WO2011127855A2 - 通信***及其管理方法 - Google Patents

通信***及其管理方法 Download PDF

Info

Publication number
WO2011127855A2
WO2011127855A2 PCT/CN2011/074184 CN2011074184W WO2011127855A2 WO 2011127855 A2 WO2011127855 A2 WO 2011127855A2 CN 2011074184 W CN2011074184 W CN 2011074184W WO 2011127855 A2 WO2011127855 A2 WO 2011127855A2
Authority
WO
WIPO (PCT)
Prior art keywords
node
computing node
nodes
wireless transceiver
local
Prior art date
Application number
PCT/CN2011/074184
Other languages
English (en)
French (fr)
Other versions
WO2011127855A3 (zh
WO2011127855A8 (zh
Inventor
刘晟
程宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/074184 priority Critical patent/WO2011127855A2/zh
Priority to CN201180000751.8A priority patent/CN102907167B/zh
Priority to RU2013155899/07A priority patent/RU2556081C1/ru
Priority to BR112013029651-8A priority patent/BR112013029651B1/pt
Priority to EP11768466.2A priority patent/EP2525623B1/en
Publication of WO2011127855A2 publication Critical patent/WO2011127855A2/zh
Publication of WO2011127855A3 publication Critical patent/WO2011127855A3/zh
Publication of WO2011127855A8 publication Critical patent/WO2011127855A8/zh
Priority to US13/622,196 priority patent/US8467818B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly, to communication systems and methods of management thereof. Background technique
  • the cellular communication system includes three parts: a user equipment (UE), a radio access network (RAN), and a core network.
  • the UE is a tool for communication by the network user.
  • the RAN is responsible for the management of the air interface resources and a part of the mobility management.
  • the CN is responsible for user authentication, accounting, mobility management, bearer establishment maintenance, and data routing.
  • the RAN before LTE includes two parts: the base station and the base station controller.
  • the base station For GSM (Global System of Mobile communication) / GPRS (General Packet Radio Service), RAN is BS (Base Station) and BSC (Base Station Controller, Universal Mobile) Communication system)
  • the RAN consists of a NodeB and an RNC (Radio Network Controller).
  • the base station communicates with the UE through the air interface, and the base station controller performs unified management and scheduling on multiple base stations.
  • LTE adopts a flat network architecture.
  • the RAN has only one eNodeB network element, which includes the functions of the previous NodeB.
  • the functions of the base station controller are also distributed to each eNodeB node.
  • the distributed base station divides the traditional base station into a Baseband Unit (BBU) and a Radio Remote Unit (RRU).
  • the RRU performs operations such as RF signal transmission and reception, peak-to-peak ratio reduction, digital pre-distortion, up-conversion, DAC (Digital-to-Digital Conversion), ADC (Analog-to-Digital Conversion), and amplifier. It interacts with the BBU through baseband information through protocols such as the Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the physical connection between the BBU and the RRU is mostly optical fiber.
  • the BBU+RRU method brings great flexibility to the site layout.
  • the RRU is small in size and easy to lay in the position of the pole, which takes up less space. Usually, there are floors in the interior of a large building, walls in the room, and space between the indoor and indoor users.
  • the BBU+RRU multi-channel solution uses this feature. Deploy one RRU for each partitioned space. For large stadiums with more than 100,000 square meters, the auditorium can be divided into several cells, and each cell is provided with several channels, each channel corresponding to the RRU of a panel antenna.
  • the BBU is large in size and can be placed separately in the machine room.
  • the mobile communication network usually adopts a cellular structure, that is, different base stations are set up at different locations, and each base station forms a cell, which is responsible for communication of mobile users in the area, in order to ensure that mobile users can obtain seamless continuous communication, neighboring cells There is a certain overlap area, enabling mobile users to switch from one cell to another.
  • a conventional single-layer cell system in order to increase the capacity of the system, it is necessary to increase the capacity of each cell, which usually requires complicated and costly techniques.
  • not all places need high capacity. In most cases, only local hotspots are needed, and other areas with less business demand, even if capacity is provided, no user is used. A waste of system resources.
  • HetNet Heterogeneous Network in the 3GPP LTE standard
  • Macro-cell macro cell
  • small cells Pico or Femto, etc.
  • the small cells provide 4 ⁇ high capacity for large traffic demand in the hotspot area, thereby achieving "on-demand allocation" of system capacity. From a system perspective, this approach is a more accurate and targeted way of delivering capacity, avoiding wasted system resources.
  • HetNet has been considered as an important technical means to improve system capacity in LTE.
  • the cloud-RAN (C-RAN, cloud access network) access network architecture was proposed in order to more effectively utilize the computing resources of the base station.
  • the C-RAN aggregates the distributed base stations BBUs in one area to form a BBU resource pool.
  • the baseband signals corresponding to the RRUs in the area are processed in the same BBU pool, so that the user's mobility in the area is not calculated.
  • the utilization of resources has an impact.
  • a BBU can be connected to an RRU in a large area through the optical fiber. If the bandwidth and delay of the BBU are allowed, the BBUs in the area can be interconnected to form a BBU resource pool.
  • the BBU resource pool centrally processes signals of multiple cells
  • another advantage brought by the C-RAN is that it facilitates joint transmission between multiple cells.
  • one area and a cell only correspond to one BBU resource pool. All RRUs need to be connected to the BBU resource pool through the optical fiber. Since the physical distance is far away, all the baseband signals must be sent to the BBU resource pool for processing, which requires high optical fiber transmission capability.
  • the main advantage of the present invention and the conventional C-RAN architecture is that it greatly saves the bandwidth of the base station connected to the cloud computing node.
  • the number of small cells increases, which is several times that of existing macro cells; the frequency band is doubled; the number of antennas increases dramatically, from the current maximum of 4 antennas to dozens or even hundreds of antennas. If you still use the traditional cloud access network architecture, connecting all baseband data directly to a cloud computing center a few kilometers away will be a great challenge for fiber transmission. Summary of the invention
  • Embodiments of the present invention provide a communication system and a management method thereof, which can save data transmission bandwidth between base stations and improve resource utilization.
  • a communication system including: a wireless transceiver layer, including one or more wireless transceiver node combinations, wherein a wireless transceiver node in each wireless transceiver node combination includes at least a macro cell radio frequency unit, and a micro cell radio frequency remote One of a unit, a micro cell radio frequency and a baseband remote unit; a local computing layer, including one or more local computing nodes, wherein each local computing node is wirelessly transceived in combination with one or a plurality of adjacent radio transceiver nodes The node is connected to perform all communication processing or first part communication processing of a cell corresponding to the combination of the wireless transceiver nodes to which the local computing node is connected; the centralized computing layer includes one or more centralized computing nodes, wherein each centralized computing node And connecting to one or more local computing nodes in the local computing layer, configured to perform, when the local computing node performs the first partial communication processing, to connect the one or more local computing nodes
  • a method for managing a communication system including a wireless transceiver layer, a local computing layer, and a centralized computing layer, the wireless transceiver layer including one or more wireless transceiver node combinations, wherein each wireless The wireless transceiver node in the combination of the transceiver node includes at least one of a macro cell radio unit, a micro cell radio remote unit, a micro cell radio frequency and a baseband remote unit; and the local computing layer includes one or more local computing nodes, where Each local compute node with one or Connected to a wireless transceiver node in a plurality of adjacent wireless transceiver node combinations, the centralized computing layer including one or more centralized computing nodes, wherein each centralized computing node and one or more local computing in the local computing layer
  • the method is connected to the node, the method includes: the local computing node performing all communication processing or first part communication processing of a cell corresponding to the radio transceiver node in the combination of the radio trans
  • a local computing layer is added between the centralized computing layer and the wireless transceiver layer, which is responsible for all or part of the communication processing of neighboring cells within a certain range, without having to hand all processing to a remote computing center for processing. It saves network bandwidth and improves the utilization efficiency of system resources.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a network architecture of a communication system in accordance with another embodiment of the present invention.
  • FIGS. 3A-3B are schematic diagrams of a process of data processing in accordance with one embodiment of the present invention.
  • 4 is a schematic diagram of a typical example of a HetNet network architecture in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic flow chart of a method of managing a communication system according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a method of managing a communication system according to another embodiment of the present invention. detailed description
  • the computing resources of the BBU are layered to enable localized, small-range BBUs. Concentration is combined with globalization and a large range of BBUs.
  • a wireless transceiver unit for example, a macro cell radio unit, a micro cell RRU or a micro cell BRU (baseband and radio unit)
  • the radio transceiver unit is connected to both the local computing node and the local computing node. Connect to a larger range of compute nodes.
  • the micro cell BRU may have radio frequency processing functions of the RRU and certain communication processing functions (eg, baseband data compression, baseband and upper layer communication protocol processing). Therefore, the communication system of the embodiment of the present invention supports adaptive scheduling between the local computing node and the centralized computing node for the computing resource and the joint processing according to the user distribution, the amount of data, and the interference situation.
  • connection medium for example, air interface, optical fiber, digital subscriber line, microwave or Power line connections, etc.
  • connection medium for example, air interface, optical fiber, digital subscriber line, microwave or Power line connections, etc.
  • connection methods are all within the scope of the embodiments of the present invention.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system in accordance with an embodiment of the present invention.
  • Fig. 1 in order to show the system architecture of the embodiment of the present invention, only one network element is depicted for each network element, but the embodiment of the present invention is not limited thereto.
  • the number of various network elements can be increased, decreased or deleted as needed, and these modifications are all within the scope of the embodiments of the present invention.
  • the wireless transceiver layer 110 is located at the lowest layer of the access network architecture, and performs wireless signal transmission through the air interface with the user equipment.
  • the wireless transceiver layer 110 includes one or more wireless transceiver node combinations 115.
  • the radio transceiver node in the radio transceiver node combination 115 includes at least one of a macro cell radio unit 116, a micro cell radio remote unit RRU 117, a micro cell radio frequency, and a baseband remote unit BRU 118.
  • the radio transceiver nodes 116-118 perform at least the radio frequency processing functions of the base station, for example, for LTE, including baseband data framing/demapping (such as CPRI framing/demapping), peak-to-peak ratio, digital pre-distortion, up/down Frequency conversion, ADC/DAC (analog/digital to analog conversion), amplifier, duplexer, etc.
  • baseband data framing/demapping such as CPRI framing/demapping
  • peak-to-peak ratio such as CPRI framing/demapping
  • digital pre-distortion digital pre-distortion
  • up/down Frequency conversion such as ADC/DAC (analog/digital to analog conversion)
  • amplifier duplexer, etc.
  • wireless transceiver layer of an embodiment of the present invention may include a plurality of wireless transceiver node combinations 115.
  • the wireless transceiver node assembly 115 of FIG. 1 is depicted as including three wireless transceiver units 116-118, but each wireless transceiver node assembly 115 of an embodiment of the present invention may include one of the three wireless transceiver units 116-118 or Two or all, and the number of any of the wireless transceiver units 116-118 in each of the wireless transceiver node combinations 115 may be multiple.
  • radio transceiver unit 116-118 is used hereinafter to refer to a wireless transceiver unit included in any combination of radio transceiver nodes 115, which may be representative of wireless reception.
  • One or more of the transmitting units 116-118, the number of each wireless transceiver unit may be one or more.
  • the local computing layer 120 is located on top of the wireless transceiver layer 110 and includes one or more local computing nodes 125.
  • the local computing layer 120 is a computing layer directly coupled to the wireless transceiver units 116-118, each local computing node 125 being coupled to a wireless transceiver node 116-118 of one or a plurality of adjacent wireless transceiver node combinations 115 for execution All communication processing or first partial communication processing of the cell corresponding to the radio transceiver node combination 115 to which the local computing node 120 is connected.
  • the cell corresponding to the radio transceiver node combination 115 refers to the cell served by the radio transceiver units 116-118 in the radio transceiver node combination 115.
  • the distance between the local computing layer 120 and the wireless transceiver layer 110 is typically in a relatively short range, such as within a macro cell.
  • the local compute node 125 can be connected to multiple microcells BRU/RRIL that are continuously covered in a shorter range.
  • the local computing node 125 of the embodiment of the present invention may be associated with one or more adjacent ones.
  • the wireless transceiver nodes 116-118 in the wireless transceiver node assembly 115 are connected.
  • the number of wireless transceiver nodes in the combination of wireless transceiver nodes connected to the local computing node, and the number of connected wireless transceiver nodes, can be determined based on the network configuration.
  • the centralized computing layer 140 is located at the top level of the system architecture and includes one or more centralized computing nodes 145.
  • the centralized computing node 145 is coupled to a local computing node 125 within a larger range, such as to a local computing node 125 corresponding to a plurality of macro cells.
  • the distance between the centralized computing layer 140 and the local computing layer 120 is generally relatively far.
  • the centralized computing node 145 is coupled to one or more local computing nodes 125 of the local computing layer 120 for performing the one or more local computing nodes 125 in the event that the local computing node 125 performs the first partial communication process
  • first part of the communication process and the second part of the communication process may be performed simultaneously. In another embodiment, the first part of the communication process and the second part of the communication process may also be performed at different times, and the embodiment of the present invention does not Special restrictions.
  • the centralized computing layer 140 of an embodiment of the present invention may include a plurality of centralized computing nodes 145.
  • the centralized computing nodes 145 can be connected to each other.
  • a local computing layer is added between the centralized computing layer and the wireless transceiver layer, which is responsible for All or part of the adjacent cells in a certain range of communication processing, without having to hand all the processing to the remote centralized computing node processing, saving network bandwidth and improving the utilization efficiency of system resources.
  • FIG. 2 is a schematic diagram of a network architecture of a communication system in accordance with another embodiment of the present invention.
  • Fig. 2 the same portions as those of Fig. 1 are denoted by the same reference numerals.
  • the intermediate computing layer 130 can be added between the local computing layer 120 and the centralized computing layer 140. Although only one intermediate computing layer 130 is shown in FIG. 2, embodiments of the present invention may include multiple intermediate computing layers.
  • the intermediate computing layer 130 is comprised of intermediate computing nodes 135, each intermediate computing node 135 for performing a combination of wireless transceiver nodes to which the local computing node (e.g., 125-2 in FIG. 2) to which the intermediate computing node 135 is connected (e.g., The entire communication processing or the third partial communication processing of the cell corresponding to the radio transceiver node (e.g., the radio transceiver node 116-118 included in 115-2 in Fig. 2) in Fig. 2).
  • the entire communication processing further includes the third partial communication processing described above.
  • the third partial communication process, the first partial communication process, and the second partial communication process may be performed simultaneously, in another embodiment, the third partial communication process, the first partial communication process, and the second partial communication process are also The embodiments of the present invention are not particularly limited.
  • centralized computing node 145 can be coupled to wireless transceiver units 116-118 in wireless transceiver unit assembly 115 in a variety of manners.
  • the centralized computing node 145-1 is directly coupled to the local computing node 125-1, and the local computing node 125-1 is directly coupled to the wireless transceiver unit 116-118 in the wireless transceiver unit combination 115-1.
  • the centralized computing node 145-1 is coupled to the local computing node 125-2 via one or more intermediate computing nodes 135, and the local computing node 125-2 is directly coupled to the wireless transceiver unit 116 in the radio transceiver unit 115-2. 118 connected.
  • the wireless transceiver unit 116-118 is connected to the local computing node 125 in the network architecture of the embodiment of the present invention, and then connected to the centralized computing node 145 through the local computing node 125, the embodiment of the present invention may further adopt the traditional C-RAN.
  • centralized computing node 145-2 is directly coupled to wireless transceiver units 116-118 in wireless transceiver unit assembly 115-3.
  • the micro cell RRU/BRU is located at the junction of two macro cells, from the perspective of resource scheduling and interference management, Users of micro cells usually need to work in conjunction with multiple macro base stations. Then the micro area RRU/BRU can be directly connected to the centralized computing node.
  • the micro base station side has a partial baseband processing function, which is equivalent to the micro base station RRU being connected to a co-sited micro-computing node.
  • the BRU 118 can perform the fourth part of the communication processing of the cell corresponding to the BRU.
  • the central computing nodes 145 can be connected to each other.
  • the centralized computing node 145 can transfer the fifth partial communication processing to other centralized computing nodes for execution by task scheduling.
  • the all communication processing further includes the fourth partial communication processing and/or the fifth partial communication processing described above.
  • the fifth partial communication process, the fourth partial communication process, the third partial communication process, the first partial communication process, and the second partial communication process may be performed simultaneously, and in another embodiment, the fifth part communication process
  • the fourth part of the communication processing, the third part of the communication processing, the first part of the communication processing, and the second part of the communication processing may also be performed at different times, and the embodiment of the present invention is not particularly limited.
  • the interfaces between the various network elements in the embodiment of the present invention are described below. As shown in FIG. 2, between the macro cell radio unit 116 and the local computing node 125-1/125-2, between the cell RRU 117 and the local computing node 125-1/125-2, the macro cell radio unit 116, and the centralized calculation Between nodes 145-2, between microcell RRU 117 and centralized compute node 145-2, they are connected by a first type of interface C1.
  • the first type of interface C1 is used to transmit baseband data and control status messages, for example to provide synchronization and corresponding control management functions.
  • the first type of interface C1 can be implemented using protocols such as CPRI between the existing distributed base station BBU and the RRU.
  • the second type of interface C2 is connected.
  • the second type of interface C2 is used to transmit baseband data, data packets, and control status messages, such as computing task and control information for computing nodes between upper and lower layers.
  • the second type of interface C2 can be considered by the combination of the existing interface protocol CPRI and X2, Iur, Iub.
  • the centralized computing node 145-1/145-2 and the core network 200 are connected by a third type of interface C3.
  • the third type of interface C3 is used to transmit data packets and control status messages.
  • the third type of interface C3 can be implemented by considering the functions of the existing Sl and Iu interfaces.
  • the communication processing required to be performed by the centralized computing layer 140 can be further reduced by the intermediate computing layer 130, the bandwidth requirement is reduced, and the utilization of system resources is improved.
  • the communication processing in the embodiment of the present invention refers to processing related to wireless network communication, including but not limited to data processing, joint interference management processing, joint resource scheduling processing, joint computing task scheduling processing, multi-standard baseband signal and upper layer protocol joint processing or Joint transmission, working mode, or joint control of open and close states.
  • the main reference is to a three-layer network architecture (145-1 to 125-1 to 115-1 in Figure 2) that does not include an intermediate computing layer or a four-layer network architecture that includes an intermediate computing layer (in Figure 2 145-1 to 135 to 125-2 to 115-2) describe the operation of each network element.
  • embodiments of the present invention can be similarly applied to scenarios involving more intermediate computing layers, where each intermediate computing layer processes some or all of the communication processing of cells served by the wireless transceiver unit to which it is connected (directly connected).
  • 3A-3B are schematic diagrams of a process of data processing in accordance with one embodiment of the present invention.
  • 3A is a schematic diagram showing an example of uplink data processing
  • FIG. 3B is a schematic diagram showing an example of downlink data processing.
  • each computing node performs a shunting process on the received data to distinguish between data that the computing node needs to process and data that is not processed by the computing node.
  • the data that the non-book computing node needs to process may include data that has been processed by the previous layer computing node and/or data that needs to be processed by the next layer computing node.
  • the compute nodes centralized compute nodes 145) and the underlying compute nodes (local compute nodes 125) at the top of the network architecture, the data for completing the communication processing needs to be aggregated.
  • the local computing node 125 when uplinking, the local computing node 125 offloads the data D from the wireless transceiver unit.
  • data D is unprocessed baseband data and control information.
  • the baseband and/or L2 processing of the data D1 that needs to be processed at the local computing node 125 is then completed, and the data packet P1 generated after processing D1 and the data D2+D3 that needs to be processed by the intermediate computing layer 130 and the top-level computing layer 140 are transmitted to the middle.
  • the intermediate computing node 125 in the computing layer 130 that is connected to the local computing node 125 (if there is no intermediate computing layer, is directly transmitted to the centralized computing node 145 in the centralized computing layer 140 that is connected to the local computing node 125).
  • the local computing layer is the most important functional node for reducing the transmission bandwidth in the embodiment of the present invention.
  • the operation of the local compute node 125 at this time can be similar to the operation of the intermediate compute node 135 described below.
  • the intermediate computing node 135 in the intermediate computing layer 130 splits the data from the lower node (which may be the local computing node 125 or the lower intermediate computing node) in the uplink, and distinguishes the data D2 that needs to be processed in the layer and does not need The data P1 and D3 processed in this layer.
  • the intermediate computing node 135 performs baseband and/or L2 processing on the data D2, and transmits the processing result P2 (data packet) of the layer, and the data D3 that needs to be processed by the upper layer computing layer and the data P1 that has been processed by the computing node 125 to
  • the upper intermediate compute node if there is an upper intermediate compute node or the centralized compute node 14 5 (if there is no upper intermediate compute node).
  • the centralized computing layer 140 is a computing layer that is directly connected to the core network. In the uplink, the centralized computing node 14 of the centralized computing layer 140 performs the shunting of the calculated data, distinguishes the data D3 that needs to be processed by the centralized computing node 145 and the data that does not need to be processed by the centralized computing node 145 (for example, the data processing has been completed by the lower computing node). The resulting packets P1 and P2).
  • the centralized computing node 145 completes the joint processing of the lower layer uncompleted baseband data D3 and the L2 processing, and aggregates the processing result P3 (data packet) and the data packets P1 and P2 generated after the lower layer has been processed into the data packet P, and Packet P is transmitted to the core network.
  • the intermediate computing node 135 divides the data from the upper node (which may be the centralized computing node 145 or the intermediate computing node of the upper layer), and distinguishes the data P2 that needs to be processed in the layer and the data D1 and P3 that do not need to be processed by the layer. .
  • the intermediate computing node 135 performs L2 and baseband processing on the data P2, and transmits the processed result D2 (baseband signal and control message) and the data P3 that needs to be processed by the lower layer computing node and the data D1 that has been processed by the centralized computing node 145 to the lower layer.
  • the intermediate compute node (if there is a lower intermediate compute node) or the local compute node 125 (if there is no lower intermediate compute node).
  • the local computing node 125 offloads the data from the upper computing node, distinguishes the partial data packet P3 that the local computing node 125 needs to process, and the data that the local computing node 125 does not need to process (for example, the baseband generated after the upper computing node has completed processing) Signal and control message D1 And D2).
  • the local computing node 125 then completes the processing of the upper layer uncompleted packet P3, and aggregates the processing result D3 (baseband signal and control message) and the baseband signal and control messages D1 and D2 from the upper layer into a baseband signal and a control message D, and then D is transmitted to the wireless transceiver unit.
  • computing nodes When computing nodes perform data offloading, they can comprehensively determine the proportion of data offload based on factors such as computing power of compute nodes, bandwidth between nodes, data processing requirements (processing speed requirements, delay requirements, processing requirements, etc.).
  • the local computing node 125 can directly separate the data D1 that needs to be processed by the local layer, the data D2 that needs to be processed by the intermediate computing node 135, and the data D3 that needs to be processed by the centralized computing node 145, but the embodiment of the present invention Not limited to this.
  • the local computing node 125 may not distinguish between D2 and D3, but only the data D1 that needs to be processed by the layer and the data D2+D3 that does not need to be processed by the layer, and then the intermediate computing node 135 distinguishes D2 and D3 according to the requirements.
  • the centralized compute node 145 may not distinguish between P2 and P3.
  • the computing nodes of other layers do not aggregate data, but separately transmit various data, for example, data generated after the layer processing, the previous layer has been processed.
  • the data and the data that needs to be processed in the next layer are not limited thereto.
  • the data to be transmitted can be aggregated and transmitted.
  • the communication processing that the hierarchical network architecture of the embodiment of the present invention can perform may also include joint interference management processing.
  • joint interference management processing For example, for user equipment at the cell junction, if joint processing can be performed between adjacent cells, the throughput of the user equipment will be effectively improved.
  • the embodiment of the present invention adopts a layered adaptive manner in the joint interference management process.
  • the basic principle of the joint interference management process is that the upper-layer computing nodes common to both parties interfere with the interference.
  • the joint interference management process of the embodiment of the present invention is described in conjunction with the system architecture of FIG.
  • the local computing node 125 preferentially performs communication processing of the user equipment without significant interference in the cell corresponding to the wireless transceiver nodes 116-118 in the wireless transceiver node combination 115 connected to the local computing node 125 or only from the local computing node
  • the interference of the cells corresponding to the other radio transceiver nodes 116-118 in the connected radio transceiver node combination 115 e.g., interfered with by the other radio transceiver nodes 116-118 or served by the other radio transceiver nodes 116-118) Interference of the user equipment of the UE).
  • the local computing node 125-1 preferentially performs communication processing of the user equipment without significant interference in the cell corresponding to the radio transceiver node combination 115-1 or only by the radio transceiver node 116-118 in the radio transceiver node combination 115-1. Corresponding cell interference Interference handling of user equipment.
  • the intermediate computing node 135 preferentially performs interference processing of the user equipment in the cell corresponding to the wireless transceiver node in the combination of the lower intermediate computing node or the local computing node connected to the intermediate computing node 135, wherein the user equipment is subjected to interference processing. Interference from a cell corresponding to a radio transceiver node in a combination of other lower intermediate computing nodes or local computing nodes associated with the intermediate computing node. As an example of a case where an intermediate computing node 135 connects a plurality of local computing nodes, the intermediate computing node 135 preferentially processes interference between the plurality of local computing nodes.
  • the centralized computing node 145 preferentially performs interference processing of the user equipment in the cell corresponding to the wireless transceiver node in the combination of the lower intermediate computing node or the local computing node connected to the centralized computing node 145, wherein the user equipment is subjected to interference processing. Interference from a cell corresponding to a radio transceiver node in a combination of radio transceiver nodes associated with other lower intermediate computing nodes or local computing nodes connected to the centralized computing node. Taking the architecture of FIG.
  • the upper computing node shared by them ie, the centralized computing node 145-1 performs the processing of the interference.
  • Interference processing performed by local computing nodes, intermediate computing nodes, and centralized computing nodes may include joint interference cancellation, joint time-frequency resource coordination, joint power control, and coordinated multi-point (CoMP) between multiple base stations. .
  • CoMP coordinated multi-point
  • the HetNet network architecture includes a centralized compute node 245 and two local compute nodes 225a and 225b.
  • the local computing node in the HetNet network architecture is typically set at the macro base station, for example, co-site with the macro cell RRU; the local computing node may also be set in an area composed of multiple adjacent macro base stations, for example, connected to multiple macro cell RRUs. .
  • the communication processing of the local computing node includes: 1) The "computation task package" can be flexibly divided into different loads according to the user, uplink/downlink, macro/Pico, etc., so that the system can be adaptive between the centralized computing node and the local computing node as needed. Assign processing load; 2) Complete baseband signal processing tasks suitable for local computing nodes: all baseband processing of local Macro/Pico, user signals that do not interfere with other Macro/Pico; 3) Responsible for local Macro/Pico baseband signal preprocessing (such as FFT, Mapping/De-mapping, Precoding, etc.) or signal compression processing; 4) Multi-standard unified processing and joint transmission through Software Defined Radio (SDR).
  • SDR Software Defined Radio
  • the local computing node 225a is associated with a combination of radio transceiver units consisting of a macro cell RRU 215a, a micro cell RRU 215b, and a micro cell BRU 215c, wherein the local computing node 225a and the macro cell RRU 215a
  • the co-site, micro cell RRU 215b and micro cell BRU 215C are within the coverage MC1 of the macro cell RRU 215a.
  • Local computing node 225b is associated with a combination of radio transceiver units consisting of macro cell RRU 215d, micro cell RRU 215e, and micro cell BRU 215f, where local computing node 225b is co-sited with macro cell RRU 215d, micro cell RRU 215e and micro cell
  • the BRU 215f is within the coverage MC2 of the macro cell RRU 215d.
  • the local compute nodes 225a/225b of each macro cell are connected to a centralized centralized compute node 245. This forms an upper-level cloud computing architecture in a larger area.
  • a centralized computing node can be connected to more local computing nodes, and each local computing node can also be connected to more macro cell RRUs.
  • Each macro cell can have no micro cell RRU or micro cell BRU, micro cell RRU/BRU. The number may also be added or deleted as needed, and these modifications are all within the scope of the embodiments of the present invention.
  • the local computing nodes 225a and 225b are collectively referred to as a local computing node 225 without distinguishing from each other, and the macro cell RRU 215a, the micro cell RRU 215b, the micro cell BRU 215c, the macro cell RRU 215d, and the micro cell RRU 215e.
  • the micro cell BRU 215f is collectively referred to as a radio transceiver unit 215.
  • each radio transceiver unit is first connected to the local computing node 225, and then connected to the upper layer centralized computing node 245 through the local computing node 225, but there is no interface between the local computing nodes 225, and the radio transceiver units are also Not connected. Since the X2 interface is standardized without considering multi-point cooperative CoMP, the bandwidth and delay of the X2 interface cannot meet the requirements of multi-point cooperation and joint processing. In the embodiment of the present invention, there is no logical interface between the base stations, and the multi-point cooperation and the joint office are completed by the upper layer computing node. In addition, in the embodiment of the present invention, the RNC is cancelled, and the data processing and joint scheduling performed by the RNC in the UMTS system are completed in the upper computing node.
  • processing on all compute nodes is implemented in software.
  • Different wireless systems can be processed by using different virtual machines or different processes on the unified operating system platform, and G/U/L/WiFi can be realized at the same time, and joint transmission of multiple standards can be supported.
  • the HetNet architecture of FIG. 4 is merely exemplary.
  • the embodiment of the present invention is not limited thereto.
  • the number, location, and number of layers of computing nodes may be modified as needed, or one or more intermediate computing nodes may be added.
  • the HetNet architecture of Figure 4 can be used in conjunction with a microcell continuous coverage architecture, i.e., some local compute nodes 225 can be connected to multiple microcell BRUs/RRUs that are continuously covered over a smaller range.
  • the interference received by the user equipment can be classified into the following types: 1) User equipment without significant interference UE:
  • UEs with no significant interference in the macro cell MC1/MC2 typically, such UEs are located in the central area of the local macro cell. Since the UE is far away from the adjacent macro cell, the UE is subject to little interference from the neighboring macro cell; and these UEs are far away from the hotspot region in the same macro frequency band using the same frequency band, so the interference from the micro cell is also small.
  • UEs with no significant interference in the microcell typically such UEs are located at the center of an isolated hotspot area. Since it is an isolated hotspot area, it is subject to little interference from other micro cells in the macro cell; since the UE is located at the center of the micro cell, it is relatively less interfered by the macro cell.
  • the communication processing of such user data is preferentially executed at the local computing node.
  • the interference source which is processed by the local computing node 225 and processed by the centralized computing node 245.
  • Type l The UE in the micro cell that is only interfered by the macro cell.
  • the UE is located at the edge of the micro cell, and there are no other micro cells around the UE.
  • the signal is only interfered by the local macro cell signal.
  • interference joint processing it only needs to be performed between the micro cell and the macro cell in which it is located. For example, if the UE served by the micro cell RRU 215b is only interfered by the macro cell MC1 in which it is located, the interference processing of the UE is performed by the local computing node 225a.
  • Type 2 The macro cell UE located at the edge of the micro cell, whose interference originates from the adjacent micro cell. In the case of interference joint processing, it is only required to be performed between the macro cell and the micro cell that generates large interference with the UE. For example, if the UE served by the macro cell RRU 215a is interfered by the micro cell RRU 215b, the interference processing of the UE is performed by the local computing node 225a.
  • Type 3 If two microcells are very close together, the users at their junctions will be subject to interference from the other two cells regardless of whether they belong to the macrocell or one of the microcells.
  • the UE served by the macro cell MC1 is simultaneously interfered by two neighboring micro cells (ie, interfered by the micro cell RRU 215b and the micro cell BRU 215c); the UE served by the micro cell RRU 215b is simultaneously subjected to Interference from macro cell RRU 215a and micro cell BRU 215c; UE served by micro cell BRU 215c is simultaneously interfered by macro cell RRU 215a and micro cell RRU 215b.
  • interference joint processing it is required to be performed between the macro cell and the two adjacent micro cells.
  • the interference processing is performed by the local computing node 225a.
  • Type 4 UEs served by macro cells (such as MC1 and MC2) on the edge of several macro cells (such as MC1 and MC2), when there are no micro cells around, the interference mainly comes from the surrounding neighboring macro base stations (MC2 or MC1), located in the non-hotspot area of the macro cell, the signal is mainly interfered by the neighboring macro cell. Since the local computing node is located in the local macro cell, the local computing node cannot perform joint interference processing on users of several surrounding macro cells. Therefore, such UEs send their data to the centralized computing node 245. Since the centralized computing node 245 is responsible for macro cells and micro cells in a larger area, it can perform joint interference processing on signals of several different macro cell users. For example, if the UE served by MC1 is interfered by the macro base station of MC2, the interference is processed by centralized computing node 245.
  • Type 5 If a hotspot area is located at the junction of several macro cells, the user at the edge of the micro cell, whether it belongs to the micro cell or one of the macro cells, will be subject to other small District interference.
  • the UE served by the micro cell RRU 215e is interfered by the macro base station of the neighboring macro cells MC1 and MC2; the UE served by the macro cell MC1 is interfered by the macro cell BRU 215c and the macro cell of the macro cell MC2; the user of the macro cell MC2 receives a small Interference from the regional RRU 215e and the macro base station of the macro cell MC1.
  • the local cloud access network architecture cannot perform joint interference processing on users of several surrounding macro cells. So like Type 4, such UEs send their data to the upper level centralized compute node 245. Since the upper layer cloud access network architecture is responsible for macro cells and micro cells in a larger area, it can perform joint interference processing on signals of several different macro cells and micro cell users.
  • the centralized computing node 245 For users who prioritize joint interference processing at the centralized computing node 245, their data is preferentially processed by the upper computing nodes in the cloud access network architecture. Since their interference source is between the macro cell and the micro cell under several local cloud access network architectures, in order to improve system performance, it is desirable to perform joint processing at the centralized computing node 245. Since the number of users at the intersection of several lower-level cloud access network architectures is not too large, the data uploaded to the upper-layer cloud access network architecture for joint processing is limited, and does not cause too much load on the baseband signal transmission network.
  • the network side may allow the UE to periodically measure the reference signal strength and reception delay of the surrounding RRU/BRU. If multiple RRU/BRU strengths and delays are found to be similar, the user data is moved up to the upper compute nodes common to these RRU/BRUs. Conversely, if it is found that the UE processed by the upper layer computing node measures the difference between the adjacent RRU/BRU reference signal strengths, for example, if only one or a few of the strengths are large, the signal processing of the UE is moved down to the RRU/BRU corresponding. The underlying compute node.
  • the lowest-level computing node (micro-computing node or local computing node) performs FFT when receiving data output by the radio unit, and separates the corresponding micro-computing node (if there is a BRU) and local.
  • the compute node and the resource block (RB, Resource Block) processed by the centralized compute node.
  • the compute nodes of each layer process the corresponding baseband data, and transmit the baseband data processed by the upper layer to the upper compute node.
  • the centralized computing node divides the packets from the core network into centralized computing nodes, local computing nodes, and microcomputing nodes (if there are BRUs) for processing.
  • the baseband data and control information after each layer is processed is combined at the lowest computational node (local computing node or microcomputing node) for processing by the radio unit into a transmitted signal.
  • CDMA Code Division Multiple Access
  • data of different users is loaded on mutually orthogonal code sequences, and the layered processing method can be analogized to The method of distinguishing users by time-frequency resource blocks is not described here.
  • the communication processing performed by the communication system of the embodiment of the present invention may include joint resource scheduling processing, and resource scheduling between adjacent cells, while reducing inter-cell interference, improving resource utilization and system performance.
  • resource management is performed on different layers of networks according to different user positions, and each layer of computing nodes is responsible for resource scheduling in different situations.
  • the principle of the joint resource scheduling process is to perform resource scheduling of the user equipment by a local computing node, an intermediate computing node, or a centralized computing node that can be associated with the wireless transceiver unit capable of serving the user equipment.
  • local computing node 125 performs resource scheduling between cells corresponding to wireless transceiver nodes 116-118 in wireless transceiver node combination 115 that is connected (directly connected) to local computing node 125.
  • the intermediate compute node 135 performs resource scheduling between cells corresponding to the radio transceiver nodes 116-118 in the radio transceiver node combination 115 that is connected (indirectly connected) to the intermediate compute node 135.
  • the centralized compute node 145 performs resource scheduling between cells corresponding to the radio transceiver nodes 116-118 in the radio transceiver node combination 115 that is connected (directly or indirectly) to the centralized compute node 145.
  • the local computing node 225 mainly performs local Macro-Pico joint resource scheduling.
  • the interference with other macro cells is small, and basically the localized scheduling and control of the resources can be basically performed, and only the local Macro-Pico joint is required.
  • Resource Scheduling Since Macro-Pico joint scheduling can be adopted, the traffic channel resources of the micro cell can be multiplexed with the macro cell; for different micro cells with distant distances, the interference between them is small, and the control and traffic channel resources can be independently scheduled.
  • the local computing node 225a can complete the Macro-Pico joint resource scheduling within the MC1 coverage
  • the local computing node 225b can complete the Macro-Pico joint resource scheduling within the MC2 coverage.
  • the centralized computing node 245 mainly completes the global Macro-Pico joint resource scheduling.
  • the macro cell edge UE and the UE located in the micro cell at the edge of the macro cell there is a certain mutual interference with other macro cells, and therefore global resource scheduling is required for such UE.
  • the micro cell RRU 215e is located at the coverage boundary of the macro cells MC1 and MC2.
  • the resource allocation in the micro cell RRU 215e may be scheduled by the central computing node 245 to reduce inter-cell interference. .
  • the local computing node completes resource allocation at the junction between the micro cell and the macro cell in the macro cell.
  • the frequency domain resources are divided into three parts: fl, f2, and f3. Used by two micro cells in the junction and edge UEs of the macro cell.
  • the specific proportion of each frequency domain resource is determined by the number of users at the edge of each cell and the amount of business data.
  • the centralized computing node 245 performs resource allocation among multiple underlying cloud architectures.
  • the centralized computing node 245 is responsible for the frequency domain resources of the edge UEs of the microcells in the vicinity of the intersection of the two macrocells MC1 and MC2 and the macrocell (for example, the cell covered by the microcell RRU 215e). Distribution.
  • the frequency domain resources are divided into three parts: fl, f2, and f3, which are respectively used by edge UEs of two macro cells and micro cells.
  • the specific proportion of each frequency domain resource is determined by the number of users at the edge of each cell and the amount of traffic data.
  • the resources scheduled by the local computing node, the intermediate computing node, and the centralized computing node are configured to be different from each other. This is a multi-level scheduling based on frequency/time/space, without changing the existing standard data processing flow.
  • the upper-layer computing node performs joint scheduling on a certain time/frequency/airspace resource according to the UE that needs to perform joint processing in the lower layer coverage.
  • the other nodes of the lower computing node are scheduled and scheduled on the remaining time/frequency/space resources of the upper layer.
  • the resources of the upper layer for upper layer joint scheduling must be limited to a certain range, and dynamic according to the actual UE distribution and data volume.
  • the resource scheduling is performed preferentially by the computing node located at the upper layer. This scheduling is performed uniformly by the upper layer and can optimize the throughput of the entire network.
  • Channel information of all user equipments such as SRS (Sounding Reference Signal), Channel Condition Indicator (CQI), PMI (Precoding Matrix Indicator) / RI ( Rank Indicator, rank) Indications, etc., are transferred to the compute nodes located on the upper layer. Because the user data has to go through the upper computing node, the upper computing node has the current and past user data rate information when scheduling, so as to ensure the fairness of the scheduling. If the computing power of the upper computing node is reluctant, the computational load of the unified upper user scheduling is also acceptable.
  • SRS Sounding Reference Signal
  • CQI Channel Condition Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator, rank
  • the distance between the local computing node and the local macro cell RRU and the micro cell RRU/BRU is very close. Taking a macro cell with a station spacing of 500 meters as an example, the distance between the local computing node and the remote micro area RRU is about 200 meters.
  • Such a plurality of other short-distance connection media between the transceiver node and the local computing node, between the local computing node and the intermediate computing node, or between the intermediate computing nodes of the upper and lower layers can be passed according to specific conditions. Fiber, Digital Subscriber Line (DSL), microwave or power line connection. Therefore, the hierarchical structure greatly reduces the topology of the baseband signal transmission network and effectively reduces the transmission cost.
  • the connection medium between the nodes can be determined based on factors such as node computing power, inter-node distance, inter-node transmission bandwidth requirements, and/or inter-node transmission delay requirements.
  • digital subscriber line DSL twisted pair, copper wire, etc.
  • microwave, power line communication and other technologies can achieve a transmission rate close to Gbps in the range of 200 meters, which can be used to replace the fiber for transmission of local short-range signals.
  • the fiber connection can still be used because the relative number is small and the distance is far.
  • the cloud access network of each layer uses different physical media for the baseband signal transmission network.
  • the network architecture proposed in the embodiment of the present invention can adaptively allocate computation load according to the bandwidth of the transmission network of the baseband signal.
  • the processing load can be moved up to the upper computing node to refine the configuration of the local computing node; when the available transmission bandwidth is small, the processing load is more distributed to the local computing node.
  • the communication process performed by the communication system of an embodiment of the present invention may further include the ability of the joint computing task to invoke computing resources.
  • a centralized computing node connected between a local computing node and an intermediate computing node connected to the local computing node, between intermediate computing nodes connected by upper and lower layers, between an intermediate computing node and a centralized computing node connected to the intermediate computing node Between the calculation tasks based on computational load, computing power, transmission bandwidth, and transmission delay.
  • the baseband data corresponding to the RRU in the local macro cell is preferentially processed at the local computing node, if the local computing node has limited processing capability, or is caused by the tidal effect of the user equipment.
  • the computational load of the compute node is too large, and the local compute node can hand over a portion of the signal to the upper compute node for processing, such as an intermediate compute node or a centralized compute node.
  • the upper computing node is responsible for balancing the computing load of the local computing node in a large range. When its own computing load is too large, it can decentralize part of the computing work to the local computing node for processing.
  • the scheduling of the computing tasks can be placed in the upper computing nodes for centralized scheduling, or placed on the computing nodes of each layer. Distributed scheduling.
  • each local computing node 225 can periodically report the current computational load to the upper centralized computing node 245.
  • the centralized computing node 245 decides whether to move some of the computing tasks of some local computing nodes to the centralized computing node.
  • the centralized computing node 245 then returns a scheduling instruction to each local computing node 225 indicating whether a portion of the computing task is to be moved up and the amount of computing tasks that need to be moved up.
  • the transfer of computing tasks is scheduled by the compute node based on requests from other compute nodes.
  • local compute node 225 and centralized compute node 245 are equal.
  • a computing task upload request message is sent to the centralized computing node 245, and the request message includes the amount of computing tasks that are desired to be moved up.
  • the centralized computing node 245 receives the request message reported by each local computing node 225, according to its own computing resource idle situation, and coordinating the application requirements of each subordinate local computing node 225, the computing resource uplink request sent by each local computing node 225 The message is fed back.
  • the feedback message includes whether or not to agree to its calculation task upshift, and the amount of computational tasks that can be moved up.
  • the computing task drop request message may also be sent to the lower layer local computing node 225 by polling or randomly selecting, or the computing task transfer request message may be sent to other centralized computing nodes ( For example, regarding the transfer request of the fifth part communication processing described above;), the two request messages include the amount of calculation tasks that are desired to be transferred.
  • the local computing node 225 or the centralized computing node 245 that receives the request message returns a scheduling instruction to the requesting centralized computing node 245 according to its own computing resource idle condition, indicating whether to transfer part of the computing task, and the amount of computing tasks that need to be transferred. .
  • the wireless transceiver node combination can include a variety of wireless transceiver nodes.
  • the communication processing performed by each of the computing nodes of the embodiment of the present invention may include a plurality of types of communication processing and/or joint communication processing between a plurality of standards.
  • the radio frequency part, up/down conversion, filtering and baseband processing of the traditional analog radio system are all adopted.
  • the communication system of a certain frequency band and a certain modulation mode corresponds to a special hardware structure; while the low frequency part of the digital radio system uses a digital circuit, but the radio frequency part and the intermediate frequency part are still inseparable from the analog circuit.
  • the A/D and D/A conversion of the software radio is moved to the intermediate frequency, and the whole system is sampled as close as possible to the radio frequency. This is a prominent feature of the software radio.
  • the digital radio uses a dedicated digital circuit to achieve a single communication function without programming.
  • the software radio replaces the dedicated digital circuit with a programmable DSP (Digital Signal Processing) device, which makes the system hardware structure and function relatively independent. In this way, based on a relatively common hardware platform, different communication functions can be realized through software, and the operating frequency, system bandwidth, modulation mode, source coding, etc. are programmed and controlled, and the system flexibility is greatly enhanced.
  • DSP Digital Signal Processing
  • each computing node is composed of a high-performance CPU or CPU array and a DSP
  • the same computing node can support baseband signals and upper layer protocol processing of multiple RRUs of different standards. This will bring a series of benefits: Different standards for the same processing unit, network architecture, reduce network construction costs; facilitate system or base station upgrades, only need to update the computing node software to complete, which makes the existing spectrum The refarming of resources becomes easy to operate.
  • the local computing node will offload the data to different systems for transmission according to the actual conditions (wireless link conditions, network load, etc.) on different systems.
  • the local computing node, or the intermediate computing node, or the centralized computing node aggregates the data on different systems.
  • this SDR-based and centralized processing method of course supports joint transmission of multiple standards.
  • These multi-standards can be G/U/L/WiFi, and multi-standard joint transmission can be performed on different protocol layers, such as PHY (physical layer), MAC (Media Access Control, media access control), RLC (Radio Link Control). , wireless link control) and more.
  • the computing node can perform unified scheduling on the joint transmission of multiple standards.
  • the baseband signal processing of both the local micro base station and the macro base station is centralized to the local compute node 225.
  • the network configuration can be adaptively implemented between the micro base station and the macro base station, and has a more flexible access network architecture than the traditional HetNet.
  • the communication processing of the embodiment of the present invention may include joint control of an operation mode or an open/close state of the micro cell RRU and/or the micro cell BRU in the combination of the radio transceiver nodes.
  • the Pico microcell can be flexibly and adaptively configured into the following three forms: 1) Configured as a separate microcell with its own Cell ID and all control/data channels; 2) Configured as Acer Station Relay Station (RN, relay station), for the common in-band transmission mode, the RN is connected to the access network wirelessly through the host eNodeB, and the used frequency band shares the same frequency band with the link between the RN and the terminal; 3)
  • the distributed antenna of the macro base station transmits/receives part or all of the wireless base station by SFN (Single Frequency Network) or other spatial coding methods (such as SFBC (Space-Frequency Block Codes)) signal.
  • SFN Single Frequency Network
  • SFBC Spa-Frequency Block Codes
  • the number/mode of the micro cell RRU or BRU can be adaptively configured according to different scenarios.
  • the micro cell RRU or BRU can be adaptively configured to the above three different working modes as needed.
  • the micro area RRU or BRU can be opened when the number of users is large, and the micro area RRU or the small area is closed when the number of users is small. BRU. It is also possible to adaptively open and close the micro cell RRU or BRU based on factors such as the available bandwidth or load of the transmission resource.
  • a micro', zone RRU or BRU site may be added, such that more users enter the micro', zone RRU or BRU due to transmit power Compared with the macro base station transmission, the interference from other macro base stations and the interference to other macro base stations are greatly reduced, so that it is no longer necessary to perform joint processing in the centralized computing node, thereby effectively reducing the local computing node 225 and Centrally calculate the transmission bandwidth requirements between nodes 245.
  • the communication system of the embodiment of the present invention hierarchically and localizes the computing resources of the BBU, so that a small range of wireless transceiver units are centralized in the local computing node management, and a large range of wireless transceiver units are combined and managed by the upper layer computing nodes.
  • a wireless transceiver unit it is directly connected to the local computing node, and indirectly connected to the upper-level and large-scale computing nodes through the local computing node, and does not exclude the case where some wireless transceiver units are directly connected to the upper computing node.
  • Embodiments of the present invention support adaptive scheduling between computing resources and joint processing between local computing nodes and centralized computing nodes based on user distribution, data volume, and interference conditions.
  • the local computing layer can be placed in locally relatively small areas, such as within a macro cell, to reduce bandwidth requirements for the transport network through partial local computational processing, and to enable multiple short-range transmission techniques to be localized.
  • the ratio of different upward moving cloud data can be selected according to the bandwidth of the actual connected medium.
  • the centralized computing layer of the upper layer is responsible for managing the wireless transceiver units and computing nodes in a larger area, so that the problem of user tidal effects can be solved by scheduling the computing resources.
  • the actual networking determine whether the intermediate computing layer is required as the local computing layer to the centralized computing layer. Transition.
  • the main advantage of the embodiment of the present invention is that the bandwidth of the base station connected to the cloud computing node is greatly saved.
  • the number of small cells increases, which is several times that of existing macro cells; the frequency band is doubled; the number of antennas also increases, from the current maximum of 4 antennas to tens or even hundreds of antennas. If you still use the traditional cloud access network architecture, connecting all baseband data directly to a cloud computing center a few kilometers away will be a great challenge for fiber transmission.
  • each macro base station corresponds to three sectors, 8 antennas per sector; there are 10 microcell base stations in each macro cell range, and a single antenna corresponds to one micro cell;
  • the base station corresponds to a 20 MHz spectrum, and the sampling frequency is 30.74 MHz, and each sample point is quantized by 22 bits.
  • the data processing of most of the baseband or even L2 is completed locally according to the embodiment of the present invention, the data rate required to be connected to the cloud computing center will be greatly reduced: the data rate after channel decoding is reduced by 1/3; if it is 64QAM, demodulation After the data rate is reduced by 5/22; the outgoing cyclic prefix (CP, Cyclic Prefix) will also cause the data rate to drop. If the local L2 data processing can be completed, the frame header, CRC check, and control fields can be saved.
  • the proportion of transmission bandwidth saved by the local processing of the baseband data in the uplink is similar to that in the downlink. It can be seen that the communication system added to the underlying local computing layer in the embodiment of the present invention brings a large bandwidth saving advantage.
  • the computing task can be scheduled in the upper and lower computing nodes even if the traditional computing C- is not lost in consideration of the problem of balancing the computing resources and solving the tidal effects brought by the cloud access network architecture.
  • the advantages of the RAN architecture are the advantages of the RAN architecture.
  • the second advantage is that the traditional C-RAN needs to connect each macro base station to the computing center through the optical fiber.
  • the base station data may be concentrated in a local area and then transmitted to the upper layer computing center. Because it is local concentration, a variety of short-range communication technologies, such as microwave, DSL, power lines, etc., can be considered to reduce baseband transmission costs.
  • the traditional C-RAN architecture if the baseband transmission data rate does not meet the cloud requirements on all baseband data, Then you can't use the cloud computing architecture.
  • FIG. 5 is a schematic flow chart of a method of managing a communication system according to an embodiment of the present invention.
  • the method of Figure 5 is performed by the communication system shown in Figure 1 or Figure 2.
  • the communication system includes a wireless transceiver layer, a local computing layer, and a centralized computing layer, and the wireless transceiver layer includes one or more wireless transceiver node combinations, wherein the wireless transceiver node in each wireless transceiver node combination includes at least a macro cell radio frequency unit.
  • the local computing layer includes one or more local computing nodes, wherein each local computing node is associated with one or more adjacent wireless devices
  • the wireless transceiver nodes in the combination of transceiver nodes are connected, and the centralized computing layer includes one or more centralized computing nodes, wherein each centralized computing node is coupled to one or more local computing nodes in the local computing layer.
  • the local computing node performs all communication processing or first part communication processing of a cell corresponding to the radio transceiver node in the combination of the radio transceiver nodes to which the local computing node is connected.
  • the central computing node performs, when the local computing node performs the first partial communication processing, performing a cell corresponding to a radio transceiver node in a combination of the radio transceiver nodes to which the one or more local computing nodes are connected.
  • a two-part communication process, wherein the all communication processes include the first partial communication process and the second partial communication process.
  • a local computing layer is added between the centralized computing layer and the wireless transceiver layer, which is responsible for all or part of the communication processing of neighboring cells within a certain range, without having to hand all processing to the remote centralized computing node for processing. , which saves network bandwidth and improves the utilization efficiency of system resources.
  • FIG. 5 is shown as being executed before 502, the embodiment of the present invention is not limited thereto. In fact, the execution of 501 and 502 can be relatively independent. For example, 501 can be executed after 502, and 501 can also be executed simultaneously with 502. These modifications are all within the scope of the embodiments of the present invention.
  • FIG. 6 is a schematic flow chart of a method of managing a communication system according to another embodiment of the present invention.
  • the communication system of the embodiment of FIG. 6 can be as shown in FIG. 2.
  • one or more intermediates can be added between the centralized computing layer 140 and the local computing layer 120 according to actual needs.
  • Layer 130 is calculated to further reduce bandwidth requirements.
  • Each intermediate computing layer 130 includes one or more intermediate computing nodes 135.
  • the method of FIG. 6 further includes: 503.
  • the intermediate computing node performs, in the case that the local computing node performs the first partial communication processing, performs a third cell corresponding to the wireless transceiver node in the combination of the wireless transceiver nodes to which the local computing node connected to the intermediate computing node is connected. Partial communication processing, wherein the all communication processing includes the third partial communication processing.
  • the method of FIG. 6 further includes:
  • the micro cell radio frequency and baseband remote unit BRU performs the fourth part communication process of the cell corresponding to the micro cell radio frequency and the baseband remote unit when the local computing node performs the first part communication process.
  • the method of FIG. 6 further includes:
  • the centralized computing node transfers the fifth part communication processing to other centralized computing nodes by task scheduling.
  • the all communication processing includes the fourth partial communication processing and/or the fifth partial communication processing described above.
  • the communication processing of the embodiment of the present invention may include one or more of the following processes: data processing, joint interference management processing, joint resource scheduling processing, joint computing task scheduling processing, communication processing of multiple standards, and between various standards. Joint communication processing, micro-area radio remote unit and/or joint control of micro-area radio frequency and baseband remote unit operation mode or open/close state.
  • a local computing layer is added between the centralized computing layer and the wireless transceiver layer, which is responsible for all or part of the communication processing of neighboring cells within a certain range, without having to hand all processing to the remote centralized computing node for processing. , which saves network bandwidth and improves the utilization efficiency of system resources.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Meter Arrangements (AREA)

Abstract

本发明实施例提供通信***及其管理方法。该通信***包括:无线收发层,包括无线收发节点组合,至少包括宏小区RRU、微小区RRU、微小区BRU中的一种;本地计算层,包括本地计算节点,与一个或相邻的多个无线收发节点组合中的无线收发节点相连,用于执行该本地计算节点所对应小区的全部通信处理或第一部分通信处理;集中计算层,包括集中计算节点,与所述本地计算层中的本地计算节点相连接,用于执行第二部分通信处理,其中全部通信处理包括第一和第二部分通信处理。本发明实施例的本地计算层负责一定范围内的全部或部分通信处理,而不必将全部处理都交给较远的计算中心处理,节省了网络带宽,提高了***资源的利用效率。

Description

通信***及其管理方法 技术领域
本发明实施例涉及无线通信领域, 并且更具体地, 涉及通信***及其管 理方法。 背景技术
蜂窝通信***中包括用户设备 ( User Equipment , UE ), 接入网 ( Radio Access Network, RAN )和核心网 ( Core Network )三个部分。 其中 UE是网 络用户进行通信的工具, RAN 负责空口资源的管理和一部分移动性管理, CN负责用户认证、 计费、 移动性管理、 承载建立维护和数据路由。
LTE ( Long Term Evolution, 长期演进)以前的 RAN包括基站和基站控 制器两个部分。 对于 GSM ( Global System of Mobile communication, 全球移 动通讯*** ) /GPRS ( General Packet Radio Service, 通用分组无线月良务技术 ***), RAN由 BS ( Base Station, 基站)和 BSC ( Base Station Controller, 通用移动通信*** )***, RAN由 NodeB和 RNC( Radio Network Controller, 无线网络控制器)组成。 基站通过空口与 UE进行通信, 基站控制器对多个 基站进行统一管理和调度。 LTE采用了扁平化的网络架构, RAN只有 eNodeB 一个网元, 它包括了以前 NodeB 的功能, 基站控制器的功能也被分布到各 个 eNodeB节点。
从 3G ( 3rf Generation, 第三代)开始, 分布式基站开始被广泛应用。 分 布式基站将传统基站分为基带处理单元( Baseband Unit, BBU )和射频拉远 单元( Radio Remote Unit, RRU )。 RRU完成射频信号收发、 降峰均比、 数字 预失真、 上变频、 DAC ( Digital-to- Analog Conversion , 数模转换) /ADC ( Analog-to-Digital Conversion, 模数转换)、 功放等操作, 它与 BBU通过通 用公共无线接口 (Common Public Radio Interface, CPRI )等协议进行基带信 息交互。 现阶段 BBU和 RRU之间的物理连接多采用光纤。 BBU+RRU的方 式给站址布设带来了极大的灵活性, RRU 的体积较小, 容易布设在电线杆 等位置, 占用空间较小。 通常大型建筑物内部的层间有楼板, 房间有墙壁, 室内与室内用户之间有空间分割, BBU+RRU多通道方案就是利用这一特性, 对每个分割的空间部署一个 RRU。 对于超过 10万平方米的大型体育场馆, 可将看台划分为几个小区, 每个小区设置几个通道, 每个通道对应一面板状 天线的 RRU。 BBU的体积较大, 可以单独找机房放置。
移动通信网络通常采用蜂窝结构, 即在不同地点架设不同的基站, 每个 基站形成一个小区, 负责该区域内的移动用户的通信, 为了保证移动用户能 够获得无缝的连续的通信, 相邻小区有一定的重叠区域, 从而使得移动用户 能够从一个小区切换到另外一个小区。 在这种传统的单层小区***中, 为了 提高***的容量, 需要提高每个小区的容量, 通常这需要采用复杂的、 成本 高的技术来实现。 但是, 在一个较大区域内, 并不是所有地方都需要很高的 容量,多数情况下只有局部热点地区才需要,业务量需求比较小的其它区域, 即使提供了容量, 也没有用户使用, 是一种***资源的浪费。 也就是说, 通 过提高整个小区的容量的方式, 是一种较低效率的方式。 为此, 一种较好的 方式是采用多层小区结构 (在 3GPP 的 LTE 标准中称为 Heterogeneous Network, 筒称 HetNet ), 即首先用宏小区 (Macro-cell ) 实现该区域的无缝 连续覆盖, 然后在热点采用小蜂窝(Pico或 Femto等)重叠覆盖, 小蜂窝针 对热点地区内较大的业务量需求,提供 4艮高的容量,从而实现***容量的 "按 需分配"。 从***角度来看, 这种方式是一种更加精确的、 有的放矢的容量 投放方式, 避免了***资源的浪费。 目前, HetNet 已被认为是 LTE中提高 ***容量的一个重要技术手段。
由于工作时间大部分的用户分布在工业区, 而其它时间大部分用户分布 在住宅区, 这种用户的潮汐效应使得基站的计算资源不能得到充分利用。 之 前提出 Cloud-RAN ( C-RAN, 云接入网)的接入网架构, 目的是为了更加有 效的利用基站的计算资源。
C-RAN将一个区域内的分布式基站 BBU集中到一起形成一个 BBU资 源池, 区域内的 RRU对应的基带信号都在同一的 BBU池进行处理, 这样用 户在该区域的流动性不会对计算资源的利用率产生影响。
BBU的集中可以通过光纤与较大区域内的 RRU相连, 如果 BBU之间 的交互带宽和时延允许,也可以通过将区域内的 BBU互连形成 BBU资源池。
由于 BBU资源池集中处理多个小区的信号,所以 C-RAN带来的另一个 好处是为多小区之间的联合传输提供了方便。
但是在传统云接入网架构中,一个区域和小区只对应一个 BBU资源池, 所有的 RRU都需要通过光纤连到 BBU资源池。由于物理距离远还有所有的 基带信号都必须送到 BBU资源池进行处理, 这样对光纤传输能力的要求很 高。
对于 HetNet场景, 如果所有的微小区都需要通过光纤与远端的 BBU池 进行连接, 那么大量的 Pico会使得光纤铺设的成本和 BBU池所需要的处理 的数据量都成倍的提高。
本发明和传统 C-RAN架构的主要优势在于极大的节省基站连接到云计 算节点的带宽。 在未来的通信网中小蜂窝数量增多, 为现有宏蜂窝的数倍; 频带成倍的提升; 天线数量会急剧增加, 由现在的最多 4天线增加到几十甚 至上百天线。 如果还是使用传统云接入网架构, 让所有基带数据都直接连接 到几公里之外的云计算中心, 对光纤传输将是极大的挑战。 发明内容
本发明实施例提供一种通信***及其管理方法, 能够节省基站间数据的 传输带宽, 提高资源利用率。
一方面, 提供了一种通信***, 包括: 无线收发层, 包括一个或多个无 线收发节点组合, 其中每个无线收发节点组合中的无线收发节点至少包括宏 小区射频单元、微小区射频拉远单元、微小区射频与基带拉远单元中的一种; 本地计算层, 包括一个或多个本地计算节点, 其中每个本地计算节点与一个 或相邻的多个无线收发节点组合中的无线收发节点相连, 用于执行该本地计 算节点所连接的无线收发节点组合所对应的小区的全部通信处理或第一部 分通信处理; 集中计算层, 包括一个或多个集中计算节点, 其中每个集中计 算节点与所述本地计算层中的一个或多个本地计算节点相连接,用于在所述 本地计算节点执行所述第一部分通信处理的情况下,执行所述一个或多个本 地计算节点所连接的无线收发节点组合所对应的小区的第二部分通信处理, 其中所述全部通信处理包括所述第一部分通信处理和第二部分通信处理。
另一方面, 提供了一种通信***的管理方法, 所述通信***包括无线收 发层、 本地计算层和集中计算层, 所述无线收发层包括一个或多个无线收发 节点组合, 其中每个无线收发节点组合中的无线收发节点至少包括宏小区射 频单元、 微小区射频拉远单元、 微小区射频与基带拉远单元中的一种; 所述 本地计算层包括一个或多个本地计算节点, 其中每个本地计算节点与一个或 相邻的多个无线收发节点组合中的无线收发节点相连, 所述集中计算层包括 一个或多个集中计算节点, 其中每个集中计算节点与所述本地计算层中的一 个或多个本地计算节点相连接, 所述方法包括: 所述本地计算节点执行该本 地计算节点所连接的无线收发节点组合中的无线收发节点所对应的小区的 全部通信处理或第一部分通信处理; 所述集中计算节点在所述本地计算节点 执行所述第一部分通信处理的情况下,执行所述一个或多个本地计算节点所 连接的无线收发节点组合中的无线收发节点所对应的小区的第二部分通信 处理, 其中所述全部通信处理包括所述第一部分通信处理和第二部分通信处 理。
本发明实施例在集中计算层和无线收发层之间增加了本地计算层, 负责 一定范围内的相邻小区的全部或部分通信处理, 而不必将全部处理都交给较 远的计算中心处理, 节省了网络带宽, 提高了***资源的利用效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的通信***的网络架构的示意图。
图 2根据本发明另一实施例的通信***的网络架构的示意图。
图 3A-3B是根据本发明的一个实施例的数据处理的过程的示意图。 图 4是根据本发明实施例的 HetNet网络架构的典型例子的示意图。 图 5是根据本发明实施例的通信***的管理方法的示意流程图。
图 6是根据本发明另一实施例的通信***的管理方法的示意流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例将 BBU的计算资源进行分层, 使本地化、 小范围的 BBU 集中与全局化、 大范围的 BBU集中结合起来。 对于一个无线收发单元, 例 如,宏小区射频单元、微小区 RRU或微小区 BRU ( Baseband and Radio Unit, 射频与基带拉远单元), 该无线收发单元既与本地计算节点连接, 又通过本 地计算节点与更上层大范围的计算节点连接。微小区 BRU可以具有 RRU的 射频处理功能和一定的通信处理功能(例如基带数据压缩、 基带及上层通信 协议处理)。 由此, 本发明实施例的通信***支持根据用户分布、 数据量和 干扰情况, 对计算资源、 联合处理在本地计算节点和集中计算节点之间进行 自适应的调度。
应注意, 在本发明实施例中, 当两个网元直接 "连接" 或 "相连" 时, 表示这两个网元仅仅通过一种连接介质(例如, 空口、 光纤、数字用户线路、 微波或电力线连接等)相连或者不经任何连接介质直接相连。当两个网元"连 接" 或 "相连" 时, 表示这两个网元可以直接相连, 也可以经由一个或多个 其他中间网元间接相连。 这些连接方式均落入本发明实施例的范围内。
图 1是根据本发明实施例的通信***的网络架构的示意图。 在图 1中, 为了筒洁地显示出本发明实施例的***架构, 每种网元均只描绘了一个, 但 是本发明实施例不限于此。各种网元的数目可以根据需要增加、减少或删除, 这些修改均落入本发明实施例的范围内。
如图 1所示, 无线收发层 110位于接入网架构的最底层, 与用户设备之 间通过空口进行无线信号传输。 无线收发层 110包括一个或多个无线收发节 点组合 115。 无线收发节点组合 115中的无线收发节点至少包括宏小区射频 单元 116、 微小区射频拉远单元 RRU 117、 微小区射频与基带拉远单元 BRU 118中的一种。 无线收发节点 116-118至少完成基站的射频处理功能, 例如 对于 LTE来说, 包括基带数据成帧 /解帧 (如 CPRI成帧 /解帧)、 降峰均比、 数字预失真、 上 /下变频、 ADC/DAC (模数 /数模转换)、 功放、 双工器等。
图 1中仅仅描绘了一个无线收发节点组合 115, 但本发明实施例的无线 收发层可以包括多个无线收发节点组合 115。 图 1 中无线收发节点组合 115 被描绘为包括三个无线收发单元 116-118, 但是本发明实施例的每个无线收 发节点组合 115可以包括这三种无线收发单元 116-118中的一种或两种或全 部, 并且每个无线收发节点组合 115中任一种无线收发单元 116-118的数目 可以是多个。 为了筒洁, 下文中的术语 "无线收发单元 116-118" 用于指代 任一无线收发节点组合 115中包含的无线收发单元, 它可以表示包括无线收 发单元 116-118中的一种或多种, 每种无线收发单元的数目可以是一个或多 个。
本地计算层 120位于无线收发层 110的上层, 包括一个或多个本地计算 节点 125。 本地计算层 120是直接与无线收发单元 116-118相连的计算层, 每个本地计算节点 125与一个或相邻的多个无线收发节点组合 115中的无线 收发节点 116-118相连, 用于执行该本地计算节点 120所连接的无线收发节 点组合 115所对应的小区的全部通信处理或第一部分通信处理。 无线收发节 点组合 115 所对应的小区是指该无线收发节点组合 115 中的无线收发单元 116-118所服务的小区。 本地计算层 120与无线收发层 110之间的距离一般 在较短的范围内, 例如在一个宏小区内。 在采用微小区连续覆盖而没有宏小 区覆盖的情况下, 本地计算节点 125可以连接到在较短范围内连续覆盖的多 个微小区 BRU/RRIL
图 1中虽然仅仅显示了一个本地计算节点 125与一个无线收发节点组合 115 中的无线收发节点 116-118相连的情形, 但是本发明实施例的本地计算 节点 125可以与一个或相邻的多个无线收发节点组合 115中的无线收发节点 116-118相连。 可以根据网络配置, 确定与本地计算节点连接的无线收发节 点组合中无线收发节点, 以及相连接的无线收发节点组合的数量。
集中计算层 140位于***架构的顶层, 包括一个或多个集中计算节点 145。 集中计算节点 145与较大范围内的本地计算节点 125相连, 例如与多 个宏小区对应的本地计算节点 125相连。 集中计算层 140与本地计算层 120 之间的距离一般比较远。 集中计算节点 145与本地计算层中 120的一个或多 个本地计算节点 125相连接, 用于在本地计算节点 125执行第一部分通信处 理的情况下,执行所述一个或多个本地计算节点 125所连接的无线收发节点 组合 115所对应的小区的第二部分通信处理, 其中上述全部通信处理包括上 述第一部分通信处理和第二部分通信处理。
在一个实施例中, 第一部分通信处理和第二部分通信处理可以同时进 行, 在另一个实施例中, 第一部分通信处理和第二部分通信处理也可以不同 时进行, 本发明实施例并不做特别的限定。
图 1中虽然仅仅显示了一个集中计算节点 145, 但本发明实施例的集中 计算层 140可包括多个集中计算节点 145。集中计算节点 145可以相互连接。
本发明实施例在集中计算层和无线收发层之间增加了本地计算层, 负责 一定范围内的相邻小区的全部或部分通信处理, 而不必将全部处理都交给较 远的集中计算节点处理, 节省了网络带宽, 提高了***资源的利用效率。
为了进一步节省带宽,可以在集中计算层和本地计算层之间增加一个或 多个中间计算层。 图 2是根据本发明另一实施例的通信***的网络架构的示 意图。 在图 2中, 与图 1相同的部分采用相同的附图标记表示。
如图 2所示, 在本地计算层 120和集中计算层 140之间, 可增加中间计 算层 130。 图 2中虽然仅仅显示了一个中间计算层 130, 但是本发明实施例 可包括多个中间计算层。 中间计算层 130由中间计算节点 135组成, 每个中 间计算节点 135用于执行该中间计算节点 135连接到的本地计算节点(例如 图 2中的 125-2 )所连接的无线收发节点组合(例如图 2中的 115-2 )中的无 线收发节点 (例如图 2中的 115-2中包括的无线收发节点 116-118 )所对应 的小区的全部通信处理或第三部分通信处理。 除了上述第一部分通信处理 (本地计算节点 125执行)和第二部分通信处理(集中计算节点 145执行) 之外, 所述全部通信处理还包括上述第三部分通信处理。
在一个实施例中, 第三部分通信处理、 第一部分通信处理和第二部分通 信处理可以同时进行, 在另一个实施例中, 第三部分通信处理、 第一部分通 信处理和第二部分通信处理也可以不同时进行, 本发明实施例并不做特别的 限定。
如图 2所示,集中计算节点 145可通过各种方式与无线收发单元组合 115 中的无线收发单元 116-118相连。 例如, 集中计算节点 145-1直接与本地计 算节点 125-1相连, 本地计算节点 125-1直接与无线收发单元组合 115-1 中 的无线收发单元 116-118相连。
或者, 集中计算节点 145-1经由一层或多层的中间计算节点 135与本地 计算节点 125-2相连, 本地计算节点 125-2直接与无线收发单元组合 115-2 中的无线收发单元 116-118相连。
虽然本发明实施例的网络架构中无线收发单元 116-118先接到本地计算 节点 125, 然后通过本地计算节点 125连到集中计算节点 145, 但是本发明 实施例也可进一步采用与传统 C-RAN类似的集中计算节点 145直接连接无 线收发单元 116-118的方式。 如图 2所示, 集中计算节点 145-2直接连接到 无线收发单元组合 115-3 中的无线收发单元 116-118。 例如, 如果微小区 RRU/BRU位于两个宏小区的交界处, 从资源调度和干扰管理的角度出发, 微小区的用户通常需要与多个宏基站联合处理。 那么此微小区 RRU/BRU可 以直接连到集中计算节点。
特别地, 对于 BRU 118, 微基站侧具有部分基带处理功能, 相当于微基 站 RRU与一个共站址的微计算节点相连。 BRU 118可执行 BRU所对应小区 的第四部分通信处理。 另外, 如图 2所示, 集中计算节点 145之间可以相互 连接, 此时集中计算节点 145可经任务调度将第五部分通信处理转移至其他 集中计算节点执行。所述全部通信处理还包括上述第四部分通信处理和 /或第 五部分通信处理。
在一个实施例中, 第五部分通信处理、 第四部分通信处理、 第三部分通 信处理、 第一部分通信处理和第二部分通信处理可以同时进行, 在另一个实 施例中, 第五部分通信处理、 第四部分通信处理、 第三部分通信处理、 第一 部分通信处理和第二部分通信处理也可以不同时进行, 本发明实施例并不做 特别的限定。
下面描述本发明实施例各个网元之间的接口。 如图 2所示, 宏小区射频 单元 116和本地计算节点 125-1/125-2之间、 小区 RRU 117和本地计算节 点 125-1/125-2之间、宏小区射频单元 116和集中计算节点 145-2之间、微小 区 RRU 117和集中计算节点 145-2之间, 通过第一类接口 C1连接。 第一类 接口 C1用于传输基带数据和控制状态消息, 例如提供同步和相应的控制管 理功能。第一类接口 C1可以使用现有分布式基站 BBU和 RRU之间的 CPRI 等协议实现。
微小区 BRU 118和本地计算节点 125-1/125-2之间、本地计算节点 125-1 和集中计算节点 145-1之间、本地计算节点 125-2和中间计算节点 135之间、 上下层的中间计算节点 135之间、 中间计算节点 135和集中计算节点 145-1 之间、 集中计算节点 145-1和 145-2之间, 微小区 BRU 118和集中计算节点 145-2之间, 通过第二类接口 C2连接。 第二类接口 C2用于传输基带数据、 数据包和控制状态消息, 例如为上下层之间的计算节点交互计算任务和控制 信息。 第二类接口 C2可以考虑通过现有接口协议 CPRI与 X2, Iur, Iub的 功能组合来实现。
集中计算节点 145-1/145-2和核心网 200之间通过第三类接口 C3连接。 第三类接口 C3用于传输数据包和控制状态消息。 第三类接口 C3可以考虑 通过现有的 Sl、 Iu接口的功能来实现。 图 2的实施例中,可通过中间计算层 130进一步减少集中计算层 140需 要执行的通信处理, 减少带宽需求, 提高***资源的利用率。
本发明实施例的通信处理是指与无线网络通信有关的处理, 包括但不限 于数据处理、 联合干扰管理处理、 联合资源调度处理、 联合计算任务调度处 理、 多制式基带信号和上层协议联合处理或联合传输、 工作模式或开闭状态 的联合控制等。
下面的描述中, 主要参照不包含中间计算层的三层网络架构(图 2中的 145-1至 125-1至 115-1 )或者包含一个中间计算层的四层网络架构(图 2中 的 145-1至 135至 125-2至 115-2 )描述各个网元的操作。但是本发明实施例 可类似地应用于包含更多个中间计算层的情景, 其中每个中间计算层处理与 之相连(间接相连) 的无线收发单元服务的小区的部分或全部通信处理。
图 3A-3B是根据本发明的一个实施例的数据处理的过程的示意图。其中 图 3A是上行数据处理的一个例子的示意图, 图 3B是下行数据处理的一个 例子的示意图。 在所述通信处理包括数据处理的情况下, 各个计算节点对于 所接收的数据进行分流处理, 以区分出本计算节点需要处理的数据和非本计 算节点需要处理的数据。所述非本计算节点需要处理的数据可包括前一层计 算节点已经处理完的数据和 /或需要后一层计算节点处理的数据。对于网络架 构顶层的计算节点 (集中计算节点 145 )和底层的计算节点 (本地计算节点 125 ) , 需要对完成通信处理的数据进行聚合。
具体而言, 如图 3A所示, 上行时, 本地计算节点 125对来自无线收发 单元的数据 D进行分流。 在图 3A的实施例中, 假设不存在 BRU, 即数据 D 为未经处理的基带数据和控制信息。本地计算节点 125将数据 D分为在本地 计算节点 125进行处理的部分 D1、在中间计算层 130进行处理的部分 D2(假 设有中间计算层)、 以及在集中计算层 140处理的部分 D3 ( D=D1+D2+D3 )。 然后完成需要在本地计算节点 125处理的数据 D1的基带和 /或 L2处理, 将 处理 D1后产生的数据包 P1 以及需要由中间计算层 130和顶层计算层 140 处理的数据 D2+D3传输至中间计算层 130中与该本地计算节点 125相连的 中间计算节点 125 (如果没有中间计算层, 则直接传输至集中计算层 140中 与该本地计算节点 125相连的集中计算节点 145 )。本地计算层是本发明实施 例降低传输带宽最主要的功能节点。 另一方面, 如果存在 BRU, 则此时本 地计算节点 125的操作可类似于下面所述的中间计算节点 135的操作。 中间计算层 130中的中间计算节点 135在上行时对来自下层节点(可以 是本地计算节点 125或者下层的中间计算节点 )的数据进行分流, 区分出需 要在本层进行处理的数据 D2和不需要在本层进行处理的数据 P1和 D3。 中 间计算节点 135对数据 D2进行基带和 /或 L2处理,将本层的处理结果 P2(数 据包),以及需要上层计算层进行处理的数据 D3和已经由计算节点 125处理 产生的数据 P1传输至上层中间计算节点 (如果有上层中间计算节点)或集 中计算节点 145 (如果没有上层中间计算节点)。
集中计算层 140是直接与核心网相连的计算层。上行时,集中计算层 140 的集中计算节点 145进行计算数据的分流, 区分出需要集中计算节点 145处 理的数据 D3和不需要集中计算节点 145处理的数据 (例如已经由下层计算 节点完成数据处理后产生的数据包 P1和 P2 )。 然后集中计算节点 145完成 下层未完成的基带数据 D3的联合处理以及 L2处理, 并将处理结果 P3 (数 据包)和下层已完成处理后产生的数据包 P1和 P2聚合为数据包 P, 并将数 据包 P传输至核心网。
类似地, 下行时集中计算节点 145对来自核心网数据包 P进行分流, 分 为在需要本地计算层进行处理的部分 P3、 在中间计算层进行处理的部分 P2 (如有中间计算层的话), 以及需要在本集中计算节点 145 处理的部分 P1 ( P=P1+P2+P3 )。 对需要进行处理的数据包 PI进行 L2和基带处理, 将处理 的结果 D1 (基带信号和控制消息) 以及需要由中间计算层和本地计算层处 理的数据包 P2和 P3传输给中间计算层(如有 )或本地计算层(如没有中间 计算层)。
中间计算节点 135对来自上层节点(可以是集中计算节点 145或者上层 的中间计算节点) 的数据进行分流, 区分出需要在本层进行处理的数据 P2 以及不需要本层进行处理的数据 D1和 P3。 中间计算节点 135对数据 P2进 行 L2和基带处理, 将处理的结果 D2 (基带信号和控制消息)以及需要下层 计算节点进行处理的数据 P3和已经由集中计算节点 145处理产生的数据 D1 传输至下层中间计算节点 (如果有下层中间计算节点)或本地计算节点 125 (如果没有下层中间计算节点)。
本地计算节点 125对来自上层计算节点的数据进行分流, 区分出本地计 算节点 125需要处理的部分数据包 P3, 以及不需要本地计算节点 125处理 的数据(例如上层计算节点已经完成处理后产生的基带信号和控制消息 D1 和 D2 )。 然后本地计算节点 125完成上层未完成的数据包 P3的处理, 将处 理结果 D3 (基带信号和控制消息)以及来自上层的基带信号和控制消息 D1 和 D2聚合为基带信号和控制消息 D, 然后将 D传输至无线收发单元。
计算节点进行数据分流时, 可基于计算节点的计算能力、 节点间带宽、 数据处理需求(处理速度需求、 延迟需求、 处理量需求等)等因素, 综合确 定数据分流的比例。 图 3A的实施例中, 本地计算节点 125可以直接分流出 需要本层处理的数据 D1、需要在中间计算节点 135处理的数据 D2和需要在 集中计算节点 145处理的数据 D3, 但本发明实施例不限于此。 本地计算节 点 125可以不区分开 D2和 D3, 而仅仅分流出需要本层处理的数据 D1和不 需要本层处理的数据 D2+D3 , 然后由中间计算节点 135根据需求区分开 D2 和 D3。 图 3B的实施例中也是类似的, 集中计算节点 145可以不区分开 P2 和 P3。
图 3A和图 3B的实施例中, 除了最后一层计算节点外, 其他层的计算 节点不对数据进行聚合, 而是分开传输各种数据, 例如本层处理后产生的数 据、 前一层已经处理的数据和需要后一层处理的数据。 但本发明实施例不限 于此。 在向上层或下层的计算节点传输数据时, 可以对要传输的数据进行聚 合后再传输。
本发明实施例的分层网络架构能够执行的通信处理还可以包括联合干 扰管理处理。 例如, 对于小区交界处的用户设备, 如果可以在相邻的小区间 进行联合处理的话, 将有效提高用户设备的吞吐量。 本发明实施例在联合干 扰管理处理上采用分层自适应的方式。联合干扰管理处理的基本原则是由干 扰双方共同的上层计算节点优先处理该干扰。
结合图 2的***架构描述本发明实施例的联合干扰管理处理。本地计算 节点 125优先执行与该本地计算节点 125连接的无线收发节点组合 115中的 无线收发节点 116-118所对应的小区内的无明显干扰的用户设备的通信处理 或仅受到来自该本地计算节点 125所连接的无线收发节点组合 115中的其他 无线收发节点 116-118所对应小区的干扰(例如, 受到所述其他无线收发节 点 116-118的干扰或者受到所述其他无线收发节点 116-118服务的 UE的干 扰) 的用户设备的干扰处理。 例如, 本地计算节点 125-1优先执行无线收发 节点组合 115-1所对应的小区中无明显干扰的用户设备的通信处理或者仅仅 受到无线收发节点组合 115-1中的无线收发节点 116-118所对应小区的干扰 的用户设备的干扰处理。
中间计算节点 135优先执行与该中间计算节点 135连接的下层中间计算 节点或本地计算节点相关联的无线收发节点组合中的无线收发节点所对应 小区内的用户设备的干扰处理, 其中该用户设备受到来自与该中间计算节点 连接的其他下层中间计算节点或本地计算节点相关联的无线收发节点组合 中的无线收发节点所对应小区的干扰。 以一个中间计算节点 135连接多个本 地计算节点的情形为例, 该中间计算节点 135优先处理该多个本地计算节点 之间的干扰。
集中计算节点 145优先执行与该集中计算节点 145连接的下层中间计算 节点或本地计算节点相关联的无线收发节点组合中的无线收发节点所对应 小区内的用户设备的干扰处理, 其中该用户设备受到来自与该集中计算节点 连接的其他下层中间计算节点或本地计算节点相关联的无线收发节点组合 中的无线收发节点所对应小区的干扰。 以图 2的架构为例, 如果本地计算节 点 125-1连接的无线收发单元 116服务的用户设备 A受到本地计算节点 125-2 连接的无线收发单元 118的干扰, 则由它们共同的上层计算节点(即集中计 算节点 145-1 )执行该干扰的处理。
在本地计算节点、 中间计算节点和集中计算节点进行的干扰处理可包括 联合干扰删除、 联合时频资源协调、 联合功控、 以及多个基站之间的多点协 作 ( Coordinated Multi-Point, CoMP )。
这样, 大部分用户的信号可以在本地计算节点进行联合处理, 大大降低 了传输到上层计算节点的数据量,从而节省了光纤资源和上层计算节点的负 荷。
图 4是根据本发明实施例的 HetNet网络架构的典型例子的示意图。 如 图 4所示, 该 HetNet网络架构包括一个集中计算节点 245、 两个本地计算节 点 225a和 225b。 HetNet网络架构中本地计算节点典型地设置在宏基站处, 例如与宏小区 RRU共站址; 本地计算节点也可以设置在多个相邻宏基站组 成的区域内, 例如连接到多个宏小区 RRU。 本地计算节点的通信处理包括: 1 )可以按用户、 上行 /下行、 macro/Pico等灵活划分为不同负荷的 "计算任 务包", 便于***按需在集中计算节点与本地计算节点之间自适应分配处理 负荷; 2 )完成适合在本地计算节点完成的基带信号处理任务:本地 Macro/Pico 的、 与其它 Macro/Pico没有干扰的用户信号的全部基带处理; 3 ) 负责本地 Macro/Pico基带信号的预处理 (如 FFT、 Mapping/De-mapping , Precoding等 ) 或信号压缩处理; 4 )通过软件无线电(Software Defined Radio, SDR )实现 多制式统一处理和联合传输。
具体而言,在图 4的例子中,本地计算节点 225a与由宏小区 RRU 215a、 微小区 RRU 215b、 微小区 BRU 215c组成的无线收发单元组合相关联, 其 中本地计算节点 225a与宏小区 RRU 215a共站址,微小区 RRU 215b和微小 区 BRU 215C在宏小区 RRU 215a的覆盖范围 MC1内。
本地计算节点 225b与由宏小区 RRU 215d、 微小区 RRU 215e和微小区 BRU 215f组成的无线收发单元组合相关联, 其中本地计算节点 225b与宏小 区 RRU 215d共站址, 微小区 RRU 215e和微小区 BRU 215f在宏小区 RRU 215d的覆盖范围 MC2内。
在多个宏小区组成的较大区域内, 每个宏小区的本地计算节点 225a/225b连至一个集中化的集中计算节点 245。这样就在较大的区域内构成 了一个上层的云计算架构。
图 4中仅仅显示了两个宏小区 MC1和 MC2, 本发明实施例不限于此。 一个集中计算节点可以连接到更多个本地计算节点,每个本地计算节点也可 以连接到更多个宏小区 RRU, 每个宏小区内可以没有微小区 RRU或微小区 BRU, 微小区 RRU/BRU的数目也可以根据需要增删, 这些修改均落入本发 明实施例的范围内。
在下文中, 在无需相互区分的情况下, 将本地计算节点 225a和 225b统 称为本地计算节点 225 ,将宏小区 RRU 215a,微小区 RRU 215b,微小区 BRU 215c, 宏小区 RRU 215d、 微小区 RRU 215e和微小区 BRU 215f统称为无线 收发单元 215。
如图 4所示, 每一个无线收发单元首先连到本地计算节点 225, 然后通 过本地计算节点 225连接到上层的集中计算节点 245,但是本地计算节点 225 之间没有接口, 无线收发单元之间也不连接。 由于 X2接口标准化时没有考 虑到多点协作 CoMP, 所以 X2接口的带宽和延迟都无法满足多点协作和联 合处理的要求。 本发明实施例中基站之间没有逻辑接口, 多点协作和联合处 理由上层计算节点完成。 此外, 本发明实施例中取消了 RNC, UMTS *** 中 RNC完成的数据处理和联合调度都在上层计算节点完成。
另外, 作为统一的接入网, 所有计算节点上的处理都通过软件实现, 可 以使用不同的虚拟机或者统一操作***平台上的不同进程完成不同无线制 式的处理, 同时实现 G/U/L/WiFi, 并支持多种制式的联合传输。
应注意, 图 4的 HetNet架构只是示例性的, 本发明实施例不限于此, 可以按照需要对计算节点的数目、 位置、 层数进行修改, 也可以增加一层或 多层中间计算节点。 另外, 图 4的 HetNet架构可以与微小区连续覆盖架构 结合使用, 即部分本地计算节点 225可以与较小范围内连续覆盖的多个微小 区 BRU/RRU相连。 这些修改均落入本发明实施例的范围内。
在图 4的 HetNet场景下, 用户设备受到的干扰可分为以下几种类型: 1 )无明显干扰的用户设备 UE:
宏小区 MC1/MC2中无明显干扰的 UE: 典型地该类 UE位于本地宏小 区的中心区域。 由于远离相邻的宏小区, 所以该类 UE受到来自相邻宏小区 内的干扰很小; 并且这些 UE远离本宏小区内使用相同频段的热点区域, 所 以受到来自微小区的干扰也很小。
微小区中无明显干扰的 UE: 典型地该类 UE位于一个孤立的热点区域 的中心位置。 由于是孤立的热点区域, 所以它受到来自本宏小区中其它微小 区的干扰很小; 由于该类 UE位于微小区的中心位置, 所以它受到来自本宏 小区的干扰也相对较小。
对于无明显干扰的 UE来说, 在不考虑潮汐效应的情况下, 它们的数据 优先在与之关联的本地计算节点上进行处理。 因为即使进行联合处理, 带来 的增益也不明显, 反而会明显增加基带信号传输的负荷。 对应本发明实施例 的云接入网架构而言, 这类用户数据的通信处理优先在本地计算节点执行。
对于有明显干扰的用户设备,可以根据其干扰来源分为在本地计算节点 225进行处理和在集中计算节点 245进行处理两种情况。
2 )优先在本地计算节点 225进行处理的干扰用户
对于优先在本地计算节点进行处理的干扰情况:
Type l : 仅受到所在宏小区干扰的微小区的 UE, 这类 UE位于微小区的 边沿, 而该类 UE周围没有其他的微小区, 其信号只受本地宏小区信号的干 扰。 干扰联合处理的情况下只需要在微小区和所在宏小区之间进行。 例如, 如果微小区 RRU 215b服务的 UE仅受到所在宏小区 MC1的干扰, 则该 UE 的干扰处理由本地计算节点 225a执行。
Type 2: 位于微小区边沿的宏小区 UE, 它的干扰来源于邻近的微小区。 干扰联合处理的情况下只需要在宏小区和与该 UE产生较大干扰的微小区之 间进行。 例如, 如果宏小区 RRU 215a服务的 UE受到微小区 RRU 215b的 干扰, 则该 UE的干扰处理由本地计算节点 225a执行。
Type 3: 如果两个微小区相隔很近, 那么在它们交界处的用户不论隶属 于宏小区或者两者微小区之一, 都会受到来自另两个小区的干扰。 有这样三 种示例情况: 宏小区 MC1服务的 UE同时受到来自两个相邻微小区的干扰 (即,受到微小区 RRU 215b和微小区 BRU 215c的干扰);微小区 RRU 215b 服务的 UE同时受到来自宏小区 RRU 215a和微小区 BRU 215c的干扰; 微 小区 BRU 215c服务的 UE同时受到来自宏小区 RRU 215a和微小区 RRU 215b的干扰。干扰联合处理的情况下需要在宏小区和所述的两个相邻微小区 之间进行。 例如, 上面的三种示例情况下, 由本地计算节点 225a执行干扰 处理。
对于优先在本地计算节点进行联合干扰处理的用户来说,在不考虑潮汐 效应的情况下, 它们的数据优先在与之关联的云接入网架构下的本地计算节 点进行处理。 因为它们的干扰来源都是本地计算节点下的小区之间, 所以联 合处理在本地计算节点上进行即可。 在此情况下, 即使在集中计算节点进行 联合干扰处理也不会带来进一步的性能增益,反而会明显增加基带信号传输 的负荷。
3 )优先在集中计算节点 245进行处理的干扰用户
对于优先在集中计算节点 245进行处理的干扰情况:
Type 4:位于几个宏小区(例如 MC1和 MC2 )边沿的宏小区(例如 MC1 和 MC2之一 )服务的 UE, 在周围没有微小区时, 其干扰主要来源于周围的 邻近宏基站 (MC2或 MC1),位于宏小区非热点地区用户,信号主要受相邻宏 小区的干扰。 由于本地计算节点位于本地宏小区, 所以本地计算节点无法对 周围几个宏小区的用户进行联合干扰处理。 所以此类 UE将其数据发给集中 计算节点 245, 由于集中计算节点 245负责较大区域内的宏小区和微小区, 所以它可以将几个不同宏小区用户的信号进行联合干扰处理。 例如, 如果 MC1服务的 UE受到 MC2的宏基站干扰, 则由集中计算节点 245处理该干 扰。
Type 5: 如果一个热点区域位于几个宏小区的交界处, 那么在微小区边 沿的用户, 不论是隶属于微小区还是其中一个宏小区, 都会受到来自其他小 区的干扰。例如,微小区 RRU 215e服务的 UE受到相邻宏小区 MC1和 MC2 的宏基站的干扰; 宏小区 MC1服务的 UE受到微小区 BRU 215c和宏小区 MC2的宏基站的干扰; 宏小区 MC2的用户受到微小区 RRU 215e和宏小区 MC1 的宏基站的干扰。 对于底层计算节点位于本地宏小区, 所以本地云接 入网架构无法对周围几个宏小区的用户进行联合干扰处理。 所以与 Type 4 一样, 此类 UE将其数据发给上层的集中计算节点 245。 由于上层云接入网 架构负责较大区域内的宏小区和微小区, 所以它可以将几个不同宏小区和微 小区用户的信号进行联合干扰处理。
对于优先在集中计算节点 245进行联合干扰处理的用户来说, 它们的数 据优先在云接入网架构中的上层计算节点进行处理。 因为它们的干扰来源是 几个本地云接入网架构下的宏小区和微小区之间, 所以为了提高***性能, 希望联合处理在集中计算节点 245进行。 由于处于几个底层云接入网架构交 界处的用户数量不会太多, 所以上传到上层云接入网架构进行联合处理的数 据有限, 不会对基带信号传输网造成太大的负荷。
在判断是否需要进行上层联合处理的情况下, 网络侧可以让 UE周期性 地测量周围 RRU/BRU的参考信号强度和接收延迟。如果发现多个 RRU/BRU 强度和延迟都相近, 则将用户数据上移至这些 RRU/BRU共同的上层计算节 点。 相反地, 如果发现一个上层计算节点处理的 UE测量相邻 RRU/BRU参 考信号强度相差较大, 例如只有一个或少数几个强度较大时, 将 UE的信号 处理下移到这些 RRU/BRU对应的下层计算节点。
以 LTE为例, 在上行时, 最下层的计算节点(微计算节点或本地计算节 点)在收到射频单元输出的数据时, 进行 FFT, 分出对应微计算节点(如果 有 BRU的话)、本地计算节点以及集中计算节点处理的资源块( RB, Resource Block )。 每一层的计算节点处理对应的基带数据, 将上层处理的基带数据透 传到上层计算节点。
在下行时, 集中计算节点将来自核心网的数据包分为集中计算节点、 本 地计算节点以及微计算节点 (如果有 BRU的话)进行处理的部分。 每一层 完成处理以后的基带数据和控制信息在最底层的计算节点(本地计算节点或 微计算节点) 完成组合, 以供射频单元处理成发射信号。
对于 CDMA ( Code Division Multiple Access, 码分多址)接入方式, 不 同用户的数据是加载在相互正交的码序列上的, 其分层处理方式可以类比到 以时频资源块区分用户的方式, 此处不再赘述。
本发明实施例的通信***执行的通信处理可包括联合资源调度处理,通 过相邻小区之间的资源调度, 在减少小区间干扰的同时, 提高资源利用率和 ***性能。 在本发明实施例的多层云接入网架构下, 根据不同的用户位置, 在不同层的网络上进行资源管理,各层计算节点分别负责不同情况下的资源 调度。联合资源调度处理的原则是由能够服务用户设备的无线收发单元均关 联的本地计算节点、 中间计算节点或集中计算节点进行该用户设备的资源调 度。
参照图 2, 本地计算节点 125执行与该本地计算节点 125连接 (直接连 接) 的无线收发节点组合 115中的无线收发节点 116-118所对应的小区之间 的资源调度。中间计算节点 135执行与该中间计算节点 135连接(间接连接) 的无线收发节点组合 115中的无线收发节点 116-118所对应的小区之间的资 源调度。 集中计算节点 145执行与该集中计算节点 145连接 (直接或间接连 接) 的无线收发节点组合 115中的无线收发节点 116-118所对应的小区之间 的资源调度。
对于图 4所示的异构网络 HetNet场景, 本地计算节点 225主要完成本 地 Macro-Pico联合资源调度。对宏小区中心用户, 以及位于宏小区内部区域 的微小区内的用户, 与其它宏小区的干扰很小, 基本上可以做到资源的完全 本地化调度与控制, 只需进行本地 Macro-Pico联合资源调度。 由于可以采用 Macro-Pico联合调度, 因此微小区的业务信道资源可以和宏小区复用; 对于 距离较远的不同微小区, 它们之间干扰很小, 控制和业务信道资源可以独立 调度。 例如, 本地计算节点 225a可以完成 MC1覆盖范围内的 Macro-Pico 联合资源调度, 本地计算节点 225b可以完成 MC2覆盖范围内 Macro-Pico 联合资源调度。
集中计算节点 245主要完成全局 Macro-Pico联合资源调度。对宏小区边 缘 UE以及位于宏小区边缘的微小区内的 UE, 与其它宏小区存在一定的相 互干扰, 因此对这类 UE需要进行全局资源调度。 例如, 如图 4所示, 假设 微小区 RRU 215e位于宏小区 MC1和 MC2的覆盖范围交界处, 此时, 微小 区 RRU 215e内的资源分配可以由集中计算节点 245进行调度, 以降低小区 间干扰。
以通过频域资源的联合调度来降低小区间干扰为例进行说明。在底层云 架构下,本地计算节点完成宏小区内部的微小区与宏小区在交界处的资源分 配, 在两个相邻的微小区的交界处, 频域资源被分为 fl、 f2、 f3三个部分, 分别供交界处的两个微小区和宏小区的边沿 UE使用。 各频域资源的具体比 例由各小区边沿的用户数量和业务数据量决定。
在上层云架构下, 集中计算节点 245完成多个底层云架构之间的资源分 配。 比如在图 4的 HetNet云计算架构中, 集中计算节点 245负责两个宏小 区 MC1和 MC2交界处和宏小区交界附近的微小区(例如,微小区 RRU 215e 覆盖的小区) 的边沿 UE的频域资源的分配。 比如将频域资源分为 fl、 f2、 f3三个部分, 分别供两个宏小区和微小区的边沿 UE使用。 各频域资源的具 体比例由各小区边沿的用户数量和业务数据量决定。
假设对于异构网, 宏小区和微小区使用相同的频域资源, 那么就对同一 时频资源会有上下两层的计算节点对其进行调度。 为了避免调度沖突, 有如 下两种解决方法:
1) 本地计算节点、 中间计算节点和集中计算节点进行调度的资源被配 置为彼此不同。 这是基于频分 /时分 /空分的多层调度, 无需改动现有标准数 据处理流程。
具体地, 上层计算节点根据下层覆盖中需要进行联合处理的 UE在一定 时 /频 /空域资源上进行联合调度。 下层计算节点的其他有关和在上层剩余的 时 /频 /空域资源上进行调度。 为了保证本地 UE的吞吐量, 上层供上层联合 调度的资源必须限定在一定范围内, 并根据实际 UE分布和数据量进行动态
2)优先由位于上层的计算节点执行资源调度。 这种调度由上层统一执 行, 可以优化全网吞吐量。
所有用户设备的信道信息, 例如上行测量信号 SRS ( Sounding Reference Signal ),信道条件指示 CQI ( Channel Quality Indicator,信道质量指示) /PMI ( Precoding Matrix Indicator,预编码矩阵指示) /RI ( Rank Indicator,秩指示) 等,都传输到位于上层的计算节点。因为用户数据都要经过上层的计算节点, 所以上层的计算节点统一调度时有当前和过去用户数据率的信息, 以便保证 调度的公平性。 如果上层的计算节点的计算能力 4艮强, 所以统一上层用户调 度的计算负荷也是可以接受的。
在传统的 C-RAN架构下, 由于 BBU到 RRU的距离很远, 所以都需要 高速光纤相连, 基带传输成本很高。
在本发明实施例的架构下, 本地计算节点到本地宏小区 RRU和微小区 RRU/BRU的距离很近。 以现在站间距为 500米的宏小区为例, 本地计算节 点到远端微小区 RRU的距离在 200米左右。 这样很多其他的短距离连接介 收发节点组合中的无线收发节点和本地计算节点之间、本地计算节点和中间 计算节点之间、 或者上下层的中间计算节点之间, 均可以根据具体情况, 通 过光纤、 数字用户线路 DSL ( Digital Subscriber Line )、 微波或电力线连接。 所以分层结构大大筒化了基带信号传输网络的拓朴结构,有效降低了传输成 本。 可以基于节点计算能力、 节点间距离、 节点间传输带宽需求和 /或节点间 传输延迟需求等因素, 确定节点之间的连接介质。
例如, 数字用户线路 DSL (双绞线、 铜线等)、 微波、 电力线通信等技 术可以在 200米的范围内实现接近 Gbps的传输速率, 可用来替换光纤用作 本地短距离信号的传输。
对于本地计算节点和集中计算节点之间的连接, 因为相对数目较少, 距 离较远, 可以仍然使用光纤相连。
可以根据实际场景, 根据传输距离和成本考虑, 对每一层的云接入网使 用不同物理媒质用于基带信号传输网。
在传输带宽方面,本发明实施例中提出的网络架构可以根据基带信号的 传输网的带宽自适应的分配计算负荷。 当可用传输带宽较大时, 处理负荷可 上移到上层计算节点, 筒化本地计算节点的配置; 当可用传输带宽较小时, 处理负荷较多地分配到本地计算节点。
本发明实施例的通信***执行的通信处理还可以包括联合计算任务调 用计算资源的能力。
本地计算节点和连接到该本地计算节点的中间计算节点之间, 上下层连 接的中间计算节点之间, 中间计算节点和连接到该中间计算节点的集中计算 节点之间, 相互连接的集中计算节点之间, 根据计算负荷、 计算能力、 传输 带宽和传输时延等相互转移计算任务。
本地宏小区内 RRU对应的基带数据优先在本地计算节点进行处理, 如 果由于本地计算节点处理能力有限,或者由于用户设备的潮汐效应导致本地 计算节点的计算负荷过大, 本地计算节点可以将一部分信号交给上层的计算 节点进行处理, 例如中间计算节点或集中计算节点。 上层的计算节点负责平 衡较大范围内本地计算节点的计算负荷, 当其自身的计算负荷过大时, 它可 以将部分的计算工作下放到本地计算节点进行处理。
一般对于多层云架构的接入网, 由于其计算任务分布在两层以上不同的 计算节点上, 对计算任务的调度可以放在上层计算节点进行集中式调度, 或 者放在各层计算节点进行分布式调度。
如果是集中式调度,由位于上层的计算节点调度计算任务的转移。例如, 在图 4的 HetNet场景下, 各个本地计算节点 225可以定期向上层的集中计 算节点 245才艮告当前的计算负荷。 集中计算节点 245在收集各本地计算节点 225的信息后, 决定是否要将某些本地计算节点的部分计算任务上移至集中 计算节点进行。然后集中计算节点 245向各本地计算节点 225返回调度指令, 指示是否要将部分计算任务上移, 以及需要上移的计算任务量。
如果是分布式调度, 由计算节点基于其他计算节点的请求来调度计算任 务的转移。 此时本地计算节点 225与集中计算节点 245是平权的。 本地计算 节点 225的计算资源紧张时,会向集中计算节点 245发送计算任务上移请求 消息, 请求消息中包括希望上移的计算任务量。 集中计算节点 245收到各本 地计算节点 225上报的请求消息后, 根据自身的计算资源空闲情况, 并统筹 各下属本地计算节点 225的申请需求,对各本地计算节点 225发出的计算资 源上移请求消息进行反馈。 反馈消息包括是否同意其计算任务上移, 以及可 以上移的计算任务量。 另一方面, 集中计算节点 245的资源紧张时, 也可以 通过轮询或随机选择的方式向下层本地计算节点 225发送计算任务下移请求 消息, 或者向其他集中计算节点发送计算任务转移请求消息(例如, 关于上 述第五部分通信处理的转移请求;), 这两个请求消息包括希望转移的计算任 务量。 收到请求消息的本地计算节点 225或集中计算节点 245根据自身的计 算资源空闲情况, 对发出请求的集中计算节点 245返回调度指令, 指示是否 要将部分计算任务转移, 以及需要转移的计算任务量。
如果通信***支持多种制式, 则无线收发节点组合可包括多种制式的无 线收发节点。此时本发明实施例的各个计算节点执行的通信处理可包括多种 制式的通信处理和 /或多种制式之间的联合通信处理。
传统模拟无线电***的射频部分、上 /下变频、滤波及基带处理全部采用 模拟方式, 某频段和某种调制方式的通信***都对应专门的硬件结构; 而数 字无线电***的低频部分采用数字电路,但其射频部分和中频部分仍然离不 开模拟电路。 与传统无线电***相比, 软件无线电的 A/D、 D/A变换移到了 中频, 并尽可能靠近射频端, 对整个***进行采样, 这是软件无线电的一个 突出特点。 数字无线电采用专用数字电路, 实现单一通信功能, 无编程性可 言。 而软件无线电以可编程力强的 DSP (数字信号处理, Digital Signal Processing ) 器件代替专用数字电路, 使***硬件结构与功能相对独立。 这 样就可基于一个相对通用的硬件平台, 通过软件实现不同的通信功能, 并对 工作频率、 ***带宽、 调制方式、 信源编码等进行编程控制, ***灵活性大 为增强。
本发明实施例中由于各计算节点都是高性能的 CPU或 CPU 阵列以及 DSP构成, 所以同一计算节点可以支持多种不同制式的 RRU的基带信号和 上层协议处理。 这样会带来一系列的好处: 不同制式对于同一处理单元, 筒 化网络架构, 降低建网成本; 便于***或基站升级, 只需要通过更新计算节 点的软件即可完成, 这使得对已有频谱资源的重整(refarming )变得容易操 作。
如果用户设备支持多制式同时传输, 本地计算节点根据不同制式上的实 际情况(无线链路条件, 网络负荷等)将数据分流到不同制式上进行传输。 上行传输时, 本地计算节点, 或中间计算节点, 或集中计算节点对不同制式 上的数据进行聚合。 如果用户设备支持多模传输, 那么这种基于 SDR并且 集中处理的方式当然支持多种制式的联合传输。 这些多制式可以是 G/U/L/WiFi,不同协议层上都可以进行多制式的联合传输,如 PHY(物理层 ), MAC ( Media Access Control, 媒体接入控制), RLC ( Radio Link Control, 无线链路控制)等等。并且计算节点可以对多制式的联合传输进行统一调度。
在图 4的 HetNet分层接入网架构中, 本地微基站和宏基站的基带信号 处理都被集中到本地计算节点 225。 这种场景下, 微基站和宏基站之间可以 自适应的进行网络配置, 与传统 HetNet相比具有更加灵活的接入网架构。
本发明实施例的通信处理可以包括无线收发节点组合中的微小区 RRU 和 /或微小区 BRU的工作模式或开闭状态的联合控制。 例如, 可以将 Pico微 小区灵活、 自适应地配置为以下三种形态: 1 ) 配置为独立的微小区, 有自 己的 Cell ID (小区标识)和所有的控制 /数据信道; 2 )配置为宏基站的 Relay Station ( RN, 中继站点), 对于常用的带内传输方式, RN通过宿主 eNodeB 以无线方式连接到接入网, 所使用的频段与 RN和终端之间的链路共享同一 频段; 3 )配置为宏基站的分布式天线,通过 SFN ( Single Frequency Network, 单频网)方式或者其他空间编码方式(如 SFBC(Space-Frequency Block Codes, 空频块码))发送 /接收宏基站的部分或全部无线信号。
微小区 RRU或 BRU的数量 /模式可以根据不同的场景进行自适应的配 置。例如微小区 RRU或 BRU可以根据需要自适应配置为上述 3种不同的工 作模式。
例如, 当某热点的流量呈现随时间变化 4艮大时, 例如白天用户密集, 晚 间用户稀少, 可以在用户数较大时打开微小区 RRU或 BRU, 而在用户数较 小时关闭微小区 RRU或 BRU。 也可以根据传输资源的可用带宽或负荷等因 素, 自适应开闭微小区 RRU或 BRU。
当本地计算节点 225与集中计算节点 245之间的可用传输带宽较小时, 可以增加微'〗、区 RRU或 BRU站点, 这样, 更多的用户进入微'〗、区 RRU或 BRU, 由于发射功率减少, 和直接与宏基站传输相比, 受到其它宏基站的干 扰以及对其它宏基站的干扰都大幅减小, 因此不再需要在集中计算节点进行 联合处理,从而有效降低了本地计算节点 225与集中计算节点 245之间的传 输带宽需求。
本发明实施例的通信***将 BBU的计算资源进行分层和本地化, 使得 小范围的无线收发单元集中在本地计算节点管理, 大范围的无线收发单元集 中结合起来由上层计算节点管理。 对于一个无线收发单元, 它既与本地计算 节点直接连接, 又通过本地计算节点与更上层大范围的计算节点间接连接, 而且也不排除部分无线收发单元直接与上层计算节点连接的情况。本发明实 施例支持根据用户分布、 数据量和干扰情况, 对计算资源、 联合处理在本地 计算节点和集中计算节点之间进行自适应的调度。
对于 HetNet异构***, 本地计算层可放置在局部相对较小的区域内, 例如宏小区内, 以通过部分本地计算处理降低对传输网的带宽要求, 并且使 多种短距离传输技术可以在本地应用, 此时可根据实际连接介质的带宽选择 不同的上移云数据的比例。上层的集中计算层要负责管理较大区域内的无线 收发单元和计算节点,使得通过计算资源的调度达到解决用户潮汐效应等问 题。 根据实际组网, 确定是否需要中间计算层作为本地计算层到集中计算层 的过渡。
本发明实施例与传统 C-RAN架构相比, 主要优势在于极大地节省基站 连接到云计算节点的带宽。 在未来的通信网中小蜂窝数量增多, 为现有宏蜂 窝的数倍; 频带成倍的提升; 天线数量也积聚增加, 由现在的最多 4天线增 加到几十甚至上百天线。 如果还是使用传统云接入网架构, 让所有基带数据 都直接连接到几公里之外的云计算中心, 对光纤传输将是极大的挑战。
以下行为例, 假设在 LTE***中, 每个宏基站对应三扇区, 每个扇区 8 天线; 每个宏小区范围内有 10个微蜂窝基站, 单天线, 对应一个微蜂窝小 区; 每个基站对应 20MHz的频谱, 采样频率 30.74MHz, 每个采样点 22bit 量化。 那么这个宏基站下行数据连接到云的数据率为: ( 3x8+10 ) x30.74MHzx22bit=23Gbps。
但是, 如果从联合信号处理增益的角度出发, 可以发现, 没有必要将所 有 UE都直接连接到统一的云计算节点, 只有处在小区边沿的 UE才有明显 的联合处理增益。 如果按照本发明实施例, 在本地完成绝大部分基带甚至 L2 的数据处理, 将极大减少需要与云计算中心相连的数据率: 信道解码后 数据率下降 1/3;如果是 64QAM,解调后数据率下降 5/22;出去循环前缀( CP, Cyclic Prefix )也会使得数据率下降一些;如果本地可以完成 L2的数据处理, 那么帧头, CRC校验, 控制字段都可以节省下来, 假设完成 L2处理可以节 省 10%, 那么如果只有 20%的用户数据需要联合处理, LTE下行的数据率为 23Gbpsx20%+23Gbpsx80%x90%xl/3x5/22=5.8Gbps。上行时基带数据通过本 地处理所节省的传输带宽比例与下行时相近。 由此可见, 本发明实施例中加 入底层本地计算层的通信***带来较大的带宽节省优势。
即便考虑到云接入网架构带来的平衡计算资源和解决潮汐效应等问题, 本发明实施例的多层计算架构中,计算任务也可以在上下层计算节点中进行 调度, 不失传统 C-RAN架构的优势。
第二个优势在于传统 C-RAN 需要每个宏基站都通过光纤连到计算中 心,但在微基站密布的将来,如果所有微基站都通过光纤连到统一计算中心, 将会极大提高光纤铺设成本。本发明实施例可以使得基站数据在本地一定范 围内先集中然后再传输到上层计算中心。 由于是本地集中, 所以可以考虑多 种短距离通信技术, 比如微波、 DSL、 电力线等, 降低基带传输成本。 对于 传统 C-RAN架构,如果基带传输数据率不能满足所有基带数据上云的需求, 那么就无法使用云计算架构。 本发明实施例中, 我们可以根据基带数据传输 带宽, 选择最需要上层统一处理的用户数据上云, 而其它数据在本地处理, 从而在任何情况下都可以使用云架构。
图 5是根据本发明实施例的通信***的管理方法的示意流程图。 图 5的 方法由图 1或图 2所示的通信***执行。 所述通信***包括无线收发层、 本 地计算层和集中计算层, 所述无线收发层包括一个或多个无线收发节点组 合, 其中每个无线收发节点组合中的无线收发节点至少包括宏小区射频单 元、 微小区射频拉远单元、 微小区射频与基带拉远单元中的一种; 所述本地 计算层包括一个或多个本地计算节点, 其中每个本地计算节点与一个或相邻 的多个无线收发节点组合中的无线收发节点相连,所述集中计算层包括一个 或多个集中计算节点,其中每个集中计算节点与所述本地计算层中的一个或 多个本地计算节点相连接。
501 , 本地计算节点执行该本地计算节点所连接的无线收发节点组合中 的无线收发节点所对应的小区的全部通信处理或第一部分通信处理。
502, 集中计算节点在所述本地计算节点执行所述第一部分通信处理的 情况下,执行所述一个或多个本地计算节点所连接的无线收发节点组合中的 无线收发节点所对应的小区的第二部分通信处理,其中所述全部通信处理包 括所述第一部分通信处理和第二部分通信处理。
本发明实施例在集中计算层和无线收发层之间增加了本地计算层, 负责 一定范围内的相邻小区的全部或部分通信处理, 而不必将全部处理都交给较 远的集中计算节点处理, 节省了网络带宽, 提高了***资源的利用效率。
应注意, 图 5中虽然将 501显示为在 502之前执行, 但是本发明实施例 不限于此。 事实上 501和 502的执行可以相对独立, 例如, 501可以在 502 之后执行, 501也可以与 502同时执行。 这些修改均落入本发明实施例的范 围内。
图 6是根据本发明另一实施例的通信***的管理方法的示意流程图。 图 6的实施例的通信***可以如图 2所示, 在本实施例的通信***的某些部分 中, 可以根据实际需求在集中计算层 140和本地计算层 120之间增加一个或 多个中间计算层 130, 以进一步减少带宽需求。 每个中间计算层 130包括一 个或多个中间计算节点 135。
除了图 5所示的 501和 502之外, 图 6的方法还包括: 503 , 中间计算节点在本地计算节点执行所述第一部分通信处理的情况 下,执行该中间计算节点连接到的本地计算节点所连接的无线收发节点组合 中的无线收发节点所对应的小区的第三部分通信处理, 其中所述全部通信处 理包括所述第三部分通信处理。
另外, 在微小区 BRU也分担部分处理任务的情况下, 图 6的方法还包 括:
504,微小区射频与基带拉远单元 BRU在本地计算节点执行所述第一部 分通信处理的情况下,执行该微小区射频与基带拉远单元所对应小区的第四 部分通信处理。
或者,在集中计算节点 145-1/145-2之间可以进行计算任务调度时, 图 6 的方法还包括:
505 , 集中计算节点经任务调度将第五部分通信处理转移至其他集中计 算节点执行。
其中所述全部通信处理还包括上述第四部分通信处理和 /或上述第五部 分通信处理。
图 6中各个过程可以根据需要改变执行顺序、 删除、 替换, 这些修改均 落入本发明实施例的范围内。
本发明实施例的通信处理可包括以下处理中的一个或多个: 数据处理、 联合干扰管理处理、 联合资源调度处理、 联合计算任务调度处理、 多种制式 的通信处理、多种制式之间的联合通信处理、微小区射频拉远单元和 /或微小 区射频与基带拉远单元的工作模式或开闭状态的联合控制。
本发明实施例在集中计算层和无线收发层之间增加了本地计算层, 负责 一定范围内的相邻小区的全部或部分通信处理, 而不必将全部处理都交给较 远的集中计算节点处理, 节省了网络带宽, 提高了***资源的利用效率。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。 所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的图 5和图 6的方法的具体过程,可以参考前述通信***的实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功 能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种通信***, 其特征在于, 包括:
无线收发层, 包括一个或多个无线收发节点组合, 其中每个无线收发节 点组合中的无线收发节点至少包括宏小区射频单元、 微小区射频拉远单元、 微小区射频与基带拉远单元中的一种;
本地计算层, 包括一个或多个本地计算节点, 其中每个本地计算节点与 一个或相邻的多个无线收发节点组合中的无线收发节点相连, 用于执行该本 地计算节点所连接的无线收发节点组合所对应的小区的全部通信处理或第 一部分通信处理;
集中计算层, 包括一个或多个集中计算节点, 其中每个集中计算节点与 所述本地计算层中的一个或多个本地计算节点相连接, 用于在所述本地计算 节点执行所述第一部分通信处理的情况下,执行所述一个或多个本地计算节 点所连接的无线收发节点组合所对应的小区的第二部分通信处理,
其中所述全部通信处理包括所述第一部分通信处理和第二部分通信处 理。
2、 如权利要求 1所述的通信***, 其特征在于, 所述集中计算节点与 所述本地计算层中的一个或多个本地计算节点相连接包括:
所述集中计算节点直接连接到所述本地计算节点; 或者,
所述集中计算节点经由一个或多个中间计算节点连接到所述本地计算 节点,每个中间计算节点用于在所述本地计算节点执行所述第一部分通信处 理的情况下,执行该中间计算节点连接到的本地计算节点所连接的无线收发 节点组合中的无线收发节点所对应的小区的第三部分通信处理,
其中所述全部通信处理包括所述第三部分通信处理。
3、 如权利要求 1或 2所述的方法, 其特征在于,
所述微小区射频与基带拉远单元用于在所述本地计算节点执行所述第 一部分通信处理的情况下,执行所述微小区射频与基带拉远单元所对应小区 的第四部分通信处理; 或者
所述集中计算节点用于经任务调度将第五部分通信处理转移至其他集 中计算节点执行,
其中所述全部通信处理还包括所述第四部分通信处理和 /或所述第五部 分通信处理。
4、 如权利要求 2所述的通信***, 其特征在于,
所述宏小区射频单元和所述本地计算节点之间、所述微小区射频拉远单 元和所述本地计算节点之间、 所述宏小区射频单元和所述集中计算节点之 间、 所述微小区射频拉远单元和所述集中计算节点之间, 通过第一类接口连 接, 所述第一类接口用于传输基带数据和控制状态消息;
所述微小区射频与基带拉远单元和所述本地计算节点之间、所述微小区 射频与基带拉远单元和所述集中计算节点之间、所述本地计算节点和所述集 中计算节点之间、 所述本地计算节点和所述中间计算节点之间、 上下层的所 述中间计算节点之间、 所述中间计算节点和所述集中计算节点之间、 所述集 中计算节点之间,通过第二类接口连接,所述第二类接口用于传输基带数据、 数据包和控制状态消息;
所述集中计算节点和核心网之间通过第三类接口连接, 所述第三类接口 用于传输数据包和控制状态消息。
5、 如权利要求 2所述的通信***, 其特征在于, 所述通信处理包括数 据处理,
所述本地计算节点进行数据的分流处理以区分出该本地计算节点需要 处理的数据和非该本地计算节点需要处理的数据,和 /或对完成通信处理的数 据进行聚合;
所述中间计算节点进行数据的分流处理以区分出该中间计算节点需要 处理的数据和非该中间计算节点需要处理的数据;
所述集中计算节点进行数据的分流处理以区分出该集中计算节点需要 处理的数据和非该集中计算节点需要处理的数据,和 /或对完成通信处理的数 据进行聚合。
6、 如权利要求 2所述的通信***, 其特征在于, 所述通信处理包括联 合干扰管理处理,
所述本地计算节点优先执行与该本地计算节点连接的无线收发节点组 合中的无线收发节点所对应的小区内的无明显干扰的用户设备的通信处理 或仅受到来自所述本地计算节点所连接的无线收发节点组合中的其他无线 收发节点干扰的用户设备的干扰处理,
所述中间计算节点优先执行与该中间计算节点连接的下层中间计算节 点或本地计算节点相关联的无线收发节点组合中的无线收发节点所对应小 区内的用户设备的干扰处理, 其中该用户设备受到来自与该中间计算节点连 接的其他下层中间计算节点或本地计算节点相关联的无线收发节点组合中 的无线收发节点所对应小区的干扰,
所述集中计算节点优先执行与该集中计算节点连接的下层中间计算节 点或本地计算节点相关联的无线收发节点组合中的无线收发节点所对应小 区内的用户设备的干扰处理, 其中该用户设备受到来自与该集中计算节点连 接的其他下层中间计算节点或本地计算节点相关联的无线收发节点组合中 的无线收发节点所对应小区的干扰。
7、 如权利要求 2所述的通信***, 其特征在于, 所述通信处理包括联 合资源调度处理,
所述本地计算节点执行与该本地计算节点连接的无线收发节点组合中 的无线收发节点所对应的小区之间的资源调度,
所述中间计算节点执行与该中间计算节点连接的无线收发节点组合中 的无线收发节点所对应的小区之间的资源调度,
所述集中计算节点执行与该集中计算节点连接的无线收发节点组合中 的无线收发节点所对应的小区之间的资源调度。
8、 如权利要求 7所述的通信***, 其特在于,
本地计算节点、 中间计算节点和集中计算节点进行调度的资源被配置为 彼此不同, 或者
优先由位于上层的计算节点执行资源调度。
9、 如权利要求 2所述的通信***, 其特征在于, 所述无线收发节点组 合中的无线收发节点和本地计算节点之间、所述本地计算节点和中间计算节 点之间、 或者上下层的所述中间计算节点之间通过光纤、 数字用户线路、 微 波或电力线连接。
10、 如权利要求 9所述的通信***, 其特征在于, 基于节点计算能力、 节点间距离、节点间传输带宽需求和 /或节点间传输延迟需求,确定节点之间 的连接介质。
11、 如权利要求 2所述的通信***, 其特征在于, 所述通信处理包括联 合计算任务调度处理,
本地计算节点和连接到该本地计算节点的中间计算节点之间, 上下层连 接的中间计算节点之间, 中间计算节点和连接到该中间计算节点的集中计算 节点之间, 相互连接的集中计算节点之间, 根据计算负荷、 计算能力、 传输 带宽和传输时延相互转移计算任务。
12、 如权利要求 11所述的通信***, 其特征在于,
由计算节点基于其他计算节点的请求来调度所述计算任务的转移; 或 者,
由位于上层的计算节点调度所述计算任务的转移。
13、 如权利要求 2所述的通信***, 其特征在于, 所述无线收发节点组 合包括多种制式的无线收发节点, 所述通信处理包括多种制式的通信处理和 /或多种制式之间的联合通信处理。
14、 如权利要求 1-13 任一项所述的通信***, 其特征在于, 每个本地 计算节点与一个或相邻的多个无线收发节点组合相连包括:
根据网络配置确定与所述本地计算节点连接的无线收发节点组合中无 线收发节点, 以及相连接的无线收发节点组合的数量。
15、 如权利要求 1所述的通信***, 其特征在于, 所述本地计算节点与 一个无线收发节点组合中的无线收发节点相连接,所述无线收发节点组合包 括与所述本地计算节点共站址的宏小区射频单元,宏小区射频单元覆盖范围 内的微小区射频拉远单元和 /或微小区射频与基带拉远单元。
16、 如权利要求 1所述的通信***, 其特征在于, 所述本地计算节点与 一个无线收发节点组合中的无线收发节点相连接,所述无线收发节点组合包 括规定范围内的微小区射频拉远单元和 /或微小区射频与基带拉远单元,所述 规定范围根据网络配置确定。
17、 如权利要求 16所述的通信***, 其特征在于, 所述通信处理包括 所述无线收发节点组合中的微小区射频拉远单元和 /或微小区射频与基带拉 远单元的工作模式或开闭状态的联合控制。
18、 一种通信***的管理方法, 其特征在于, 所述通信***包括无线收 发层、 本地计算层和集中计算层, 所述无线收发层包括一个或多个无线收发 节点组合, 其中每个无线收发节点组合中的无线收发节点至少包括宏小区射 频单元、 微小区射频拉远单元、 微小区射频与基带拉远单元中的一种; 所述 本地计算层包括一个或多个本地计算节点, 其中每个本地计算节点与一个或 相邻的多个无线收发节点组合中的无线收发节点相连, 所述集中计算层包括 一个或多个集中计算节点, 其中每个集中计算节点与所述本地计算层中的一 个或多个本地计算节点相连接,
所述方法包括:
所述本地计算节点执行该本地计算节点所连接的无线收发节点组合中 的无线收发节点所对应的小区的全部通信处理或第一部分通信处理;
所述集中计算节点在所述本地计算节点执行所述第一部分通信处理的 情况下,执行所述一个或多个本地计算节点所连接的无线收发节点组合中的 无线收发节点所对应的小区的第二部分通信处理,
其中所述全部通信处理包括所述第一部分通信处理和第二部分通信处 理。
19、 如权利要求 18所述的方法, 其特征在于, 所述集中计算节点经由 一个或多个中间计算节点连接到所述本地计算节点,
所述方法还包括:
所述中间计算节点在所述本地计算节点执行所述第一部分通信处理的 情况下,执行该中间计算节点连接到的本地计算节点所连接的无线收发节点 组合中的无线收发节点所对应的小区的第三部分通信处理,
其中所述全部通信处理包括所述第三部分通信处理。
20、 如权利要求 18或 19所述的方法, 其特征在于, 还包括: 所述微小区射频与基带拉远单元在所述本地计算节点执行所述第一部 分通信处理的情况下,执行所述微小区射频与基带拉远单元所对应小区的第 四部分通信处理; 或者
所述集中计算节点经任务调度将第五部分通信处理转移至其他集中计 算节点执行,
其中所述全部通信处理还包括所述第四部分通信处理和 /或所述第五部 分通信处理。
21、 如权利要求 18-20任一项所述的方法, 其特征在于, 所述通信处理 包括以下处理中的一个或多个: 数据处理、 联合干扰管理处理、 联合资源调 度处理、 联合计算任务调度处理、 多种制式的通信处理、 多种制式之间的联 合通信处理、微小区射频拉远单元和 /或微小区射频与基带拉远单元的工作模 式或开闭状态的联合控制。
PCT/CN2011/074184 2011-05-17 2011-05-17 通信***及其管理方法 WO2011127855A2 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2011/074184 WO2011127855A2 (zh) 2011-05-17 2011-05-17 通信***及其管理方法
CN201180000751.8A CN102907167B (zh) 2011-05-17 2011-05-17 通信***及其管理方法
RU2013155899/07A RU2556081C1 (ru) 2011-05-17 2011-05-17 Система связи и способ управления ею
BR112013029651-8A BR112013029651B1 (pt) 2011-05-17 2011-05-17 Sistema de comunicação e método de gerenciamento do mesmo
EP11768466.2A EP2525623B1 (en) 2011-05-17 2011-05-17 Communication system and management method thereof
US13/622,196 US8467818B2 (en) 2011-05-17 2012-09-18 Communication system and management method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074184 WO2011127855A2 (zh) 2011-05-17 2011-05-17 通信***及其管理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/622,196 Continuation US8467818B2 (en) 2011-05-17 2012-09-18 Communication system and management method thereof

Publications (3)

Publication Number Publication Date
WO2011127855A2 true WO2011127855A2 (zh) 2011-10-20
WO2011127855A3 WO2011127855A3 (zh) 2012-04-19
WO2011127855A8 WO2011127855A8 (zh) 2012-06-28

Family

ID=44799081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074184 WO2011127855A2 (zh) 2011-05-17 2011-05-17 通信***及其管理方法

Country Status (6)

Country Link
US (1) US8467818B2 (zh)
EP (1) EP2525623B1 (zh)
CN (1) CN102907167B (zh)
BR (1) BR112013029651B1 (zh)
RU (1) RU2556081C1 (zh)
WO (1) WO2011127855A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413574A (zh) * 2011-11-21 2012-04-11 中兴通讯股份有限公司 一种基带资源的自动分配方法及其装置
WO2014074064A1 (en) 2012-11-12 2014-05-15 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for cell configuration of low power node
CN103945404A (zh) * 2013-01-22 2014-07-23 京信通信***(中国)有限公司 射频拉远单元多小区建立方法和***
US20150029965A1 (en) * 2011-11-25 2015-01-29 Nec Corporation Radio Station and Method of Processing User Data With Radio Station
JP2015523778A (ja) * 2012-05-25 2015-08-13 アルカテル−ルーセント ワイヤレス通信ネットワークのネットワーク要素を運用する方法、およびネットワーク要素
EP2818002A4 (en) * 2012-02-24 2015-10-28 Intel Corp COOPERATIVE RADIO ACCESS NETWORK WITH CENTRALIZED BASE STATION BASE BAND UNIT (BBU)
EP2785099A4 (en) * 2011-11-25 2015-10-28 Nec Corp WIRELESS STATION AND METHOD OF PROCESSING USER DATA WITH A WIRELESS STATION
US9203571B2 (en) 2011-11-25 2015-12-01 Nec Corporation Radio station and method of processing user data with radio station
CN106162931A (zh) * 2015-04-08 2016-11-23 华为技术有限公司 数据传输方法和装置
US9549415B2 (en) 2011-11-25 2017-01-17 Nec Corporation Radio station and method of processing user data with radio station
CN106572435A (zh) * 2015-10-08 2017-04-19 华为技术有限公司 调度终端设备的方法和装置
CN106797675A (zh) * 2014-06-30 2017-05-31 日本电气株式会社 无线通信***和无线通信方法
CN109819037A (zh) * 2019-01-29 2019-05-28 武汉鸿瑞达信息技术有限公司 一种自适应计算与通信的方法和***

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2761927A4 (en) * 2011-09-30 2015-08-12 Intel Corp METHODS OF SIMULTANEOUSLY TRANSPORTING INTERNET TRAFFIC ON MULTIPLE WIRELESS NETWORKS
KR101295897B1 (ko) * 2012-05-08 2013-08-12 주식회사 케이티 디지털 신호 처리 장치 및 그 장치를 포함하는 신호 처리 시스템
CN103427971B (zh) * 2012-05-25 2016-09-07 华为技术有限公司 上行数据传输方法、装置及***
KR101410994B1 (ko) * 2012-12-18 2014-06-24 주식회사 케이티 이동 통신 시스템, 디지털 신호 처리 장치 및 그 시스템에서의 동시 전송 영역 설정 방법
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
US9380466B2 (en) * 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
WO2014121846A1 (en) * 2013-02-08 2014-08-14 Huawei Technologies Co., Ltd. Radio communications system
WO2014154254A1 (en) * 2013-03-26 2014-10-02 Nokia Solutions And Networks Oy Method and apparatus
CN104124987B (zh) 2013-04-28 2016-06-08 国际商业机器公司 用于并行处理数据的方法和装置
US9143292B2 (en) 2013-05-22 2015-09-22 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling a signal path of a radio communication
US9380614B2 (en) * 2013-05-23 2016-06-28 Lg Electronics Inc. Method of performing communication by user equipment in cloud radio access network environment and apparatus therefor
JP2014232950A (ja) * 2013-05-28 2014-12-11 京セラ株式会社 通信装置、通信システム及び通信制御方法
CN103563476B (zh) * 2013-06-06 2017-06-20 华为技术有限公司 一种基站自治的方法、基带单元、基站及云基站***
US9356764B2 (en) * 2013-07-25 2016-05-31 Spidercloud Wireless, Inc. Hybrid joint processing for use in a radio access network
CN104348764B (zh) 2013-07-31 2017-09-19 国际商业机器公司 在数据接收链路中分配计算单元的方法和装置
US9258707B1 (en) 2013-09-23 2016-02-09 Sprint Communications Company L.P. Timing security flags in common public radio interface
WO2015061988A1 (zh) * 2013-10-30 2015-05-07 华为技术有限公司 混合自动重传请求数据解码方法、节点设备及解码***
WO2015081277A1 (en) * 2013-11-27 2015-06-04 Futurewei Technologies, Inc. Method and apparatus for downlink transmission in a cloud radio access network
CN104955087B (zh) 2014-03-25 2019-03-01 华为技术有限公司 一种无线基站的控制***及方法、相关设备
WO2015191530A2 (en) 2014-06-09 2015-12-17 Airvana Lp Radio access networks
US9485725B2 (en) * 2014-06-25 2016-11-01 Qatar University Qstp-B Methods and system for dynamically switching off/on of base stations
US9413435B1 (en) * 2014-07-07 2016-08-09 Sprint Spectrum, L.P. Uplink CoMP mode selection based on processing load of neighbor
US9521089B2 (en) 2014-08-30 2016-12-13 International Business Machines Corporation Multi-layer QoS management in a distributed computing environment
CN107113188B (zh) 2014-11-11 2020-09-15 诺基亚通信公司 基于云的无线电接入网络中的层管理器装置及操作方法
EP3308572B1 (en) * 2015-06-12 2020-08-05 Telefonaktiebolaget LM Ericsson (publ) A system and method for a radio access network
AU2016344036A1 (en) * 2015-10-31 2018-06-07 Parallel Wireless, Inc. Elastic scheduling
US11432314B2 (en) 2015-10-31 2022-08-30 Parallel Wireless, Inc. Elastic scheduling
US10191767B2 (en) * 2015-11-20 2019-01-29 Nec Corporation Seamles SDN-supported RAN-app migration
JP6517449B2 (ja) * 2015-12-17 2019-05-22 華為技術有限公司Huawei Technologies Co.,Ltd. サウンディング参照シンボル送信方法、及び無線リモートユニット
WO2017114562A1 (en) * 2015-12-29 2017-07-06 Telecom Italia S.P.A. System and method for allowing cooperation between a plurality of radio nodes in a telecommunication network
CN106937389B (zh) * 2015-12-31 2021-05-11 华为技术有限公司 资源划分方法及装置
CN107124323B (zh) * 2016-02-24 2020-02-14 华为技术有限公司 确定资源指标的方法和装置
CN108886833B (zh) * 2016-03-25 2022-06-28 株式会社Ntt都科摩 基站及小区设定方法
EP3226496A1 (en) * 2016-03-30 2017-10-04 Alcatel Lucent System to process a signal, comprising a remote unit and a central unit, method and computer readable medium
JP6747153B2 (ja) * 2016-08-04 2020-08-26 日本電気株式会社 リモートノード、センターノード、通信システム、通信端末、通信方法、及びプログラム
WO2018036620A1 (en) * 2016-08-23 2018-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Transport network, node and method
CN108135030B (zh) 2016-09-30 2020-10-23 华为技术有限公司 传输物理控制信道的指示方法及其装置
CN108173789A (zh) * 2016-12-07 2018-06-15 中兴通讯股份有限公司 干扰抑制方法及装置、通信***
EP3586557B1 (en) 2017-02-27 2023-08-09 Mavenir Networks, Inc. System and method for supporting low latency applications in a cloud radio access network
CN108632067B (zh) 2017-03-21 2020-12-08 华为技术有限公司 容灾部署方法、装置及***
US10805831B1 (en) 2017-04-21 2020-10-13 Sprint Spectrum L.P. Control of coordinated-multipoint service in a virtual radio access network
WO2019003298A1 (ja) 2017-06-27 2019-01-03 三菱電機株式会社 下位無線基地局、上位無線基地局および無線基地局システム
CN107396450B (zh) * 2017-07-19 2020-02-14 上海华为技术有限公司 一种跨制式的调度方法及基站
JP6947483B2 (ja) * 2017-12-22 2021-10-13 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンライセンスキャリア処理方法、装置、及びシステム
CN108513321B (zh) * 2018-04-10 2019-08-13 清华大学 基于云处理的无线通信***能量最优资源分配***
CN110719238B (zh) * 2018-07-13 2021-07-09 华为技术有限公司 数据传输控制方法、装置和接入网设备
EP3868074A4 (en) 2018-10-16 2022-06-29 Parallel Wireless, Inc. Radio access network dynamic functional splits
CN113661780B (zh) * 2019-02-04 2024-03-08 并行无线公司 混合基站和rrh
US11544211B2 (en) 2019-04-19 2023-01-03 Parallel Wireless, Inc. VRAN with PCIe fronthaul
CN112601231B (zh) * 2020-11-03 2023-01-13 中国飞机强度研究所 一种复杂试验环境下5g网络深度覆盖方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426897C (zh) * 2005-01-12 2008-10-15 华为技术有限公司 分体式基站***及其组网方法和基带单元
CN101562900B (zh) * 2008-04-16 2011-11-30 中兴通讯股份有限公司 基于共享基带池和分布式射频单元的***和方法
US8553575B2 (en) * 2009-03-19 2013-10-08 Qualcomm Incorporated Resource partitioning for uplink in a wireless communication network
US8315207B2 (en) * 2009-03-19 2012-11-20 Qualcomm Incorporated Association with leakage-based metrics in a wireless network
US8553711B2 (en) * 2009-03-19 2013-10-08 Qualcomm Incorporated Association and resource partitioning in a wireless network with relays
US8660071B2 (en) * 2009-03-19 2014-02-25 Qualcomm Incorporated Adaptive resource partitioning in a wireless communication network
US9210579B2 (en) * 2009-10-14 2015-12-08 Huawei Technologies Co., Ltd. System and method for communicating in a wireless communications system
US8965433B2 (en) * 2009-10-29 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a communication system
KR20110083455A (ko) * 2010-01-13 2011-07-20 주식회사 팬택 무선 통신 시스템에서의 선호 요소 반송파 결정 방법 및 장치와, 그를 이용하는 요소 반송파 구성방법 및 수신장치
US8159974B2 (en) * 2010-01-15 2012-04-17 Alcatel Lucent Method of configuring interfaces between a plurality of communication nodes
US8717920B2 (en) * 2010-10-08 2014-05-06 Telefonaktiebolaget L M Ericsson (Publ) Signalling mechanism for multi-tiered intra-band carrier aggregation
CN101977242A (zh) * 2010-11-16 2011-02-16 西安电子科技大学 一种分层分布式云计算体系结构及服务提供方法
US10085164B2 (en) * 2011-04-28 2018-09-25 Qualcomm Incorporated System and method for managing invalid reference subframes for channel state information feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2525623A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413574A (zh) * 2011-11-21 2012-04-11 中兴通讯股份有限公司 一种基带资源的自动分配方法及其装置
US9622260B2 (en) 2011-11-25 2017-04-11 Nec Corporation Radio station and method of processing user data with radio station
EP3506711A1 (en) * 2011-11-25 2019-07-03 NEC Corporation Radio station and method of processing user data with radio station
US9560542B2 (en) 2011-11-25 2017-01-31 Nec Corporation Radio station and method of processing user data with radio station
US10091806B2 (en) 2011-11-25 2018-10-02 Nec Corporation Radio station and method of processing user data with radio station
US10085169B2 (en) 2011-11-25 2018-09-25 Nec Corporation Radio station and method of processing user data with radio station
EP2785099A4 (en) * 2011-11-25 2015-10-28 Nec Corp WIRELESS STATION AND METHOD OF PROCESSING USER DATA WITH A WIRELESS STATION
EP2785139A4 (en) * 2011-11-25 2015-10-28 Nec Corp WIRELESS STATION AND METHOD FOR PROCESSING DATA WITH THE WIRELESS STATION
US9203571B2 (en) 2011-11-25 2015-12-01 Nec Corporation Radio station and method of processing user data with radio station
EP3255956A1 (en) * 2011-11-25 2017-12-13 NEC Corporation Radio station and method of processing user data with radio station
JP2017184256A (ja) * 2011-11-25 2017-10-05 日本電気株式会社 基地局で使用されるノード
US10244548B2 (en) 2011-11-25 2019-03-26 Nec Corporation Radio station and method of processing user data with radio station
US10154508B2 (en) 2011-11-25 2018-12-11 Nec Corporation Radio station and method of processing user data with radio station
US9538505B2 (en) 2011-11-25 2017-01-03 Nec Corporation Radio station and method of processing user data with radio station
US9549415B2 (en) 2011-11-25 2017-01-17 Nec Corporation Radio station and method of processing user data with radio station
US20150029965A1 (en) * 2011-11-25 2015-01-29 Nec Corporation Radio Station and Method of Processing User Data With Radio Station
EP2785138B1 (en) * 2011-11-25 2019-04-10 Nec Corporation Radio station and method of processing user data with radio station
US9301198B2 (en) 2012-02-24 2016-03-29 Intel Corporation Cooperative radio access network with centralized base station baseband unit (BBU) processing pool
CN105359574A (zh) * 2012-02-24 2016-02-24 英特尔公司 具有集中式基站基带单元(bbu)处理池的协作式无线接入网络
CN105359574B (zh) * 2012-02-24 2019-10-18 英特尔公司 具有集中式基站基带单元(bbu)处理池的协作式无线接入网络
EP2818002A4 (en) * 2012-02-24 2015-10-28 Intel Corp COOPERATIVE RADIO ACCESS NETWORK WITH CENTRALIZED BASE STATION BASE BAND UNIT (BBU)
US10178652B2 (en) 2012-05-25 2019-01-08 Alcatel Lucent Method for operating a network element of a wireless communication network and network element
JP2015523778A (ja) * 2012-05-25 2015-08-13 アルカテル−ルーセント ワイヤレス通信ネットワークのネットワーク要素を運用する方法、およびネットワーク要素
EP2918100A4 (en) * 2012-11-12 2015-12-09 Ericsson Telefon Ab L M METHOD AND NETWORK NODE FOR CELL CONFIGURATION OF A LOW POWER NODE
WO2014074064A1 (en) 2012-11-12 2014-05-15 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for cell configuration of low power node
CN103945404A (zh) * 2013-01-22 2014-07-23 京信通信***(中国)有限公司 射频拉远单元多小区建立方法和***
CN106797675A (zh) * 2014-06-30 2017-05-31 日本电气株式会社 无线通信***和无线通信方法
CN106162931A (zh) * 2015-04-08 2016-11-23 华为技术有限公司 数据传输方法和装置
CN106572435A (zh) * 2015-10-08 2017-04-19 华为技术有限公司 调度终端设备的方法和装置
CN106572435B (zh) * 2015-10-08 2019-11-12 华为技术有限公司 调度终端设备的方法和装置
CN109819037B (zh) * 2019-01-29 2022-02-15 武汉鸿瑞达信息技术有限公司 一种自适应计算与通信的方法和***
CN109819037A (zh) * 2019-01-29 2019-05-28 武汉鸿瑞达信息技术有限公司 一种自适应计算与通信的方法和***

Also Published As

Publication number Publication date
WO2011127855A3 (zh) 2012-04-19
EP2525623A2 (en) 2012-11-21
CN102907167A (zh) 2013-01-30
CN102907167B (zh) 2016-01-20
BR112013029651B1 (pt) 2022-03-29
WO2011127855A8 (zh) 2012-06-28
EP2525623B1 (en) 2014-05-14
RU2013155899A (ru) 2015-06-27
RU2556081C1 (ru) 2015-07-10
US8467818B2 (en) 2013-06-18
EP2525623A4 (en) 2013-02-27
US20130017852A1 (en) 2013-01-17
BR112013029651A2 (pt) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2011127855A2 (zh) 通信***及其管理方法
USRE48280E1 (en) Method and system for dynamic cell configuration
EP2781116B1 (en) Baseband signal processing cluster
TWI513234B (zh) 在分時雙工異質網路中適應性上行鏈路-下行鏈路組態
EP2494810B1 (en) Communication system having network access structure
JP6462597B2 (ja) スモールセル基盤の無線接続システムでエネルギー節約補償セルを決定する方法及び装置
EP3536043A1 (en) Handling limited network slice availability
JP2015518335A (ja) エネルギー、移動度および容量について最適化されている、サポートされた自己最適化無線ネットワーク
JP2012523189A (ja) ネットワークの動作方法およびネットワーク
WO2016041448A1 (zh) 数据转发设备工作模式的配置方法及装置
WO2014012192A1 (en) Network system with local cluster, central controller, micro base station and macro base station
US20150098319A1 (en) Method for reducing overhead of control signal during connection of plural lte base stations
US20150099522A1 (en) Method for avoiding small cell interference during connection of plural lte base stations
KR101207452B1 (ko) LTE(Long Term Evolution)를 포함하는 이동통신망 내 펨토셀 무선 접속 방법
EP2884797B1 (en) Apparatuses and methods for a backhaul node of a wireless communication system
JP6274590B2 (ja) サービス処理方法およびシステム、ならびに基地局
KRISHNA et al. ADVANCES IN 4G COMMUNICATION NETWORKS
Krishna Multicellular Heterogeneous Networks: A 5G Perspective
Krishna et al. Advances in 4G Communication Networks: A 5G Perspective
Avramova Optimizations in Heterogeneous Mobile Networks
US20150099524A1 (en) Method for transceiving handover message during connection of plural lte base stations
WO2013190818A1 (ja) 移動通信システムにおけるネットワーク制御方法および装置、サーバ並びに基地局

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000751.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768466

Country of ref document: EP

Kind code of ref document: A2

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768466

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011768466

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013155899

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013029651

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013029651

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131118