JP6410609B2 - トナー - Google Patents

トナー Download PDF

Info

Publication number
JP6410609B2
JP6410609B2 JP2015001209A JP2015001209A JP6410609B2 JP 6410609 B2 JP6410609 B2 JP 6410609B2 JP 2015001209 A JP2015001209 A JP 2015001209A JP 2015001209 A JP2015001209 A JP 2015001209A JP 6410609 B2 JP6410609 B2 JP 6410609B2
Authority
JP
Japan
Prior art keywords
toner
fine particles
acid
particles
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015001209A
Other languages
English (en)
Other versions
JP2016126219A (ja
Inventor
大輔 吉羽
大輔 吉羽
航助 福留
航助 福留
祥太郎 野村
祥太郎 野村
森部 修平
修平 森部
西川 浩司
浩司 西川
山▲崎▼ 克久
克久 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015001209A priority Critical patent/JP6410609B2/ja
Publication of JP2016126219A publication Critical patent/JP2016126219A/ja
Application granted granted Critical
Publication of JP6410609B2 publication Critical patent/JP6410609B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、電子写真法等の記録方法に使用されるトナーに関する。
近年、電子写真装置は、省エネルギー化を達成するために、トナーの低温定着性能のさらなる向上が求められている。一方で、紙の省資源化の観点から、プリンターにおいても両面プリントモードで出力される機会が格段に増えてきている。両面プリントモードでは、片面プリント工程で定着を終えた記録紙を排出せずに、本体内にスイッチバックさせて裏面のプリント工程が実施される。
即ち、定着器を通った高温の記録紙を本体内に再度取り込む為、本体内が昇温し易くなる。その結果、トナー母体粒子が局所的に熱変形し、外添剤がトナー粒子中に埋め込まれる、所謂「トナー劣化」が生じ易くなる。これらは、特に粒径が数nm〜数十nmの小粒径の外添剤を用いる場合、顕著になる。トナー劣化が生じると、流動性の低下や、帯電性の低下が生じ易くなり、画像濃度低下等を生じ易くなる。これらは特に、高温高湿環境において顕著に現れる。
トナーの劣化を抑制させる手段としては、例えば、トナー粒子に埋め込まれ難い、粒径が0.1μm程度の大粒径外添剤を用いるトナーが各種提案されている。
例えば特許文献1では、外添剤として体積平均粒径が70nm以上400nm以下、平均円形度が0.5以上0.9以下であるシリカ粒子を用いるトナーが提案されている。当該文献には、高温高湿環境下にて低画像密度と高画像密度との画像形成を連続して行っても、濃度変動が抑制された画像が得られているが、シリカ粒子としてゾルゲルシリカを用いている為、低温定着性が不利になり易く、また、他の外添剤との関係に対して十分議論されておらず、改良の余地が残る。
また特許文献2では、外添剤として金属酸化物とポリマーを含む金属酸化物−ポリマー複合体粒子を含むトナーが提案されている。当該文献によれば、前記外添剤を用いることで、トナー粒子間でスペーサーとして役立つと共に、外添剤のトナーからの離脱を抑制出来ると記載されている。しかしながら、当該文献においても両面プリントにおける耐久性に関しては改良の余地がある。
また特許文献3では、疎水化処理された体積平均粒子径80〜300nmのシリカ粒子を含有し、かつ前記シリカ粒子が、通気流量0ml/min、回転翼の先端スピード50mm/sec、回転翼の進入角度−10°の条件でパウダーレオメーターによって測定したときの基本流動性エネルギー量が40mJ以上100mJ以下であるトナーが提案されている。当該文献によれば、高い帯電量を有し、帯電の環境依存性、帯電の経時での安定性及びトナーのアドミックス性に優れ、さらにトナーの流動性及び現像・転写性に優れるトナーを得ることができると記載がある。しかしながら、両面プリントにおける耐久性を向上させる為には、大粒径の外添剤と小粒径の外添剤との最適化が必要であり、改善の余地が残っている。
特開2013−195847号公報 特開2013−92748号公報 特開2007−304331号公報
本発明の目的は、低温定着性が優れると共に、プリンター本体がより昇温し易い両面プリントモードにおいても、長期に渡り安定的な画像濃度を得ることが出来るトナーを提供することである。
本発明は、結着樹脂及び、着色剤を少なくとも含有するトナー粒子と、有機無機複合微粒子及びシリカ微粒子とを有するトナーであって、
1)該有機無機複合微粒子は、樹脂粒子の表面に無機微粒子由来の凸部を複数有し、該有機無機複合微粒子の個数平均粒径(D1)が70nm以上500nm以下であり、倍率20万倍で測定したときの形状係数SF−2が103以上120以下であり、
2)該シリカ微粒子は、BET比表面積が50m2/g以上300m2/g以下であり、
且つ、粉体流動性測定装置において、測定容器内で0.5kPaの垂直荷重を加えて作製した該シリカ微粒子の粉体層の表面に、プロペラ型ブレードを前記プロペラ型ブレードの最外縁部の周速を100mm/secで回転させながら、該シリカ微粒子粉体層に侵入させたときのTotal Energyが、30mJ以上50mJ以下であることを特徴とするトナーに関する。
本発明によれば、低温定着性が優れると共に、プリンター本体がより昇温し易い両面プリントモードにおいても、長期に渡り安定的な画像濃度を得ることが出来るトナーを提供することが可能となる。
本発明者等は、低温定着性に優れ、且つプリンター本体がより昇温し易い両面プリントモードにおいても、長期に渡り安定的な画像濃度を得る為に必要なトナーの構成について鋭意検討した。
前述の通り、両面プリントモードでは、定着器を通った高温の記録紙を本体内に再度取り込む為、本体内が昇温し易くなる。その結果、トナー母体粒子が局所的に熱変形し、外添剤がトナー粒子中に埋め込まれる、所謂「トナー劣化」が生じ易くなる。トナー劣化が生じると、流動性の低下や、帯電性の低下が生じ易くなり、画像濃度の低下等を生じ易くなる。これらは特に高温高湿環境において顕著に現れる。
一般的にトナーに用いられる外添剤としては、被覆性、流動性、帯電性の観点から、BET比表面積が50m2/g以上300m2/g以下程度の粒径の小さい外添剤を用いられることが多く、特に帯電性、流動性の観点からシリカ微粒子が好適に用いられる。しかしながら、トナー劣化は、粒径の小さな外添剤ほど顕著になる傾向がある。その為、トナー劣化を抑制するには、トナー粒子に埋め込まれ難い所謂大粒径の外添剤を併用することが有効である。
しかし、大粒径の外添剤を用いることで、トナーの劣化はある程度抑制出来るが、両面プリントモードの如き、より厳しい環境においては、大粒径外添剤自体も埋め込まれ易くなる。従って、このような厳しい環境における耐久性を向上させるためには、前記小粒径外添剤由来の劣化のみならず、大粒径外添剤の劣化も抑制させる必要がある。
本発明者等は、トナー劣化を抑制する為に必要な大粒径外添剤と小粒径外添剤との存在状態を鋭意検討した結果、本発明を完成するに至った。
即ち、本発明は、結着樹脂及び、着色剤を少なくとも含有するトナー粒子と、有機無機複合微粒子及びシリカ微粒子とを有するトナーであって、
1)該有機無機複合微粒子は、樹脂粒子の表面に無機微粒子由来の凸部を複数有し、該有機無機複合微粒子の個数平均粒径(D1)が70nm以上500nm以下であり、倍率20万倍で測定したときの形状係数SF−2が103以上120以下であり、
2)該シリカ微粒子は、BET比表面積が50m2/g以上300m2/g以下であり、
且つ、粉体流動性測定装置において、測定容器内で0.5kPaの垂直荷重を加えて作製した該シリカ微粒子の粉体層の表面に、プロペラ型ブレードを前記プロペラ型ブレードの最外縁部の周速を100mm/secで回転させながら、該シリカ微粒子粉体層に侵入させたときのTotal Energyが、30mJ以上50mJ以下であることを特徴とする。
まず、本発明者等はトナー粒子への埋め込みを抑制出来る、大粒径外添剤の粒径及びその構成について検討した。
トナー粒子への埋め込みを抑制出来る、大粒径外添剤の最適な粒径としては、個数平均粒子径(D1)は、70nm以上500nm以下が好ましく、より好ましくは85nm以上160nm以下である。
しかしながら、前記大粒径外添剤は、トナー粒子に埋め込まれ難いが故に、トナー間の距離も遠くなる。その結果、使用する材料に依ってはトナー間の熱伝導がし難く、低温定着性を悪化させ易い。
そこで、本発明者等は、大粒径外添剤として有機無機複合微粒子を用いることで、耐久性と低温定着性を両立することが出来ることを見出した。即ち無機化合物単独では粒子の硬度は高く耐久性には優れるが、熱伝導性が低く低温定着性には不利になる傾向がある。一方有機化合物単独では、熱伝導性が高く低温定着性には有利だが、硬度が低く耐久性は不利になる傾向がある。そこで、本発明者等は耐久性と低温定着性のバランスの取れる大粒径外添剤の構成について鋭意検討した結果、有機無機複合微粒子とすることで、両者のバランスを取れることを見出した。
有機無機複合微粒子中の無機微粒子の含有量は、低温定着性と耐久性のバランスとの観点から30質量%以上70質量%以下であることが好ましい。
しかしながら、上記粒径の有機無機複合微粒子を単に使用しただけでは、両面プリントの如き厳しい使用環境においては、トナー劣化抑制には不十分であり、有機無機複合微粒子と小粒径外添剤であるシリカ微粒子との最適化が必要である。
小粒径外添剤の劣化を抑制する為には、トナー粒子表面で均一に分散し、固着しつつ、トナー製造時におけるトナー粒子への埋め込みを極力抑制することが重要である。
一般的にトナーの外添工程は、処理室内に回転体を具備する処理装置を用い、外添剤とトナー粒子とを混合する工程である。トナー粒子への埋め込みを抑制する為には、処理時間を短くする必要がある。しかしながら、単に処理時間を短くすると、シリカ微粒子が十分に分散されず、表面の存在状態が不均一になり易い。
処理時間を短くし、且つ均一に分散させる為には、シリカ微粒子が外的シェアを受け易くする必要がある。そこで、本発明者等は鋭意検討し、シリカ微粒子が特定の粉体特性を有し、且つ大粒径外添剤の形状を制御することにより、シリカ微粒子がトナー粒子表面において、即座に均一分散し、且つ固着もされることを見出した。
本発明者等は、シリカ微粒子の粉体特性を評価する手法について鋭意検討した結果、下記の通り粉体特性を制御することで、本発明の課題を解決出来ることを見出した。
即ち、粉体流動性測定装置において、測定容器内で0.5kPaの垂直荷重を加えて作製した該シリカ微粒子の粉体層の表面に、プロペラ型ブレードを前記プロペラ型ブレードの最外縁部の周速を100mm/secで回転させながら、該粉体層に侵入させた時のTotal Energyが、30mJ以上50mJ以下であることを特徴とする。
上記粉体流動性測定装置は、粉体層に対してプロペラ型ブレードを回転させながら侵入し、その時に掛るシェアをTotal Energy(mJ)として算出することが出来る。
本発明者等は、シリカ微粒子が回転体から受けるシェアと前記Total Energyとの関係について鋭意検討した。その結果、測定容器内で0.5kPaの垂直荷重を加えて作製した該シリカ微粒子の粉体層の表面に、プロペラ型ブレードを前記プロペラ型ブレードの最外縁部の周速を100mm/secで回転させながら、該粉体層に侵入させた時のTotal Energyが、30mJ以上50mJ以下、好ましくは35mJ以上45mJ以下の範囲に制御すると、シリカ微粒子が外的シェアを受け易すく、外添処理時間が短時間でも十分に分散されることを見出した。
なお、シリカ微粒子のTotal Energy(mJ)は、シリカ微粒子の表面処理剤や粒径等によって制御することが出来る。特にシリカ微粒子の表面処理剤であるシリコーンオイルの粘度によりTotal Energyを制御することが好ましい。
更に、本発明者等はシリカ微粒子のTotal Energyを制御すると共に、大粒径外添剤の形状を制御することで、大粒径外添剤の埋め込みが抑制され、かつよりシリカ微粒子が分散され、トナー劣化を飛躍的に抑制出来ることを見出した。
即ち、本発明の有機無機複合微粒子は、樹脂粒子の表面に無機微粒子由来の凸部を複数有し、倍率20万倍で測定したときの形状係数SF−2が103以上120以下であることを特徴とする。微粒子表面に凸部を有する構造を取ることで、トナー粒子表面へのアンカリング効果が得られ易く、固着を制御し易くなると共に、外的シェアに対して抵抗力が増す為、埋め込まれ難くなる。
また、製造時にシリカ微粒子が凸部を有する有機無機複合微粒子からシェアをうけることで、より分散し、トナー粒子表面に均一に存在出来ることを見出した。更に、有機無機複合微粒子自体も、シリカ微粒子にシェアをかけながら自身も分散され、トナー粒子表面上に均一に存在することが可能となる。
その結果、有機無機複合微粒子は、均一に分散され且つ埋め込まれ難くなり、シリカ微粒子は、分散性(均一性)と埋め込み抑制を両立することが可能となり、高いレベルでトナー劣化を抑制することが可能となる。
前記有機無機複合微粒子の形状の指標としては、透過型電子顕微鏡を用いて倍率20万倍で撮影した該有機無機複合微粒子の拡大画像を用いて測定した形状係数SF−2が103以上120以下である必要がある。形状係数SF−2は粒子の凹凸度合いの指標であり、その値が100であると真円となり、数値が大きくなるほど凹凸の度合いが増していく。
SF−2が103未満の場合、形状が真球に近くなり過ぎ、凸部によるトナー表面での掃き寄せ抑制、及び脱離抑制の効果を充分発揮できなくなる傾向があると共に、シリカ微粒子の分散効果が得られ難い。一方、SF−2が120より大きい場合は、凹凸が激しく、アンカリング効果が強すぎる為、トナー粒子表面における有機無機複合微粒子の分散性が十分でなくなる傾向がある。
また、凸部は、前記有機無機複合微粒子の無機微粒子に由来する凸部であることが好ましい。無機微粒子に由来する凸部であることで、分散効果がより発揮され易い。なお有機無機複合微粒子の表面に無機微粒子が存在していれば良く、樹脂粒子内部における無機微粒子の有無は特に限定されない。
有機無機複合微粒子のSF−2値は、前記有機無機複合微粒子表面の無機微粒子存在比率で制御することが出来る。例えば、無機微粒子としてシリカを用いる場合、表面シリカ存在比率は50%以上80%以下であることが好ましい。
以上述べてきたように、低温定着性を維持しつつ、トナーの劣化を高いレベルで抑制させるためには、トナー粒子表面の大粒径外添剤と小粒径外添剤との存在状態を制御することが必要となる。本発明では、特定の粒径と形状を有する有機無機複合微粒子と、特定の粉体特性を有するシリカ微粒子を用いることで、互いにトナー粒子表面に均一に、且つ埋め込まれ難くなるという相乗効果が得られることを見出した。その結果、低温定着性を維持しつつ、両面プリントモードの如き、より厳しい使用環境においても、トナーの劣化を高いレベルで抑制出来ることを見出した。
また、本発明のシリカ微粒子は、シリコーンオイルによる処理のみが施されており、且つ該シリコーンオイルの25℃での粘度が30mm2/s以上70mm2/s以下であることが好ましい。処理剤の種類と粘度を制御することで、シリカ微粒子表面の処理がより均一になり、例えば高湿環境に放置されても、耐久性を維持することが可能となる。
また、本発明のシリカ微粒子の処理に用いられるシリコーンオイル量は、シリカ微粒子原体100.0質量部に対して5.0質量部以上15.0質量部以下であることが好ましい。シリコーンオイル量を制御することで、高湿環境下において放置しても良好な現像性を有し、且つシリカ微粒子の凝集塊が生じ難く好ましい。
また、本発明のトナーは、該トナー粒子100質量部に対して、0.5質量部以上3.5質量部以下の該有機無機複合微粒子と、0.5質量部以上3.0質量部以下の該シリカ微粒子を含有することが好ましい。上記範囲に制御することで、耐久性と低温定着性をより両立し易くなる為、好ましい。
本発明で用いられる有機無機複合微粒子としては、上記特性を有していれば、特に制限は無いが、例えば、WO 2013/063291の実施例の記載に従って製造することができる。
また、本発明で用いられる有機無機複合微粒子に用いられる材料として特に制限は無いが、ビニル系樹脂粒子に無機微粒子としてシリカ、酸化チタン、アルミナからなる群より選ばれる少なくとも1種の無機酸化物粒子を用いることが好ましく、シリカを用いることがより好ましい。
また該ビニル系樹脂粒子を構成するビニル系樹脂成分は、THF不溶分を95質量%以上含有することが好ましい。これらの構成にすることで、より厳しい環境での使用においても安定した耐久性を得る事が出来る為好ましい。
本発明で用いられる、シリカ微粒子としては、上記特性を有していれば、特に制限は無いが、ケイ素ハロゲン化物の蒸気相酸化により生成されたいわゆる乾式法又はヒュームドシリカと称される乾式シリカ、及び水ガラス等から製造されるいわゆる湿式シリカの両者が使用可能である。
また、表面及びケイ酸微粉体の内部にあるシラノール基が少なく、またNa2O、SO3 2-等の製造残滓の少ない乾式シリカの方が好ましい。
ヒュームドシリカと称される乾式シリカ例えば、四塩化ケイ素ガスの酸水素焔中における熱分解酸化反応を利用するもので、基礎となる反応式は次のようなものである。
SiCl4+2H2+O2→SiO2+4HCl
さらには、前記ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体に疎水化処理した処理シリカ微粉体がより好ましい。
疎水化処理剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α−メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイル等のシリコーンオイル類が好適に用いられる。
シリコーンオイルによる疎水化処理の具体的な手順は、例えば、シリコーンオイルを溶かした溶剤(好ましくは有機酸等でpH4に調整した溶剤)の中にシリカ微粒子を入れて反応させ、その後、溶剤を除去する。この後、解砕処理を施してもよい。また、次のような方法でも良い。例えば、シリコーンオイルによる疎水化処理では、シリカ微粒子を反応槽に入れる。そして、窒素雰囲気下、撹拌しながらアルコール水を添加し、シリコーンオイルを反応槽に導入して疎水化処理を行い、さらに加熱撹拌して溶剤を除去し、解砕処理を行う。
上記シリコーンオイルによる疎水化処理では、シリコーンオイルをシリカ原体の表面に化学的に固定化しても良い。
本発明のトナーに使用される結着樹脂としては、以下のものが挙げられる。ビニル系樹脂、スチレン系樹脂、スチレン系共重合樹脂、ポリエステル樹脂、ポリオール樹脂、ポリ塩化ビニル樹脂、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニール、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロンインデン樹脂、石油系樹脂。中でも好ましく用いられる樹脂として、スチレン系共重合樹脂、ポリエステル樹脂、ポリエステル樹脂とビニル系樹脂が混合、または両者が一部反応したハイブリッド樹脂。
本発明にかかる結着樹脂に用いられるポリエステル樹脂或いは上記ハイブリッド樹脂のポリエステル系ユニットを構成するポリエステル系モノマーとしては以下の化合物が挙げられる。
アルコール成分としては、以下のものが挙げられる。エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェールA、下記(1)式で表されるビスフェノール誘導体及び下記(2)式で示されるジオール類。
Figure 0006410609
(式中、Rはエチレン又はプロピレン基であり、x、yはそれぞれ1以上の整数であり、かつ、x+yの平均値は2〜10である。)
Figure 0006410609
酸成分としては、以下のものが挙げられる。フタル酸、テレフタル酸、イソフタル酸、無水フタル酸の如きベンゼンジカルボン酸類またはその無水物;こはく酸、アジピン酸、セバシン酸、アゼライン酸の如きアルキルジカルボン酸類またはその無水物、またさらに炭素数6以上18以下のアルキル基またはアルケニル基で置換されたこはく酸もしくはその無水物;フマル酸、マレイン酸、シトラコン酸、イタコン酸の如き不飽和ジカルボン酸またはその無水物。
また本発明にかかるポリエステル樹脂或いはポリエステル系ユニットは、三価以上の多価カルボン酸またはその無水物及び/または三価以上の多価アルコールによる架橋構造を含むポリエステル樹脂であることが好ましい。三価以上の多価カルボン酸またはその無水物としては、以下のものが挙げられる。1,2,4−ベンゼントリカルボン酸、1,2,4−シクロヘキサントリカルボン酸、1,2,4−ナフタレントリカルボン酸、ピロメリット酸及びこれらの酸無水物または低級アルキルエステル。三価以上の多価アルコールとしては、以下のものが挙げられる。1,2,3−プロパントリオール、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール。本発明の結着樹脂においては、環境変動による安定性も高い芳香族系アルコールが特に好ましく、例えば1,2,4−ベンゼントリカルボン酸及びその無水物が挙げられる。
本発明にかかる結着樹脂に用いられるビニル系樹脂或いはハイブリッド樹脂のビニル系重合体ユニットを構成するビニル系モノマーとしては、次の化合物が挙げられる。
スチレン;o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン、3,4−ジクロルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレンの如きスチレン及びその誘導体;エチレン、プロピレン、ブチレン、イソブチレンの如きスチレン不飽和モノオレフィン類;ブタジエン、イソプレンの如き不飽和ポリエン類;塩化ビニル、塩化ビニリデン、臭化ビニル、フッ化ビニルの如きハロゲン化ビニル類;酢酸ビニル、プロピオン酸ビニル、ベンゾエ酸ビニルの如きビニルエステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きα−メチレン脂肪族モノカルボン酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸プロピル、アクリル酸n−オクチル、アクリル酸ドデシル、アクリル酸2−エチルヘキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニルの如きアクリル酸エステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルの如きビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンの如きビニルケトン類;N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドンの如きN−ビニル化合物;ビニルナフタリン類;アクリロニトリル、メタクリロニトリル、アクリルアミドの如きアクリル酸もしくはメタクリル酸誘導体。
さらに、以下のものが挙げられる。マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸の如き不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物の如き不飽和二塩基酸無水物;マレイン酸メチルハーフエステル、マレイン酸エチルハーフエステル、マレイン酸ブチルハーフエステル、シトラコン酸メチルハーフエステル、シトラコン酸エチルハーフエステル、シトラコン酸ブチルハーフエステル、イタコン酸メチルハーフエステル、アルケニルコハク酸メチルハーフエステル、フマル酸メチルハーフエステル、メサコン酸メチルハーフエステルの如き不飽和二塩基酸のハーフエステル;ジメチルマレイン酸、ジメチルフマル酸の如き不飽和二塩基酸エステル;アクリル酸、メタクリル酸、クロトン酸、ケイヒ酸の如きα,β−不飽和酸;クロトン酸無水物、ケイヒ酸無水物の如きα,β−不飽和酸無水物、該α,β−不飽和酸と低級脂肪酸との無水物;アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物及びこれらのモノエステルの如きカルボキシル基を有するモノマー。
さらに、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレートの如きアクリル酸またはメタクリル酸エステル類;4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルヘキシル)スチレンの如きヒドロキシ基を有するモノマーが挙げられる。
本発明のトナーにおいて、結着樹脂に用いられるビニル系樹脂或いはビニル系重合体ユニットは、ビニル基を2個以上有する架橋剤で架橋された架橋構造を有してもよい。この場合に用いられる架橋剤としては、以下のものが挙げられる。芳香族ジビニル化合物(ジビニルベンゼン、ジビニルナフタレン);アルキル鎖で結ばれたジアクリレート化合物類(エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールアクリレート、1,6−へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの);エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類(例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、及び以上の化合物のアクリレー卜をメタクリレートに代えたもの);芳香族基及びエーテル結合を含む鎖で緒ばれたジアクリレート化合物類[ポリオキシエチレン(2)−2,2−ビス(4ヒドロキシフェニル)プロパンジアクリレート、ポリオキシエチレン(4)−2,2−ビス(4ヒドロキシフェニル)プロパンジアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの];ポリエステル型ジアクリレート化合物類(日本化薬社製「MANDA」)。
多官能の架橋剤としては、以下のものが挙げられる。ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、及び以上の化合物のアクリレートをメタクリレートに代えたもの;トリアリルシアヌレート、トリアリルトリメリテート。
これらの架橋剤は、他のモノマー成分100質量部に対して、0.01質量部以上10.00質量部以下、さらに好ましくは0.03質量部以上5.00質量部以下用いることができる。
これらの架橋剤のうち、結着樹脂に定着性、耐オフセット性の点から好適に用いられるものとして、芳香族ジビニル化合物(特にジビニルベンゼン)、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物類が挙げられる。
上記ビニル系樹脂或いはビニル系重合体ユニットの重合に用いられる重合開始剤としては、以下のものが挙げられる。2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、ジメチル−2,2’−アゾビスイソブチレート、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)、2−(カーバモイルアゾ)−イソブチロニトリル、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2−フェニルアゾ−2,4−ジメチル−4−メトキシバレロニトリル、2,2−アゾビス(2−メチルプロパン)、メチルエチルケトンパーオキサイド、アセチルアセトンパ−オキサイド、シクロヘキサノンパーオキサイドの如きケトンパーオキサイド類、2,2−ビス(tert−ブチルパーオキシ)ブタン、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α’−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m−トリオイルパーオキサイド、ジ−イソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシカーボネート、ジメトキシイソプロピルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシカーボネート、アセチルシクロヘキシルスルホニルパーオキサイド、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシイソブチレート、tert−ブチルパーオキシネオデカノエート、tert−ブチルパーオキシ2−エチルヘキサノエート、tert−ブチルパーオキシラウレート、tert−ブチルパーオキシベンゾエート、tert−ブチルパーオキシイソプロピルカーボネート、ジ−tert−ブチルパーオキシイソフタレート、tert−ブチルパーオキシアリルカーボネート、tert−アミルパーオキシ2−エチルヘキサノエート、ジ−tert−プチルパーオキシヘキサハイドロテレフタレート、ジ−tert−ブチルパーオキシアゼレート。
本発明において、結着樹脂に前記したハイブリッド樹脂を用いる場合には、ビニル系樹脂及び/またはポリエステル樹脂成分中に、両樹脂成分と反応し得るモノマー成分を含むことが好ましい。ポリエステル樹脂成分を構成するモノマーのうちビニル系樹脂と反応し得るものとしては、例えば、フマル酸、マレイン酸、シトラコン酸、イタコン酸の如き不飽和ジカルボン酸またはその無水物が挙げられる。ビニル系樹脂成分を構成するモノマーのうちポリエステル樹脂成分と反応し得るものとしては、カルボキシル基またはヒドロキシ基を有するものや、アクリル酸もしくはメタクリル酸エステル類が挙げられる。
ビニル系樹脂とポリエステル樹脂の反応生成物を得る方法としては、先に挙げたビニル系樹脂及びポリエステル樹脂のそれぞれと反応しうるモノマー成分を含むポリマーが存在しているところで、どちらか一方もしくは両方の樹脂の重合反応をさせることにより得る方法が好ましい。
また、上記のような結着樹脂を単独で使用してもよいが、軟化点の異なる2種類の高軟化点樹脂(H)と低軟化点樹脂(L)とを任意の範囲で混合して使用しても良い。高軟化点樹脂(H)は、軟化点が120℃以上170℃以下であることが好ましい。また、低軟化点樹脂(L)は軟化点が70℃以上120℃未満であることが好ましい。
このような系では、トナーの分子量分布の設計を比較的容易に行うことができ、幅広い定着領域を持たせることができるので好ましい。
結着樹脂1種類を単独で使用する場合、軟化点Tmは95℃以上170℃以下が好ましい。さらに好ましくは120℃以上160℃以下である。Tmが上記の範囲内であれば、耐高温オフセット性と低温定着性のバランスが良好となる。
また、結着樹脂のガラス転移温度(Tg)は、保存安定性の観点から45℃以上であることが好ましい。また、低温定着性の観点から、Tgは75℃以下であることが好ましく、65℃以下であることが特に好ましい。
また、結晶性樹脂として結晶性ポリエステル系樹脂を用いても良い。結晶性ポリエステルを用いる場合、樹脂の原料モノマーに用いられるアルコール成分としては、例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,14−エイコサンデカンジオールなどが挙げられるが、これらに限定されるものではない。
これらの中でも、低温定着性及び耐熱安定性の観点から、炭素数6以上18以下の脂肪族ジオールが好ましく、より好ましくは炭素数8以上14以下である。
上記脂肪族ジオールの含有量は、結晶性ポリエステル樹脂の結晶性をより高める観点から、アルコール成分中に80mol%以上100mol%以下であることが好ましい。
結晶性ポリエステル樹脂を得るためのアルコール成分としては、上記の脂肪族ジオール以外の多価アルコール成分を含有していてもよい。例えば、2,2−ビス(4−ヒドロキシフェニル)プロパンのポリオキシプロピレン付加物、2,2−ビス(4−ヒドロキシフェニル)プロパンのポリオキシエチレン付加物等を含むビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の3価以上のアルコールが挙げられる。
結晶性ポリエステル樹脂の原料モノマーに用いられるカルボン酸成分としては、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、1,9−ノナンジカルボン酸、1,10−デカンジカルボン酸、1,12−ドデカンジカルボン酸、1,14−テトラデカンジカルボン酸、1,18−オクタデカンジカルボン酸等の脂肪族ジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、ナフタレン−2,6−ジカルボン酸、マロン酸、メサコニン酸等の二塩基酸等の芳香族ジカルボン酸、などが挙げられ、さらにこれらの無水物やこれらの低級アルキルエステルも挙げられる。
これらの中でも結晶性を高める観点から、炭素数6以上18以下の脂肪族ジカルボン酸化合物を用いることが好ましく、より好ましくは炭素数6以上10以下である。
上記脂肪族ジカルボン酸化合物の含有量は、カルボン酸成分中に80mol%以上100mol%以下であることが好ましい。
結晶性ポリエステル樹脂を得るためのカルボン酸成分としては、上記脂肪族ジカルボン酸化合物以外のカルボン酸成分を含有していてもよい。例えば、芳香族ジカルボン酸化合物、3価以上の芳香族多価カルボン酸化合物等が挙げられるが、特にこれらに限定されるものではない。芳香族ジカルボン酸化合物には、芳香族ジカルボン酸誘導体も含まれる。芳香族ジカルボン酸化合物の具体例としては、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸及びこれらの酸の無水物、並びにそれらのアルキル(炭素数1〜3)エステルが好ましく挙げられる。該アルキルエステル中のアルキル基としては、メチル基、エチル基、プロピル基及びイソプロピル基が挙げられる。3価以上の多価カルボン酸化合物としては、1,2,4−ベンゼントリカルボン酸(トリメリット酸)、2,5,7−ナフタレントリカルボン酸、ピロメリット酸等の芳香族カルボン酸、及びこれらの酸無水物、アルキル(炭素数1以上3以下)エステル等の誘導体が挙げられる。
本発明のトナーは、磁性一成分トナー、非磁性一成分トナー、非磁性二成分トナーのいずれのトナーとしても使用できる。
磁性一成分トナーとして用いる場合、着色剤としては、磁性酸化鉄粒子が好ましく用いられる。磁性一成分トナーに含まれる磁性酸化鉄粒子としては、マグネタイト、マグヘマイト、フェライトの如き磁性酸化鉄、及び他の金属酸化物を含む磁性酸化鉄;Fe,Co,Niのような金属、あるいは、これらの金属とAl,Co,Cu,Pb,Mg,Ni,Sn,Zn,Sb,Be,Bi,Cd,Ca,Mn,Se,Ti,W,Vのような金属との合金、およびこれらの混合物が挙げられる。
非磁性一成分トナー及び非磁性二成分トナーとして用いる場合の着色剤としては、以下のものが挙げられる。
黒色の顔料としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック、ランプブラック等のカーボンブラックが用いられ、また、マグネタイト、フェライト等の磁性粉も用いられる。
イエロー色に好適な着色剤としては、顔料或いは染料を用いることができる。顔料としては、C.I.ピグメントイエロー1,2,3,4,5,6,7,10,11,12、13、14、15、17、23、62、65、73、74、81、83、93、94、95、97、98、109、110、111、117、120、127、128、129、137、138、139、147、151、154、155、167、168、173、174、176、180、181、183、191、C.I.バットイエロー1,3,20が挙げられる。染料としては、C.I.ソルベントイエロー19、44、77、79、81、82、93、98、103、104、112、162等が挙げられる。これらのものを単独或いは2以上のものを併用して用いる。
シアン色に好適な着色剤としては、顔料或いは染料を用いることができる。顔料としては、C.I.ピグメントブルー1、7、15、15;1、15;2、15;3、15;4、16、17、60、62、66等、C.I.バットブルー6、C.I.アシッドブルー45が挙げられる。染料としては、C.I.ソルベントブルー25、36、60、70、93、95等が挙げられる。これらのものを単独或いは2以上のものを併用して用いる。 マゼンタ色に好適な着色剤としては、顔料或いは染料を用いることができる。顔料としては、C.I.ピグメントレッド1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,23,30,31,32,37,38,39,40,41,48,48;2、48;3、48;4、49,50,51,52,53,54,55,57,57;1、58,60,63,64,68,81,81;1、83,87,88,89,90,112,114,122,123,144、146,150,163,166、169、177、184,185,202,206,207,209,220、221、238、254等、C.I.ピグメントバイオレット19;C.I.バットレッド1,2,10,13,15,23,29,35が挙げられる。マゼンタ用染料としては、C.I.ソルベントレッド1,3,8,23,24,25,27,30,49,52、58、63、81,82,83,84,100,109,111、121、122等、C.I.ディスパースレッド9、C.I.ソルベントバイオレット8,13,14,21,27等、C.I.ディスパースバイオレット1等の油溶染料、C.I.ベーシックレッド1,2,9,12,13,14,15,17,18,22,23,24,27,29,32,34,35,36,37,38,39,40等、C.I.ベーシックバイオレット1,3,7,10,14,15,21,25,26,27,28等の塩基性染料等が挙げられる。これらのものを単独或いは2以上のものを併用して用いる。
トナーに離型性を与えるために、トナーは離型剤(ワックス)を含有することが好ましい。ワックスとしては、トナー中での分散のしやすさ、離型性の高さから、低分子量ポリエチレン、低分子量ポリプロピレン、マイクロクリスタリンワックス、パラフィンワックスの如き炭化水素系ワックスが好ましく用いられる。必要に応じて一種または二種以上のワックスを、少量併用してもかまわない。例としては次のものが挙げられる。
酸化ポリエチレンワックスの如き脂肪族炭化水素系ワックスの酸化物、または、それらのブロック共重合物;カルナバワックス、サゾールワックス、モンタン酸エステルワックスの如き脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスの如き脂肪酸エステル類を一部または全部を脱酸化したもの。さらに、以下のものが挙げられる。パルミチン酸、ステアリン酸、モンタン酸の如き飽和直鎖脂肪酸類;ブラシジン酸、エレオステアリン酸、パリナリン酸の如き不飽和脂肪酸類;ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如き飽和アルコール類;長鎖アルキルアルコール類;ソルビトールの如き多価アルコール類;リノール酸アミド、オレイン酸アミド、ラウリン酸アミドの如き脂肪酸アミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドの如き飽和脂肪酸ビスアミド類;エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’−ジオレイルアジピン酸アミド、N,N−ジオレイルセバシン酸アミドの如き不飽和脂肪酸アミド類;m−キシレンビスステアリン酸アミド、N,N−ジステアリルイソフタル酸アミドの如き芳香族系ビスアミド類;ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムの如き脂肪酸金属塩(一般に金属石けんといわれているもの);脂肪族炭化水素系ワックスにスチレンやアクリル酸の如きビニル系モノマーを用いてグラフト化させたワックス類;ベヘニン酸モノグリセリドの如き脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加によって得られるヒドロキシル基を有するメチルエステル化合物。
本発明において特に好ましく用いられるワックスとしては、脂肪族炭化水素系ワックスが挙げられる。このような脂肪族炭化水素系ワックスとしては、以下のものが挙げられる。アルキレンを高圧下でラジカル重合し、又は低気圧下でチーグラー触媒を用いて重合した低分子量のアルキレンポリマー;高分子量のアルキレンポリマーを熱分解して得られるアルキレンポリマー;一酸化炭素及び水素を含む合成ガスからアーゲ法により得られる炭化水素の蒸留残分から得られる合成炭化水素ワックス及びそれを水素添加して得られる合成炭化水素ワックス;これらの脂肪族炭化水素系ワックスをプレス発汗法、溶剤法、真空蒸留の利用や分別結晶方式により分別したワックス。
脂肪族炭化水素系ワックスの母体としての炭化水素としては、以下のものが挙げられる。金属酸化物系触媒(多くは二種以上の多元系)を使用した一酸化炭素と水素の反応によって合成されるもの(例えばジントール法、ヒドロコール法(流動触媒床を使用)によって合成された炭化水素化合物);ワックス状炭化水素が多く得られるアーゲ法(同定触媒床を使用)により得られる炭素数が数百ぐらいまでの炭化水素;エチレンの如きアルキレンをチーグラー触媒により重合した炭化水素。具体的には、以下のものが挙げられる。ビスコール(登録商標)330−P、550−P、660−P、TS−200(三洋化成工業株式会社);ハイワックス400P、200P、100P、410P、420P、320P、220P、210P、110P(三井化学株式会社);サゾール H1、H2、C80、C105、C77(サゾール社);HNP−1、HNP−3、HNP−9、HNP−10、HNP−11、HNP−12(日本精蝋株式会社)、ユニリン(登録商標)350、425、550、700、ユニシッド(登録商標)350、425、550、700(東洋ペトロライト社);木ろう、蜜ろう、ライスワックス、キャンデリラワックス、カルナバワックス(株式会社セラリカNODA)。
離型剤を添加するタイミングは、粉砕法でトナーを作製する場合においては、溶融混練時に添加しても良いが、トナー用樹脂の製造時であっても良い。また、これらの離型剤は単独で使用しても併用しても良い。離型剤は結着樹脂100質量部に対して、1質量部以上20質量部以下添加することが好ましい。
本発明のトナーは、荷電制御剤として、上記モノアゾ金属錯体化合物以外に、既知の他の荷電制御剤と併用することができる。他の荷電制御剤としては、アゾ系鉄錯体又は錯塩、アゾ系クロム錯体又は錯塩、アゾ系マンガン錯体又は錯塩、アゾ系コバルト錯体又は錯塩、アゾ系ジルコニウム錯体又は錯塩、カルボン酸誘導体のクロム錯体又は錯塩、カルボン酸誘導体の亜鉛錯体又は錯塩、カルボン酸誘導体のアルミ錯体又は錯塩、カルボン酸誘導体のジルコニウム錯体又は錯塩が挙げられる。前記カルボン酸誘導体は、芳香族ヒドロキシカルボン酸が好ましい。また、荷電制御樹脂も用いることもできる。本発明に用いられる荷電制御剤と他の荷電制御剤とを併用する場合、他の荷電制御剤をトナー用樹脂100質量部に対して0.1質量部以上10質量部以下使用することが好ましい。
本発明のトナーは、キャリアと混合して二成分現像剤として使用してもよい。キャリアとしては、通常のフェライト、マグネタイト等のキャリアや樹脂コートキャリアを使用することができる。また、樹脂中に磁性粉が分散されたバインダー型のキャリアコアも用いることができる。
樹脂コートキャリアは、キャリアコア粒子とキャリアコア粒子表面を被覆(コート)する樹脂である被覆材からなる。被覆材に用いられる樹脂としては、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体等のスチレン−アクリル系樹脂;アクリル酸エステル共重合体、メタクリル酸エステル共重合体等のアクリル系樹脂;ポリテトラフルオロエチレン、モノクロロトリフルオロエチレン重合体、ポリフッ化ビニリデン等のフッ素含有樹脂;シリコーン樹脂;ポリエステル樹脂;ポリアミド樹脂;ポリビニルブチラール;アミノアクリレート樹脂が挙げられる。その他には、アイオモノマー樹脂やポリフェニレンサルファイド樹脂が挙げられる。これらの樹脂は、単独あるいは複数を併用して用いることができる。
さらに本発明のトナーには、有機無機複合微粒子とシリカ微粒子に加え、必要に応じて他の外添剤を添加してもよい。このような外添剤としては、例えば、帯電補助剤、導電性付与剤、流動性付与剤、ケーキング防止剤、熱ローラ定着時の離型剤、滑剤、研磨剤等の働きをする樹脂微粒子や無機微粉体が挙げられる。滑剤としては、ポリフッ化エチレン粉末、ステアリン酸亜鉛粉末、ポリフッ化ビニリデン粉末が挙げられる。研磨剤としては、酸化セリウム粉末、炭化ケイ素粉末、チタン酸ストロンチウム粉末が挙げられ、中でもチタン酸ストロンチウム粉末が好ましい。
本発明のトナー粒子の製法は特に限定されず、樹脂成分並びに必要に応じて、着色剤、離型剤及び電荷制御剤等のトナー構成材料を均一混合した後に溶融混練し、得られた混練物を冷却後、粉砕、分級し、流動性改質剤等をヘンシェルミキサー等の混合機を用いて十分混合し本発明の現像剤を得る、いわゆる粉砕法を用いることができる。また他の手法として、乳化重合法や懸濁重合法などのいわゆる重合法によりトナー粒子を製造することができる。
少なくとも、溶融混練工程及び粉砕工程を経て得られるトナー粒子を製造する方法としては、以下の方法を用いることができる。樹脂成分並びに必要に応じてワックス、着色剤、荷電制御剤、及びその他の添加剤等を、ヘンシェルミキサー、ボールミルのような混合機により充分混合する。混合物を二軸混練押出機、加熱ロール、ニーダー、エクストルーダーのような熱混練機を用いて溶融混練する。その際、ワックス、磁性酸化鉄粒子及び含金属化合物を添加することもできる。溶融混練物を冷却固化した後、粉砕及び分級を行い、トナー粒子を得る。
さらに、トナー粒子と外添剤をヘンシェルミキサーのような混合機により混合し、トナーを得ることができる。また、本発明において、外添工程は多段外添を行ってもよい。
混合機としては、以下のものが挙げられる。ヘンシェルミキサー(日本コークス工業(株));スーパーミキサー(カワタ社製);リボコーン(大川原製作所社製);ナウターミキサー、タービュライザー、サイクロミックス(ホソカワミクロン社製);スパイラルピンミキサー(太平洋機工社製);レーディゲミキサー(マツボー社製)。混練機としては、以下のものが挙げられる。KRCニーダー(栗本鉄工所社製);ブス・コ・ニーダー(Buss社製);TEM型押し出し機(東芝機械社製);TEX二軸混練機(日本製鋼所社製);PCM混練機(池貝鉄工所社製);三本ロールミル、ミキシングロールミル、ニーダー(井上製作所社製);ニーデックス(三井鉱山社製);MS式加圧ニーダー、ニダールーダー(森山製作所社製);バンバリーミキサー(神戸製鋼所社製)。粉砕機としては、以下のものが挙げられる。カウンタージェットミル、ミクロンジェット、イノマイザ(ホソカワミクロン社製);IDS型ミル、PJMジェット粉砕機(日本ニューマチック工業社製);クロスジェットミル(栗本鉄工所社製);ウルマックス(日曹エンジニアリング社製);SKジェット・オー・ミル(セイシン企業社製);クリプトロン(川崎重工業社製);ターボミル(ターボ工業社製);スーパーローター(日清エンジニアリング社製)。
分級機としては、以下のものが挙げられる。クラッシール、マイクロンクラッシファイアー、スペディッククラシファイアー(セイシン企業社製);ターボクラッシファイアー(日清エンジニアリング社製);ミクロンセパレータ、ターボプレックス(ATP)、TSPセパレータ(ホソカワミクロン社製);エルボージェット(日鉄鉱業社製)、ディスパージョンセパレータ(日本ニューマチック工業社製);YMマイクロカット(安川商事社製)。
粗粒子をふるい分けるために用いられる篩い装置としては、以下のものが挙げられる。ウルトラソニック(晃栄産業社製);レゾナシーブ、ジャイロシフター(徳寿工作所社);バイブラソニックシステム(ダルトン社製);ソニクリーン(新東工業社製);ターボスクリーナー(ターボ工業社製);ミクロシフター(槙野産業社製);円形振動篩い。
次に、本発明に係る各物性の測定方法に関して記載する。
<トナーからの有機無機複合微粒子の単離方法>
トナーを「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)を数滴加えたイオン交換水に超音波分散し24時間静置する。上澄み液を採取して乾燥することで、外添剤を単離することができる。トナーに有機無機複合微粒子以外の外添剤が外添されている場合は、前記上澄み液を遠心分離法で分離することにより、有機無機複合微粒子を単離することが可能である。
<有機無機複合微粒子の個数平均粒径(D1)の測定方法>
有機無機複合微粒子の個数平均粒径(D1)の測定は、走査型電子顕微鏡「S−4800」(商品名;日立製作所製)を用いて行った。
有機無機複合微粒子が外添されたトナーを観察して、最大20万倍に拡大した視野において、ランダムに100個の有機無機複合微粒子の一次粒子の長径を測定し、個数平均粒径(D1)を求めた。観察倍率は、有機無機複合微粒子の大きさによって適宜調整した。
<有機無機複合微粒子の形状係数SF−2の測定方法>
有機無機複合粒子の形状係数SF−2は、透過型電子顕微鏡「JEM−2800」(日本電子株式会社)で有機無機複合粒子を観察し、最大20万倍に拡大した視野において、100個の一次粒子の周囲長、面積を画像処理ソフトImage−Pro Plus5.1J(MediaCybernetics社製)を使用して算出した。
SF−2は下記の式にて算出し、その平均値をSF−2とした。
SF−2=(粒子の周囲長)2/粒子の面積×100/4π
<トナー中の有機無機複合微粒子の含有量の測定方法>
トナーの製造において有機無機複合微粒子の添加量がわかる場合には、その値を用いて有機無機複合微粒子の含有量を知ることができる。
有機無機複合微粒子の添加量がわからない場合の、有機無機複合微粒子の含有量の測定方法としては、例えば以下の方法が挙げられる。
(1)トナー5gをサンプル瓶に入れ、メタノールを200mLを加える。必要であれば、数滴の界面活性剤を添加する。界面活性剤としては、「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)を用いることができる。
(2)超音波洗浄機で180分間試料を分散させて外添剤を分離させる。
(3)吸引ろ過(10μmメンブランフィルター)してトナー粒子と外添剤を分離する。本発明のトナーが磁性トナーである場合には、ネオジム磁石をサンプル瓶の底にあてて磁性トナー粒子を固定して上澄み液だけ分離させても構わない。
(4)上記(2)、(3)を計10回行う。
上記操作により、トナー粒子から有機無機複合微粒子と他の外添剤の混合物が単離される。この回収された水溶液を遠心分離器にかけ、他の外添剤と分離して有機無機複合微粒子を回収する。
次いで、溶媒を除去し真空乾燥機で十分に乾燥させ質量を測定することで有機無機複合微粒子の含有量を得ることができる。
<有機無機複合微粒子中の無機微粒子の含有量の測定方法>
有機無機複合微粒子中の無機微粒子の含有量の測定はTGA Q5000IR(TAインスツルメント社製)を用いて測定を行った。測定は以下の手順で行った。
試料をサンプルパンに10.0mg秤量したのち本体にセットした。
そして酸素ガス雰囲気下にて、温度50℃で1分保持した後、25℃/分の昇温速度で、900℃まで加熱し、このときの試料の重量変化を測定した。そして初期試料の質量(W1)と、900℃時点での試料質量(W2)を用い、以下の式により有機無機複合微粒子中の無機微粒子の含有量を求めた。
無機微粒子の含有量(質量%)=W2/W1×100
本発明とトナーに外添した有機無機複合微粒子を入手できる場合には、それを試料として用いた。入手できない場合には、上述の方法でトナーから単離した有機無機複合微粒子を用いて測定することができる。
<有機無機複合粒子の表面シリカ存在比率の測定方法>
本発明の有機無機複合粒子の表面に存在する無機微粒子がシリカ微粒子の場合、以下の方法により表面シリカ存在比率を測定することができる。
本発明における有機無機複合粒子の表面シリカ存在比率は、ESCA(X線光電子分光分析)により測定される。
シリカ由来のケイ素(以下、Siと省略する。)原子量から算出される。ESCAはサンプル表面の深さ方向で数nm以下の領域の原子を検出する分析方法である。そのため有機無機複合粒子の表面の原子を検出することが可能である。
サンプルホルダーとしては、装置付属の75mm角のプラテン(サンプル固定用の約1mm径のねじ穴が具備されている)を用いた。そのプラテンのネジ穴は貫通しているため、樹脂等で穴をふさぎ、深さ0.5mm程度の粉体測定用の凹部を作製する。その凹部に測定試料をスパチュラ等で詰め込み、すり切ることでサンプルを作製した。
ESCAの装置及び測定条件は、下記の通りである。
使用装置:アルバック−ファイ社製 Quantum 2000
分析方法:ナロー分析
測定条件:
X線源:Al−Kα
X線条件:100μ25W15kV
光電子取り込み角度:45°
PassEnergy:58.70eV
測定範囲:φ100μm
以上の条件より測定を行った。
まず有機無機複合粒子の測定を行い、Si原子の定量値の算出には、C 1c(B.E.280〜295eV)、O 1s(B.E.525〜540eV)及びSi 2p(B.E.95〜113eV)のピークを使用した。ここで得られたSi元素の定量値をX1とする。
次いで同様にして、シリカ微粒子単体の元素分析を行い、ここで得られたSi元素の定量値をX2とする。
本発明において、表面シリカ存在比率は、上記X1及びX2を用いて下式のように求めた。
表面シリカ存在比率(%)=X1/X2×100
本発明とトナーに外添した有機無機複合微粒子を入手できる場合には、それを試料として用いた。入手できない場合には、上述の方法でトナーから単離した有機無機複合微粒子を用いて測定することができる。
またシリカ微粒子単体としては、製造例で記載しているゾルゲルシリカ粒子を(個数平均粒子径102nm)を用いて算出を行った。
外添剤がシリカ単体の場合は表面シリカ存在比率100%、特に表面処理がなされていない場合は樹脂粒子の表面シリカ存在比率は0%となる。
<シリカ微粒子のBET比表面積の測定方法>
シリカ微粒子の比表面積BETは、BET法(好ましくはBET多点法)に従って、動的定圧法による低温ガス吸着法により求めることができる。例えば、比表面積測定装置「ジェミニ2375 Ver.5.0」(島津製作所社製)を用いて、試料表面に窒素ガスを吸着させ、BET多点法を用いて測定することにより、BET比表面積(m2/g)を算出した。具体的には、以下のような手順で測定する。
空のサンプルセルの質量を測定した後、サンプルセルに測定試料をセル体積の約80%になるよう充填する。さらに、脱ガス装置に、試料が充填されたサンプルセルをセットし、室温で7時間脱ガスを行う。脱ガス終了後、サンプルセル全体の質量を測定し、空サンプルセルとの差から試料の正確な質量を算出する。次に、BET測定装置のバランスポートおよび分析ポートに空のサンプルセルをセットする。所定の位置に液体窒素の入ったデュワー瓶をセットし、飽和蒸気圧(P0)測定コマンドにより、P0を測定する。P0測定終了後、分析ポートに脱ガス調製されたサンプルセルをセットし、サンプル質量およびP0を入力後、BET測定コマンドにより測定を開始する。後は自動でBET比表面積が算出される。
<シリカ微粒子のTotal Energy(TE)量の測定方法>
本発明における、TEは、回転式プロペラ型ブレードを備えた粉体流動性分析装置(パウダーレオメータFT−4、Freeman Technology社製)(以下、FT−4と省略する)を用いて測定する。
具体的には、以下の操作により測定を行う。尚、全ての操作において、プロペラ型ブレードは、FT−4測定専用23.5mm径ブレードを用い、23.5mm×6.5mmのブレード板の中心に法線方向に回転軸が存在する。ブレード板は、両最外縁部分(回転軸から12mm部分)が、70°、回転軸から6mmの部分が35°といったように、反時計回りになめらかにねじられたもので、材質はSUS製を使用する。
使用する容器は、FT−4測定専用容器[直径25mm、容積25mlのスプリット容器(型番:C4031)、容器底面からスプリット部分までの高さ約51mm。以下、単に容器ともいう。]を用いた。
また、シリカ微粒子の圧縮は、圧縮試験用ピストン(直径24mm、高さ20mm、下部メッシュ張り)を上記プロペラ型ブレードの代わりに用いる。
測定の手順は以下の通りである。
(1)サンプルの圧密操作
上述のFT−4測定専用容器にシリカ微粒子を0.7g加える。FT−4測定専用の圧縮ピストンを取り付け0.5kPaで60秒間圧密を行う。さらにシリカ微粒子を0.7g加え、同様に圧縮操作を計3回行い、計2.1gの圧密されたシリカ微粒子が専用容器に入っている状態にする。本発明では、シリカ微粒子の粉体特性を最も明瞭に評価できる条件として0.5kPaを採用した。
(2)スプリット操作
上述のFT−4測定専用容器のスプリット部分でシリカ微粒子層をすり切り、シリカ微粒子層上部のシリカ微粒子を取り除くことで、同じ体積(25ml)のシリカ微粒子層を形成する。
(3)測定操作
シリカ微粒子層表面に対して時計回り(ブレードの回転によりシリカ微粒子層を押し込まない方向)の回転方向で、ブレードの周速(ブレードの最外縁部の周速)を100mm/secとし、シリカ微粒子層への垂直方向の進入速度を、移動中のブレードの最外縁部が描く軌跡と粉体層表面とのなす角度(以下、「ブレード軌跡角」)が、5(deg)になるスピードとし、シリカ微粒子層の底面から10mmの位置までプロペラ型ブレードを進入させる。
上記測定操作において、プロペラ型ブレードをシリカ微粒子層の最上面から、底面から10mmの位置まで、プロペラ型ブレードを進入させた時に得られる回転トルクと垂直荷重の総和をTEとする。
<シリコーンオイルの粘度の測定方法>
シリコーンオイルの粘度を測定する装置としては、全自動微量動粘度計(ビスコテック(株)製)を用い、25℃における粘度を測定した。
<結着樹脂の軟化点Tmの測定方法>
結着樹脂の軟化点Tmは、以下のようにして測定される。樹脂の軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT−500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行う。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
本発明においては、「流動特性評価装置 フローテスターCFT−500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。尚、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax−Smin)/2)。そして、流動曲線においてピストンの降下量がXとSminの和となるときの流動曲線の温度が、1/2法における溶融温度Tmである。
測定試料は、約1.0gのサンプルを、25℃の環境下で、錠剤成型圧縮機(例えば、NT−100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT−500Dの測定条件は、以下の通りである。
試験モード:昇温法
開始温度:50℃
到達温度:200℃
測定間隔:1.0℃
昇温速度:4.0℃/min
ピストン断面積:1.000cm2
試験荷重(ピストン荷重):10.0kgf(0.9807MPa)
予熱時間:300秒
ダイの穴の直径:1.0mm
ダイの長さ:1.0mm
<結着樹脂のガラス転移温度(Tg)の測定方法>
結着樹脂のガラス転移温度(Tg)は、示差走査型熱量計(DSC)、MDSC−2920(TA Instruments社製)を用いて、ASTM D3418−82に準じて、常温常湿下で測定する。測定試料として、結着樹脂約3mgを精密に秤量したものを用いる。これをアルミパン中に入れ、リファレンスとして空のアルミパンを用いる。測定温度範囲を30℃以上200℃以下とし、一旦、昇温速度10℃/minで30℃から200℃まで昇温した後、降温速度10℃/minで200℃から30℃まで降温し、再度、昇温速度10℃/minで200℃まで昇温させる。2回目の昇温過程で得られるDSC曲線において、比熱変化が出る前と出た後のベースラインの中間点の線と示差熱曲線との交点を、樹脂のガラス転移温度Tgとする。
以下、実施例を挙げて本発明を具体的に説明する。
<トナー用結着樹脂(A−1)の製造例>
・ビスフェールAエチレンオキサイド付加物(2.0mol付加) 50.0mol部
・ビスフェールAプロピレンオキサイド付加物(2.3mol付加)50.0mol部
・テレフタル酸 60.0mol部
・無水トリメリット酸 20.0mol部
・アクリル酸 10.0mol部
上記ポリエステルモノマーの混合物70質量部を4口フラスコに仕込み、減圧装置、水分離装置、窒素ガス導入装置、温度測定装置及び攪拌装置を装着して窒素雰囲気下にて160℃で攪拌する。そこに、ビニル重合体部位を構成するビニル系重合モノマー(スチレン:90.0mol部、ブチルアクリレート:10.0mol部)30質量部と重合開始剤としてベンゾイルパーオキサイド2.0mol部を混合したものを滴下ロートから4時間かけて滴下した。その後、160℃で5時間反応した後、230℃に昇温してテトライソブチルチタネートを0.05質量%添加し、所望の粘度となるように反応時間を調節した。
反応終了後容器から取り出し、冷却、粉砕してハイブリッド樹脂であるトナー用樹脂(A−1)を得た。得られた樹脂(A−1)の諸物性を表1に示す。
<トナー用結着樹脂(A−2)の製造例>
表1に記載のモノマーを使用する以外はトナー用結着樹脂(A−1)の製造例と同様にしてトナー用結着樹脂(A−2)を得た。得られたトナー用結着樹脂(A−2)の諸物性を表1に示す。
<トナー用結着樹脂(A−3)、(A−4)の製造例>
表1に記載のモノマーをモノマー総量に対して、0.05質量%のテトライソブチルチタネートとともに5リットルオートクレーブに仕込み、還流冷却器、水分分離装置、窒素ガス導入管、温度計及び攪拌装置を付し、オートクレーブ内に窒素ガスを導入しながら230℃で重縮合反応を行った。所望の軟化点になるように反応時間を調整した。反応終了後容器から取り出し、冷却、粉砕してトナー用樹脂(A−3)、(A−4)を得た。得られたトナー用樹脂(A−3)、(A−4)の諸物性を表1に示す。
Figure 0006410609
<有機無機複合微粒子(B−1)乃至(B−10)の製造例>
有機無機複合微粒子は、WO 2013/063291の実施例の記載に従って製造することができる。
後述の実施例において用いる有機無機複合微粒子としては、表2に示すシリカを用いて、WO 2013/063291の実施例1に従って製造したものを用意した。得られた有機無機複合微粒子(B−1)乃至(B−10)は、いずれも樹脂粒子の表面に無機微粒子(シリカ)由来の凸部を有し、これら有機無機複合微粒子の諸物性を表2に示す。
Figure 0006410609
<無機微粒子(C−1)の製造例>
後述のトナー製造例中で、上記有機無機複合微粒子以外に使用する添加剤として無機粒子(C−1)は日本触媒社製のシーホスターシリーズを使用した。
<シリカ微粒子の製造例(D−1)の製造例>
シリカ微粒子(D−1)は、BET比表面積:200m2/gのシリカ100質量部を25℃での粘度が50mm2/sのジメチルシリコーンオイル10質量部で処理し、その後解砕処理を行い得た。シリカ微粒子の製造例(D−1)の諸物性を表3に示す。
<シリカ微粒子(D−2)乃至(D−14)の製造例>
表3に記載の条件にした以外は、シリカ微粒子(D−1)と同様にして、シリカ微粒子(D−2)乃至(D−15)を得た。シリカ微粒子(D−2)乃至(D−15)の諸物性を表3に示す。
Figure 0006410609
<トナー粒子(E−1)の製造例>
・トナー用結着樹脂(A−1) 55質量部
・トナー用結着樹脂(A−4) 45質量部
・磁性酸化鉄粒子 60質量部
(平均粒径0.13m、Hc=11.5kA/m、σs=88Am2/kg、σr=14Am2/kg)
・離型剤 フィッシャートロプッシュワックス(サゾール社製、C105、融点105℃) 2質量部
・荷電制御剤 (T−77:保土ヶ谷化学社製) 2質量部
上記材料をヘンシェルミキサーで前混合した後、二軸混練押し出し機(池貝鉄工(株)製PCM−30型))によって、溶融混練した。
得られた混練物を冷却し、ハンマーミルで粗粉砕した後、機械式粉砕機(ターボ工業(株)製T−250)で粉砕し、得られた微粉砕粉末をコアンダ効果を利用した多分割分級機を用いて分級し、重量平均粒径(D4)7.0μmの負帯電性のトナー粒子(E−1)を得た。
<トナー粒子(E−2)の製造例>
トナー粒子(E−1)の製造例において、トナー用結着樹脂として(A−2)100質量部を用いる以外は、トナー粒子(E−1)の製造例と同様にして、トナー粒子(E−2)を得た。
<トナー粒子(E−3)の製造例>
トナー粒子(E−1)の製造例において、トナー用結着樹脂として(A−3)60質量部と、(A−4)40質量部を用いる以外は、トナー粒子(E−1)の製造例と同様にして、トナー粒子(E−3)を得た。
〔実施例1〕
・トナー粒子(E−1) 100質量部
・有機無機複合微粒子(B−1) 1.0質量部
・シリカ微粒子(D−1) 0.8質量部
・チタン酸ストロンチウム微粉体(D50:1.0μm) 0.6質量部
上記をヘンシェルミキサー(日本コークス工業(株)製FM−75型)で混合し目開き150μmのメッシュで篩い、トナー(T−1)を得た。
得られたトナー(T−1)に対して以下の評価を行った。結果を表4に示す。
<低温定着性試験>
低温定着性は、ヒューレットパッカード社製レーザービームプリンタ:HP LaserJet Enterprise 600 M603の定着器を外部に取り出し、定着器の温度を任意に設定可能にし、プロセススピードを450mm/secとなるように改造した外部定着器を用いた。
上記装置を用い、低温低湿環境下(温度15℃、湿度10%RH)において、単位面積当たりのトナー載り量を0.5mg/cm2に設定した未定着画像を、160℃に温調した定着器に通した。なお、記録媒体には「プローバーボンド紙」(105g/m2、フォックスリバー社製)を用いた。得られた定着画像を4.9kPa(50g/cm2)の荷重をかけたシルボン紙で摺擦し、摺擦前後での画像濃度の低下率(%)で評価した。
A(非常に良い):画像濃度の低下率が5.0%未満である。
B(良い):画像濃度の低下率が5.0%以上10.0%未満である。
C(普通):画像濃度の低下率が10.0%以上15.0%未満である。
D(悪い):画像濃度の低下率が15.0%以上である。
<両面プリントモードにおける耐久性評価>
ヒューレットパッカード社製レーザービームプリンタ(HP LaserJet Enterprise 600 M603)に両面プリントオプションを装着し、高温高湿環境下(温度32.5℃、湿度80%RH)において、印字率1%となる横線パターンを2枚/1ジョブとして、ジョブとジョブの間にマシンがいったん停止してから次のジョブが始まるように設定したモードで、計50000枚の画出し試験を実施した。
そして、100枚目に対する50000枚耐久後の画像濃度の低下率を算出した。なお、画像濃度は、反射濃度計であるマクベス濃度計(マクベス社製)でSPIフィルターを使用して、5mmのベタ黒画像の反射濃度を測定することにより測定した。評価基準を以下に示す。
A(非常に良い):画像濃度低下率が3%未満である。
B(良い):画像濃度低下率が3%以上6%未満である。
C(普通):画像濃度低下率が6%以上10%未満である。
D(悪い):画像濃度低下率が10%以上である。
<放置安定性評価>
上記<両面プリントモードにおける耐久性評価>において、50000枚通紙後、高温高湿環境下(温度32.5℃、湿度80%RH)に5日間放置後、テストチャートを1枚通紙し、ベタ黒部分の反射濃度を測定し、放置前後の画像濃度の変化(放置前−放置後)の値を算出し、以下の基準で評価した。
A(非常に良い):濃度低下が0.05未満
B(良い):濃度低下が0.05以上0.10未満
C(普通):濃度低下が0.10以上0.15未満
D(悪い):濃度低下が0.15以上
<画像縦スジ評価>
上記<両面プリントモードにおける耐久性評価>において50000枚通紙後、全面黒画像を出力し、画像上の縦スジレベルを目視にて確認し、以下の基準で評価した。
A(非常に良い):縦スジは見られない。
B(良い):画像の端部領域の濃度が中央部に比べて低下する。
C(普通):画像の端部領域に微小な縦スジが観察される。
D(悪い):画像の端部領域に明確な縦スジが観察される。
〔実施例2〕
・トナー粒子(E−2) 100質量部
・有機無機複合微粒子(B−2) 1.0質量部
上記をヘンシェルミキサー(日本コークス工業(株)製FM−75型)で混合した。その後、下記材料を添加し、再度ヘンシェルミキサー(日本コークス工業(株)製FM−75型)で混合し目開き150μmのメッシュで篩い、トナー(T−2)を得た
・シリカ微粒子(D−2) 0.8質量部
・チタン酸ストロンチウム微粉体(D50:1.0μm) 0.6質量部
得られたトナー(T−2)に対して、実施例1と同様の評価を行った。結果を表4に示す。
〔実施例3乃至10〕
表4に記載の処方とする以外はトナー(T−1)と同様にして、トナー(T−3)乃至(T−10)を得た。得られたトナー(T−3)乃至(T−10)に対して、実施例1と同様の評価を行った。結果を表4に示す。
〔比較例1乃至7〕
表4に記載の処方とする以外はトナー(T−1)と同様にして、トナー(T−11)乃至(T−17)を得た。得られたトナー(T−11)乃至(T−17)に対して、実施例1と同様の評価を行った。結果を表4に示す。
なお、比較例7では、有機無機複合微粒子の代わりに、無機微粒子(C−1)を使用した。
Figure 0006410609

Claims (4)

  1. 結着樹脂及び着色剤を含有するトナー粒子と、有機無機複合微粒子及びシリカ微粒子とを有するトナーにおいて、
    1)該有機無機複合微粒子は、樹脂粒子の表面に無機微粒子由来の凸部を複数有し、該有機無機複合微粒子の個数平均粒径(D1)が70nm以上500nm以下であり、倍率20万倍で測定したときの形状係数SF−2が103以上120以下であり、
    2)該シリカ微粒子のBET比表面積が50m2/g以上300m2/g以下であり、
    且つ、粉体流動性測定装置において、測定容器内で0.5kPaの垂直荷重を加えて作製した該シリカ微粒子の粉体層の表面に、プロペラ型ブレードを前記プロペラ型ブレードの最外縁部の周速を100mm/secで回転させながら、該粉体層に侵入させたときのTotal Energyが、30mJ以上50mJ以下であることを特徴とするトナー。
  2. 該シリカ微粒子は、シリコーンオイルによる処理のみが施されており、該シリコーンオイルの25℃での粘度が30mm2/s以上70mm2/s以下であることを特徴とする請求項1に記載のトナー。
  3. 該シリカ微粒子の処理に用いられるシリコーンオイル量が、シリカ微粒子原体100.0質量部に対して5.0質量部以上15.0質量部以下であることを特徴とする請求項2に記載のトナー。
  4. 該トナーが、該トナー粒子100質量部に対して、0.5質量部以上3.5質量部以下の該有機無機複合微粒子を含有することを特徴とする請求項1乃至3のいずれか一項に記載のトナー。
JP2015001209A 2015-01-07 2015-01-07 トナー Active JP6410609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001209A JP6410609B2 (ja) 2015-01-07 2015-01-07 トナー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001209A JP6410609B2 (ja) 2015-01-07 2015-01-07 トナー

Publications (2)

Publication Number Publication Date
JP2016126219A JP2016126219A (ja) 2016-07-11
JP6410609B2 true JP6410609B2 (ja) 2018-10-24

Family

ID=56359477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001209A Active JP6410609B2 (ja) 2015-01-07 2015-01-07 トナー

Country Status (1)

Country Link
JP (1) JP6410609B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478662B2 (ja) * 2015-01-29 2019-03-06 キヤノン株式会社 トナー及びトナーの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474054B2 (ja) * 2001-01-24 2010-06-02 キヤノン株式会社 画像形成装置
JP4003962B2 (ja) * 2002-07-15 2007-11-07 株式会社リコー 電子写真トナー用外添剤、電子写真用トナー、電子写真用現像剤、および画像形成方法
JP4173012B2 (ja) * 2003-01-07 2008-10-29 株式会社リコー 電子写真トナー用外添剤、電子写真用トナー、電子写真用現像剤、画像形成方法および画像形成装置
JP4321272B2 (ja) * 2004-01-15 2009-08-26 富士ゼロックス株式会社 静電荷像現像用トナー、画像形成方法、及び画像形成装置
JP4010322B2 (ja) * 2005-05-13 2007-11-21 コニカミノルタホールディングス株式会社 画像形成方法
JP4765760B2 (ja) * 2006-05-11 2011-09-07 富士ゼロックス株式会社 静電潜像現像用トナー、及び画像形成方法
JP4579265B2 (ja) * 2007-04-25 2010-11-10 信越化学工業株式会社 高度の流動性を有する疎水性球状シリカ微粒子、その製造方法、それを用いた静電荷像現像用トナー外添剤およびそれを含有する有機樹脂組成物
US20100040969A1 (en) * 2008-08-12 2010-02-18 Ligia Aura Bejat Toner Formulations with Tribocharge Control and Stability
JP5739223B2 (ja) * 2011-05-13 2015-06-24 日本アエロジル株式会社 疎水性シリカ微粒子の製造方法
JP2013092748A (ja) * 2011-10-26 2013-05-16 Cabot Corp 複合体粒子を含むトナー添加剤

Also Published As

Publication number Publication date
JP2016126219A (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6611539B2 (ja) トナー
JP6487730B2 (ja) トナーおよび二成分現像剤
JP6418836B2 (ja) トナー
JP6335707B2 (ja) トナー
JP6099873B2 (ja) トナー
US7163774B2 (en) Toner for forming image, method for developing electrostatic latent image, method for fixing toner image, image forming method and process cartridge using the toner
JP6489830B2 (ja) トナーの製造方法
CN108227417A (zh) 调色剂
JP2018155912A (ja) 静電荷像現像用トナー
EP1875313B1 (en) Black toner
JP6611554B2 (ja) トナー
JP2008145489A (ja) トナー
JP4306871B2 (ja) 負摩擦帯電性トナー
JP6385087B2 (ja) トナーの製造方法
JP5972129B2 (ja) トナー
JP6410609B2 (ja) トナー
JP5159497B2 (ja) 磁性トナー
JP3733235B2 (ja) 静電荷像現像用トナー
JP2018101125A (ja) トナー
JP7080668B2 (ja) トナー
JP2005107066A (ja) トナー
JP2009205049A (ja) 画像形成方法
JP7451166B2 (ja) トナー
JP7353967B2 (ja) 二成分現像剤
JP4262160B2 (ja) トナー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R151 Written notification of patent or utility model registration

Ref document number: 6410609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151