JP6390754B2 - 基地局で使用されるノード及びその方法 - Google Patents

基地局で使用されるノード及びその方法 Download PDF

Info

Publication number
JP6390754B2
JP6390754B2 JP2017097066A JP2017097066A JP6390754B2 JP 6390754 B2 JP6390754 B2 JP 6390754B2 JP 2017097066 A JP2017097066 A JP 2017097066A JP 2017097066 A JP2017097066 A JP 2017097066A JP 6390754 B2 JP6390754 B2 JP 6390754B2
Authority
JP
Japan
Prior art keywords
base station
bearer
radio
node
rec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017097066A
Other languages
English (en)
Other versions
JP2017175646A (ja
Inventor
洋明 網中
洋明 網中
濱辺 孝二郎
孝二郎 濱辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JP2017175646A publication Critical patent/JP2017175646A/ja
Application granted granted Critical
Publication of JP6390754B2 publication Critical patent/JP6390754B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線通信ネットワークにおいて使用される無線局(e.g. 無線基地局、中継局)の構成に関する。
分割されたRadio Equipment Controller(REC)及びRadio Equipment(RE)を含む無線基地局の構造が、特許文献1及び非特許文献1に記載されている。REC及びRE は少なくとも機能的に互いに分離されている。REC及びREの間は、無線基地局の内部インタフェース(通信インタフェース)により接続される。REC及びRE は、物理的に離間して配置されてもよい。典型的な配置では、RECは通信事業者の主要なビルディング内に配置され、REはアンテナに近い遠隔拠点に配置される。
RECは、上位ネットワーク(e.g. 通信事業者のコアネットワーク)に接続され、無線基地局の全体的な制御・監視とデジタルベースバンド信号処理を担当する。ここで、デジタルベースバンド信号処理は、レイヤ2信号処理とレイヤ1(物理レイヤ)信号処理を含む。レイヤ2信号処理は、(i) データ圧縮/復元、(ii) データ暗号化、(iii) レイヤ2ヘッダの追加/削除、(iv)データのセグメンテーション/コンカテネーション、及び(v) データの多重/分離による転送フォーマットの生成/分解、のうち少なくとも1つを含む。具体例の1つとしてのE-UTRAの場合、レイヤ2信号処理は、Radio Link Control(RLC)及びMedia Access Control(MAC)の処理を含む。物理レイヤ信号処理は、伝送路符号化/復号化(Channel Coding/Decoding)、変調/復調(Modulation/Demodulation)、拡散/逆拡散(Spreading/ De-spreading)、リソースマッピング、及びInverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。
REは、アナログRadio Frequency(RF)信号処理を担当し、移動局にエア・インタフェースを提供する。アナログRadio Frequency(RF)信号処理は、D/A変換、A/D変換、周波数アップコンバージョン、周波数ダウンコンバージョン、増幅などを含む。REは、Remote Radio Head(RRH)と呼ばれる場合もある。
例えば、Universal Mobile Telecommunications System(UMTS)の無線アクセスネットワークの場合、RECは、ユーザーデータ(ユーザープレーン・データ)及び制御データ(制御プレーン・データ)の送受信のためにIubインタフェースを用いたRadio Network Controller(RNC)への接続を提供する。一方、REは、Uuインタフェースと呼ばれるエア・エア・インタフェースを移動局に提供する。
また、Evolved Universal Terrestrial Radio Access(E-UTRA)の場合、RECは、ユーザーデータ及び制御データの送受信のためにS1インタフェースを用いたEvolved Packet Core(EPC)への接続を提供する。一方、REはLTE-Uuインタフェースと呼ばれるエア・インタフェースを移動局に提供する。
上述したように、特許文献1及び非特許文献1に開示された無線基地局の分割構造は、アナログRF信号処理を行うパートをREとして分離することを特徴としている。この分割構造は、無線基地局に実装される機能の増加及び変化に対する柔軟かつ効率的な対処を可能としている。また、この分割構造は、アナログRF技術とデジタルベースバンド技術の分離によって、これら2つの技術の独立した進化への対処を容易にしている。
国際公開第2004/095861号
Common Public Radio Interface (CPRI) Specification V4.2 (2010-09-29)、[online]、2010年9月、Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, Alcatel Lucent and Nokia Siemens Networks GmbH & Co. KG、[2011年10月20日検索]、インターネット〈URL:http://www.cpri.info/spec.html〉
無線基地局が処理すべきトラフィック(ユーザーデータ)が増大するにつれて、RECとREの間のトラフィックも増大することが予想される。しかしながら、特許文献1及び非特許文献1に開示された分割構造は、RECにおいて物理レイヤのデジタル信号処理(伝送路符号化、変調、拡散、OFDM信号生成等)を行なっている。伝送路符号化及び拡散等は、送信データの冗長度を増大させる。よって、物理レイヤのデジタル信号処理を行った後の送信データ列は、一般的に、これを行う前の送信データ列に比べてデータ量が増大している。このため、特許文献1及び非特許文献1に開示された分割構造は、今後のトラフィック増大によってREC-RE間の回線を圧迫するおそれがある。一方で、RECで行われているベースバンド信号処理の全てを単純にREに移動してしまうと、RECと複数のREとの間で協調的な無線リソース管理を行うことが困難になってしまう。協調性を欠いた無線リソース管理は、無線リソース利用の不効率化を招き、システムパフォーマンスの劣化を招くおそれがある。
したがって、本発明は、トラフィック(ユーザーデータ)の増大に容易に対処し、さらにセル間協調制御を行うことが可能な分割構造を持つ無線局、及びユーザーデータの処理方法の提供を目的とする。
本発明の第1の態様は、無線通信ネットワークにおいて使用され、複数の移動局との間でエア・インタフェースを介してダウンリンク・ユーザーデータ及びアップリンク・ユーザーデータを含むユーザーデータの送受信を行うことが可能な無線局を含む。当該無線局は、第1のパートと、前記第1のパートから物理的に分離して配置可能であり、前記第1のパートと伝送路を介して通信可能に接続される少なくとも1つの第2のパートを有する。前記第1のパートは、複数の無線リソースの各々を前記複数の移動局又は前記ユーザーデータに対して割り当てる動的スケジューリングを行うよう構成されている。また、前記第2のパートは、前記ダウンリンク・ユーザーデータを前記エア・インタフェースに送信するための伝送路符号化と、前記エア・インタフェースによる受信信号から前記アップリンク・ユーザーデータを復元するための伝送路復号化とを含む信号処理を行うよう構成されている。
本発明の第2の態様は、無線局によるユーザーデータの処理方法を含む。前記無線局は、無線通信ネットワークにおいて使用され、複数の移動局との間でエア・インタフェースを介してダウンリンク・ユーザーデータ及びアップリンク・ユーザーデータを含むユーザーデータの送受信を行うことが可能に構成されている。また、前記無線局は、第1のパートと、前記第1のパートから物理的に分離して配置可能であり、前記第1のパートと伝送路を介して通信可能に接続される少なくとも1つの第2のパートとを含む。本態様に係る処理方法は、以下の(a)及び(b)を含む。
(a)前記第1のパートにおいて、複数の無線リソースの各々を前記複数の移動局又は前記ユーザーデータに対して割り当てる動的スケジューリングを行うこと、及び
(b)前記第2のパートにおいて、前記ダウンリンク・ユーザーデータを前記エア・インタフェースに送信するための伝送路符号化と前記エア・インタフェースによる受信信号から前記アップリンク・ユーザーデータを復元するための伝送路復号化とを含む信号処理を行うこと。
上述した本発明の各態様によれば、トラフィック(ユーザーデータ)の増大に容易に対処し、さらにセル間協調制御を行うことが可能な分割構造を持つ無線局、及びユーザーデータの処理方法を提供できる。
発明の実施の形態1に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態1に係る無線基地局の機能配置を示す図である。 発明の実施の形態2に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態2に係る無線基地局のプロトコル構造及び機能配置を示す図である。 発明の実施の形態3に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態3に係る無線基地局の機能配置を示す図である。 発明の実施の形態4に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態5に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態6に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態6における主スケジューラ及び副スケジューラの動作例を示すシーケンス図である。 発明の実施の形態6における主スケジューラ及び副スケジューラの動作例を示すシーケンス図である。 発明の実施の形態7に係る無線基地局の構成例を示すブロック図である。 発明の実施の形態7に係る無線基地局の機能配置を示す図である。
以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。なお、以下の説明では、主にE-UTRA/LTE(Long Term Evolution)の無線基地局に関して説明する。しかしながら、このような特定の無線通信システムに関する説明は、本発明の範囲を限定する目的ではなく、本発明に関する理解を容易にする目的で行われるものである。つまり、当業者は、以下に具体的に説明される実施の形態から把握される原理及び思想を、様々な方式の無線通信システムに適用できる。
<発明の実施の形態1>
図1は、本実施の形態に係る無線基地局1の構成を示すブロック図である。無線基地局1は、無線通信ネットワークにおいて使用され、複数の移動局との間でエア・インタフェースを介してダウンリンク・ユーザーデータ及びアップリンク・ユーザーデータを含むユーザーデータの送受信を行うことがきる。無線基地局1は、第1のパートすなわちRadio Equipment Controller(REC)1Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)1Bを有する。RE1Bは、伝送路40を介して物理的に分離して配置可能であり、REC1Aと伝送路40を介して通信可能に接続される。伝送路40は、電気伝送路でもよいし、光伝送路でもよい。また、伝送路40は、point-to-point型の無線伝送路(e.g. マイクロ波無線伝送路)であってもよい。伝送路40は、双方向伝送のために、複数の物理的な伝送路を含んでもよい。なお、図1に示されているように、REC1Aには複数のRE1Bが接続されてもよい。
REC1A及びRE1Bに配置された内部インタフェース30及び31は、伝送路40を介して双方向通信を行うためのレイヤ2及びレイヤ1機能を持つ。内部インタフェース30は、電気インタフェース、光インタフェース、無線インタフェースのいずれであってもよい。例えば、1000BASE-CX、1000BASE-SX、1000BASE-LX、10GBASE-LX4、又はFibre channelなどの既存のトランシーバを内部インタフェース30として使用してもよい。
REC1Aは、スケジューラ20を有する。スケジューラ20は、ダウンリンク及びアップリンクに関する動的スケジューリングを行う。言い換えると、スケジューラ20は、ダウンリンク及びアップリンクの複数の無線リソースの各々を複数の移動局又はユーザーデータに対して動的に割り当てる。無線リソースは、時間、周波数、若しくは拡散コード、又はこれらの組み合わせによって区別される。例えばE-UTRAの場合、無線リソースはリソースブロックであり、1サブフレーム(1msec)内の2リソースブロックを最小単位として動的スケジューリングが行われる。1つのリソースブロックは、周波数ドメインに12サブキャリアを有し、時間ドメインに7OFDMシンボルを有する。
ダウンリンクの動的スケジューリングは、Proportional Fairness(PF)、max-C/I(carrier/interference)、又はラウンドロビン等のスケジューリング手法を用いて、各無線リソースに割り当てるデータをバッファ21の中から選択することによって達成される。バッファ21は、上位ネットワークから到着したダウンリンク・ユーザーデータを一時的に保持する。バッファ21は、例えば、移動局毎、ベアラ毎、QoSクラス毎、又は移動局毎かつQoSクラス毎に用意される。どの単位でバッファ21を用意するかは、バッファの配置、スケジューリングの要件(e.g. QoSクラスの有無、転送レート保証の要否)等によって適宜決定される。また、バッファ21の配置も自由度があり、図1に示された配置に限定されるものではない。
アップリンクの動的スケジューリングは、例えば、移動局からのリソース割り当て要求の受信、又は移動局が有するデータバッファの監視結果に基づいて行われる。アップリンクの動的スケジューリングは、PF、max-C/I、又はラウンドロビン等のスケジューリング手法を用いて、各無線リソースに割り当てる移動局を決定することによって達成される。
さらに、具体例の1つとしてのE-UTRAの場合、スケジューラ20による動的スケジューリングは、Radio Link Control(RLC)サブレイヤにおけるペイロード選択、MACサブレイヤにおける再送信の制御、並びに物理レイヤにおけるコーディングレートの指定、変調スキームの指定、及び無線リソースの指定を含む。これらの制御情報は、図1に破線で示したシグナリングによって、伝送路40を経由してRE1Bのレイヤ2ユニット11及びBB-PHYユニット12に伝達される。
一方、RE1Bは、BB-PHYユニット12及びRF-PHYユニット13を有する。BB-PHYユニット12は、物理レイヤに関するデジタルベースバンド信号処理を行う。より具体的に述べると、BB-PHYユニット12による信号処理は、ダウンリンク・ユーザーデータをエア・インタフェースに送信するための伝送路符号化(channel coding)および変調を含む。さらに、BB-PHYユニット12による信号処理は、エア・インタフェースによる受信信号からアップリンク・ユーザーデータを復元するための復調および伝送路復号化(channel decoding)を含む。BB-PHYユニット12による伝送路符号化及び復号化は、例えば、ブロック符号化若しくは畳み込み符号化、又はこれらの組み合わせを含む。BB-PHYユニット12による伝送路符号化及び復号化は、例えば、ターボ符号、ビタビ符号、又はリード・ソロモン符号等の符号化アルゴリズムを用いて行われる。また、通信方式に応じて、BB-PHYユニット12による信号処理は、拡散・逆拡散(Spreading/ De-spreading)、リソースマッピング及びInverse Fast Fourier Transform(IFFT)を伴うOFDM信号生成などを含んでもよい。
RF-PHYユニット13は、アンテナ14と接続され、物理レイヤに関するアナログRF信号処理を行う。RF-PHYユニット13が行う信号処理は、D/A変換、A/D変換、周波数アップコンバージョン、周波数ダウンコンバージョン、増幅などを含む。
上述したように、本実施の形態に係る無線基地局1では、スケジューラ20がREC1Aに配置され、BB-PHYユニット12がRE1Bに配置されている。つまり、無線基地局1は、少なくとも伝送路符号化及び復号化を含む物理レイヤのデジタル信号処理をRE1Bにおいて行う。これにより、伝送路40上で送信されるユーザーデータを含むデータ列には、伝送路符号化(e.g. ブロック符号化、畳み込み符号化、又はターボ符号化)による冗長データが含まれないため、REC1AとRE1Bとの間の送信データ量を抑制することができる。したがって、無線基地局1は、REC1Aにおいて伝送路符号化及び復号化を行う場合に比べて、トラフィック増大に対処しやすい利点がある。
さらに、無線基地局1は、ベースバンド信号処理の全てをRE1Bに配置するのではなく、スケジューラ20をREC1Aに配置するアーキテクチャを採用している。これにより、無線基地局1は、複数のRE1Bの各々にて必要とされる無線リソースを考慮した協調的なスケジューリングをREC1Aにおいて行うことができる。したがって、無線基地局1は、個々のRE1Bにおいて分散化されたスケジューリングを行う場合に比べて、セル間協調制御を行うことによって無線リソースを効率的に利用できる。
なお、ベアラ終端ユニット10、レイヤ2ユニット11、及びこれらに含まれるサブユニットの配置は様々に変形可能である。言い換えると、ベアラ終端機能およびレイヤ2処理機能は、REC1AとRE1Bとの間で適宜振り分けることができる。しかしながら、これらの機能ユニットの配置を調整することで、様々な追加的な効果を得ることができる。これらの機能ユニットの配置に関する複数の態様は、本実施の形態および他の実施の形態において順に説明される。
以下では、図1に示された機能ユニットの配置例に関して詳細に説明する。図1の例では、ベアラ終端ユニット10はREC1Aに配置されている。ベアラ終端ユニット10は、ユーザーデータの転送のために上位ネットワーク(e.g. UMTSのRNC、E-UTRAのEPC)との間に設定されたベアラを終端する。一般的に、ユーザーデータを転送するためのベアラ(e.g. E-UTRAのS1ベアラ)は、トンネリングプロトコル(e.g. IPsec)を用いて暗号化される。また、ベアラは、移動局と外部ネットワークとの間のデータフロー(e.g. E-UTRAのPacket Data Network(PDN)コネクション)毎に設定される。したがって、ベアラ終端ユニット10は、暗号化された複数のベアラを終端し、複数の移動局に関するダウンリンク・ユーザーデータを上位ネットワークから受信し、複数の移動局に関するアップリンク・ユーザーデータを上位ネットワークに送信する。
図1の例では、レイヤ2ユニット11はRE1Bに配置されている。レイヤ2ユニット11は、ベアラ終端ユニット10を上位プロトコル・レイヤとし、BB-PHYユニット12を下位プロトコル・レイヤとし、動的スケジューリングを除くレイヤ2信号処理を行う。レイヤ2信号処理は、(i) データ圧縮/復元、(ii) データ暗号化、(iii) レイヤ2ヘッダの追加/削除、及び データのセグメンテーション/コンカテネーション、(v) データの多重/分離による転送フォーマットの生成/分解、のうち少なくとも1つを含む。
具体例の1つとしてのE-UTRAの場合、レイヤ2信号処理は、RLCサブレイヤ及びMACサブレイヤの処理を含む。RLCサブレイヤは、ベアラ終端ユニット10を上位プロトコル・レイヤとする。MACサブレイヤは、RLCサブレイヤを上位プロトコル・レイヤとし、BB-PHYユニット12を下位プロトコル・レイヤとする。なお、E-UTRAは、RLCサブレイヤの上位サブレイヤとしてPDCPサブレイヤをさらに含む。しかしながら、PDCPサブレイヤにおける処理(e.g. IPヘッダ圧縮、暗号化)は、必須ではなく省略されてもよい。
E-UTRAの場合、PDCPサブレイヤは、エア・インタフェースでの送受信に適するように、送信データ量を削減する処理を担う。具体的には、PDCPサブレイヤは、ダウンリンク・ユーザーデータに対するIPヘッダ圧縮、アップリンク・ユーザーデータに対するIPヘッダの復元を行う。さらに、PDCPサブレイヤは、ユーザーデータの暗号化と、ハンドオーバー遅延削減のためのユーザーデータの複製と転送を行う。
E-UTRAのRLCサブレイヤは、PDCPサブレイヤから供給される無線ベアラ・データ(PDCP Protocol Data Unit(PDU))に対するセグメンテーション及びコンカテネーション、並びに再送制御を行う。RLCサブレイヤは、PDCPサブレイヤに無線ベアラによるデータ転送サービスを提供する。また、RLCサブレイヤは、論理チャネル(RLC PDU)によってMACサブレイヤに接続される。
E-UTRAのMACサブレイヤは、論理チャネル(RLC PDU)の多重化、及びhybrid- ARQ(automatic repeat request)再送信を行う。MACサブレイヤは、論理チャネル(RLC PDU)の多重化によってトランスポートチャネルを生成する。トランスポートチャネルの伝送フォーマット(データブロック・サイズ)は、瞬間的なデータレートに依存する。MACサブレイヤは、トランスポートチャネル(MAC PDU)によって物理レイヤ(BB-PHYユニット12)に接続される。
なお、既に述べたように、図1に示したベアラ終端ユニット10及びレイヤ2ユニット12の配置は一例であり、この配置に限定されるものではない。例えば、ベアラ終端ユニット10は、RE1Bに配置されてもよい。また、レイヤ2ユニット12の全体又はその一部(e.g. PDCPサブレイヤ)は、REC1Aに配置されてもよい。これらの変形例は、発明の実施の形態2以降で説明される。
また、図1の例では、バッファ21は、ベアラ終端ユニット10とレイヤ2ユニット11の間に配置されている。したがって、バッファ21は、レイヤ2処理におけるデータ圧縮、暗号化、セグメンテーション、及び多重化が行われていないユーザーデータ(e.g. IPパケット)それ自体を格納する。しかしながら、このようなバッファ21の配置は一例に過ぎない。例えば、バッファ21は、レイヤ2におけるデータ圧縮及び暗号化が行われたユーザーデータ列を格納するように配置されてもよい。E-UTRAの場合、レイヤ2におけるデータ圧縮及び暗号化が行われたユーザーデータ列は、PDCP サブレイヤの処理後のデータ列であるPDCP Protocol Data Unit(PDU)、つまり無線ベアラ・データ、に対応する。また、バッファ21は、レイヤ2におけるセグメンテーション・コンカテネーション、及びレイヤ2ヘッダの付加が行われたユーザーデータ列格納するように配置されてもよい。E-UTRAの場合、セグメンテーション・コンカテネーション、及びレイヤ2ヘッダの付加が行われたユーザーデータ列は、Radio-Link Control(RLC)サブレイヤの処理後のデータ列であるRLC PDU、つまり論理チャネル、に対応する。
上述したバッファ21の配置の変形は、RE1Bにバッファ21が配置されることも許容する。例えば、バッファ21は、図1に示したRE1Bのレイヤ2ユニット11と内部インタフェース31の間に配置されてもよい。また、バッファ21は、レイヤ2ユニット11内のPDCPユニット(不図示)とRLCユニット(不図示)の間でユーザーデータを含むデータ列(i.e. PDCP PDU)を保持するように配置されてもよい。
しかしながら、スケジューラ20は、ダウンリンクの動的スケジューリングの際にバッファ21の蓄積状況を把握する必要がある。したがって、バッファ21をスケジューラ20と共にREC1Aに配置することによって、動的スケジューリングを容易に行うことができ。また、内部インタフェース30及び31の間で転送するべき制御データを削減できる。REC1A(内部インタフェース30)は、バッファ21に保持されたダウンリンク・ユーザーデータ又はダウンリンク・ユーザーデータを含むデータ列のうち、スケジューラ20によって選択されたデータを選択的に送信すればよい。
図2は、無線基地局1おける機能配置を、E-UTRAでのユーザーデータのダウンリンク送信に関して詳細に示している。図2に示された機能配置は、図1に示した機能配置の具体例に対応している。例えば、レイヤ2ユニット11は、3つのサブユニット、すなわちPDCPユニット110、RLCユニット111、及びMACユニット112を含む。PDCPユニット110は、PDCPサブレイヤの処理を行う。RLCユニット111は、RLCサブレイヤの処理を行う。MACユニット112は、MACサブレイヤの処理を行う。BB-PHYユニット12は、符号化ユニット120、変調ユニット121、リソースマッピング・ユニット122、及びIFFTユニット123を含む。RF-PHYユニット13は、アップコンバータ130及び増幅器131を含む。
<発明の実施の形態2>
図3は、本実施の形態に係る無線基地局2の構成例を示すブロック図である。無線基地局2は、第1のパートすなわちRadio Equipment Controller(REC)2Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)2Bを有する。無線基地局2と上述した無線基地局1との相違点は、ベアラ終端ユニット10がREC2AではなくRE2Bに配置されている点である。具体的には、無線基地局2は、スケジューラ20による動的スケジューリングをREC2Aにおいて行う。そして、無線基地局2は、ベアラ(e.g. S1ベアラ)の終端、レイヤ2信号処理、物理レイヤに関するデジタルベースバンド信号処理をRE2Bにおいて行う。
無線基地局2では、無線基地局1と同様に、スケジューラ20がREC2Aに配置され、BB-PHYユニット12がRE2Bに配置されている。したがって、無線基地局2は、無線基地局1と同様に、伝送路40での送信データ量を抑制でき、協調的なスケジューリングをREC2Aにおいて行うことができる。
さらに、無線基地局2は、伝送路40を介して暗号化されたベアラ・データ(e.g. S1ベアラ・データ)をREC2AからRE2Bに転送する。これにより、無線基地局2は、REC2AとRE2Bの間のセキュリティを強固にすることができる。上述したように、RE2Bは、第三者がアクセスしやすい遠隔拠点に配置されることが想定される。ユーザーデータではなく暗号化されたベアラ・データとして送信することで、ユーザーデータを不正アクセスから保護することができる。
図4は、無線基地局2おける機能配置を、E-UTRAでのユーザーデータのダウンリンク送信に関して詳細に示している。上述の通り、本実施の形態では、ベアラ終端ユニット10がRE2Bに配置される。したがって、暗号化されたベアラ・データ(e.g. S1ベアラ・データ)がREC2AからRE2Bに転送される。
なお、図3及び図4の例では、バッファ21がREC2Aに配置されている。したがって、図3及び図4に示されたバッファ21は、暗号化されたベアラ・データを移動局毎、ベアラ毎、QoSクラス毎、又は移動局毎かつQoSクラス毎に格納すればよい。しかしながら、実施の形態1で詳細に述べた通り、バッファ21の配置は適宜変更可能である。例えば、バッファ21は、RE2Bに配置されてもよい。
<発明の実施の形態3>
図5は、本実施の形態に係る無線基地局3の構成例を示すブロック図である。無線基地局3は、第1のパートすなわちRadio Equipment Controller(REC)3Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)3Bを有する。なお、図5では1つのRE3Bのみが図示されているが、図1に示したように、REC3Aには複数のRE3Bが接続されてもよい。無線基地局3と上述した無線基地局1との相違点は、PDCPユニット110がRE3BではなくREC3Aに配置されている点である。PDCPユニット110は、レイヤ2ユニット11に含まれるサブユニットである。具体的には、REC3Aは、スケジューラ20による動的スケジューリング、ベアラ(e.g. S1ベアラ)の終端、PDCPサブレイヤの処理(e.g. IPヘッダ圧縮、暗号化)を行う。そして、RE3Bは、RLCサブレイヤ及びMACサブレイヤの処理、物理レイヤに関するデジタルベースバンド信号処理を行う。
無線基地局3では、無線基地局1と同様に、スケジューラ20がREC3Aに配置され、BB-PHYユニット12がRE3Bに配置されている。したがって、無線基地局3は、無線基地局1と同様に、伝送路40での送信データ量を抑制でき、協調的なスケジューリングをREC3Aにおいて行うことができる。
さらに、無線基地局3は、ベアラ終端をREC3Aで行う。したがって、暗号化されたベアラ・データ(e.g. S1ベアラ・データ)に付加されているヘッダを削減できる。このため、ベアラ・データをRE3Bに送信する場合に比べて、REC3AとRE3Bの間の転送データ量を削減できる。
さらに、図5の構成例では、PDCPサブレイヤの処理もREC3Aで行われる。PDCPサブレイヤでは、エア・インタフェースでの送信データ量を削減することを目的として、ユーザーデータのヘッダ圧縮が行われる。したがって、REC3AとRE3Bの間の転送データ量をさらに削減できる。
図6は、無線基地局3おける機能配置を、E-UTRAでのユーザーデータのダウンリンク送信に関して詳細に示している。上述の通り、本実施の形態では、ベアラ終端ユニット10及びPDCPユニット110がREC3Aに配置される。したがって、ヘッダ圧縮されたデータ列(PDCP PDU)がREC3AからRE3Bに転送される。
なお、図5及び図6の例では、バッファ21がREC3Aに配置されている。したがって、図5及び図6に示されたバッファ21は、PDCP PDUを移動局毎、ベアラ毎、QoSクラス毎、又は移動局毎かつQoSクラス毎に格納すればよい。しかしながら、実施の形態1で詳細に述べた通り、バッファ21の配置は適宜変更可能である。例えば、バッファ21は、RE3Bに配置されてもよい。また、バッファ21は、ベアラ終端ユニット10とPDCPユニット110の間に配置されてもよい。
<発明の実施の形態4>
図7は、本実施の形態に係る無線基地局4の構成を示すブロック図である。無線基地局4は、第1のパートすなわちRadio Equipment Controller(REC)4Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)4Bを有する。無線基地局4と上述した無線基地局1との相違点は、REC4A及びRE4Bの両方にベアラ終端ユニット10A及び10Bが配置されており、上位ネットワークとの間の複数のベアラ(e.g. S1ベアラ)の終端点をREC4AとRE4Bの間で選択可能に構成されている点である。ベアラ終端点の選択は、ベアラ単位で行われてもよいし、セル単位で行われてもよいし、無線基地局4で終端される全てのベアラについて一括して行われてもよい。
無線基地局4で終端される全てのベアラについて一括して終端点を選択する例を以下に示す。例えば、REC4AとRE4Bの間の伝送路40のセキュリティレベルに基づいて、ベアラ終端点を選択してもよい。具体的に述べると、伝送路40のセキュリティレベルが相対的に高い場合にREC4Aにてベアラを終端し、伝送路40のセキュリティレベルが相対的に低い場合にRE4Bにてベアラを終端するとよい。伝送路40のセキュリティレベルが相対的に高い場合とは、例えば、伝送路40が通信事業者の専用線である場合、又は伝送路40が通信事業者の管理された敷地内に敷設されている場合である。伝送路40のセキュリティレベルが相対的に低い場合とは、例えば、伝送路40が一般的な公衆回線である場合、又は伝送路40が十分に管理されていない場所に敷設されている場合である。
ベアラ終端点の選択は、無線基地局4のセットアップ時に行われてもよい。また、ベアラ終端点の選択は、伝送路40の切り替えに応じて、例えばメイン伝送路とバックアップ伝送路の間の切り替えに応じて行われてもよい。具体的には、無線基地局4の制御回路(不図示)は、メイン伝送路とバックアップ伝送路のセキュリティレベルが異なる場合に、各々のセキュリティレベルに応じて終端点を切り替えるとよい。このような、ベアラ終端点の切り替えは、無線基地局4の外部(e.g. 上位ネットワーク)に配置されたリソース制御装置又はOAM(Operation Administration and Maintenance)システム等の外部装置からの指示に応じて行われてもよい。
次に、ベアラ単位で終端点を選択する例について説明する。例えば、ベアラに要求されるセキィリティレベル又はQoSクラスに基づいて、ベアラ終端点を選択してもよい。具体的には、高いセキュリティレベルが要求されるベアラ、及び高いQoSクラスが設定されたベアラは、RE4Bで終端されるようにすればよい。それ以外のベアラは、REC4Aで終端されるようにすればよい。
無線基地局4では、無線基地局1と同様に、スケジューラ20がREC4Aに配置され、BB-PHYユニット12がRE4Bに配置されている。したがって、無線基地局4は、無線基地局1と同様に、伝送路40での送信データ量を抑制でき、協調的なスケジューリングをREC4Aにおいて行うことができる。
さらに、本実施の形態によれば、伝送路40を送信されるデータ量の削減に寄与するREC4Aにおけるベアラ終端と、伝送路40のセキュリティレベルの向上に寄与するRE4Bにおけるベアラ終端を、状況に応じて柔軟に使い分けることができる。
なお、図7の例では、バッファ21がREC4Aに配置されている。しかしながら、実施の形態1で詳細に述べた通り、バッファ21の配置は適宜変更可能である。例えば、バッファ21は、RE4Bに配置されてもよい。
<発明の実施の形態5>
図8は、本実施の形態に係る無線基地局5の構成例を示すブロック図である。図8に示された構成例は、図5に示した無線基地局3の変形である。無線基地局5は、第1のパートすなわちRadio Equipment Controller(REC)5Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)5Bを有する。なお、図8では1つのRE5Bのみが図示されているが、図1に示したように、REC5Aには複数のRE5Bが接続されてもよい。無線基地局5と図5に示された無線基地局3との相違点は、REC5Aがハンドオーバー(HO)制御ユニット50を有する点である。RE5Bの構成及び機能配置は、図5及び6に示したRE3Bと同じである。
HO制御ユニット50は、エア・インタフェースにより通信中の移動局が他の基地局(ターゲット基地局)にハンドオーバーする際に、バッファ21に保持された当該移動局に関するダウンリンク・ユーザーデータを含むデータ列(PDCP PDU)をターゲット基地局に転送する。ターゲット基地局へのユーザーデータ転送は、通常のハンドオーバー手順と同様である。つまり、ターゲット基地局へのユーザーデータ転送は、基地局間で利用可能なインタフェース(e.g. X2インタフェース)を用いて行なわれてもよいし、上位ネットワークを経由して行なわれてもよい。
無線基地局5では、無線基地局1と同様に、スケジューラ20がREC5Aに配置され、BB-PHYユニット12がRE5Bに配置されている。したがって、無線基地局5は、無線基地局1と同様に、伝送路40での送信データ量を抑制でき、協調的なスケジューリングをREC5Aにおいて行うことができる。
さらに、図8に示した構成例では、REC5AがPDCP PDUをバッファリングするため、ハンドオーバーの際にターゲット基地局へのデータ転送を容易に行うことができる。つまり、ハンドオーバーに際して、RE5BからREC5Aへのデータ転送を必要としない。また、REC5Aに接続された複数のRE5Bの間で移動局が移動する場合には、REC5Aは、バッファリングされているPDCP PDUの送信先を移動先のRE5Bに変更するだけでよい。このため、移動局の移動に追随して継続的なサービスを容易に提供できる。
なお、図8の構成例では、RLCユニット111及びMACユニット1112がRE5Bに配置されているが、これらはREC5Aに配置されてもよい。
<発明の実施の形態6>
図9は、本実施の形態に係る無線基地局6の構成例を示すブロック図である。図9に示された構成例は、図5に示した無線基地局3の変形である。無線基地局6は、第1のパートすなわちRadio Equipment Controller(REC)6Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)6Bを有する。なお、図9では1つのRE6Bのみが図示されているが、図1に示したように、REC6Aには複数のRE6Bが接続されてもよい。無線基地局6と図5に示された無線基地局3との相違点は、REC6Aが主スケジューラ20Aを有し、RE6Bが副スケジューラ20Bを有する点である。
無線基地局6では、主スケジューラ20AがREC6Aに配置され、BB-PHYユニット12がRE6Bに配置されている。したがって、無線基地局6は、無線基地局1と同様に、伝送路40での送信データ量を抑制でき、協調的なスケジューリングをREC6Aにおいて行うことができる。
さらに、本実施の形態では、動的スケジューリングに関する一部の処理を副スケジューラ20Bが行う。副スケジューラ20Bは、動的スケジューリングのために主スケジューラ20Aと協調して動作する。主スケジューラ20Aと副スケジューラ20Bの機能分担の具体例について以下に説明する。
第1の例では、副スケジューラ20Bは、動的スケジューリングに使用されるパラメータをエア・インタフェースの無線通信品質に基づいて計算し、主スケジューラ20Aに送信する。PFスケジューリング及びMax-C/Iスケジューリング等の主要なスケジューリング手法は、エア・インタフェースの無線通信品質を利用する。例えば、PFスケジューリングでは、移動局間での送信機会の公平性を担保するために、移動局の瞬間的な予測される無線通信品質と、過去の平均的な無線通信品質との比率をパラメータとして用いる。このパラメータは、PFメトリックと呼ばれる。PFメトリックの計算に使用される無線通信品質は、データレート、Signal to Interference Ratio(SINR)などである。PFメトリックは、例えば、瞬時SINRと平均SINRの比率(i.e. 瞬時SINR/平均SINR)として計算される。
副スケジューラ20Bが、無線通信品質を用いた計算を実行してPFメトリックなどのパラメータを求めることにより、主スケジューラ20Aの処理量を削減できる。さらに、伝送路40を用いてRE6BからREC6Aに送信するべきデータ量を削減できる。REC6Aにおいてパラメータ(e.g. PFメトリック)の計算を行う場合、現在及び過去の無線通信品質の測定結果をRE6BからREC6Aに送信する必要がある。しかしながら、副スケジューラ20Bがパラメータの計算を行う場合、現在及び過去の無線通信品質の測定結果に代えて、計算されたパラメータのみを転送すればよい。
図10は、副スケジューラ20BがPFメトリックの計算を行う場合の主スケジューラ20Aと副スケジューラ20Bの動作を示すシーケンス図である。ステップS11では、移動局(UE)が品質情報を送信する。この品質情報は、移動局によって測定されたダウンリンクの無線通信品質を示す。ステップS12では、副スケジューラ20Bは、移動局から受信した品質情報を用いてPFメトリックを計算する。ステップS13では、副スケジューラ20Bは、主スケジューラ20AにPFメトリックを送信する。ステップS14では、主スケジューラ20Aは、副スケジューラ20Bから受信したPFメトリックを用いて動的スケジューリングを実行し、これによりダウンリンクの各無線リソースに割り当てる移動局又はユーザーデータを決定する。
次に、主スケジューラ20Aと副スケジューラ20Bの機能分担に関する第2の例を説明する。第2の例では、副スケジューラ20Bは、H-ARQの再送信、又はRLCサブレイヤの再送信のためのスケジューリングを実施する。具体的には、副スケジューラ20Bは、ダウンリンク送信データをバッファリングしておき、移動局が再送信を要求した場合に、主スケジューラ20Aからの再送指示に基づいて再送信を行う。例えば、副スケジューラ20Bは、直前の送信と同じ無線リソースを再送信のために割り当てればよい。これより、主スケジューラ20Aの処理量を削減できる。さらに、REC6AからRE6Bに再送信データを転送する必要がないため、伝送路40での送信データ量を削減できる。
図11は、副スケジューラ20Bが再送信を制御する場合の主スケジューラ20Aと副スケジューラ20Bの動作を示すシーケンス図である。ステップS21では、副スケジューラ20Bは、ダウンリンク送信データをバッファリングする。ステップS22では、移動局が再送要求(e.g. NACK)を送信し、主スケジューラ20Aがこれを受信する。ステップS23では、主スケジューラ20Aは、副スケジューラ20Bに再送信を指示する。ステップS24では、副スケジューラ20Bは、主スケジューラ20Aの指示に応じて再送信を行う。
なお、これまでの実施の形態1〜5における説明から明らかであるように、図9の構成例に示された機能配置は一例にすぎない。例えば、PDCPユニット110は、RE6Bに配置されてもよい。ベアラ終端ユニット10も、RE6Bに配置されてもよい。さらに実施の形態4で述べたように、REC6AとRE6Bの両方にベアラ終端ユニット(10A及び10B)を配置し、ベアラ終端点を選択できるようにしてもよい。また、バッファ21は、RE6Bに配置されてもよい。
<発明の実施の形態7>
図12は、本実施の形態に係る無線基地局7の構成例を示すブロック図である。無線基地局7は、第1のパートすなわちRadio Equipment Controller(REC)7Aと、少なくとも1つの第2のパートすなわちRadio Equipment(RE)7Bを有する。無線基地局7と上述した無線基地局1との相違点は、レイヤ2ユニット11がREC7Aに配置されている点である。なお、図12の構成例では、PDCPユニット110、RLCユニット111、及びMACユニット112がレイヤ2ユニット11に対応する。
無線基地局7では、無線基地局1と同様に、スケジューラ20がREC7Aに配置され、BB-PHYユニット12がRE7Bに配置されている。したがって、無線基地局7は、無線基地局1と同様に、伝送路40での送信データ量を抑制でき、協調的なスケジューリングをREC7Aにおいて行うことができる。
さらに、無線基地局7では、レイヤ2ユニット11がREC7Aに配置されているため、REC7AとRE7Bの間でデジタル信号処理を分散して行うことができる。さらに、本実施の形態によれば、REC7Aに配置されたレイヤ2ユニット11を複数のRE7Bに関するユーザーデータの処理のために共用することができる。したがって、レイヤ2ユニット11を効率的に使用することができる。
図13は、無線基地局7おける機能配置を、E-UTRAでのユーザーデータのダウンリンク送信に関して詳細に示している。上述の通り、本実施の形態では、レイヤ2ユニット11がREC7Aに配置される。したがって、MAC-PDU(i.e. トランスポートチャネル)がREC7AからRE7Bに転送される。
なお、図12及び図13の例では、バッファ21がRLCユニット111とMACユニット112の間に配置されている。したがって、図12及び図13に示されたバッファ21は、RLC PDU(i.e. 論理チャネル)を移動局毎、ベアラ毎、QoSクラス毎、又は移動局毎かつQoSクラス毎に格納すればよい。しかしながら、実施の形態1で詳細に述べた通り、バッファ21の配置は適宜変更可能である。例えば、バッファ21は、PDCPユニット110とRLCユニット111の間に配置されてもよい。
<その他の実施の形態>
発明の実施の形態1〜7で説明した無線基地局1〜7は、中継局であってもよい。当該中継局は、基地局と第1の無線リンク(バックホールリンク)を接続し、移動局と第2の無線リンク(アクセスリンク)を接続し、基地局と移動局との間でデータ中継を行う。
発明の実施の形態1〜7で説明したベアラ終端ユニット10、レイヤ2ユニット11、BB-PHYユニット12、及びスケジューラ20、20A、20Bは、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)などを含む半導体処理装置を用いて実装されてもよい。また、これらのユニットは、マイクロプロセッサ等のコンピュータにプログラムを実行させることによって実装されてもよい。
このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
また、発明の実施の形態1〜7は、適宜組み合わせることも可能である。さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
この出願は、2011年11月25日に出願された日本出願特願2011−257479を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1〜7 無線基地局
1A〜7A Radio Equipment Controller(REC)
1B〜7B Radio Equipment(RE)
10、10A、10B ベアラ終端ユニット
11 レイヤ2ユニット
12 BB-PHYユニット
13 RF-PHYユニット
14 アンテナ
20 スケジューラ
20A 主スケジューラ
20B 副スケジューラ
21 バッファ
30、31 内部インタフェース
40 伝送路
50 ハンドオーバー制御ユニット
110 PDCPユニット
111 RLCユニット
112 MACユニット
120 符号化ユニット
121 変調ユニット
122 リソースマッピング・ユニット
123 IFFTユニット
130 アップコンバータ
131 増幅器

Claims (10)

  1. 基地局に含まれ無線制御装置に伝送路を介して通信可能に接続され、前記基地局の複数の無線装置のうちの1つとして動作するノードであって、
    前記無線制御装置は、基地局と通信する複数の移動局に対して無線リソースを割り当てる動的スケジューリングを行うスケジューリング手段を備え、
    前記ノードは、
    上位ネットワークと前記基地局との間の少なくとも1つのベアラのうち前記ノードに接続する第1の移動局に関するベアラを終端するベアラ終端手段と、
    前記第1の移動局に関するダウンリンク・ユーザーデータを無線送信するための伝送路符号化と前記第1の移動局に関するアップリンク・ユーザーデータを受信信号から復元するための伝送路復号化とを含む信号処理を行う物理レイヤ手段と、
    を備える、ノード。
  2. 前記ノードは、前記少なくとも1つのベアラの終端点を前記無線制御装置と前記ノードの間で選択できるよう構成されている、請求項1に記載のノード。
  3. 前記終端点の選択はベアラ毎に行われる、請求項2に記載のノード。
  4. 前記終端点の選択は、前記第1の移動局のユーザーデータのセキィリティレベル又はQoSクラスに基づいて行われる、請求項2に記載のノード。
  5. 前記ベアラ終端手段を上位プロトコル・レイヤとし、前記物理レイヤ手段を下位プロトコル・レイヤとし、前記動的スケジューリングを除くレイヤ2処理を行うレイヤ2手段をさらに備える、請求項1に記載のノード。
  6. 前記レイヤ2手段は、
    前記ベアラ終端手段を上位プロトコル・レイヤとするRadio Link Control(RLC)サブレイヤ手段と、
    前記RLCサブレイヤ手段を上位プロトコル・レイヤとし、前記物理レイヤ手段を下位プロトコル・レイヤとするMedium Access Control(MAC)サブレイヤ手段と、
    を備える、
    請求項5に記載のノード。
  7. 基地局に含まれ無線制御装置に伝送路を介して通信可能に接続され、前記基地局の複数の無線装置のうちの1つとして動作するノードによって行われる方法であって、
    前記無線制御装置によって行われる前記基地局に接続する複数の移動局に対して無線リソースを割り当てる動的スケジューリングに従うこと、
    上位ネットワークと前記基地局との間の少なくとも1つのベアラのうち前記ノードに接続する第1の移動局に関するベアラを前記ノードにおいて終端すること、及び
    前記第1の移動局に関するダウンリンク・ユーザーデータを無線送信するための伝送路符号化と前記第1の移動局に関するアップリンク・ユーザーデータを受信信号から復元するための伝送路復号化とを含む信号処理を行うこと、
    を備える方法。
  8. 前記少なくとも1つのベアラの終端点を前記無線制御装置と前記ノードの間で選択することをさらに備える、請求項7に記載の方法。
  9. 前記終端点の選択はベアラ毎に行われる、請求項8に記載の方法。
  10. 前記終端点の選択は、前記第1の移動局のユーザーデータのセキィリティレベル又はQoSクラスに基づいて行われる、請求項8に記載の方法。
JP2017097066A 2011-11-25 2017-05-16 基地局で使用されるノード及びその方法 Active JP6390754B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011257479 2011-11-25
JP2011257479 2011-11-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013545759A Division JP6146310B2 (ja) 2011-11-25 2012-10-03 無線局、及び無線局によるユーザーデータの処理方法

Publications (2)

Publication Number Publication Date
JP2017175646A JP2017175646A (ja) 2017-09-28
JP6390754B2 true JP6390754B2 (ja) 2018-09-19

Family

ID=48469371

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013545759A Active JP6146310B2 (ja) 2011-11-25 2012-10-03 無線局、及び無線局によるユーザーデータの処理方法
JP2017097066A Active JP6390754B2 (ja) 2011-11-25 2017-05-16 基地局で使用されるノード及びその方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013545759A Active JP6146310B2 (ja) 2011-11-25 2012-10-03 無線局、及び無線局によるユーザーデータの処理方法

Country Status (4)

Country Link
US (3) US9203571B2 (ja)
EP (1) EP2785138B1 (ja)
JP (2) JP6146310B2 (ja)
WO (1) WO2013076899A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146310B2 (ja) * 2011-11-25 2017-06-14 日本電気株式会社 無線局、及び無線局によるユーザーデータの処理方法
US9548848B1 (en) * 2015-02-19 2017-01-17 Mbit Wireless, Inc. Method and apparatus for reduced complexity CQI feedback in wireless communication systems
EP3284227B1 (en) 2015-04-16 2023-04-05 Andrew Wireless Systems GmbH Uplink signal combiners for mobile radio signal distribution systems using ethernet data networks
WO2017163785A1 (ja) * 2016-03-24 2017-09-28 株式会社Nttドコモ 無線基地局、張出装置及び通信制御方法
CN108886834B (zh) * 2016-04-06 2022-05-17 日本电信电话株式会社 无线通信***以及通信方法
EP3457795B1 (en) * 2016-05-13 2022-03-23 Fujitsu Limited Wireless base station and wireless communication method
CN109565507B (zh) * 2017-03-31 2020-07-14 华为技术有限公司 一种数据路由方法及装置
KR102265526B1 (ko) * 2017-10-12 2021-06-16 에스케이텔레콤 주식회사 기지국장치 및 데이터 및 신호 전송 방법
JP7335580B2 (ja) 2019-03-22 2023-08-30 パウダーテック株式会社 フェライト粒子、電子写真現像剤用キャリア芯材、電子写真現像剤用キャリア及び電子写真現像剤

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0101846D0 (sv) * 2001-05-22 2001-05-22 Ericsson Telefon Ab L M Method and system of retransmission
US8619718B2 (en) 2002-04-05 2013-12-31 Interdigital Technology Corporation Method and apparatus for coordinating a radio network controller and node B resource management for high speed downlink packet data service
EP1545143B1 (en) 2002-09-24 2011-06-15 Fujitsu Limited Packet transferring and transmitting method and mobile communication system
US8254935B2 (en) 2002-09-24 2012-08-28 Fujitsu Limited Packet transferring/transmitting method and mobile communication system
SE0301229D0 (sv) 2003-04-24 2003-04-24 Ericsson Telefon Ab L M An architectural model of a radio base station
CA2535819C (en) 2003-08-18 2010-02-09 Nokia Corporation Apparatus, and associated method, for selecting quality of service-related information in a radio communication system
US7206581B2 (en) 2003-11-05 2007-04-17 Interdigital Technology Corporation Method and apparatus for processing data blocks during soft handover
US20060142021A1 (en) 2004-12-29 2006-06-29 Lucent Technologies, Inc. Load balancing on shared wireless channels
CN100426897C (zh) * 2005-01-12 2008-10-15 华为技术有限公司 分体式基站***及其组网方法和基带单元
GB2427097B (en) 2005-05-03 2007-03-21 Ipwireless Inc Method and apparatus for transmitting uplink signalling information
US8059682B2 (en) 2005-09-29 2011-11-15 Nokia Corporation Apparatus, method and computer program product to request a data rate increase based on ability to transmit at least one more selected data unit
JP4571968B2 (ja) * 2007-10-29 2010-10-27 富士通株式会社 移動通信システム及び同システムにおける転送方法及び基地局
US8050296B2 (en) * 2008-03-31 2011-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Radio equipment (RE)-based synchronization
JP2010074755A (ja) * 2008-09-22 2010-04-02 Fujitsu Ltd 送信データ出力タイミング調整方法及び基地局
WO2010038287A1 (ja) 2008-10-01 2010-04-08 富士通株式会社 通信システム、通信制御装置及び通信制御方法
EP2892293A1 (en) * 2009-05-22 2015-07-08 Fujitsu Limited Radio communication system, base station apparatus, mobile station apparatus, and radio communication method in a radio communication system
JP5428695B2 (ja) * 2009-09-16 2014-02-26 富士通株式会社 バッテリー動作可能無線基地局装置
JP2011114689A (ja) 2009-11-27 2011-06-09 Fujitsu Ltd 無線基地局装置
JP5189111B2 (ja) 2010-01-07 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、無線通信システム及び無線通信方法
JP5445152B2 (ja) 2010-01-14 2014-03-19 富士通株式会社 無線通信装置、リモート局装置、基地局装置
WO2011111106A1 (ja) * 2010-03-11 2011-09-15 株式会社 東芝 制御局及び無線システム
JP5471707B2 (ja) 2010-03-29 2014-04-16 富士通株式会社 基地局装置及びマルチキャスト信号の配信方法
US8897238B2 (en) * 2010-05-04 2014-11-25 Lg Electronics Inc. Apparatus and method of reporting amount of information in wireless communication system
CN102158461B (zh) 2011-03-04 2014-01-08 华为技术有限公司 通用公共无线接口的非i/q数据传输方法和装置
WO2011127855A2 (zh) * 2011-05-17 2011-10-20 华为技术有限公司 通信***及其管理方法
EP2595441B1 (en) * 2011-11-16 2014-07-23 Telefonaktiebolaget L M Ericsson (publ) A method and an apparatus in a communication network system
JP6146310B2 (ja) * 2011-11-25 2017-06-14 日本電気株式会社 無線局、及び無線局によるユーザーデータの処理方法

Also Published As

Publication number Publication date
WO2013076899A1 (ja) 2013-05-30
US20170079055A1 (en) 2017-03-16
JP2017175646A (ja) 2017-09-28
EP2785138B1 (en) 2019-04-10
EP2785138A1 (en) 2014-10-01
EP2785138A4 (en) 2015-08-26
US9203571B2 (en) 2015-12-01
US9538505B2 (en) 2017-01-03
US20160044637A1 (en) 2016-02-11
JPWO2013076899A1 (ja) 2015-04-27
US20140269603A1 (en) 2014-09-18
JP6146310B2 (ja) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6350641B2 (ja) 無線局、及び無線局における方法
JP6394734B2 (ja) 基地局で使用されるノード及びその方法
JP6390754B2 (ja) 基地局で使用されるノード及びその方法
JP6390753B2 (ja) 基地局で使用されるノード

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6390754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150