JP6423579B2 - Conductivity meter and method for correcting the measured value - Google Patents

Conductivity meter and method for correcting the measured value Download PDF

Info

Publication number
JP6423579B2
JP6423579B2 JP2013019814A JP2013019814A JP6423579B2 JP 6423579 B2 JP6423579 B2 JP 6423579B2 JP 2013019814 A JP2013019814 A JP 2013019814A JP 2013019814 A JP2013019814 A JP 2013019814A JP 6423579 B2 JP6423579 B2 JP 6423579B2
Authority
JP
Japan
Prior art keywords
primary
magnetic body
temperature
conductivity
annular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013019814A
Other languages
Japanese (ja)
Other versions
JP2014149283A (en
Inventor
理一郎 鈴木
理一郎 鈴木
隆幸 久保田
隆幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Advanced Techno Co Ltd
Original Assignee
Horiba Advanced Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Advanced Techno Co Ltd filed Critical Horiba Advanced Techno Co Ltd
Priority to JP2013019814A priority Critical patent/JP6423579B2/en
Priority to KR1020140010573A priority patent/KR102124215B1/en
Priority to DE201410001354 priority patent/DE102014001354A1/en
Publication of JP2014149283A publication Critical patent/JP2014149283A/en
Application granted granted Critical
Publication of JP6423579B2 publication Critical patent/JP6423579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、一次コイルに所定の交流電圧を印加したときに測定対象を介して二次コイルに発生する誘導電流から該測定対象の導電率を測定する導電率測定計及びその測定値補正方法である。   The present invention relates to a conductivity meter for measuring the conductivity of a measurement object from an induced current generated in the secondary coil via the measurement object when a predetermined alternating voltage is applied to the primary coil, and a method for correcting the measurement value. is there.

この種の導電率測定計としては、測定対象が導入される環状管部材と、この環状管部材が貫通する環状磁性体と、この環状磁性体に巻回され、一次側磁束環を形成する一次コイル及び二次側磁束環を形成する二次コイルと、一次コイルに所定の交流電圧を印加する電源部と、前記交流電圧の印加によって生じる二次コイルの誘導電流を測定し、その誘導電流に基づいて測定対象の導電率を算出する測定部とを有したものが知られている。   As this type of conductivity meter, an annular tube member into which a measurement target is introduced, an annular magnetic body through which the annular tube member passes, and a primary magnetic flux ring wound around the annular magnetic body to form a primary magnetic flux ring A secondary coil that forms a coil and a secondary magnetic flux ring, a power supply unit that applies a predetermined alternating voltage to the primary coil, and an induced current of the secondary coil that is generated by the application of the alternating voltage; A device having a measurement unit that calculates the conductivity of a measurement object based on the measurement object is known.

ところで、環状磁性体の透磁率は、該環状磁性体の温度によって変化することが知られている。例えば、特許文献1には、環状磁性体の周囲温度変化に伴う透磁率の変化が導電率の検出精度に限界を与えていることが記載されている。   By the way, it is known that the magnetic permeability of the annular magnetic body changes depending on the temperature of the annular magnetic body. For example, Patent Document 1 describes that a change in magnetic permeability accompanying a change in ambient temperature of an annular magnetic body limits the detection accuracy of conductivity.

しかしながら、環状磁性体の温度を測定するような特許文献は見当たらない。例えば、特許文献2には、環状磁性体の近傍に温度検出用の白金抵抗が設けられているものの、この白金抵抗は樹脂で覆われており、環状磁性体からの伝熱性が悪いため、環状磁性体の温度を測定できるものではない。   However, there is no patent document that measures the temperature of the annular magnetic body. For example, in Patent Document 2, although a platinum resistor for temperature detection is provided in the vicinity of the annular magnetic body, this platinum resistance is covered with a resin, and the heat transfer from the annular magnetic body is poor. It cannot measure the temperature of the magnetic material.

特開平10−153564号公報JP-A-10-153564 特開2000−131286号公報JP 2000-131286 A

本発明は、上記問題点を解決すべくなされたものであって、環状磁性体の温度を正確に求め、精度良く導電率を測定することをその主たる所期課題とするものである。   The present invention has been made in order to solve the above-mentioned problems, and its main intended task is to accurately determine the temperature of the annular magnetic body and to measure the conductivity with high accuracy.

本発明に係る導電率測定計は、一次側磁束環を形成し、閉ループをなす測定対象が該一次側磁束環を貫通するように配設された一次コイルと、二次側磁束環を形成し、前記測定対象が該二次側磁束環を貫通するように配設された二次コイルと、前記一次コイルが巻回される一次側環状磁性体及び前記二次コイルが巻回される二次側環状磁性体と、前記一次コイルに所定の交流電圧を印加する電源部と、前記二次コイルに発生する誘導電流から前記測定対象の導電率を測定する測定部とを具備した導電率測定計において、前記一次側環状磁性体又は前記二次側環状磁性体の少なくともいずれか一方の温度を直接的又は間接的に測定する温度センサを具備していることを特徴とするものである。   The conductivity meter according to the present invention forms a primary side magnetic flux ring, and forms a closed loop and a primary coil disposed so as to pass through the primary side magnetic flux ring, and a secondary side magnetic flux ring. A secondary coil arranged so that the measurement object penetrates the secondary side magnetic flux ring, a primary side annular magnetic body around which the primary coil is wound, and a secondary around which the secondary coil is wound Conductivity measuring instrument comprising a side annular magnetic body, a power supply unit for applying a predetermined alternating voltage to the primary coil, and a measuring unit for measuring the conductivity of the measurement object from the induced current generated in the secondary coil And a temperature sensor that directly or indirectly measures the temperature of at least one of the primary-side annular magnetic body and the secondary-side annular magnetic body.

このようなものであれば、温度センサが環状磁性体の温度を直接的又は間接的に測定するため、該温度センサによる温度が環状磁性体の正確な温度を示し、この温度を用いて測定部で測定された測定導電率を補正することで、精度良く導電率を求めることができる。   In such a case, since the temperature sensor directly or indirectly measures the temperature of the annular magnetic body, the temperature by the temperature sensor indicates the accurate temperature of the annular magnetic body, and using this temperature, the measuring unit By correcting the measured conductivity measured in step 1, the conductivity can be obtained with high accuracy.

温度センサの具体的な実施態様としては、前記温度センサが、前記一次側環状磁性体を収容する一次側収容部材又は前記二次側環状磁性体を収容する二次側収容部材の少なくともいずれか一方に設けられ、該収容部材の温度を測定するものが挙げられる。   As a specific embodiment of the temperature sensor, the temperature sensor is at least one of a primary-side housing member that houses the primary-side annular magnetic body and a secondary-side housing member that houses the secondary-side annular magnetic body. And measuring the temperature of the housing member.

環状磁性体から温度センサへの伝熱性を良くして、環状磁性体の温度を間接的に測定しながらも、温度センサによる温度が応答性良く環状磁性体の正確な温度を示すためには、前記一次側収容部材及び前記二次側収容部材が金属製であることが望ましい。   In order to improve the heat transfer from the annular magnetic body to the temperature sensor and indirectly measure the temperature of the annular magnetic body, the temperature by the temperature sensor is responsive and shows the accurate temperature of the annular magnetic body. It is desirable that the primary side accommodation member and the secondary side accommodation member are made of metal.

収容部材の温度から測定導電率を補正するための具体的な実施の態様としては、前記環状磁性体の温度と測定導電率との関係を示すデータである温度特性データを記憶している温度特性データ記憶部と、前記温度特性データと前記収容部材の温度とに基づいて、前記測定部で測定された測定導電率を補正する補正部とを具備するものであることが望ましい。   As a specific embodiment for correcting the measured conductivity from the temperature of the housing member, a temperature characteristic storing temperature characteristic data which is data indicating a relationship between the temperature of the annular magnetic body and the measured conductivity is stored. It is desirable to include a data storage unit, and a correction unit that corrects the measured conductivity measured by the measurement unit based on the temperature characteristic data and the temperature of the housing member.

より応答性良く温度センサによる測定温度が環状磁性体の温度を示すためには、前記収容部材が、前記環状磁性体を収容する環状の収容空間を有し、前記コイルが巻回された前記環状磁性体が、前記収容空間を形成する外筒部と内筒部とで挟まれてガタなく収容されていることが望ましい。   In order for the temperature measured by the temperature sensor to indicate the temperature of the annular magnetic body with higher responsiveness, the housing member has an annular housing space for housing the annular magnetic body, and the annular coil around which the coil is wound It is desirable that the magnetic body be accommodated between the outer cylinder portion and the inner cylinder portion that form the accommodation space without any play.

また、前記各収容部材が接して又は近接して設けられており、同じ材質からなり、互いに等しい形状を有していることが好ましい。   Moreover, it is preferable that each said accommodating member is provided in contact or close, consists of the same material, and has the mutually same shape.

ここで、近接とは、一次側収容部材及び二次側収容部材それぞれの周囲の温度が等しい、もしくは、異なる温度であっても僅かな差で実質的に測定に影響を与えないように、各収容部材が配設される位置関係のことを言う。   Here, the proximity means each of the primary side storage member and the secondary side storage member so that the temperature around each of the primary side storage member and the secondary side storage member is equal or different so that the measurement is not substantially affected even by a slight difference. This refers to the positional relationship in which the housing member is disposed.

このように構成すれば、各収容部材の収容部材温度が等しくなるため、一次側収容部材又は二次側収容部材のいずれか一方に温度センサを設ければよい。   If comprised in this way, since the accommodation member temperature of each accommodation member becomes equal, what is necessary is just to provide a temperature sensor in any one of a primary side accommodation member or a secondary side accommodation member.

本発明の効果が特に顕著となる具体的な実施態様としては、前記測定対象が液体であって、前記液体が流れる環状流路を形成する環状管部材を更に具備し、前記収容部材の内周面と前記環状管部材の外周面とが接して、該収容部材がガタなく取り付けられているものが挙げられる。   As a specific embodiment in which the effect of the present invention is particularly remarkable, the measurement object is a liquid, and further includes an annular tube member that forms an annular flow path through which the liquid flows, and an inner circumference of the housing member The surface and the outer peripheral surface of the annular tube member are in contact with each other, and the housing member is attached without play.

このように、収容部材をガタなく取り付けるために、収容部材の内周面と環状管部材の外周面とが接している場合、環状磁性体は測定対象の温度による影響を受けやすいが、本発明によれば、収容部材の温度が応答性良く正確に環状磁性体の温度を示すため、収容部材の温度を環状磁性体の温度とみなして測定導電率を補正することで、導電率を精度良く求めることが可能である。   As described above, in order to attach the housing member without play, when the inner circumferential surface of the housing member and the outer circumferential surface of the annular tube member are in contact with each other, the annular magnetic body is easily affected by the temperature of the measurement target. According to the above, since the temperature of the housing member accurately indicates the temperature of the annular magnetic body with good responsiveness, the conductivity is accurately determined by correcting the measured conductivity by regarding the temperature of the housing member as the temperature of the annular magnetic body. It is possible to ask.

本発明に係る導電率測定計の測定値補正方法は、一次側磁束環を形成し、閉ループをなす測定対象が該一次側磁束環を貫通するように配設された一次コイルと、二次側磁束環を形成し、前記測定対象が該二次側磁束環を貫通するように配設された二次コイルと、前記一次コイルが巻回される一次側環状磁性体及び前記二次コイルが巻回される二次側環状磁性体と、前記一次コイルに所定の交流電圧を印加する電源部と、前記二次コイルに発生する誘導電流から前記測定対象の導電率を測定する測定部とを具備した導電率測定計の測定値補正方法であって、前記一次側環状磁性体又は前記二次側環状磁性体の少なくともいずれか一方の温度を直接的又は間接的に測定することを特徴とするものである。   The measurement value correction method of the conductivity meter according to the present invention includes a primary coil that forms a primary-side magnetic flux ring and a measurement object that forms a closed loop is disposed so as to pass through the primary-side magnetic flux ring, A secondary coil in which a magnetic flux ring is formed and the measurement object passes through the secondary magnetic flux ring, a primary side annular magnetic body around which the primary coil is wound, and the secondary coil are wound. A secondary-side annular magnetic body to be rotated; a power supply unit that applies a predetermined AC voltage to the primary coil; and a measurement unit that measures the conductivity of the measurement object from an induced current generated in the secondary coil. A method for correcting a measured value of a conductivity meter, wherein the temperature of at least one of the primary-side annular magnetic body and the secondary-side annular magnetic body is measured directly or indirectly It is.

このようなものであれば、環状磁性体の温度を直接的又は間接的に測定しており、該環状磁性体の正確な温度を用いて測定導電率を補正することができ、精度良く導電率を求めることが可能となる。   In such a case, the temperature of the annular magnetic body is measured directly or indirectly, and the measured conductivity can be corrected using the accurate temperature of the annular magnetic body, and the conductivity can be accurately measured. Can be obtained.

応答性良く環状磁性体の正確な温度を求めるためには、前記一次側環状磁性体を収容する金属製の一次側収容部材又は前記二次側環状磁性体を収容する金属製の二次側収容部材の少なくともいずれか一方の温度を測定し、前記環状磁性体の温度と測定導電率との関係を示すデータである温度特性データを記録し、前記収容部材の温度を前記環状磁性体の温度とみなし、該収容部材の温度と前記温度特性データとに基づいて、前記測定部で測定された測定導電率を補正することが好ましい。   In order to obtain an accurate temperature of the annular magnetic body with good responsiveness, a metal primary side accommodating member that accommodates the primary side annular magnetic body or a metal secondary side accommodation that accommodates the secondary side annular magnetic body is provided. Measuring the temperature of at least one of the members, recording temperature characteristic data which is data indicating the relationship between the temperature of the annular magnetic body and the measured conductivity, and setting the temperature of the housing member to the temperature of the annular magnetic body It is preferable to correct the measured conductivity measured by the measuring unit based on the temperature of the housing member and the temperature characteristic data.

このように構成した本発明によれば、温度センサが環状磁性体の温度を直接的又は間接的に測定するため、該温度センサによる温度が環状磁性体の正確な温度を示すし、この温度を用いて測定導電率を補正することで、精度良く導電率を求めることができる。   According to the present invention configured as described above, since the temperature sensor directly or indirectly measures the temperature of the annular magnetic body, the temperature by the temperature sensor indicates the accurate temperature of the annular magnetic body. By using and correcting the measured conductivity, the conductivity can be obtained with high accuracy.

本発明の一実施形態における導電率測定計を示す模式図。The schematic diagram which shows the conductivity meter in one Embodiment of this invention. 同実施形態における収容部材を模式的に示す斜視図。The perspective view which shows the accommodating member in the embodiment typically. 同実施形態における収容部本体を模式的に示す斜視図。The perspective view which shows typically the accommodating part main body in the embodiment. 同実施形態における測定装置の機能を示す機能ブロック図。The functional block diagram which shows the function of the measuring device in the embodiment. 同実施形態における磁性体温度と測定導電率との関係を示すグラフ。The graph which shows the relationship between the magnetic body temperature and measurement conductivity in the same embodiment.

以下に本発明の一実施形態について図1〜図5を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態に係る導電率測定計100は、例えば半導体プロセスで用いられる、例えば材料液や洗浄液などの液体サンプルの導電率を測定する際に用いられるものである。   The conductivity measuring meter 100 according to the present embodiment is used when measuring the conductivity of a liquid sample such as a material liquid or a cleaning liquid used in a semiconductor process, for example.

より具体的に述べると、導電率測定計100は、図1及び図2に示すように、液体サンプルが導入される環状管部材10と、環状管部材10が貫通する一次側環状磁性体21及び二次側環状磁性体22と、これらの環状磁性体21、22に巻回される一次コイル31及び二次コイル32と、一次コイル31に接続される電源部5と、二次コイル32に接続され、測定対象の導電率を測定する測定装置6とから構成されている。
なお、図1では一次コイル31及び二次コイル32は図示していない。
More specifically, as shown in FIGS. 1 and 2, the conductivity meter 100 includes an annular tube member 10 into which a liquid sample is introduced, a primary-side annular magnetic body 21 through which the annular tube member 10 passes, and Connected to the secondary side annular magnetic body 22, the primary coil 31 and the secondary coil 32 wound around the annular magnetic bodies 21, 22, the power supply unit 5 connected to the primary coil 31, and the secondary coil 32. And a measuring device 6 for measuring the conductivity of the measuring object.
In FIG. 1, the primary coil 31 and the secondary coil 32 are not shown.

前記環状管部材10は、図1に示すように、導入された液体サンプルの流路を環状に形成するものであり、第1流路を形成する第1管部材11と、第1流路から分岐してループを形成するように合流する第2流路を形成する第2管部材12とから構成されている。   As shown in FIG. 1, the annular tube member 10 forms the flow path of the introduced liquid sample in an annular shape, and includes a first tube member 11 that forms the first flow path, and a first flow path. It is comprised from the 2nd pipe member 12 which forms the 2nd flow path which merges so that it may branch and may form a loop.

上述した流路を流れることで液体サンプルは閉ループをなし、この状態において該液体サンプルの導電率が測定される。
なお、第2管部材12には第2流路に突き出す突出部が形成されており、第2流路に流入する液体サンプルの液温を測定する液温測定計8が前記突出部内に設けられている。この液温測定計8は、第2流路の流出側に設けられるようにしても構わない。
By flowing through the flow path described above, the liquid sample forms a closed loop, and in this state, the conductivity of the liquid sample is measured.
The second pipe member 12 is formed with a protrusion protruding into the second flow path, and a liquid temperature meter 8 for measuring the liquid temperature of the liquid sample flowing into the second flow path is provided in the protrusion. ing. The liquid temperature meter 8 may be provided on the outflow side of the second flow path.

前記各管部材11、12は、例えばプラスチック等の合成樹脂からなり、第1管部材11は一次側環状磁性体21を貫通し、第2管部材12は二次側環状磁性体22を貫通している。   Each of the tube members 11 and 12 is made of, for example, a synthetic resin such as plastic, the first tube member 11 penetrates the primary side annular magnetic body 21, and the second tube member 12 penetrates the secondary side annular magnetic body 22. ing.

これらの環状磁性体21、22は、いずれも互いに等しい形状のフェライトからなるトロイダルコアである。   These annular magnetic bodies 21 and 22 are toroidal cores made of ferrite having the same shape.

各環状磁性体21、22には、例えば銅線からなる一次コイル31及び二次コイル32が巻回されている。   A primary coil 31 and a secondary coil 32 made of, for example, copper wire are wound around the annular magnetic bodies 21 and 22.

一次コイル31には、該一次コイル31に所定の交流電圧を印加する電源部5が接続されている。   The primary coil 31 is connected to a power supply unit 5 that applies a predetermined AC voltage to the primary coil 31.

二次コイル32には、一次コイル31に交流電圧が印加されたときに、二次コイル32に発生する誘導電流から液体サンプルの導電率を測定する測定装置6が接続されている。   The secondary coil 32 is connected to a measuring device 6 that measures the conductivity of the liquid sample from the induced current generated in the secondary coil 32 when an AC voltage is applied to the primary coil 31.

本実施形態では、コイル31、32が巻回された各環状磁性体21、22をそれぞれ収容するための一次側収容部材41及び二次側収容部材42が、管部材11、12の外周を取り巻くように取り付けられている。   In the present embodiment, the primary side accommodation member 41 and the secondary side accommodation member 42 for accommodating the respective annular magnetic bodies 21 and 22 around which the coils 31 and 32 are wound surround the outer periphery of the tube members 11 and 12. It is attached as follows.

これらの収容部材41、42について図2及び図3を参照して説明する。   The housing members 41 and 42 will be described with reference to FIGS.

収容部材41、42は、前記環状磁性体21、22を収容する環状の収容空間Sが外筒部432と内筒部433との間に形成される二重筒状のものであり、内筒部433には、管部材11、12が嵌り込でいる。   The accommodating members 41 and 42 are of a double cylinder shape in which an annular accommodating space S for accommodating the annular magnetic bodies 21 and 22 is formed between the outer cylinder part 432 and the inner cylinder part 433. The pipe members 11 and 12 are fitted in the portion 433.

また、収容部材41、42は、外筒部432と内筒部433との間に介在する環状底板431から、外筒部432及び内筒部433とは逆側に温度センサ45を取り付けるための突出部が形成されたものである。   The accommodating members 41, 42 are for attaching the temperature sensor 45 to the opposite side of the outer cylinder part 432 and the inner cylinder part 433 from the annular bottom plate 431 interposed between the outer cylinder part 432 and the inner cylinder part 433. A protrusion is formed.

より具体的には、収容部材41、42は、図2に示すように、前記収容空間Sを形成する収容部本体43と、前記収容空間Sを密閉する蓋体44とから構成されている。   More specifically, as shown in FIG. 2, the housing members 41 and 42 are composed of a housing body 43 that forms the housing space S and a lid body 44 that seals the housing space S.

収容部本体43は、環状底板431と、該環状底板431の一方の面の外周縁部から形成される外筒部432と、内周縁部から形成される内筒部433とを有するものである。   The accommodating portion main body 43 includes an annular bottom plate 431, an outer cylindrical portion 432 formed from the outer peripheral edge portion of one surface of the annular bottom plate 431, and an inner cylindrical portion 433 formed from the inner peripheral edge portion. .

そして、これらの環状底板431、外筒部432及び内筒部433に囲まれた環状の空間を前記収容空間Sとして形成するものである。   An annular space surrounded by the annular bottom plate 431, the outer cylinder portion 432, and the inner cylinder portion 433 is formed as the accommodation space S.

この収容空間Sにコイル31、32が巻回された環状磁性体21、22を隙間が最も少なくなるように収容するために、外筒部432の内径は環状磁性体21、22の外径より若干大きく、内筒部433の外径は環状磁性体21、22の内径より若干小さく形成されている。   In order to accommodate the annular magnetic bodies 21 and 22 around which the coils 31 and 32 are wound in the accommodation space S so that the gap is minimized, the inner diameter of the outer cylindrical portion 432 is larger than the outer diameter of the annular magnetic bodies 21 and 22. The outer diameter of the inner cylinder portion 433 is slightly smaller than the inner diameter of the annular magnetic bodies 21 and 22.

また、内筒部433は、管部材11、12がガタなく嵌るように、該内筒部433の内径と管部材11、12の外径とが等しくなるように形成されている。   Moreover, the inner cylinder part 433 is formed so that the inner diameter of the inner cylinder part 433 and the outer diameter of the pipe members 11 and 12 are equal so that the pipe members 11 and 12 can be fitted without play.

蓋体44は、前述した収容部本体43と、例えば脱着可能に取り付けられるものであり、収容部本体43に取り付けられることで収容空間Sを密閉する。   The lid 44 is attached to the housing main body 43 described above so as to be removable, for example, and seals the housing space S by being attached to the housing main body 43.

より具体的には、蓋体44は、円環状をなす平板であり、外径が前記外筒部432の外径と等しく、内形が前記内筒部433の内径と等しくなるように形成されたものである。   More specifically, the lid body 44 is an annular flat plate, and is formed so that the outer diameter is equal to the outer diameter of the outer cylinder portion 432 and the inner shape is equal to the inner diameter of the inner cylinder portion 433. It is a thing.

しかして、本実施形態では、温度センサ45を取り付けるための中実円筒状をなす温度センサ取付部434が、前記環状底板431の他方の面から外筒部432及び内筒部433とは逆側に収容部本体43と一体に形成されている。   Thus, in the present embodiment, the temperature sensor mounting portion 434 having a solid cylindrical shape for mounting the temperature sensor 45 is opposite to the outer cylinder portion 432 and the inner cylinder portion 433 from the other surface of the annular bottom plate 431. The housing portion main body 43 is integrally formed.

この温度センサ取付部434には、該温度センサ取付部434の外側周面から内部へ温度センサ45を挿入するための温度センサ取付孔435が形成されている。   The temperature sensor attachment portion 434 is formed with a temperature sensor attachment hole 435 for inserting the temperature sensor 45 into the inside from the outer peripheral surface of the temperature sensor attachment portion 434.

収容部材41、42のいずれか一方の収容部本体43には、図3に示すように、この温度センサ取付孔435に、例えば温度検出用の白金抵抗などの温度センサ45が取り付けられている。   As shown in FIG. 3, the temperature sensor 45 such as a platinum resistor for temperature detection is attached to the temperature sensor mounting hole 435 in one of the housing parts 43 of the housing members 41 and 42.

以上のように構成された一次側収容部材41及び二次側収容部材42は、本実施形態では、互いに等しい形状をなした鉄等の金属製のものであり、前記環状底板431の他方の面が接するように配設されている。   In the present embodiment, the primary side accommodation member 41 and the secondary side accommodation member 42 configured as described above are made of metal such as iron and have the same shape, and the other surface of the annular bottom plate 431. Are arranged so as to contact each other.

次に、二次コイル32に発生する誘導電流から液体サンプルの導電率を測定する測定装置6について説明する。   Next, the measuring device 6 that measures the conductivity of the liquid sample from the induced current generated in the secondary coil 32 will be described.

測定装置6は、図示しない、CPU、メモリ及びA/Dコンバータ等を具備するものであり、そのメモリに所定のプログラムを格納し、当該プログラムに従ってCPUやその周辺機器を協働動作させることによって、図4に示すように、測定部61、温度特性データ記憶部62、補正部63としての機能を発揮するものである。   The measuring device 6 includes a CPU, a memory, an A / D converter, and the like (not shown), stores a predetermined program in the memory, and operates the CPU and its peripheral devices in cooperation with each other according to the program. As shown in FIG. 4, it functions as a measurement unit 61, a temperature characteristic data storage unit 62, and a correction unit 63.

測定部61は、一次コイル31に所定の交流電圧を印加したときに二次コイル32に発生する誘導電流に基づいて測定導電率を測定し、その値を示す測定信号を後述する補正部63へ出力するものである。   The measurement unit 61 measures the measured conductivity based on the induced current generated in the secondary coil 32 when a predetermined alternating voltage is applied to the primary coil 31, and sends a measurement signal indicating the value to the correction unit 63 described later. Output.

温度特性データ記憶部62は、磁性体温度と測定導電率との関係を示すデータである温度特性データを記憶しているものである。   The temperature characteristic data storage unit 62 stores temperature characteristic data which is data indicating the relationship between the magnetic body temperature and the measured conductivity.

詳述すると、温度特性データ記憶部62は、模擬抵抗(図示しない)の測定により得られる、図5上段に示すような、磁性体温度と測定導電率との関係から、図5下段に示すような、あらかじめ定められた磁性体温度である基準温度、例えば25℃、における測定導電率を示す基準導電率を1.0としたときの、各磁性体温度における測定導電率の値である規格化値を温度特性データとして記憶しているものである。   More specifically, the temperature characteristic data storage unit 62 is obtained as shown in the lower part of FIG. 5 from the relationship between the magnetic body temperature and the measured conductivity as shown in the upper part of FIG. 5 obtained by measuring the simulated resistance (not shown). In addition, the standardization that is the value of the measured conductivity at each magnetic material temperature when the reference conductivity indicating the measured conductivity at a reference temperature that is a predetermined magnetic material temperature, for example, 25 ° C. is 1.0. The value is stored as temperature characteristic data.

補正部63は、測定部61からの測定信号と、温度センサ45からの収容部材温度を示す収容部材温度信号と、温度特性データ記憶部62からの温度特性データとを受信し、測定導電率を補正して、補正導電率をディスプレイ7等に表示するものである。   The correction unit 63 receives the measurement signal from the measurement unit 61, the storage member temperature signal indicating the storage member temperature from the temperature sensor 45, and the temperature characteristic data from the temperature characteristic data storage unit 62, and calculates the measurement conductivity. It correct | amends and displays correction | amendment electrical conductivity on the display 7 grade | etc.,.

より詳細には、まず、収容部材温度を磁性体温度とみなし、前記温度特性データから該磁性体温度における規格化値を取得する。   More specifically, first, the housing member temperature is regarded as the magnetic body temperature, and a normalized value at the magnetic body temperature is obtained from the temperature characteristic data.

そして、測定導電率を前記規格化値で割ることにより補正導電率を算出する。   Then, the corrected conductivity is calculated by dividing the measured conductivity by the normalized value.

なお、この補正部63は、磁性体温度と規格化値との関係が、模擬抵抗(図示しない)の抵抗値によらず一定の関係であるとして補正導電率を算出するように構成されている。   The correction unit 63 is configured to calculate the corrected conductivity on the assumption that the relationship between the magnetic body temperature and the normalized value is a constant relationship regardless of the resistance value of the simulated resistor (not shown). .

また、補正部63は、液温測定計8により得られる液温データを受信して、液温もパラメータとして測定導電率を補正するようにしてもよい。
具体的には、液温測定計8により得られる液温データに基づいて、液体サンプルが25℃のときの導電率を求めるように補正する方法が挙げられる。
Further, the correction unit 63 may receive the liquid temperature data obtained by the liquid temperature meter 8 and correct the measured conductivity using the liquid temperature as a parameter.
Specifically, based on the liquid temperature data obtained by the liquid temperature meter 8, there is a method of correcting so as to obtain the conductivity when the liquid sample is 25 ° C.

このように構成された本発明によれば、環状磁性体21、22が金属製の収容部材41、42に収容されており、環状磁性体21、22と収容部材41、42との間の伝熱性が良いため、収容部材温度を磁性体温度とみなして測定導電率を補正することで、導電率を精度良く求めることが可能となる。
さらに、種々の温度での導電率を所定の温度での導電率に換算することができ、比較が容易になる。
According to the present invention configured as described above, the annular magnetic bodies 21 and 22 are accommodated in the metal accommodating members 41 and 42, and the transmission between the annular magnetic bodies 21 and 22 and the accommodating members 41 and 42 is performed. Since the thermal property is good, it is possible to obtain the conductivity with high accuracy by correcting the measured conductivity by regarding the housing member temperature as the magnetic material temperature.
Furthermore, the electrical conductivity at various temperatures can be converted into the electrical conductivity at a predetermined temperature, which facilitates comparison.

また、収容空間Sにコイル31、32が巻回された環状磁性体21、22を隙間が最も少なくなるように収容するため、環状磁性体21、22と収容部材41、42との間の伝熱性が良く、高精度な測定が可能である。   Further, in order to accommodate the annular magnetic bodies 21 and 22 around which the coils 31 and 32 are wound in the accommodation space S so that the gap is minimized, the transmission between the annular magnetic bodies 21 and 22 and the accommodation members 41 and 42 is performed. It has good thermal properties and can measure with high accuracy.

さらに、環状磁性体21、22を収容する収容空間Sが密閉されるため、収容部材温度と磁性体温度とはより等しい温度となる。   Furthermore, since the housing space S for housing the annular magnetic bodies 21 and 22 is sealed, the housing member temperature and the magnetic body temperature are more equal.

各収容部材41、42が鉄等の金属製の互いに等しい形状をなしたものであり、互いの環状底板431が接するように配設されているため、各収容部材41、42の収容部材温度は等しくなり、温度センサ45はいずれかの収容部材41、42に取り付ければよい。   Since each accommodating member 41, 42 is made of metal such as iron and has the same shape as each other, and the annular bottom plates 431 are in contact with each other, the accommodating member temperature of each accommodating member 41, 42 is The temperature sensor 45 may be attached to any of the housing members 41 and 42.

また、温度センサ45が温度センサ取付部434の外側周面から内部へ挿入されるため、外側周面又は内側周面に取り付けられるよりも環状磁性体21、22の近傍で収容部材温度を検出することができ、検出される収容部材温度がより正確な磁性体温度となる。   Further, since the temperature sensor 45 is inserted into the inside from the outer peripheral surface of the temperature sensor attachment portion 434, the temperature of the housing member is detected in the vicinity of the annular magnetic bodies 21 and 22 rather than being attached to the outer peripheral surface or the inner peripheral surface. Therefore, the detected temperature of the housing member becomes a more accurate magnetic body temperature.

測定対象に関して言えば、収容部材41、42は金属製であるが、液体サンプルが導入される環状管部材10が合成樹脂からなるため、腐食性を有する液体サンプルであっても導電率の測定が可能である。   Regarding the measurement object, the housing members 41 and 42 are made of metal. However, since the annular tube member 10 into which the liquid sample is introduced is made of a synthetic resin, the conductivity can be measured even with a corrosive liquid sample. Is possible.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、前記実施形態では、一次側収容部材41と二次側収容部材42とのいずれか一方に温度センサ45が取り付けられていたが、各収容部材41、42に温度センサ45を取り付けるようにしてもよい。   For example, in the embodiment, the temperature sensor 45 is attached to one of the primary side accommodation member 41 and the secondary side accommodation member 42, but the temperature sensor 45 is attached to each accommodation member 41, 42. Also good.

このように構成することで、一次側収容部材41と二次側収容部材42との大きさや形状が異なる場合や、第1管部材11と第2管部材12との寸法が異なる場合であっても、各収容部材41、42の温度を検出し、これらの温度をパラメータとして測定導電率を補正することで、導電率を精度良く求めることが可能となる。   By comprising in this way, when the magnitude | size and shape of the primary side accommodation member 41 and the secondary side accommodation member 42 differ, or when the dimension of the 1st pipe member 11 and the 2nd pipe member 12 differs, However, by detecting the temperatures of the housing members 41 and 42 and correcting the measured conductivity using these temperatures as parameters, the conductivity can be obtained with high accuracy.

また、前記実施形態では、温度センサ45を温度センサ取付孔435に取り付けていたが、収容部本体43の製造を容易とするために該収容部本体43の外側周面又は内側周面に温度センサ45を取り付けるようにしてもよい。   In the above embodiment, the temperature sensor 45 is mounted in the temperature sensor mounting hole 435. However, in order to facilitate the manufacture of the housing main body 43, the temperature sensor 45 is provided on the outer peripheral surface or the inner peripheral surface of the housing main body 43. 45 may be attached.

さらに、温度センサ取付部434は中実の半円筒状をなすものであったが、円筒状や部分円筒状など、その形状は限定されるものではない。   Furthermore, although the temperature sensor attachment portion 434 has a solid semi-cylindrical shape, the shape thereof is not limited to a cylindrical shape or a partial cylindrical shape.

測定装置6に関して言えば、温度特性データ記憶部62は、いくつかの代表温度における規格化値を記憶しているものであってもよい。   With regard to the measuring device 6, the temperature characteristic data storage unit 62 may store normalized values at several representative temperatures.

この場合は、代表温度以外の磁性体温度に対応する規格化値は、代表温度における規格化値を補間して求められるように構成されていればよい。   In this case, the normalized value corresponding to the magnetic body temperature other than the representative temperature may be configured to be obtained by interpolating the normalized value at the representative temperature.

補正部63は、模擬抵抗の抵抗値によらず磁性体温度と規格化値との関係が一定の関係として補正導電率を算出するように構成されていたが、より正確な補正をするために、異なる抵抗値を有する複数の模擬抵抗から得られる磁性体温度と規格化値との関係に基づいて補正測定導電率を算出するように構成してもよい。   The correction unit 63 is configured to calculate the corrected conductivity with the relationship between the magnetic body temperature and the normalized value being a constant relationship regardless of the resistance value of the simulated resistor. However, in order to perform more accurate correction The corrected measurement conductivity may be calculated based on the relationship between the magnetic body temperature obtained from a plurality of simulated resistors having different resistance values and the normalized value.

さらに、収容部材41、42をいずれも第1管部材11又は第2管部材12に直列に並べて取り付けても良い。   Further, the housing members 41 and 42 may be attached to the first tube member 11 or the second tube member 12 in series.

また、前記実施形態では、液体サンプルの導電率を測定する際に用いられるものであったが、測定された導電率から液体サンプルに含有されている測定対象物の濃度を測定することもできる。
さらに、液体サンプルの抵抗値を測定する抵抗計としても用いることもできる。
Moreover, in the said embodiment, although it was used when measuring the electrical conductivity of a liquid sample, the density | concentration of the measuring object contained in the liquid sample can also be measured from the measured electrical conductivity.
Furthermore, it can also be used as an ohmmeter for measuring the resistance value of a liquid sample.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・導電率測定計
10・・・環状管部材
21・・・一次側環状磁性体
22・・・二次側環状磁性体
31・・・一次コイル
32・・・二次コイル
41・・・一次側収容部材
42・・・二次側収容部材
43・・・収容部本体
435・・・温度センサ取付孔
45・・・温度センサ
S・・・収容空間
DESCRIPTION OF SYMBOLS 100 ... Electrical conductivity meter 10 ... Annular pipe member 21 ... Primary side annular magnetic body 22 ... Secondary side annular magnetic body 31 ... Primary coil 32 ... Secondary coil 41 ... -Primary side accommodation member 42 ... Secondary side accommodation member 43 ... Housing part main body 435 ... Temperature sensor mounting hole 45 ... Temperature sensor S ... Storage space

Claims (8)

一次側磁束環を形成し、閉ループをなす測定対象が該一次側磁束環を貫通するように配設された一次コイルと、二次側磁束環を形成し、前記測定対象が該二次側磁束環を貫通するように配設された二次コイルと、前記一次コイルが巻回される一次側環状磁性体及び前記二次コイルが巻回される二次側環状磁性体と、前記一次コイルに所定の交流電圧を印加する電源部と、前記二次コイルに発生する誘導電流から前記測定対象の導電率を測定する測定部とを具備した導電率測定計において、
前記測定対象が流れる第1管部材及び前記第1管部材から分岐してループを形成するように合流する第2管部材と、
前記第1管部材に設けられて、前記一次側環状磁性体を収容する一次側収容部材と、
前記第2管部材に設けられて、前記二次側環状磁性体を収容するとともに前記一次側収容部材とは別体の二次側収容部材と、
前記一次側環状磁性体又は前記二次側環状磁性体の少なくともいずれか一方の温度を直接的又は間接的に測定する温度センサとを具備し、
前記一次側収容部材及び前記二次側収容部材が、前記温度センサの一部を収容する温度センサ取付部を有し、
前記各収容部材が、
環状底板の一方の面側に前記一次側環状磁性体又は前記二次側環状磁性体を収容する収容空間が形成されており、
前記環状底板の他方の面側における周方向の一部から突出して前記温度センサ取付部が設けられており、
前記一次側収容部材及び前記二次側収容部材が、それぞれの前記環状底板の他方の面において前記温度センサ取付部が設けられていない部分同士が接触するように配置されていることを特徴とする導電率測定計。
A primary coil arranged so that a measurement object forming a primary-side magnetic flux ring and forming a closed loop penetrates the primary-side magnetic flux ring forms a secondary-side magnetic flux ring, and the measurement object is the secondary-side magnetic flux A secondary coil disposed so as to penetrate the ring, a primary-side annular magnetic body around which the primary coil is wound, a secondary-side annular magnetic body around which the secondary coil is wound, and the primary coil In a conductivity meter comprising a power supply unit for applying a predetermined AC voltage and a measuring unit for measuring the conductivity of the measurement object from the induced current generated in the secondary coil,
A first pipe member through which the measurement object flows and a second pipe member that branches from the first pipe member and merges so as to form a loop;
A primary-side accommodation member provided on the first pipe member and containing the primary-side annular magnetic body;
A secondary housing member provided on the second pipe member and housing the secondary annular magnetic body and separate from the primary housing member;
A temperature sensor that directly or indirectly measures the temperature of at least one of the primary-side annular magnetic body and the secondary-side annular magnetic body;
The primary side accommodation member and the secondary side accommodation member have a temperature sensor mounting portion for accommodating a part of the temperature sensor,
Each of the housing members is
An accommodation space for accommodating the primary-side annular magnetic body or the secondary-side annular magnetic body is formed on one surface side of the annular bottom plate,
The temperature sensor mounting portion is provided so as to protrude from a part of the circumferential direction on the other surface side of the annular bottom plate,
The primary side accommodation member and the secondary side accommodation member are arranged so that portions where the temperature sensor attachment portion is not provided are in contact with each other on the other surface of each annular bottom plate. Conductivity meter.
前記一次側収容部材及び前記二次側収容部材が金属製であることを特徴とする請求項1記載の導電率測定計。   The conductivity measuring meter according to claim 1, wherein the primary accommodation member and the secondary accommodation member are made of metal. 前記環状磁性体の温度と測定導電率との関係を示すデータである温度特性データを記憶している温度特性データ記憶部と、
前記温度特性データと前記収容部材の温度とに基づいて、前記測定部で測定された測定導電率を補正する補正部とを具備することを特徴とする請求項1又は2に記載の導電率測定計。
A temperature characteristic data storage unit storing temperature characteristic data which is data indicating the relationship between the temperature of the annular magnetic body and the measured conductivity;
The conductivity measurement according to claim 1, further comprising: a correction unit that corrects the measured conductivity measured by the measurement unit based on the temperature characteristic data and the temperature of the housing member. Total.
前記収容部材が、前記環状磁性体を収容する環状の収容空間を有し、
前記コイルが巻回された前記環状磁性体が、前記収容空間を形成する外筒部と内筒部とで挟まれてガタなく収容されていることを特徴とする請求項1乃至3の何れかに記載の導電率測定計。
The housing member has an annular housing space for housing the annular magnetic body;
The annular magnetic body around which the coil is wound is sandwiched between an outer cylinder part and an inner cylinder part that form the accommodation space, and is accommodated without play. The conductivity meter according to 1.
前記各収容部材が同じ材質からなり、互いに等しい形状を有していることを特徴とする請求項1乃至4の何れかに記載の導電率測定計。   5. The conductivity measuring instrument according to claim 1, wherein the housing members are made of the same material and have the same shape. 前記測定対象が液体であって、
前記液体が流れる環状流路を形成する環状管部材を更に具備し、
前記収容部材の内周面と前記環状管部材の外周面とが接して、該収容部材がガタなく取り付けられていることを特徴とする請求項1乃至5の何れかに記載の導電率測定計。
The measurement object is a liquid,
Further comprising an annular tube member forming an annular flow path through which the liquid flows;
6. The conductivity measuring instrument according to claim 1, wherein the inner circumferential surface of the housing member and the outer circumferential surface of the annular tube member are in contact with each other, and the housing member is attached without play. .
一次側磁束環を形成し、閉ループをなす測定対象が該一次側磁束環を貫通するように配設された一次コイルと、二次側磁束環を形成し、前記測定対象が該二次側磁束環を貫通するように配設された二次コイルと、前記一次コイルが巻回される一次側環状磁性体及び前記二次コイルが巻回される二次側環状磁性体と、前記一次コイルに所定の交流電圧を印加する電源部と、前記二次コイルに発生する誘導電流から前記測定対象の導電率を測定する測定部と、前記測定対象が流れる第1管部材及び前記第1管部材から分岐してループを形成するように合流する第2管部材と、前記第1管部材に設けられて、前記一次側環状磁性体を収容する一次側収容部材と、前記第2管部材に設けられて、前記二次側環状磁性体を収容する二次側収容部材とを具備した導電率測定計の測定値補正方法であって、
前記各収容部材が、環状底板の一方の面側に前記一次側環状磁性体又は前記二次側環状磁性体を収容する収容空間が形成されており、前記環状底板の他方の面側における周方向の一部から突出して温度センサ取付部が設けられている構成において、前記一次側収容部材及び前記二次側収容部材を、それぞれの前記環状底板の他方の面において前記温度センサ取付部が設けられていない部分同士が接触するように配置し、
前記一次側収容部材及び前記二次側収容部材に設けられた前記温度センサ取付部の少なくともいずれか一方に温度センサの一部を収容させ、
前記一次側環状磁性体又は前記二次側環状磁性体の少なくともいずれか一方の温度を直接的又は間接的に測定することを特徴とする導電率測定計の測定値補正方法。
A primary coil arranged so that a measurement object forming a primary-side magnetic flux ring and forming a closed loop penetrates the primary-side magnetic flux ring forms a secondary-side magnetic flux ring, and the measurement object is the secondary-side magnetic flux A secondary coil disposed so as to penetrate the ring, a primary-side annular magnetic body around which the primary coil is wound, a secondary-side annular magnetic body around which the secondary coil is wound, and the primary coil From a power supply unit that applies a predetermined AC voltage, a measurement unit that measures the conductivity of the measurement object from the induced current generated in the secondary coil, a first tube member and the first tube member through which the measurement object flows A second pipe member that merges so as to branch to form a loop, a primary-side accommodation member that is provided in the first pipe member and that accommodates the primary-side annular magnetic body, and is provided in the second pipe member. Te, ingredients and a secondary housing member for accommodating the secondary annular magnetic body A measured values correcting method of the conductivity meter,
Each housing member is formed with a housing space for housing the primary-side annular magnetic body or the secondary-side annular magnetic body on one surface side of the annular bottom plate, and the circumferential direction on the other surface side of the annular bottom plate In which the temperature sensor mounting portion is provided so as to protrude from a part of the primary side housing member and the secondary side housing member, and the temperature sensor mounting portion is provided on the other surface of each annular bottom plate. Place the parts that are not in contact with each other,
A part of the temperature sensor is housed in at least one of the temperature sensor mounting portions provided in the primary housing member and the secondary housing member;
A method for correcting a measured value of a conductivity meter, wherein the temperature of at least one of the primary-side annular magnetic body and the secondary-side annular magnetic body is directly or indirectly measured.
金属製の前記一次側収容部材又は金属製の前記二次側収容部材の少なくともいずれか一方の温度を測定し、
前記環状磁性体の温度と測定導電率との関係を示すデータである温度特性データを記録し、
前記収容部材の温度を前記環状磁性体の温度とみなし、該収容部材の温度と前記温度特性データとに基づいて、前記測定部で測定された測定導電率を補正することを特徴とする請求項7記載の導電率測定計の測定値補正方法。
Measure the temperature of at least one of the metal primary side housing member or the metal secondary side housing member,
Record temperature characteristic data, which is data indicating the relationship between the temperature of the annular magnetic body and the measured conductivity,
The temperature of the housing member is regarded as the temperature of the annular magnetic body, and the measured conductivity measured by the measuring unit is corrected based on the temperature of the housing member and the temperature characteristic data. 8. A method for correcting a measured value of the conductivity meter according to 7.
JP2013019814A 2013-02-04 2013-02-04 Conductivity meter and method for correcting the measured value Active JP6423579B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013019814A JP6423579B2 (en) 2013-02-04 2013-02-04 Conductivity meter and method for correcting the measured value
KR1020140010573A KR102124215B1 (en) 2013-02-04 2014-01-28 Conductivity meter, and method for correcting measurement, setting initial state and calibration of conductivity meter
DE201410001354 DE102014001354A1 (en) 2013-02-04 2014-01-31 Electric conductivity meter to determine electrical conductivity of measuring object, has temperature sensor, which measures temperature of primary-side ring-shaped magnetic body and of secondary-side ring-shaped magnetic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019814A JP6423579B2 (en) 2013-02-04 2013-02-04 Conductivity meter and method for correcting the measured value

Publications (2)

Publication Number Publication Date
JP2014149283A JP2014149283A (en) 2014-08-21
JP6423579B2 true JP6423579B2 (en) 2018-11-14

Family

ID=51572357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019814A Active JP6423579B2 (en) 2013-02-04 2013-02-04 Conductivity meter and method for correcting the measured value

Country Status (1)

Country Link
JP (1) JP6423579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10416107B2 (en) * 2016-08-19 2019-09-17 Ecolab Usa Inc. Conductivity sensor with void correction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190873A (en) * 1984-03-10 1985-09-28 Japan Organo Co Ltd Electromagnetic type conductivity meter
JPS61151475A (en) * 1984-12-26 1986-07-10 Nichimou Kk Apparatus for measuring conductivity of solution
GB2191293B (en) * 1986-05-30 1990-10-17 Cobe Lab Remote conductivity sensor
US5157332A (en) * 1989-10-13 1992-10-20 The Foxboro Company Three-toroid electrodeless conductivity cell
JP2589593B2 (en) * 1990-10-22 1997-03-12 株式会社堀場製作所 Electromagnetic conductivity meter
JP3666703B2 (en) * 1996-11-21 2005-06-29 東亜ディーケーケー株式会社 Liquid conductivity sensor and adapter for conductivity sensor
JP2000131286A (en) * 1998-10-27 2000-05-12 Iwaki:Kk Non-polar conductivity sensor and its calibration method, disconnection detection method and failure diagnosis method
JP3392405B2 (en) * 2001-03-07 2003-03-31 豊和 永田 Electromagnetic conductivity meter
JP5074796B2 (en) * 2006-03-29 2012-11-14 古河電気工業株式会社 Sensor correction information acquisition method and detection apparatus
JP2010164306A (en) * 2009-01-13 2010-07-29 Ntn Corp Method and device for hardened depth

Also Published As

Publication number Publication date
JP2014149283A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
US10416107B2 (en) Conductivity sensor with void correction
JP5979876B2 (en) Method and system for temperature compensated temperature measurement
CN102261922B (en) Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
US7126343B1 (en) Conductivity probe with toroid keeper
US9658115B2 (en) Temperature measuring device, temperature measuring device set and method for configuring a temperature measuring device that can be operated with a thermocouple
RU2014147676A (en) METHODS AND DEVICES FOR DETECTING LEAKAGE CURRENT IN RESISTIVE TEMPERATURE SENSOR
CN105579820B (en) Pressure transmitter
JP6423579B2 (en) Conductivity meter and method for correcting the measured value
KR101057860B1 (en) Device for measuring amount of stock and leakage in storage tank using magnetostrictive technology
JP5173472B2 (en) Magnetic field calibration method
RU2577389C1 (en) Method of calibrating thermoelectric heat flux sensors
JP2016194531A (en) Magnetic field measurement device
CN203365368U (en) Semi-conductor gas sensor with temperature compensation function
JP2013156029A (en) Current sensor
KR102124215B1 (en) Conductivity meter, and method for correcting measurement, setting initial state and calibration of conductivity meter
KR100462386B1 (en) Coefficient Of Heat Expansion Of Non-magnetic Substance Measuring Device In Accordance With The Magnetic Field Change
CN107076805B (en) Magnetic field measuring device
JP6245612B2 (en) Method for specifying pH, apparatus therefor, and method for specifying ion concentration
EA038991B1 (en) Conductivity and impedance sensor
JP6412679B2 (en) Conductivity meter and calibration method thereof
JP4918386B2 (en) Magnetic field generator
Cross et al. Transitioning from mercury thermometers to alternative thermometers
RU2584094C2 (en) Method of measuring inclination angles of objects using magnetic liquid
JP2005207992A (en) Temperature-measuring device, its control method, and temperature-measuring system
JP2013200250A (en) Power measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171002

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250