JP6383854B2 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
JP6383854B2
JP6383854B2 JP2017195960A JP2017195960A JP6383854B2 JP 6383854 B2 JP6383854 B2 JP 6383854B2 JP 2017195960 A JP2017195960 A JP 2017195960A JP 2017195960 A JP2017195960 A JP 2017195960A JP 6383854 B2 JP6383854 B2 JP 6383854B2
Authority
JP
Japan
Prior art keywords
heat exchanger
vehicle interior
air
operation mode
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017195960A
Other languages
English (en)
Other versions
JP2017226418A (ja
Inventor
濱本 浩
浩 濱本
康平 深渡瀬
康平 深渡瀬
慶彦 大竹
慶彦 大竹
晃 小森
晃 小森
昂 松元
昂 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Japan Climate Systems Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Japan Climate Systems Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Japan Climate Systems Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JP2017226418A publication Critical patent/JP2017226418A/ja
Application granted granted Critical
Publication of JP6383854B2 publication Critical patent/JP6383854B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両に搭載される車両用空調装置に関するものである。
従来から、例えば、ハイブリッド車や電気自動車等に搭載される空調装置として、ヒートポンプ装置を備えた空調装置が知られている。これら車両用のヒートポンプ装置は、電動コンプレッサ、車室外に配設される車室外熱交換器、膨張弁、及び車室内に配設される車室内熱交換器を冷媒配管によって順に接続して構成されている(例えば、特許文献1参照)。
ヒートポンプ装置が暖房運転モードにあるときには、車室内熱交換器を放熱器とし、車室外熱交換器を吸熱器として作用させるように冷媒を流すので、車室外熱交換器に霜が付着することがある。車室外熱交換器に霜が付着すると除霜する必要があるが、特許文献1では、暖房運転モード中に強制的に冷房運転モードにして車室外熱交換器を放熱器として作用させるようにしている。
特開2011−5983号公報
しかしながら、特許文献1のように暖房運転モード中に強制的に冷房運転モードに切り替えると、車室内熱交換器が吸熱器となるため車室内に吹き出す吹出空気の温度が急に低下することになり、乗員が違和感を感じるという問題がある。
また、空調装置の運転モードとしては、空調用空気を上流側の車室内熱交換器で一旦冷却した後、下流側の車室内熱交換器で加熱する、いわゆる除湿暖房運転モードがある。このモードでは、上流側の車室内熱交換器を吸熱器として作用させ、下流側の車室内熱交換器を放熱器として作用させるように冷媒を流す。このモードの場合も、車室外熱交換器は吸熱器として作用するので霜が付着することになるが、特許文献1のように除霜のために強制的に冷房運転モードとした場合には下流側の車室内熱交換器で吸熱するため上述したように乗員が違和感を感じるという問題がある。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、車室外熱交換器を除霜する際に車室に吹き出す吹出空気の温度変化を小さくして乗員が違和感を感じにくくすることにある。
上記目的を達成するために、本発明では、車室外熱交換器の着霜を判定した際に冷房モードとすることなく車室外熱交換器に高圧冷媒を供給できるようにした。
第1の発明は、冷媒を圧縮する圧縮機と、車室内に配設される第1車室内熱交換器と、車室内において上記第1車室内熱交換器の空気流れ方向上流側に配設される第2車室内熱交換器と、車室外に配設される車室外熱交換器とを含むヒートポンプ装置と、
上記第1車室内熱交換器及び上記第2車室内熱交換器を収容するとともに、該第1車室内熱交換器及び該第2車室内熱交換器に空調用空気を送風する送風機を有し、調和空気を生成して車室に供給するように構成された車室内空調ユニットとを備えた車両用空調装置であって、
上記車室外熱交換器が吸熱器として作用した際に該車室外熱交換器に霜が付着しているか否かを判定する着霜判定手段と、
上記ヒートポンプ装置及び上記車室内空調ユニットを制御する空調制御装置とを備えており、
上記ヒートポンプ装置は、上記空調制御装置により、
上記第1車室内熱交換器及び上記第2車室内熱交換器を放熱器とし、上記車室外熱交換器を吸熱器として作用させる暖房運転モードと、
上記第1車室内熱交換器を放熱器とし、上記第2車室内熱交換器を吸熱器とし、上記車室外熱交換器を放熱器として作用させる冷房運転モードとを含む複数の運転モードに切り替えられ、
上記空調制御装置には、上記着霜判定手段が接続され、
上記空調制御装置は、
上記暖房運転モード時に上記着霜判定手段により上記車室外熱交換器が着霜していると判定された場合には、上記第1車室内熱交換器及び上記第2車室内熱交換器のうち、上記第1車室内熱交換器のみを放熱器としたまま、上記第2車室内熱交換器をバイパスして、上記第1車室内熱交換器、上記車室外熱交換器の順に高圧冷媒を導く除霜運転モードに切り替えるように構成されていることを特徴とするものである。
この構成によれば、暖房運転モードで第1車室内熱交換器及び第2車室内熱交換器が放熱器となるので、十分な暖房能力が得られる。暖房運転モードにあるときに車室外熱交換器が着霜した場合には、除霜運転モードとなり、圧縮機から吐出した高圧冷媒が車室外熱交換器に導かれるので、霜を溶かすことが可能になる。この除霜運転モードでは、第1車室内熱交換器が放熱器のままなので、車室内空調ユニットから吹き出す空気の温度変化は小さくて済む。
第1の発明によれば、暖房運転モード時に車室外熱交換器が着霜した場合に、第1車室内熱交換器を放熱器としたまま、車室外熱交換器に高圧冷媒を導くことができる。これにより、除霜運転に切り替わったときに車室に吹き出す吹出空気の温度変化を小さくすることができ、乗員が違和感を感じにくくすることができる。
実施形態1にかかる車両用空調装置の概略構成図である。 車両用空調装置のブロック図である。 下流側車室内熱交換器を空気流れ方向上流側から見た斜視図である。 車室外熱交換器の正面図である。 暖房運転モードにある場合の図1相当図である。 除湿暖房運転モードにある場合の図1相当図である。 冷房運転モードにある場合の図1相当図である。 極低外気時除霜運転モードにある場合の図1相当図である。 低外気時除霜運転モードにある場合の図1相当図である。 強除霜運転モードにある場合の図1相当図である。 空調制御装置による制御手順を示すフローチャートである。 暖房運転モードが選択された場合の制御手順を示すフローチャートである。 除湿暖房運転モードが選択された場合の制御手順を示すフローチャートである。 実施形態2にかかる図1相当図である。 実施形態2にかかる図5相当図である。 実施形態2にかかる図6相当図である。 実施形態2にかかる図7相当図である。 実施形態2にかかる図8相当図である。 極低外気時強除霜運転モードにある場合の図1相当図である。 実施形態2にかかる図9相当図である。 低外気時強除霜運転モードにある場合の図1相当図である。 実施形態3にかかる図1相当図である。 実施形態3にかかる図5相当図である。 実施形態3にかかる図8相当図である。 強除霜運転モードにある場合の図1相当図である。 実施形態3にかかる図7相当図である。 実施形態4にかかる図1相当図である。 実施形態4にかかる図8相当図である。 極低外気時強除霜運転モードにある場合の図1相当図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
(実施形態1)
図1は、本発明の実施形態1にかかる車両用空調装置1の概略構成図である。車両用空調装置1が搭載された車両は、走行用蓄電池及び走行用モーターを備えた電気自動車である。
車両用空調装置1は、ヒートポンプ装置20と、車室内空調ユニット21と、ヒートポンプ装置20及び車室内空調ユニット21を制御する空調制御装置22(図2に示す)とを備えている。
ヒートポンプ装置20は、冷媒を圧縮する電動コンプレッサ30と、車室内に配設される下流側車室内熱交換器(第1車室内熱交換器)31と、車室内において下流側車室内熱交換器31の空気流れ方向上流側に配設される上流側車室内熱交換器(第2車室内熱交換器)32と、車室外に配設される車室外熱交換器33と、アキュムレータ34と、これら機器30〜34を接続する主冷媒配管40〜43と、第1〜第3分岐冷媒配管44〜46とを備えている。
電動コンプレッサ30は、従来から周知の車載用のものであり、電動モーターによって駆動される。電動コンプレッサ30の回転数を変更することによって単位時間当たりの吐出量を変化させることができる。電動コンプレッサ30は、空調制御装置22に接続されてON及びOFFの切り替えと、回転数が制御されるようになっている。電動コンプレッサ30には、走行用蓄電池から電力が供給される。
下流側車室内熱交換器31は、図3に示すように、上側ヘッダタンク47と、下側ヘッダタンク48と、コア49とを備えている。コア49は、上下方向に延びるチューブ49aとフィン49bとを交互に左右方向(図3の左右方向)に配列して一体化したものであり、空調用空気がチューブ49a間を通過するようになっている。空調用空気の流れ方向を白抜きの矢印で示している。チューブ49aは、空気流れ方向に2列並んでいる。
空気流れ上流側のチューブ49a及び下流側のチューブ49aの上端部は、上側ヘッダタンク47に接続されて連通している。上側ヘッダタンク47の内部には、該上側ヘッダタンク47を空気流れ方向上流側と下流側とに仕切る第1仕切部47aが設けられている。第1仕切部47aよりも空気流れ方向上流側の空間が上流側のチューブ49aの上端に連通し、第1仕切部47aよりも空気流れ方向下流側の空間が下流側のチューブ49aの上端に連通している。
また、上側ヘッダタンク47の内部には、該上側ヘッダタンク47を左右方向に仕切る第2仕切部47bが設けられている。第1仕切部47aにおける第2仕切部47bよりも右側には、連通孔47eが形成されている。
上側ヘッダタンク47の左側面の空気流れ下流側には冷媒の流入口47cが形成され、また、上流側には冷媒の流出口47dが形成されている。
下側ヘッダタンク48の内部には、上側ヘッダタンク47の第1仕切部47aと同様に、空気流れ方向上流側と下流側とに仕切る仕切部48aが設けられている。仕切部48aよりも空気流れ方向上流側の空間が上流側のチューブ49aの下端に連通し、仕切部48aよりも空気流れ方向下流側の空間が下流側のチューブ49aの下端に連通している。
この下流側車室内熱交換器31は、上記のように構成したことで合計4つのパスを有している。すなわち、流入口47cから流入した冷媒は、まず、上側ヘッダタンク47の第1仕切部47aよりも空気流れ方向下流側で、かつ、第2仕切部47bよりも左側の空間R1に流入し、空間R1に連通するチューブ49a内を下へ向かって流れる。
その後、下側ヘッダタンク48の仕切部48aよりも空気流れ方向下流側の空間S1に流入して右側へ流れてチューブ49a内を上へ向かって流れた後、上側ヘッダタンク47の第1仕切部47aよりも空気流れ方向下流側で、かつ、第2仕切部47bよりも右側の空間R2に流入する。
次いで、空間R2内の冷媒は第1仕切部47aの連通孔47eを通り、上側ヘッダタンク47の第1仕切部47aよりも空気流れ方向上流側で、かつ、第2仕切部47bよりも右側の空間R3に流入し、空間R3に連通するチューブ49a内を下へ向かって流れる。
しかる後、下側ヘッダタンク48の仕切部48aよりも空気流れ方向上流側の空間S2に流入して左側へ流れてチューブ49a内を上へ向かって流れた後、上側ヘッダタンク47の第1仕切部47aよりも空気流れ方向上流側で、かつ、第2仕切部47bよりも左側の空間R4に流入し、流出口47dから外部へ流出する。
上流側車室内熱交換器32は、大きさが下流側車室内熱交換器31よりも大きいだけであり、下流側車室内熱交換器31と同様な構造を有しているので詳細な説明は省略する。
車室外熱交換器33は、車両の前部に設けられたモータルーム(エンジン駆動車両におけるエンジンルームに相当)において該モータルームの前端近傍に配設され、走行風が当たるようになっている。車室外熱交換器33は、図4に示すように、上側ヘッダタンク57と、下側ヘッダタンク58と、コア59とを備えている。コア59は、上下方向に延びるチューブ59aとフィン59bとを交互に左右方向に配列して一体化したものであり、空調用空気がチューブ59a間を通過するようになっている。
チューブ59aの上端部は上側ヘッダタンク57に接続されて連通している。また、チューブ59aの下端部は下側ヘッダタンク58に接続されて連通している。
下側ヘッダタンク58の内部には、該下側ヘッダタンク58の内部を左右方向に仕切る仕切部58aが設けられている。下側ヘッダタンク58の左側には冷媒が流入する流入管58bが設けられ、右側には冷媒が流出する流出管58cが設けられている。
従って、この車室外熱交換器33では、流入管58bから流入した冷媒は、下側ヘッダタンク58の仕切部58aよりも左側の空間T1に流入した後、該空間T1に連通するチューブ59aを上へ向かって流れた後、上側ヘッダタンク57に流入して右側へ流れてから、チューブ59aを下へ向かって流れる。その後、下側ヘッダタンク58の仕切部58aよりも右側の空間T2に流入した後、流出管58cから外部へ流出する。
図1に示すように、車両にはクーリングファン37が設けられている。このクーリングファン37は、ファンモーター38によって駆動され、車室外熱交換器33に空気を送風するように構成されている。ファンモーター38は、空調制御装置22に接続されてON及びOFFの切り替えと、回転数が制御されるようになっている。ファンモーター38にも走行用蓄電池から電力が供給される。尚、クーリングファン37は、例えば走行用インバータ等を冷却するためのラジエータに空気を送風することもできるものであり、空調の要求時以外にも作動させることが可能である。
アキュムレータ34は、主冷媒配管43の中途部において電動コンプレッサ30の吸入口近傍に配設されている。
一方、主冷媒配管40は、電動コンプレッサ30の吐出口と下流側車室内熱交換器31の冷媒流入口とを接続するものである。また、主冷媒配管41は、下流側車室内熱交換器31の冷媒流出口と車室外熱交換器33の冷媒流入口とを接続するものである。主冷媒配管42は、車室外熱交換器33の冷媒流出口と上流側車室内熱交換器32の冷媒流入口とを接続するものである。主冷媒配管43は、上流側車室内熱交換器32の冷媒流出口と電動コンプレッサ30の吸入口とを接続するものである。
また、第1分岐冷媒配管44は、主冷媒配管41から分岐しており、主冷媒配管42に接続されている。第2分岐冷媒配管45は、主冷媒配管41から分岐しており、主冷媒配管43に接続されている。第3分岐冷媒配管46は、主冷媒配管42から分岐しており、主冷媒配管43に接続されている。
また、ヒートポンプ装置20は、高圧側流路切替弁50、低圧側流路切替弁51、第1膨張弁(上流側減圧部)52、第2膨張弁(下流側減圧部)53、第1逆止弁54及び第2逆止弁55を備えている。
高圧側流路切替弁50及び低圧側流路切替弁51は電動タイプの三方弁で構成されており、空調制御装置22によって制御される。高圧側流路切替弁50は、主冷媒配管41の中途部に設けられており、第1分岐冷媒配管44が接続されている。低圧側流路切替弁51は、主冷媒配管43の中途部に設けられており、第3分岐冷媒配管46が接続されている。
第1膨張弁52及び第2膨張弁53は、電動タイプのものであり、流路を絞って冷媒を膨張させる膨張状態と、流路を開放して冷媒を膨張させずに流す非膨張状態とに切り替えられるようになっている。第1膨張弁52及び第2膨張弁53は空調制御装置22によって制御される。膨張状態では、空調負荷の状態に応じて開度が設定される。
第1膨張弁52は、主冷媒配管41の高圧側流路切替弁50よりも車室外熱交換器33側において、車室外熱交換器33よりも冷媒流れ方向上流側に配設されている。第2膨張弁53は、主冷媒配管42の第3分岐冷媒配管46よりも車室外熱交換器33側において、車室外熱交換器33よりも冷媒流れ方向下流側に配設されている。つまり、第2膨張弁53は、車室外熱交換器33と圧縮機30との間に配設されている。
第1逆止弁54は、主冷媒配管42に配設されており、主冷媒配管42の車室外熱交換器33側から上流側車室内熱交換器32側へ向けての冷媒を流れを許容し、逆方向への冷媒の流れを阻止するように構成されている。
第2逆止弁55は、第2分岐冷媒配管45に配設されており、第2分岐冷媒配管45の主冷媒配管43側から主冷媒配管41側へ向けての冷媒を流れを許容し、逆方向への冷媒の流れを阻止するように構成されている。
また、車室内空調ユニット21は、下流側車室内熱交換器31及び上流側車室内熱交換器32を収容するケーシング60と、ケーシング60に収容される空気加熱器61と、エアミックスドア(温度調節ドア)62と、エアミックスドア62を駆動するエアミックスドアアクチュエータ63と、吹出モード切替ドア64と、送風機65とを備えている。
送風機65は、車室内の空気(内気)と車室外の空気(外気)との一方を選択してケーシング60内に空調用空気として送風するためのものである。送風機65は、シロッコファン65aと、シロッコファン65aを回転駆動する送風モーター65bとを備えている。送風モーター65bは、空調制御装置22に接続されてON及びOFFの切り替えと、回転数が制御されるようになっている。送風モーター65bにも走行用蓄電池から電力が供給される。
ケーシング60は、車室内においてインストルメントパネル(図示せず)の内部に配設されている。ケーシング60には、デフロスタ吹出口60a、ベント吹出口60b及びヒート吹出口60cが形成されている。これら吹出口60a〜60cはそれぞれ吹出モード切替ドア64によって開閉される。吹出モード切替ドア64は、図示しないが、空調制御装置22に接続されたアクチュエータによって動作するようになっている。吹出モードとしては、例えば、デフロスタ吹出口60aに空調風を流すデフロスタモード、ベント吹出口60bに空調風を流すベントモード、ヒート吹出口60cに空調風を流すヒートモード、デフロスタ吹出口60a及びヒート吹出口60cに空調風を流すデフ/ヒートモード、ベント吹出口60b及びヒート吹出口60cに空調風を流すバイレベルモード等である。
ケーシング60内に導入された空調用空気は、全量が上流側車室内熱交換器32を通過するようになっている。
エアミックスドア62は、ケーシング60内において、上流側車室内熱交換器32と下流側車室内熱交換器31との間に収容されている。エアミックスドア62は、上流側車室内熱交換器32を通過した空気のうち、下流側車室内熱交換器31を通過する空気量を変更することによって、上流側車室内熱交換器32を通過した空気と、下流側車室内熱交換器31を通過した空気との混合割合を決定して吹出空気の温度調節を行うためのものである。
ケーシング60における下流側車室内熱交換器31の下流側には、上記空気加熱器61が収容されている。空気加熱器61は、例えば電流を流すことによって発熱するPTC素子を用いたPTCヒータで構成することができる。空気加熱器61は空調制御装置22に接続され、ON及びOFFの切り替えと、発熱量(電力供給量)が制御されるようになっている。空気加熱器61にも走行用蓄電池から電力が供給される。
さらに、車両用空調装置1は、外気温度センサ70と、車室外熱交換器温度センサ71と、高圧側冷媒圧力検出センサ72と、上流側車室内熱交換器温度センサ73と、下流側車室内熱交換器温度センサ74と、吹出空気温度センサ75とを備えている。これらセンサ70〜75は空調制御装置22に接続されている。
外気温度センサ70は、車室外熱交換器33よりも空気流れ方向上流側に配設されており、車室外熱交換器33に流入する前の外部空気の温度(外気温度TG)を検出するためのものである。車室外熱交換器温度センサ71は、車室外熱交換器33の空気流れ方向下流側の面に配設されており、車室外熱交換器33の表面温度を検出するためのものである。
高圧側冷媒圧力検出センサ72は、主冷媒配管40における電動コンプレッサ30の吐出口側に配設されており、ヒートポンプ装置20の高圧側の冷媒圧力を検出するためのものである。
上流側車室内熱交換器温度センサ73は、上流側車室内熱交換器32の空気流れ方向下流側に配設されており、上流側車室内熱交換器32の表面温度を検出するためのものである。下流側車室内熱交換器温度センサ74は、下流側車室内熱交換器31の空気流れ方向下流側に配設されており、下流側車室内熱交換器31の表面温度を検出するためのものである。
吹出空気温度センサ75は、ケーシング60から吹き出す吹出空気の温度を検出するためのものであり、車室の所定箇所に配設されている。
空調制御装置22は、例えば、乗員による設定温度や外気温、車室内温度、日射量等の情報に基づいてヒートポンプ装置20の運転モードを設定し、送風機65の風量やエアミックスドア62の開度を設定する。そして、その設定した運転モードとなるようにヒートポンプ装置20を制御し、さらに、設定風量や設定開度となるように送風機65及びエアミックスドアアクチュエータ63を制御するものであり、周知の中央演算装置やROM、RAM等によって構成されている。また、空調の負荷に応じて電動コンプレッサ30やファンモーター38を制御し、また、必要に応じて空気加熱器61も制御する。
空調制御装置22は、通常のオートエアコン制御と同様に後述するメインルーチンにおいて、ヒートポンプ装置20の運転モードの切り替え、送風機65の風量、エアミックスドア62の開度、吹出モードの切り替え、電動コンプレッサ30、送風モーター65bの制御を行い、例えば、ファンモーター38は、基本的には電動コンプレッサ30の作動中には作動するが、電動コンプレッサ30が停止状態であっても、走行用インバーター等の冷却が必要な場合には作動する。
ヒートポンプ装置20の運転モードは、暖房運転モード、除湿暖房運転モード、冷房運転モード、極低外気時除霜運転モード(第1除霜運転モード)、低外気時除霜運転モード(第2除霜運転モード)の5種類ある。
暖房運転モードは、例えば外気温度が0℃よりも低い場合(極低外気時)に選択される運転モードである。暖房運転モードでは、下流側車室内熱交換器31及び上流側車室内熱交換器32を放熱器とし、車室外熱交換器33を吸熱器として作用させる。
すなわち、図5に示すように、高圧側流路切替弁50は、下流側車室内熱交換器31から流出した冷媒を上流側車室内熱交換器32の流入口に流入させるように流路を切り替える。また、低圧側流路切替弁51は、車室外熱交換器33から流出した冷媒をアキュムレータ34に流入させるように流路を切り替える。第1膨張弁52は膨張状態にし、第2膨張弁53は非膨張状態にする。
この状態で電動コンプレッサ30を作動させると、電動コンプレッサ30から吐出された高圧冷媒が主冷媒配管40を流れて下流側車室内熱交換器31に流入し、下流側車室内熱交換器31を循環する。下流側車室内熱交換器31を循環した冷媒は、主冷媒配管41から第1分岐冷媒配管44を流れて上流側車室内熱交換器32に流入し、上流側車室内熱交換器32を循環する。つまり、下流側車室内熱交換器31及び上流側車室内熱交換器32に高温状態の冷媒が流入するので、空調用空気は、下流側車室内熱交換器31及び上流側車室内熱交換器32の両方によって加熱されることになり、よって、高い暖房能力が得られる。
上流側車室内熱交換器32を循環した冷媒は、主冷媒配管43から第2分岐冷媒配管45を通って主冷媒配管41に流入する。主冷媒配管41に流入した冷媒は、第1膨張弁52を通過することで膨張し、車室外熱交換器33に流入する。車室外熱交換器33に流入した冷媒は、外部空気から吸熱して主冷媒配管42、第3分岐冷媒配管46を順に通ってアキュムレータ34を経て電動コンプレッサ30に吸入される。
図6に示す除湿暖房運転モードは、例えば外気温度が0℃以上25℃以下の場合に選択される運転モードである。除湿暖房運転モードでは、下流側車室内熱交換器31を放熱器とし、上流側車室内熱交換器32及び車室外熱交換器33を吸熱器として作用させる。
すなわち、高圧側流路切替弁50は、下流側車室内熱交換器31から流出した冷媒を上流側車室内熱交換器32の流入口に流入しないように、第1膨張弁52側へ流すように流路を切り替える。また、低圧側流路切替弁51は、上流側車室内熱交換器32から流出した冷媒をアキュムレータ34に流入させるように流路を切り替える。第1膨張弁52は膨張状態にし、第2膨張弁53は非膨張状態にする。
この状態で電動コンプレッサ30を作動させると、電動コンプレッサ30から吐出された高圧冷媒が主冷媒配管40を流れて下流側車室内熱交換器31に流入し、下流側車室内熱交換器31を循環する。下流側車室内熱交換器31を循環した冷媒は、主冷媒配管41を通って第1膨張弁52を通過することで膨張し、車室外熱交換器33に流入する。車室外熱交換器33に流入した冷媒は、外部空気から吸熱して主冷媒配管42を通って上流側車室内熱交換器32に流入し、上流側車室内熱交換器32を循環して空調用空気から吸熱する。上流側車室内熱交換器32を循環した冷媒は、主冷媒配管43を通ってアキュムレータ34を経て電動コンプレッサ30に吸入される。
図7に示す冷房運転モードは、例えば外気温度が25℃よりも高い場合に選択される運転モードである。冷房運転モードでは、下流側車室内熱交換器31を放熱器とし、上流側車室内熱交換器32を吸熱器とし、車室外熱交換器33を放熱器として作用させる。
すなわち、高圧側流路切替弁50は、下流側車室内熱交換器31から流出した冷媒を上流側車室内熱交換器32の流入口に流入しないように、第1膨張弁52側へ流すように流路を切り替える。また、低圧側流路切替弁51は、上流側車室内熱交換器32から流出した冷媒をアキュムレータ34に流入させるように流路を切り替える。第1膨張弁52は非膨張状態にし、第2膨張弁53は膨張状態にする。
この状態で電動コンプレッサ30を作動させると、電動コンプレッサ30から吐出された高圧冷媒が主冷媒配管40を流れて下流側車室内熱交換器31に流入し、下流側車室内熱交換器31を循環する。下流側車室内熱交換器31を循環した冷媒は、主冷媒配管41を通って膨張することなく、車室外熱交換器33に流入する。車室外熱交換器33に流入した冷媒は放熱して主冷媒配管42を通って第2膨張弁53を通過することで膨張し、上流側車室内熱交換器32に流入する。上流側車室内熱交換器32に流入した冷媒は、上流側車室内熱交換器32を循環して空調用空気から吸熱する。上流側車室内熱交換器32を循環した冷媒は、主冷媒配管43を通ってアキュムレータ34を経て電動コンプレッサ30に吸入される。
図8に示す極低外気時除霜運転モードは、暖房運転モード時に車室外熱交換器33に霜が付着した場合に選択される運転モードである。暖房運転モードでは、上述のように下流側車室内熱交換器31及び上流側車室内熱交換器32が放熱器となっている。極低外気時除霜運転モードでは、下流側車室内熱交換器31及び上流側車室内熱交換器32を放熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、高圧側流路切替弁50及び低圧側流路切替弁51は、暖房運転モードと同じ状態にしておき、第1膨張弁52を非膨張状態にし、第2膨張弁53を膨張状態にする。
第1膨張弁52を非膨張状態にすることで、下流側車室内熱交換器31から流出した高温の冷媒はそのまま車室外熱交換器33に流入することになるので、車室外熱交換器33の表面温度が上昇して霜が溶ける。図8に示す極低外気時除霜運転モードにおいて、第2膨張弁53を非膨張状態にしてもよい。
図9に示す低外気時除霜運転モードは、除湿暖房運転モード時に車室外熱交換器33に霜が付着した場合に選択される運転モードである。除湿暖房運転モードでは、上述のように下流側車室内熱交換器31が放熱器となり、上流側車室内熱交換器32が吸熱器となっている。低外気時除霜運転モードでは、下流側車室内熱交換器31を放熱器とし、かつ、上流側車室内熱交換器32を吸熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、高圧側流路切替弁50及び低圧側流路切替弁51は、除湿暖房運転モードと同じ状態にしておき、第1膨張弁52を非膨張状態にし、第2膨張弁53を膨張状態にする。
第1膨張弁52を非膨張状態にすることで、下流側車室内熱交換器31から流出した高温の冷媒はそのまま車室外熱交換器33に流入することになるので、車室外熱交換器33の表面温度が上昇して霜が溶ける。
図10に示すモードは、極低外気時及び低外気時に図9に示す除霜運転モードよりも強い除霜が必要な場合に選択される運転モードであり、極低外気時強除霜運転モード、低外気時強除霜運転モードである。強除霜運転モードでは、上流側車室内熱交換器32に冷媒を流さず、下流側車室内熱交換器31を放熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、高圧側流路切替弁50は、下流側車室内熱交換器31から流出した冷媒を上流側車室内熱交換器32の流入口に流入しないように、第1膨張弁52側へ流すように流路を切り替える。低圧側流路切替弁51は、暖房運転モードと同じ状態にしておき、第1膨張弁52及び第2膨張弁53を非膨張状態にする。
強除霜運転モードでは、電動コンプレッサ30から吐出した冷媒を上流側車室内熱交換器32に流さないようにしたので、上流側車室内熱交換器32での放熱がなく、より高温の冷媒を車室外熱交換器33に供給できる。これにより、強力な除霜運転が可能となる。
暖房運転モード、除湿暖房運転モード、冷房運転モード、極低外気時除霜運転モード、低外気時除霜運転モード、強除霜運転モードのいずれの運転モードであっても、下流側車室内熱交換器31は放熱器として作用する。
また、いずれの運転モードであっても、車室外熱交換器33に対して冷媒を流入させる冷媒配管は主冷媒配管41であり、また、車室外熱交換器33から冷媒を流出させる冷媒配管は主冷媒配管42である。従って、車室外熱交換器33では、常に同一方向に冷媒が流れることなり、冷媒が逆方向にも流れる構成のヒートポンプ装置と比較した場合に、冷媒の分流性について同方向の分流性をのみを考慮した車室外熱交換器33とすればよく、車室外熱交換器33の熱交換性能を比較的容易に高めることができる。
また、いずれの運転モードであっても、下流側車室内熱交換器31の空気流れ方向下流側のチューブ49aに冷媒を流通させた後、上流側のチューブ49aに冷媒を流通させてから排出するようにできる。これにより、下流側車室内熱交換器31の冷媒の流れを外部空気の流れ方向と対向させる、対向流配置となるように下流側車室内熱交換器31を配置することができる。また、いずれの運転モードであっても、同様に、上流側車室内熱交換器32の空気流れ方向下流側のチューブ(図示せず)に冷媒を流通させた後、上流側のチューブ(図示せず)に冷媒を流通させてから排出するようにできるので、上流側車室内熱交換器32も対向流配置が可能となる。
下流側車室内熱交換器31を対向流配置とすることで、特に暖房モードにおいてより高温の冷媒が下流側車室内熱交換器31における空気流れ方向下流側を流れることになるので、効率よく暖房を行うことができ、暖房性能が向上する。
また、上流側車室内熱交換器32を対向流配置とすることで、特に冷房モードにおいてより低温の冷媒が上流側車室内熱交換器32における空気流れ方向下流側を流れることになるので、効率よく冷房を行うことができ、冷房性能が向上する。
図2に示すように、空調制御装置22は、車室外熱交換器33に霜が付着しているか否かを判定する着霜判定部22aを有している。着霜判定部22aは、外気温度センサ70で検出された外気温度TGから、車室外熱交換器温度センサ71で検出された車室外熱交換器71の表面温度を差し引いて、その値が例えば20(℃)よりも大きな値である場合には、着霜していると判定する。すなわち、車室外熱交換器33に霜が付着していると、車室外熱交換器33において冷媒が吸熱できず、冷媒温度が上昇しないことを利用して着霜判定を行っている。従って、上記の20という値は、車室外熱交換器33が着霜しているか否かを判定できる値であればよく、他の値であってもよい。また、着霜判定部22aの構成としては、例えばタイマーを使用し、暖房運転を開始してから所定時間経過した時点で車室外熱交換器33が着霜していると判定するようにしてもよい。
次に、図11〜図13に基づいて空調制御装置22による制御手順を説明する。図10はメインルーチンを示すものである。スタート後のステップSA1では外気温度センサ70で検出された外気温度TGを読み込む。ステップSA1に続くステップSA2では、外気温度TGが0℃よりも低いか、0℃以上25℃以下であるか、25℃よりも高いか判定する。
ステップSA2で外気温度TGが0℃よりも低いと判定された場合には、ステップSA3に進み、ヒートポンプ装置20を暖房運転モードに切り替えてメインルーチンのエンドに進む。暖房運転モードでは、車室内空調ユニット21の吹出モードは主にヒートモードが選択される。また、吹出空気の温度が目標温度となるように、エアミックスドア62を動作させる。
ステップSA2で外気温度TGが0℃以上25℃以下と判定された場合には、ステップSA4に進み、ヒートポンプ装置20を除湿暖房運転モードに切り替えてメインルーチンのエンドに進む。ステップSA2で外気温度TGが25℃よりも高いと判定された場合には、ステップSA5に進み、ヒートポンプ装置20を冷房運転モードに切り替えてメインルーチンのエンドに進む。
ステップSA3では、図12に示す暖房運転モード選択時のサブルーチン制御が行われる。この制御は、ステップSB1において車室外熱交換器33に霜が付着しているか否かを判定する。これは着霜判定部22aで行われ、外気温度TGから車室外熱交換器71の表面温度を差し引いたときの値が20よりも大きな値である場合には着霜していると判定してステップSB2に進む。一方、外気温度TGから車室外熱交換器71の表面温度を差し引いたときの値が20以下である場合には着霜していないと判定してメインルーチンに戻る。
ステップSB2では、極低外気時除霜運転モードに切り替える。電動コンプレッサ30は作動させたままで運転モードを切り替える。
暖房運転モード(図5に示す)から極低外気時除霜運転モード(図8に示す)に切り替える際には、ヒートポンプ装置20の第1膨張弁52を膨張状態から非膨張状態に切り替える。これにより、車室外熱交換器33に高圧冷媒が供給されて放熱器として作用するので車室外熱交換器33の表面温度が上昇し、車室外熱交換器33の表面の霜が溶けていく。このとき、第1膨張弁52による減圧度合いを、暖房運転モード時に比べて低くなるように制御してもよい。また、第2膨張弁53による減圧度合いを、暖房運転モード時に比べて低くなるように制御してもよい。
また、極低外気時除霜運転モードに切り替える際に第1膨張弁52を非膨張状態に切り替えるだけなので、暖房運転モード時に冷媒が流れている冷媒配管と同じ冷媒配管に冷媒を流したまま極低外気時除霜運転モードを行うことができる。よって、冷媒配管が変わることに起因する冷媒の無駄な放熱や吸熱が起こらない。
極低外気時除霜運転モードに切り替えると、車室外熱交換器33が放熱器となるので、下流側車室内熱交換器31や上流側車室内熱交換器32に流入する冷媒の温度が低下する懸念がある。
そこで、本実施形態では、ステップSB2で極低外気時除霜運転モードに切り替えた後、ステップSB3に進み、車室内空調ユニット21から車室内へ吹き出す吹出空気の温度を補正する吹出空気補正制御を行う。
具体的には、エアミックスドア制御(温度調節ドア制御)、コンプレッサ制御(圧縮機制御)、空気加熱器制御、送風機制御の4つが行われる。
エアミックスドア制御は、エアミックスドア62の動作を、吹出空気の温度が上昇する側に補正する制御である。すなわち、下流側車室内熱交換器31が上流側車室内熱交換器32よりも冷媒流れ方向で上流側に位置しているので、下流側車室内熱交換器31には、上流側車室内熱交換器32に比べて高温の冷媒が流通しており、下流側車室内熱交換器31の表面温度の方が高くなっている。この下流側車室内熱交換器31を通過する空気量が増えるようにエアミックスドア62を動作させる。
コンプレッサ制御は、極低外気時除霜運転モードにおける電動コンプレッサ30の吐出量を暖房運転モード時の吐出量に比べて増加させる制御である。電動コンプレッサ30の吐出量を増加させることによって下流側車室内熱交換器31及び上流側車室内熱交換器32に流入する冷媒の温度が上昇するので、吹出空気の温度低下を抑制できる。
コンプレッサ制御では、高圧側冷媒圧力検出センサ72で検出されたヒートポンプ装置20の高圧側の冷媒圧力に基づいて電動コンプレッサ30の吐出量の上限を設定する。具体的には、下流側車室内熱交換器31及び上流側車室内熱交換器32内の圧力が異常に上昇しないように、高圧側の冷媒圧力が所定値まで高まった場合に電動コンプレッサ30の吐出量を抑制する。
また、コンプレッサ制御では、高圧側冷媒圧力検出センサ72により検出された冷媒圧力と、上流側車室内熱交換器温度検出センサ73で検出された上流側車室内熱交換器32の表面温度とに基づいて電動コンプレッサ30の吐出量の上限を設定する制御を行ってもよい。この制御では、上流側車室内熱交換器32内の圧力が異常に上昇しないように、高圧側の冷媒圧力が所定値まで高まった場合に電動コンプレッサ30の吐出量を抑制するとともに、上流側車室内熱交換器32の表面温度が霜の付着する恐れがある温度まで低下しないように電動コンプレッサ30の吐出量を制御する。
空気加熱器制御は、空気加熱器61を作動させて空調用空気を暖める制御である。空気加熱器61の発熱量は、外気温度、上流側車室内熱交換器温度センサ73で検出された上流側車室内熱交換器32の表面温度、下流側車室内熱交換器温度センサ74で検出された下流側車室内熱交換器31の表面温度等によって変更することが可能である。
送風機制御では、送風量が減少するように送風機65を制御する。具体的には、極低外気時除霜運転モードにおける送風機65の送風量を、暖房運転モード時の送風量よりも減少させる。これにより、吹出空気の温度低下を抑制することが可能になる。
上記エアミックスドア制御、コンプレッサ制御、空気加熱器制御、送風機制御は、この順に時間的に優先順位を付けて行われるが、例えば、エアミックスドア制御のみで吹出空気の温度低下を抑制できる場合には、エアミックスドア制御のみ行ってもよい。
また、同様に、エアミックスドア制御とコンプレッサ制御のみ行ってもよいし、エアミックスドア制御、コンプレッサ制御及び空気加熱器制御のみ行ってもよい。
エアミックスドア62の制御は消費電力が少ないという利点がある。エアミックスドア制御を最優先させているので、車両の電力消費が抑制される。
また、コンレッサ制御の優先順位を高めているので、電動コンプレッサ30の吐出量を変化させることによる吹出空気温度の調整をきめ細かく行うことが可能になる。さらに、空気加熱器制御の優先順位を下げていることで、空気加熱器61を作動させることによる電力消費を抑制することが可能になる。また、送風機制御の優先順位を最も下げていることで、吹出空気温度が多少低下した場合にも乗員が違和感を感じにくくなるという利点がある。このように時間的に優先順位をつけているので、消費電力を抑制しながら、乗員が違和感を感じにくくすることができる。
尚、エアミックスドア制御、コンプレッサ制御、空気加熱器制御、送風機制御のうち、任意の2つ以上の制御を行うように構成してもよい。この場合も優先順位は上記したとおりに設定するのが好ましい。
上記のようにして吹出空気補正制御を行った後、ステップSB4に進み、車室外熱交換器33の除霜が完了したか否かを判定する。この除霜判定としては、例えばタイマを用い、極低外気時除霜運転モードが開始されてから経過した時間が所定時間(例えば1分)経過した場合に、除霜が完了したと判定してもよいし、上記した外気温度TGと車室外熱交換器33の表面温度との差に基づいて判定してもよい。
ステップSB4においてNOと判定されて除霜が完了していない場合には、ステップSB2に戻って極低外気時除霜運転を継続する。ステップSB4においてYESと判定されて除霜が完了している(完了していると推定される)場合には、ステップSB5に進む。
ステップSB5では、暖房運転モードに復帰する。すなわち、ヒートポンプ装置20の非膨張状態にある第1膨張弁52を膨張状態に切り替える。このとき、電動コンプレッサ30は作動させたままにしておく。
極低外気時除霜運転モードから暖房運転モードに切り替える際に第1膨張弁52を膨張状態に切り替えるだけなので、極低外気時除霜運転モード時に冷媒が流れている冷媒配管と同じ冷媒配管に冷媒を流したまま暖房運転モードに復帰できる。よって、冷媒配管が変わることに起因する冷媒の無駄な放熱や吸熱が起こらない。
暖房モードに復帰した後、ステップSB6に進み、ステップSB3で行った吹出空気温度補正制御を終了させる。このステップSB6では、送風機制御の終了、空気加熱器制御の終了、コンプレッサ制御の終了、エアミックスドア制御の終了の順で時間的に優先順位を付けて行う。
送風機制御の終了を最優先で行うことで、吹出空気温度が多少低下している場合に早期に終了させることが可能になり、乗員が違和感を感じにくくなる。また、空気加熱器制御の終了の優先順位を高めているので、電力消費を抑制することが可能になる。また、エアミックスドア制御の終了の優先順位を最も下げていることで、消費電力を抑制しながら乗員の快適性を維持することが可能になる。
ステップSB6を経た後、メインルーチンに戻る。
また、図11に示すメインルーチンにおいてステップSA4に進んで除湿暖房運転モードが選択された場合には、図13に示す除湿暖房運転モードのサブルーチン制御が行われる。この制御は、ステップSC1において着霜判定を行う。これは暖房運転モードのステップSB1と同じである。車室外熱交換器33に霜が付着していない場合にはメインルーチンに戻り、霜が付着している場合には、ステップSC2に進み、低外気時強除霜運転モードに切り替える。このとき、電動コンプレッサ30は作動させたままにしておく。
除湿暖房運転モード(図6に示す)から低外気時強除霜運転モード(図10に示す)に切り替える際には、ヒートポンプ装置20の第1膨張弁52を膨張状態から非膨張状態に切り替える。これにより、車室外熱交換器33に高圧冷媒が供給されて放熱器として作用するので車室外熱交換器33の表面温度が上昇し、車室外熱交換器33の表面の霜が溶けていく。
また、低外気時強除霜運転モードに切り替える際に第1膨張弁52を非膨張状態に切り替えるだけなので、除湿暖房運転モード時に冷媒が流れている冷媒配管と同じ冷媒配管に冷媒を流したまま低外気時強除霜運転モードを行うことができる。よって、冷媒配管が変わることに起因する冷媒の無駄な放熱や吸熱が起こらない。
低外気時強除霜運転モードに切り替えると、車室外熱交換器33が放熱器となるので、下流側車室内熱交換器31や上流側車室内熱交換器32に流入する冷媒の温度が低下する懸念がある。
そこで、本実施形態では、ステップSC3において極低外気時除霜運転モードのステップSB3と同様に吹出空気補正制御を行う。
吹出空気補正制御を行った後、ステップSC4に進み、吹出空気温度の補正が完了した否かを判定する。吹出空気温度の補正が完了した場合には、YESと判定されてステップSC6に進み、車室外熱交換器33の除霜が完了したか否かを判定する。ステップSC4で吹出空気温度の補正が完了していない場合には、NOと判定されてステップSC5に進み、低外気時除霜運転モードを選択し、低外気時強除霜運転モードよりも弱い除霜運転を行う。その後、ステップSC6に進み、車室外熱交換器33の除霜が完了したか否かを判定する。ステップSC6は、ステップSB4と同様である。
ステップSC6においてNOと判定されて除霜が完了していない場合には、ステップSC2に戻る。ステップSC6においてYESと判定されて除霜が完了している(完了していると推定される)場合には、ステップSC7に進む。
ステップSC7では、除湿暖房運転モードに復帰する。すなわち、ヒートポンプ装置20の非膨張状態にある第1膨張弁52を膨張状態に切り替える。このとき、電動コンプレッサ30は作動させたままにしておく。
低外気時除霜運転モードから除湿暖房運転モードに切り替える際に第1膨張弁52を膨張状態に切り替えるだけなので、低外気時除霜運転モード時に冷媒が流れている冷媒配管と同じ冷媒配管に冷媒を流したまま除湿暖房運転モードに復帰できる。よって、冷媒配管が変わることに起因する冷媒の無駄な放熱や吸熱が起こらない。
除湿暖房モードに復帰した後、ステップSC8に進み、ステップSC3で行った吹出空気温度補正制御を終了させる。このステップSC8では、極低外気時除霜運転モードのステップSB6と同様な制御を行う。ステップSC8を経た後、メインルーチンに戻る。
以上説明したように、この実施形態1にかかる車両用空調装置1によれば、暖房運転モード時に車室外熱交換器33が着霜した場合に、下流側車室内熱交換器31及び上流側車室内熱交換器32を放熱器としたまま、車室外熱交換器33に高圧冷媒を導くようにし、また、除湿暖房運転モード時に車室外熱交換器33が着霜した場合には、下流側車室内熱交換器31を放熱器とし、かつ、上流側車室内熱交換器32を吸熱器としたまま、車室外熱交換器33に高圧冷媒を導くことができる。これにより、除霜運転に切り替わったときに車室に吹き出す吹出空気の温度変化を小さくすることができ、乗員が違和感を感じにくくすることができる。
また、冷媒配管を変えることなく暖房運転モードと極低外気時除霜運転モードとの切り替え、除湿暖房運転モードと低外気時除霜運転モードとの切り替えを行うができるので、冷媒の無駄な放熱や吸熱が起こらず、除霜運転を効率よく行うことができる。
また、電動コンプレッサ30を作動させたまま、暖房運転モードと極低外気時除霜運転モードとの切り替え、除湿暖房運転モードと低外気時除霜運転モードとの切り替えを行うができるので、各運転モードへの切替後に直ちに運転を開始でき、乗員の快適性をより一層向上できる。
また、ステップSB3及びステップSC3において吹出空気温度補正制御を行うようにしたことで、極低外気時除霜運転モード及び低外気時除霜運転モードへ切り替わった際に車室への吹出空気温度の低下を抑制できるので、乗員の快適性をより一層向上できる。
また、極低外気時除霜運転モード及び低外気時除霜運転モードへ切り替える場合に電動コンプレッサ30の吐出量の上限を設定することで、下流側車室内熱交換器31及び上流側車室内熱交換器32内の過剰な圧力上昇を抑制でき、ヒートポンプ装置20の信頼性を高めることができる。
また、極低外気時除霜運転モード及び低外気時除霜運転モードへ切り替える場合に電動コンプレッサ30の吐出量を制御することで、下流側車室内熱交換器31内の過剰な圧力上昇を抑制してヒートポンプ装置20の信頼性を高めることができるとともに、上流側車室内熱交換器32に霜が発生しないようにして高い空調性能を得ることができる。
尚、上記実施形態では、ステップSB3及びステップSC3において吹出空気温度補正制御を行うようにしているが、吹出空気温度補正制御は省略してもよい。
また、ステップSB1及びステップSC1の着霜判定は、霜を直接検出するセンサを用いて行ってもよい。
また、上記実施形態では、上記ヒートポンプ装置20の高圧側流路切替弁50及び低圧側流路切替弁51の両方を三方弁で構成しているが、いずれか一方または両方を2つの開閉弁を組み合わせ構成してもよく、流路の切替手段は特に限定されない。
(実施形態2)
図14〜図21は、本発明の実施形態2にかかる車両用空調装置1の概略構成図である。実施形態2の車両用空調装置1は、冷媒配管の取り回しが実施形態1のもの異なっており、車室内空調ユニット21の構成は実施形態1のものと同様である。以下、実施形態1と異なる部分について詳細に説明する。
実施形態2では、主冷媒配管40〜43は、実施形態1と同様に構成されている。実施形態2では、第1〜第3分岐冷媒配管81〜83が設けられている。
第1分岐冷媒配管81は、主冷媒配管41の下流側車室内熱交換器31側から分岐しており、主冷媒配管42に接続されている。第2分岐冷媒配管82は、主冷媒配管41の車室外熱交換器33側から分岐しており、主冷媒配管43に接続されている。第3分岐冷媒配管83は、主冷媒配管42から分岐しており、主冷媒配管43に接続されている。
ヒートポンプ装置20は、第1膨張弁52、第2膨張弁53及び第1〜6開閉弁91〜96を備えてている。
第1膨張弁52及び第2膨張弁53は、実施形態1と同様に構成されている。第1膨張弁52は、第1分岐冷媒配管81の中途部に配設されている。第2膨張弁53は、主冷媒配管42の中途部において、車室外熱交換器33と第3分岐冷媒配管83との間に配設されている。
第1〜6開閉弁91〜96は電動タイプのものであり、空調制御装置22により制御される。第1開閉弁91は、主冷媒配管41の中途部において、第1分岐冷媒配管81と車室外熱交換器33との間に配設されている。第2開閉弁92は、主冷媒配管42の中途部において、第3分岐冷媒配管83と上流側車室内熱交換機32との間に配設されている。第3開閉弁93は、第1分岐冷媒配管81の中途部に配設されている。第4冷媒配管94は、主冷媒配管43の中途部において、第2分岐冷媒配管82と第3分岐冷媒配管83との間に配設されている。第5開閉弁95は、第2分岐冷媒配管82の中途部に配設されている。第6開閉弁96は、第3分岐冷媒配管83の中途部に配設されている。
実施形態2のヒートポンプ装置20の運転モードも、暖房運転モード、除湿暖房運転モード、冷房運転モード、極低外気時除霜運転モード、低外気時除霜運転モードの5種類ある。
図15に示す暖房運転モードでは、下流側車室内熱交換器31及び上流側車室内熱交換器32を放熱器とし、車室外熱交換器33を吸熱器として作用させる。
すなわち、第1開閉弁91、第2開閉弁92、第4開閉弁94を閉じ、第3開閉弁93、第5開閉弁95、第6開閉弁96を開く。第1膨張弁52は非膨張状態にし、第2膨張弁53は膨張状態にする。
この状態で電動コンプレッサ30を作動させると、電動コンプレッサ30から吐出された高圧冷媒が主冷媒配管40を流れて下流側車室内熱交換器31に流入し、下流側車室内熱交換器31を循環する。下流側車室内熱交換器31を循環した冷媒は、主冷媒配管41から第1分岐冷媒配管81を流れて上流側車室内熱交換器32に流入し、上流側車室内熱交換器32を循環する。
上流側車室内熱交換器32を循環した冷媒は、主冷媒配管43から第3分岐冷媒配管83を通って主冷媒配管42に流入する。主冷媒配管42に流入した冷媒は、第2膨張弁53を通過することで膨張し、車室外熱交換器33に流入する。車室外熱交換器33に流入した冷媒は、外部空気から吸熱して主冷媒配管41、第2分岐冷媒配管82を順に通ってアキュムレータ34を経て電動コンプレッサ30に吸入される。
図16に示す除湿暖房運転モードでは、下流側車室内熱交換器31を放熱器とし、上流側車室内熱交換器32及び車室外熱交換器33を吸熱器として作用させる。
すなわち、暖房運転モードと同様に、第1開閉弁91、第2開閉弁92、第4開閉弁94を閉じ、第3開閉弁93、第5開閉弁95、第6開閉弁96を開く。そして、第1膨張弁52は膨張状態にし、第2膨張弁53は非膨張状態にする。
この状態で電動コンプレッサ30を作動させると、電動コンプレッサ30から吐出された高圧冷媒が主冷媒配管40を流れて下流側車室内熱交換器31に流入し、下流側車室内熱交換器31を循環する。下流側車室内熱交換器31を循環した冷媒は、主冷媒配管41を通って第1分岐冷媒配管81を通る。そして、第1膨張弁52を通過することで膨張し、上流側車室内熱交換器32に流入する。上流側車室内熱交換器32を循環した冷媒は、主冷媒配管42、第3分岐冷媒配管83、主冷媒配管42を通って車室外熱交換器33に流入する。車室外熱交換器33を循環した冷媒は、主冷媒配管41から第2分岐冷媒配管82、主冷媒配管43を順に通ってアキュムレータ34を経て電動コンプレッサ30に吸入される。
図17に示す冷房運転モードでは、下流側車室内熱交換器31を放熱器とし、上流側車室内熱交換器32を吸熱器とし、車室外熱交換器33を放熱器として作用させる。
すなわち、第1開閉弁91、第2開閉弁92、第4開閉弁94を開き、第3開閉弁93、第5開閉弁95、第6開閉弁96を閉じる。そして、第2膨張弁53は膨張状態にする。
この状態で電動コンプレッサ30を作動させると、電動コンプレッサ30から吐出された高圧冷媒が主冷媒配管40を流れて下流側車室内熱交換器31に流入し、下流側車室内熱交換器31を循環する。下流側車室内熱交換器31を循環した冷媒は、主冷媒配管41を通って、車室外熱交換器33に流入する。車室外熱交換器33を循環した冷媒は主冷媒配管42を通って第2膨張弁53を通過することで膨張し、上流側車室内熱交換器32に流入する。上流側車室内熱交換器32に流入した冷媒は、上流側車室内熱交換器32を循環する。上流側車室内熱交換器32を循環した冷媒は、主冷媒配管43を通ってアキュムレータ34を経て電動コンプレッサ30に吸入される。
図18に示す極低外気時除霜運転モードでは、下流側車室内熱交換器31及び上流側車室内熱交換器32を放熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、第1〜第6開閉弁91〜96の開閉状態は暖房運転モードのまま、第2膨張弁53を非膨張状態にする。
第2膨張弁53を非膨張状態にすることで、上流側車室内熱交換器32から流出した高温の冷媒はそのまま車室外熱交換器33に流入することになるので、車室外熱交換器33の表面温度が上昇して霜が溶ける。
図19に示す極低外気時強除霜運転モードは、極低外気時に図18に示す除霜運転モードよりも強い除霜が必要な場合に選択される運転モードである。極低外気時強除霜運転モードでは、上流側車室内熱交換器32に冷媒を流さず、下流側車室内熱交換器31を放熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、第2開閉弁92を開くことによって、下流側車室内熱交換器31から流出した冷媒を、上流側車室内熱交換器32をバイパスさせて流す。極低外気時強除霜運転モードでは、電動コンプレッサ30から吐出した冷媒を上流側車室内熱交換器32に流さないようにしたので、強力な除霜運転が可能となる。
図20に示す低外気時除霜運転モードでは、下流側車室内熱交換器31を放熱器とし、かつ、上流側車室内熱交換器32を吸熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、第1開閉弁91、第2開閉弁92、第4開閉弁94を開き、第3開閉弁93、第5開閉弁95、第6開閉弁96を閉じる。そして、第2膨張弁53は膨張状態にする。
これにより、電動コンプレッサ30から吐出して下流側車室内熱交換器31を循環した冷媒が車室外熱交換器33に流入することになるので、車室外熱交換器33の表面温度が上昇して霜が溶ける。
図21に示す低外気時強除霜運転モードは、低外気時に図20に示す除霜運転モードよりも強い除霜が必要な場合に選択される運転モードである。低外気時強除霜運転モードでは、上流側車室内熱交換器32に冷媒を流さず、下流側車室内熱交換器31を放熱器としたまま、車室外熱交換器33に電動コンプレッサ30から吐出した高圧冷媒を導く。
すなわち、第2開閉弁92を閉じることによって、車室外熱交換器33から流出した冷媒を、上流側車室内熱交換器32をバイパスさせて流す。また、第2膨張弁53は非膨張状態にする。
低外気時強除霜運転モードでは、電動コンプレッサ30から吐出した冷媒を上流側車室内熱交換器32に流さないようにしたので、強力な除霜運転が可能となる。
実施形態2においても、実施形態1と同様に制御が行われる。
したがって、実施形態2にかかる車両用空調装置1によれば、暖房運転モード時に車室外熱交換器33が着霜した場合に、下流側車室内熱交換器31及び上流側車室内熱交換器32を放熱器としたまま、車室外熱交換器33に高圧冷媒を導くようにし、また、除湿暖房運転モード時に車室外熱交換器33が着霜した場合には、下流側車室内熱交換器31を放熱器とし、かつ、上流側車室内熱交換器32を吸熱器としたまま、車室外熱交換器33に高圧冷媒を導くことができる。
これにより、除霜運転に切り替わったときに車室に吹き出す吹出空気の温度変化を小さくすることができ、乗員が違和感を感じにくくすることができる。
(実施形態3)
図22〜図26は、本発明の実施形態3にかかるものである。実施形態3では、第1膨張弁52の代わりに、固定絞り装置85と、電磁弁86とを設けている。他の部分は実施形態1と同じである。
固定絞り装置85は、冷媒流路を所定量絞った状態で絞り量を変更することができないものである。電磁弁86は、冷媒流路を全開状態と全閉状態との2通りにしか切り替えることのできないものである。このように固定絞り装置85と電磁弁86とを設けたことで、コスト低減を図ることができる。
空調制御装置22は、図24に示す極低外気時除霜運転モード時に電磁弁86を全開状態にする。これにより、冷媒が固定絞り装置85には殆ど流れずに電磁弁86を通過することになる。
空調制御装置22は、図23に示す暖房運転モード時に電磁弁86を全閉状態にする。これにより、冷媒が固定絞り装置85を通過して下流側へ流れていくことになる。
空調制御装置22は、図26に示す冷房運転モード時に電磁弁86を全開状態にする。これにより、冷媒が固定絞り装置85には殆ど流れずに電磁弁86を通過することになる。
また、図25に示す極低外気時強除霜運転モード及び低外気時強除霜運転モードでは、電磁弁86を全開にする。また、上流側車室内熱交換器32に冷媒が流れないように高圧側流路切替弁50を切り替える。
従って、この実施形態3にかかる車両用空調装置1によれば、実施形態1と同様な作用効果を得ることができるのに加え、車両用空調装置1の低コスト化を図ることができる。
(実施形態4)
図27〜図29は、本発明の実施形態4にかかるものである。実施形態4では、第2膨張弁53を、第1逆止弁54の冷媒流れ方向上流側において、主冷媒配管42における第3分岐冷媒配管46の分岐部分よりも第1逆止弁54寄りに設けている。他の部分は実施形態1と同じであるので、実施形態1と同様な効果を奏することができる。
この実施形態4では、暖房運転モード時に車室外熱交換器33と圧縮機30との間に減圧機構がなくなることから、冷媒の圧力損失を低減して圧縮機30に吸入される冷媒の圧力を高めることが可能となり、冷媒循環量が増大して暖房能力を向上できる。
図28に示す極低外気時除霜運転モードにおいても同様に冷媒循環量を増大させることができるので、除霜時間を短縮できる。
また、図29に示す極低外気時強除霜運転モードでは、上流側車室内熱交換器32に冷媒が流れないように高圧側流路切替弁50を切り替える。
また、上記実施形態では、ヒートポンプ装置20の運転モードとして除湿暖房運転モードにも切り替えるようにしているが、これに限らず、除湿暖房運転モードを無くしてもよく、この場合、低外気時除霜運転モードも省略する。
また、上記実施形態では、車両用空調装置1を電気自動車に搭載する場合について説明したが、これに限らず、例えばエンジンと走行用モーターとを備えたハイブリッド自動車に車両用空調装置1を搭載することも可能である。
以上説明したように、本発明にかかる車両用空調装置は、例えば電気自動車やハイブリッド車に搭載することができる。
1 車両用空調装置
20 ヒートポンプ装置
21 車室内空調ユニット
22 空調制御装置
22a 着霜判定部(着霜判定手段)
30 電動コンプレッサ(圧縮機)
31 下流側車室内熱交換器(第1車室内熱交換器)
32 上流側車室内熱交換器(第2車室内熱交換器)
33 車室外熱交換器
40〜43 主冷媒配管
44〜46 第1〜第3分岐冷媒配管
52 第1膨張弁(上流側減圧部)
53 第2膨張弁(下流側減圧部)
61 空気加熱器
62 エアミックスドア(温度調節ドア)
65 送風機
70 外気温度センサ
72 高圧側冷媒圧力検出センサ
73 上流側車室内熱交換器温度センサ(温度検出センサ)
74 下流側車室内熱交換器温度センサ

Claims (1)

  1. 冷媒を圧縮する圧縮機と、車室内に配設される第1車室内熱交換器と、車室内において上記第1車室内熱交換器の空気流れ方向上流側に配設される第2車室内熱交換器と、車室外に配設される車室外熱交換器とを含むヒートポンプ装置と、
    上記第1車室内熱交換器及び上記第2車室内熱交換器を収容するとともに、該第1車室内熱交換器及び該第2車室内熱交換器に空調用空気を送風する送風機を有し、調和空気を生成して車室に供給するように構成された車室内空調ユニットとを備えた車両用空調装置であって、
    上記車室外熱交換器の着霜を判定する着霜判定手段と、
    上記ヒートポンプ装置及び上記車室内空調ユニットを制御する空調制御装置とを備えており、
    上記ヒートポンプ装置は、上記空調制御装置により、
    上記第1車室内熱交換器及び上記第2車室内熱交換器を放熱器とし、上記車室外熱交換器を吸熱器として作用させる暖房運転モードと、
    上記第1車室内熱交換器を放熱器とし、上記第2車室内熱交換器を吸熱器とし、上記車室外熱交換器を放熱器として作用させる冷房運転モードとを含む複数の運転モードに切り替えられ、
    上記空調制御装置には、上記着霜判定手段が接続され、
    上記空調制御装置は、
    上記暖房運転モード時に上記着霜判定手段により上記車室外熱交換器が着霜していると判定された場合には、上記第1車室内熱交換器及び上記第2車室内熱交換器のうち、上記第1車室内熱交換器のみを放熱器としたまま、上記第2車室内熱交換器をバイパスして、上記第1車室内熱交換器、上記車室外熱交換器の順に高圧冷媒を導く除霜運転モードに切り替えるように構成されていることを特徴とする車両用空調装置。
JP2017195960A 2012-02-28 2017-10-06 車両用空調装置 Expired - Fee Related JP6383854B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012041410 2012-02-28
JP2012041410 2012-02-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016244299A Division JP6225238B2 (ja) 2012-02-28 2016-12-16 車両用空調装置

Publications (2)

Publication Number Publication Date
JP2017226418A JP2017226418A (ja) 2017-12-28
JP6383854B2 true JP6383854B2 (ja) 2018-08-29

Family

ID=49527361

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013036108A Expired - Fee Related JP6126412B2 (ja) 2012-02-28 2013-02-26 車両用空調装置
JP2016244299A Expired - Fee Related JP6225238B2 (ja) 2012-02-28 2016-12-16 車両用空調装置
JP2017195960A Expired - Fee Related JP6383854B2 (ja) 2012-02-28 2017-10-06 車両用空調装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2013036108A Expired - Fee Related JP6126412B2 (ja) 2012-02-28 2013-02-26 車両用空調装置
JP2016244299A Expired - Fee Related JP6225238B2 (ja) 2012-02-28 2016-12-16 車両用空調装置

Country Status (1)

Country Link
JP (3) JP6126412B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082811A (ja) * 2018-11-16 2020-06-04 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7120152B2 (ja) 2019-05-17 2022-08-17 株式会社デンソー 空調装置
JP2022148723A (ja) * 2021-03-24 2022-10-06 サンデン・オートモーティブクライメイトシステム株式会社 車両用空調装置
JP2024062469A (ja) * 2022-10-25 2024-05-10 サンデン株式会社 車両用空調装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538845B2 (ja) * 1991-04-26 2004-06-14 株式会社デンソー 自動車用空調装置
JPH07257162A (ja) * 1994-03-24 1995-10-09 Mitsubishi Heavy Ind Ltd 電気自動車用空気調和装置
JP2003042604A (ja) * 2001-07-25 2003-02-13 Denso Corp 蒸気圧縮式ヒートポンプサイクル及び空調装置
JP2010111222A (ja) * 2008-11-05 2010-05-20 Denso Corp 車両用空調装置
JP5287578B2 (ja) * 2009-07-31 2013-09-11 株式会社デンソー 車両用空調装置
JP5563897B2 (ja) * 2010-06-07 2014-07-30 株式会社日本クライメイトシステムズ 車両用空調装置
DE102011109321A1 (de) * 2011-08-03 2013-02-07 Valeo Klimasysteme Gmbh Kältemittelkreislauf und Fahrzeugklimaanlage

Also Published As

Publication number Publication date
JP6126412B2 (ja) 2017-05-10
JP2017052513A (ja) 2017-03-16
JP6225238B2 (ja) 2017-11-01
JP2013209081A (ja) 2013-10-10
JP2017226418A (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2013128899A1 (ja) 車両用空調装置
JP6068229B2 (ja) 車両用空調装置
EP2962878B1 (en) Vehicle air conditioner
JP6383854B2 (ja) 車両用空調装置
JP4321242B2 (ja) 車両用空調装置
WO2014016981A1 (ja) 車両用空調装置
WO2015019612A1 (ja) 車両用空調装置
WO2013128897A1 (ja) 車両用空調装置
JP6209391B2 (ja) 車両用空調装置
JP2019209937A (ja) 空調装置
JP7017119B2 (ja) 冷却装置
JP5912052B2 (ja) 車両用空調装置
JP6126429B2 (ja) 車両用空調装置
JP2013177038A5 (ja)
JP6049339B2 (ja) 車両用空調装置
JP6009391B2 (ja) 車両用空調装置
JP5948101B2 (ja) 車両用空調装置
JP6228263B2 (ja) 車両用空調装置
JP2014019179A (ja) 車両用空調装置
JP5904882B2 (ja) 車両用空調装置
JP6049338B2 (ja) 車両用空調装置
JP6049313B2 (ja) 車両用空調装置
JP2021194999A (ja) 車両空調システム
JP6009176B2 (ja) 車両用空調装置
JP2005247114A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6383854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees