径方向に外れた部分に対向する部分に、これら各ディスクの軸方向に伸長する部分楕円球状の凸部を設けており、これら各凸部の断面形状のうち、前記各ディスクの中心軸と前記各支持部材の傾転軸とに平行な仮想平面に関する断面形状である部分凸円弧の周方向端部に於ける接線と、前記両支持板の内側面とのなす角度を、これら両支持板の内側面と前記各凸部とが当接した状態に於けるこれら両支持板の傾斜角度よりも大きくしている事を特徴とするトロイダル型無段変速機。
Of the rotating shafts, two positions that are separated from each other in the axial direction are supported so as to freely rotate in synchronization with the rotating shaft, with the respective axial side surfaces facing each other having arcuate cross sections. A pair of outer disks;
Around the intermediate portion of the rotating shaft, the axially opposite side surfaces having a circular arc cross section are opposed to the axially one side surfaces of both outer disks, and are integrally supported to freely rotate relative to the rotating shaft. Or an inner disk formed by combining a pair of elements;
With respect to the axial direction of the rotating shaft, two each in a position between the axial both side surfaces of the inner disk and the one axial side surface of the outer disks, respectively, at a twisted position with respect to the rotating shaft, and A support member provided to be capable of swinging displacement about a tilt axis provided at both ends;
A pair of support plates for supporting each of these support members so as to enable axial displacement of each of the tilting shafts;
Four power rollers which are rotatably supported by the respective support members and have spherical peripheral surfaces which are in contact with both axial side surfaces of the inner disk and one axial side surface of the outer disks. In a toroidal continuously variable transmission comprising:
Of the inner surfaces of the two support plates facing each other, a part of both end surfaces of the support members with respect to the axial direction of the tilt shafts, which are separated from the tilt shafts in the radial direction of the disks. Are formed in a part oval spherical convex part extending in the axial direction of each disk, and among the cross-sectional shapes of each convex part, the central axis of each disk and the tilt of each support member An angle formed between a tangent line at a circumferential end of a partially convex arc that is a cross-sectional shape with respect to a virtual plane parallel to the axis and an inner surface of each of the support plates is defined as an inner surface of each of the support plates and each of the protrusions. A toroidal-type continuously variable transmission characterized in that it is larger than the inclination angle of both of the support plates in a state where the part abuts .
JP2014165676A 2014-08-18 2014-08-18 Toroidal continuously variable transmission Active JP6432207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014165676A JP6432207B2 (en) 2014-08-18 2014-08-18 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014165676A JP6432207B2 (en) 2014-08-18 2014-08-18 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2016041948A JP2016041948A (en) 2016-03-31
JP6432207B2 true JP6432207B2 (en) 2018-12-05

Family

ID=55591798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165676A Active JP6432207B2 (en) 2014-08-18 2014-08-18 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6432207B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463625B2 (en) * 1999-09-27 2003-11-05 日産自動車株式会社 Toroidal type continuously variable transmission

Also Published As

Publication number Publication date
JP2016041948A (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP2012172685A (en) Toroidal type continuously variable transmission
JP2004100748A (en) Power roller unit for toroidal-type continuously-variable transmission
JP6432207B2 (en) Toroidal continuously variable transmission
JP4758809B2 (en) Toroidal continuously variable transmission
JP5939015B2 (en) Toroidal continuously variable transmission
JP4706920B2 (en) Toroidal continuously variable transmission
JP6372304B2 (en) Toroidal continuously variable transmission
JP5817282B2 (en) Toroidal continuously variable transmission
JP4972931B2 (en) Toroidal continuously variable transmission
JP4894178B2 (en) Toroidal continuously variable transmission
JP2007240004A (en) Power roller unit for toroidal continuously variable transmission
JP4947492B2 (en) Toroidal continuously variable transmission
JP6528359B2 (en) Toroidal type continuously variable transmission
JP6421462B2 (en) Toroidal continuously variable transmission
JP4983363B2 (en) Toroidal continuously variable transmission
JP6248609B2 (en) Toroidal continuously variable transmission
JP4605460B2 (en) Toroidal continuously variable transmission
JP5082498B2 (en) Toroidal continuously variable transmission
JP5003140B2 (en) Toroidal continuously variable transmission
JP6492614B2 (en) Toroidal continuously variable transmission
JP2015090160A (en) Toroidal type continuously variable transmission
JP6488566B2 (en) Toroidal continuously variable transmission
JP6364961B2 (en) Toroidal continuously variable transmission
JP2008111488A (en) Toroidal type continuously variable transmission
JP2012177394A (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R150 Certificate of patent or registration of utility model

Ref document number: 6432207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150