JP6374634B1 - リチウム複合酸化物焼結体板 - Google Patents

リチウム複合酸化物焼結体板 Download PDF

Info

Publication number
JP6374634B1
JP6374634B1 JP2018526962A JP2018526962A JP6374634B1 JP 6374634 B1 JP6374634 B1 JP 6374634B1 JP 2018526962 A JP2018526962 A JP 2018526962A JP 2018526962 A JP2018526962 A JP 2018526962A JP 6374634 B1 JP6374634 B1 JP 6374634B1
Authority
JP
Japan
Prior art keywords
composite oxide
plate
lithium composite
lithium
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018526962A
Other languages
English (en)
Other versions
JPWO2018147387A1 (ja
Inventor
幸信 由良
幸信 由良
茂樹 岡田
茂樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2018134906A priority Critical patent/JP6949785B2/ja
Application granted granted Critical
Publication of JP6374634B1 publication Critical patent/JP6374634B1/ja
Publication of JPWO2018147387A1 publication Critical patent/JPWO2018147387A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

高いエネルギー密度を有しながらも、リチウム二次電池に正極として組み込まれた場合に、急速充電性能等の優れた性能を呈することが可能な、厚いリチウム複合酸化物焼結体板が提供される。本発明のリチウム複合酸化物焼結体板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有しており、かつ、気孔率が3〜40%であり、平均気孔径が15μm以下であり、開気孔比率が70%以上であり、厚さが15〜200μmであり、複数の一次粒子の平均粒径である一次粒径が20μm以下であり、複数の一次粒子の平均傾斜角が0°を超え30°以下であり、平均傾斜角は、複数の一次粒子の(003)面とリチウム複合酸化物焼結体板の板面とがなす角度の平均値である。

Description

本発明は、リチウム二次電池の正極に用いられるリチウム複合酸化物焼結体板に関するものである。
リチウム二次電池(リチウムイオン二次電池とも称される)用の正極活物質層として、リチウム複合酸化物(典型的にはリチウム遷移金属酸化物)の粉末とバインダーや導電剤等の添加物とを混練及び成形して得られた、粉末分散型の正極が広く知られている。かかる粉末分散型の正極は、容量に寄与しないバインダーを比較的多量に(例えば10重量%程度)含んでいるため、正極活物質としてのリチウム複合酸化物の充填密度が低くなる。このため、粉末分散型の正極は、容量や充放電効率の面で改善の余地が大きかった。
そこで、正極ないし正極活物質層をリチウム複合酸化物焼結体板で構成することにより、容量や充放電効率を改善しようとする試みがなされている。この場合、正極又は正極活物質層にはバインダーが含まれないため、リチウム複合酸化物の充填密度が高くなることで、高容量や良好な充放電効率が得られることが期待される。
例えば、特許文献1(特許第5587052号公報)には、正極集電体と、導電性接合層を介して正極集電体と接合された正極活物質層とを備えた、リチウム二次電池の正極が開示されている。この正極活物質層は、厚さが30μm以上であり、空隙率が3〜30%であり、開気孔比率が70%以上であるリチウム複合酸化物焼結体板からなるとされている。また、リチウム複合酸化物焼結体板は、粒子径が5μm以下であり且つ層状岩塩構造を有する一次粒子が多数結合した構造を有し、且つ、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が2以下であるとされている。
特許文献2(特許第5752303号公報)には、リチウム二次電池の正極に用いられる、リチウム複合酸化物焼結体板が開示されており、このリチウム複合酸化物焼結体板は、厚さが30μm以上であり、空隙率が3〜30%であり、開気孔比率が70%以上であるとされている。また、このリチウム複合酸化物焼結体板は、粒子径が2.2μm以下であり且つ層状岩塩構造を有する一次粒子が多数結合した構造を有し、且つ、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、2以下であるとされている。
特許文献3(特許第5703409号公報)には、リチウム二次電池の正極に用いられるリチウム複合酸化物焼結体板で開示されており、このリチウム複合酸化物焼結体板は、多数の一次粒子が結合した構造を有しており、一次粒子の大きさである一次粒子径が5μm以下である。また、リチウム複合酸化物焼結体板は、厚さが30μm以上であり、平均気孔径が0.1〜5μmであり、空隙率が3%以上であり且つ15%未満であるとされている。このリチウム複合酸化物焼結体板も、X線回折における、(104)面による回折強度に対する(003)面による回折強度の比率[003]/[104]が、2以下であるとされている。
特許文献1〜3はいずれも、焼結体板におけるリチウム複合酸化物の充填率が高すぎる領域において、サイクル特性(充放電サイクルが繰り返された場合の容量維持特性)が悪化するという問題に対処したものである。具体的には、サイクル特性の悪化の原因が、焼結体板中の粒界におけるクラックの発生(以下、粒界クラックという)と、焼結体板と導電性接合層との界面における剥離(以下、接合界面剥離という)であることを突き止め、かかる粒界クラック及び接合界面剥離の発生を抑制することで、上記問題に対処できるとされている。
特許第5587052号公報 特許第5752303号公報 特許第5703409号公報
ところで、近年、スマートカードやウェアラブルデバイス用の小型化電池へのニーズが高まっている。このような小型化電池の正極又は正極活物質層には、高容量及び高エネルギー密度を実現するために、厚いリチウム複合酸化物焼結体板の使用が好都合である。一方で、スマートカードやウェアラブルデバイス用の小型化電池においては、その使用態様に応じて特有の性能が要求されうる。例えば、ユーザーが常に持ち運ぶ環境下で使用される電池においては、急速充電性能が望まれる。
本発明者らは、今般、所定のリチウム複合酸化物焼結体板において一次粒子の(003)面を板面に対して平均で0°を超え30°以下の角度に配向させることにより、高いエネルギー密度を有しながらも、リチウム二次電池に正極として組み込まれた場合に、急速充電性能等の優れた性能を呈することが可能な、厚いリチウム複合酸化物焼結体板を提供できるとの知見を得た。
したがって、本発明の目的は、高いエネルギー密度を有しながらも、リチウム二次電池に正極として組み込まれた場合に、急速充電性能等の優れた性能を呈することが可能な、厚いリチウム複合酸化物焼結体板を提供することにある。
本発明の一態様によれば、リチウム二次電池の正極に用いられるリチウム複合酸化物焼結体板であって、前記リチウム複合酸化物焼結体板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有しており、かつ、
気孔率が3〜40%であり、
平均気孔径が15μm以下であり、
開気孔比率が70%以上であり、
厚さが15〜200μmであり、
前記複数の一次粒子の平均粒径である一次粒径が20μm以下であり、
前記複数の一次粒子の平均傾斜角が0°を超え30°以下であり、前記平均傾斜角は、前記複数の一次粒子の(003)面と前記リチウム複合酸化物焼結体板の板面とがなす角度の平均値である、リチウム複合酸化物焼結体板が提供される。
例1で得られたリチウム複合酸化物焼結体板の研磨断面(板面に垂直な断面)の一例を示すSEM像である。 図1に示される測定領域における、例1で得られたリチウム複合酸化物焼結体板の断面のEBSD像である。
定義
本発明を特定するために用いられるパラメータの定義を以下に示す。
本明細書において「気孔率」とは、リチウム複合酸化物焼結体板における、気孔(開気孔及び閉気孔を含む)の体積比率である。この気孔率は、焼結体板の断面SEM像を画像解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察する。得られたSEM像を画像解析し、視野内の全ての気孔の面積を視野内の焼結体板の面積(断面積)で除し、得られた値に100を乗じることにより気孔率(%)を得る。
本明細書において「平均気孔径」とは、リチウム複合酸化物焼結体板内に含まれる気孔の直径の平均値である。かかる「直径」は、典型的には、当該気孔を同体積あるいは同断面積を有する球形と仮定した場合の、当該球形における直径である。本発明においては、「平均値」は、個数基準で算出されたものが適している。かかる平均気孔径は、例えば、断面SEM(走査電子顕微鏡)写真の画像処理や、水銀圧入法等の、周知の方法によって取得され得る。好ましくは、平均気孔径は、水銀ポロシメーターを用いて水銀圧入法により測定することができる。
本明細書において「開気孔比率」とは、リチウム複合酸化物焼結体板に含まれる気孔(開気孔及び閉気孔を含む)の全体に対する、開気孔の体積比率(体積%)である。「開気孔」は、焼結体板に含まれる気孔のうち、焼結体板の外部と連通するものを指す。「閉気孔」は焼結体板に含まれる気孔のうち、焼結体板の外部と連通しないものを指す。開気孔比率は、嵩密度から求められる開気孔と閉気孔との合計に相当する全気孔率と、見かけ密度から求められる閉気孔に相当する閉気孔率とから、計算により求めることができる。開気孔比率の算出に用いられるパラメータは、アルキメデス法等を用いて測定され得る。例えば、閉気孔率(体積%)をアルキメデス法で測定した見かけ密度より求めることができる一方、全気孔率(体積%)をアルキメデス法で測定した嵩密度より求めることができる。そして、開気孔比率を、閉気孔率と全気孔率から以下の計算によって求めることができる。
(開気孔比率)=(開気孔率)/(全気孔率)
=(開気孔率)/[(開気孔率)+(閉気孔率)]
=[(全気孔率)−(閉気孔率)]/(全気孔率)
本明細書において「一次粒径」とは、リチウム複合酸化物焼結体板を構成する複数の一次粒子の平均粒径である。この一次粒径は、焼結体板の断面SEM像を画像解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察する。このとき、視野内に20個以上の一次粒子が存在するように視野を設定する。得られたSEM像中の全ての一次粒子について外接円を描いたときの当該外接円の直径を求め、これらの平均値を一次粒径とする。
本明細書において「一次粒子の傾斜角」とは、一次粒子の(003)面とリチウム複合酸化物焼結体板の板面とがなす角度である。この一次粒子の傾斜角は、焼結体板の断面を電子線後方散乱回折法(EBSD)により解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)で電子線後方散乱回折法(EBSD)により解析する。EBSDにより得られるEBSD像においては各一次粒子の傾斜角が色の濃淡で表され、色が濃いほど配向角度が小さいことを示す。こうして各一次粒子の傾斜角を知ることができる。また、本明細書において「一次粒子の平均傾斜角」とは、複数の一次粒子の(003)面とリチウム複合酸化物焼結体板の板面とがなす角度の平均値であり、上記所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)のEBSD像において、全ての粒子面積に占める、(003)より0〜30°の範囲内に含まれる面積の割合(%)を算出することにより得ることができる。
本明細書において「平均気孔アスペクト比」とは、リチウム複合酸化物焼結体板内に含まれる気孔のアスペクト比の平均値である。気孔のアスペクト比は、気孔の長手方向の長さの気孔の短手方向の長さに対する比である。平均気孔アスペクト比は、焼結体板の断面SEM像を画像解析することにより測定することができる。例えば、焼結体板をクロスセクションポリッシャ(CP)で加工して研磨断面を露出させる。この研磨断面を所定の倍率(例えば1000倍)及び所定の視野(例えば125μm×125μm)でSEM(走査電子顕微鏡)により観察する。得られたSEM像を画像解析ソフトで二値化し、得られた二値化画像から気孔を判別する。判別した気孔について、長手方向の長さを短手方向の長さで除することによりアスペクト比を算出する。二値化画像中の全ての気孔についてのアスペクト比を算出し、それらの平均値を平均アスペクト比とする。
リチウム複合酸化物焼結体板
本発明によるリチウム複合酸化物焼結体板は、リチウム二次電池の正極に用いられるものである。このリチウム複合酸化物焼結体板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有している。また、リチウム複合酸化物焼結体板は、気孔率が3〜40%であり、平均気孔径が15μm以下であり、開気孔比率が70%以上であり、厚さが15〜200μmであり、複数の一次粒子の平均粒径である一次粒径が20μm以下である。さらに、リチウム複合酸化物焼結体板は、複数の一次粒子の平均傾斜角が0°を超え30°以下である。このように、所定のリチウム複合酸化物焼結体板において一次粒子の(003)面を板面に対して平均で0°を超え30°以下の角度に配向させることにより、高いエネルギー密度を有しながらも、リチウム二次電池に正極として組み込まれた場合に、急速充電性能等の優れた性能を呈することが可能な、厚いリチウム複合酸化物焼結体板を提供できる。
前述のとおり、小型化電池の正極又は正極活物質層には、高容量及び高エネルギー密度を実現するために、厚いリチウム複合酸化物焼結体板の使用が好都合である。しかしながら、スマートカードやウェアラブルデバイス用の小型化電池においては、その使用態様に応じて特有の性能が要求されうる。例えば、ユーザーが常に持ち運ぶ環境下で使用される電池においては、急速充電性能が望まれる。しかしながら、従来のリチウム複合酸化物焼結体板を単に厚くしただけの正極板を有機電解液又はイオン液体とともに備えた、液系高エネルギー密度電池(薄型リチウム電池)に高レート(2C)で充放電サイクル試験を行ったところ、容量の維持率が低下することが判明した。この点、上述した構成の本発明のリチウム複合酸化物焼結体板によれば、高レートでのサイクル試験を行っても、電池性能の劣化を防止ないし抑制することができる。その理由は定かではないが、上述した特有の平均傾斜角での一次粒子の傾斜配向等により、充放電時の膨張収縮により発生しうる応力が好都合に抑制されるためではないかと考えられる。その結果、本発明のリチウム複合酸化物焼結体板は、厚く且つ高いエネルギー密度を有するものでありながらも、リチウム二次電池に正極として組み込まれた場合に、急速充電性能等の優れた性能を呈することができるものと考えられる。
特に、層状岩塩構造を有するリチウム複合酸化物において、(003)面はリチウムイオンの出入りを妨げる面である。このため、そのような(003)面を板面に対して平均で30°以下に傾斜させる、すなわち平行に近づけるということは、正極として用いられる焼結体板の一方の面から他方の面に向かうべきリチウムイオンの移動距離が格段に長くすることを意味する。それにもかかわらず本発明の焼結体板が急速充電性能等の優れた電池特性をもたらすことは、全く予想外ともいうべき驚くべき知見に他ならない。
リチウム複合酸化物焼結体板は、層状岩塩構造を有する複数の(すなわち多数の)一次粒子が結合した構造を有している。したがって、これらの一次粒子は層状岩塩構造を有するリチウム複合酸化物で構成される。リチウム複合酸化物とは、典型的には、LiMO(0.05<x<1.10、Mは少なくとも1種類の遷移金属、例えばCo、Ni及びMnから選択される1種以上を含む)で表される酸化物である。典型的なリチウム複合酸化物は層状岩塩構造を有する。層状岩塩構造とは、リチウム層とリチウム以外の遷移金属層とが酸素の層を挟んで交互に積層された結晶構造をいう。すなわち、層状岩塩構造は、酸化物イオンを介して遷移金属イオン層とリチウム単独層とが交互に積層した結晶構造(典型的にはα−NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)であるといえる。
層状岩塩構造を有するリチウム複合酸化物の好ましい例としては、コバルト酸リチウムLiCoO(式中、1≦p≦1.1)、ニッケル酸リチウムLiNiO、マンガン酸リチウムLiMnO、ニッケルマンガン酸リチウムLi(Ni0.5,Mn0.5)O、一般式:Li(Co,Ni,Mn)O(式中、0.97≦p≦1.07,x+y+z=1)で表される固溶体、Li(Co,Ni,Al)O(式中、0.97≦p≦1.07、x+y+z=1、0<x≦0.25、0.6≦y≦0.9及び0<z≦0.1)で表される固溶体、並びにLiMnOとLiMO(MはCo、Ni等の遷移金属である)との固溶体が挙げられ、特に好ましくはコバルト酸リチウムLiCoO(式中、1≦p≦1.1)、例えばLiCoOである。なお、リチウム複合酸化物焼結体板は、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi等の元素を1種以上さらに含んでいてもよい。
リチウム複合酸化物焼結体板を構成する複数の一次粒子の平均粒径である一次粒径は20μm以下であり、好ましくは15μm以下である。一般に一次粒子径が小さくなるほど、粒界の数が増加する。そして、粒界の数が多いほど、充放電サイクルに伴う結晶格子の伸縮の際に発生する内部応力が、良好に分散される。また、クラックが生じた際にも、粒界の数が多いほど、クラックの伸展が良好に抑制される。一方、本発明においては、焼結体板内部の粒子は配向方位が揃っており、その結果、粒界に応力がかかりにくく、大きい粒子径においてもサイクル性能が優れる。また、粒子径が大きい場合、充放電時のリチウムの拡散が粒界で遮られることが少なくなり、高速充放電に好ましい。一次粒径は0.2μm以上が典型的であり、より典型的には0.4μm以上である。
リチウム複合酸化物焼結体板を構成する複数の一次粒子の平均傾斜角(すなわち(003)面と板面とがなす角度の平均値)は0°を超え30°以下であり、好ましくは5°以上28°以下、より好ましくは10°以上25°以下である。また、リチウム複合酸化物焼結体板を構成する複数の一次粒子のうち、傾斜角(すなわち(003)面と板面とがなす角度)が0°以上30°以下である一次粒子の占める割合は60%以上であるのが好ましく、より好ましくは80%以上、さらに好ましくは90%以上である。上限値は特に限定されず100%であってもよいが、傾斜角が0°以上30°以下である一次粒子の占める割合は典型的には80%以下であり、より典型的には60%以下である。上述した範囲内であると、充放電した際の応力をより一層好都合に分散させることで、急速充電性能等の性能をより一層向上させることができると考えられる。
リチウム複合酸化物焼結体板は気孔を含んでいる。焼結体板が気孔を含むことで、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮によって発生する応力が、当該気孔によって良好(均一)に開放される。このため、充放電サイクルの繰り返しに伴う粒界クラックの発生が可及的に抑制される。また、導電性接合層との界面に含まれる気孔(開気孔)により、接合強度が高まる。このため、充放電サイクルにおけるリチウムイオンの出入りに伴う結晶格子の伸縮による、リチウム複合酸化物焼結体板の形状変化を起因とする、上述の接合界面剥離の発生が、良好に抑制される。したがって、良好なサイクル特性を維持しつつ、高容量化を図ることができる。
リチウム複合酸化物焼結体板の開気孔比率は70%以上であり、より好ましくは80%以上、さらに好ましくは90%以上である。開気孔比率は100%であってもよく、典型的には90%以下、より典型的には80%以下である。開気孔比率を70%以上とすることで、より応力が開放されやすくなり、粒界クラックの発生が効果的に抑制される。これは、以下の理由によるものと考えられる。正極における体積の膨張収縮は、上述のとおり、結晶格子におけるリチウムイオンの出入りが原因である。開気孔は、リチウムイオンの出入りする面によって囲まれた気孔である。このため、開気孔は、閉気孔に比べて、応力を開放する効果が高いものと考えられる。また、開気孔比率を70%以上とすることで、上述の接合界面剥離が、効果的に抑制される。これは、開気孔は表面粗さと見立てることができるところ、開気孔の導入により、表面粗さが大きくなることに起因するアンカー効果で接合強度が高まるからと考えられるためである。また、開気孔内に電解質や導電材等を内在することで、当該開気孔の内壁面は、リチウムイオンの出入りする面として良好に機能する。したがって、開気孔比率を70%以上とすると、単なる気孔(充放電に寄与しない部分)として存在する閉気孔の比率が大きい場合に比べて、レート特性が改善する。
気孔の分布及び形状は特に限定されるものではないが、リチウム複合酸化物焼結体板の構成粒子は、典型的には、揃った配向方位を持ち、かつ、所定のアスペクト比を有する。このため、気孔の形状や分布についても好ましい状態が存在する。例えば、気孔は、リチウムイオン伝導面に接するように配向していてもよいし、リチウムイオン伝導面に広く接することができるような形状(球状や不定形など)であってもよく、そのような配向ないし形状をもたらすアスペクト比を持つ構造が好ましい。また、気孔がそのようなアスペクト比を持つ場合、アスペクト比によって規定される異方性を有する気孔形状が、曲げた際の応力や充放電した際の応力を好都合に分散させることで、耐曲げ性や急速充電性能等の優れた性能を実現するものと考えられる。
リチウム複合酸化物焼結体板の気孔率は3〜40%であり、より好ましくは5〜35%、さらに好ましくは7〜30%、特に好ましくは10〜25%である。気孔率が3%未満では、気孔による応力開放効果が不十分となる。また、気孔率が40%を超えると、高容量化の効果が著しく減殺されるため好ましくない。
リチウム複合酸化物焼結体板の平均気孔径は15μm以下であり、好ましくは12μm以下、より好ましくは10μm以下である。平均気孔径が15μmを超えると、比較的大きな気孔が生じることとなる。かかる大きな気孔は、通常、きれいな球形ではなく、いびつな形状である。このため、かかる大きな気孔の局所において応力集中が発生しやすくなる。よって、焼結体内で応力を均一に開放する効果が得られにくくなる。平均気孔径の下限値は特に限定されないが、気孔による応力開放効果の観点から、平均気孔径は0.1μm以上が好ましく、より好ましくは0.3μm以上である。したがって、上述した範囲内であると、粒界クラックの発生と接合界面剥離が良好に抑制される。
リチウム複合酸化物焼結体板の厚さは、15〜200μmであり、好ましくは30〜150μm、より好ましくは50〜100μmである。前述のとおり、リチウム複合酸化物焼結体板が厚いほど、高容量及び高エネルギー密度の電池を実現しやすくなる。リチウム複合酸化物焼結体板の厚さは、例えば、リチウム複合酸化物焼結体板の断面をSEM(走査電子顕微鏡)によって観察した場合における、略平行に観察される板面間の距離を測定することで得られる。
製造方法
本発明のリチウム複合酸化物焼結体板はいかなる方法で製造されたものであってもよいが、好ましくは、(a)リチウム複合酸化物含有グリーンシートの作製、(b)過剰リチウム源含有グリーンシートの作製、並びに(c)これらのグリーンシートの積層及び焼成を経て製造される。
(a)リチウム複合酸化物含有グリーンシートの作製
まず、リチウム複合酸化物で構成される原料粉末を用意する。この粉末は、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)を含むのが好ましい。原料粉末の体積基準D50粒径は0.3〜30μmが好ましい。例えば、LiCoO板状粒子の作製方法は次のようにして行うことができる。まず、Co原料粉末とLiCO原料粉末とを混合して焼成(500〜900℃、1〜20時間)することによって、LiCoO粉末を合成する。得られたLiCoO粉末をポットミルにて体積基準D50粒径0.2μm〜10μmに粉砕することによって、板面と平行にリチウムイオンを伝導可能な板状のLiCoO粒子が得られる。このようなLiCoO粒子は、LiCoO粉末スラリーを用いたグリーンシートを粒成長させた後に解砕する手法や、フラックス法や水熱合成、融液を用いた単結晶育成、ゾルゲル法など板状結晶を合成する手法によっても得ることができる。得られたLiCoO粒子は、劈開面に沿って劈開しやすい状態となっている。LiCoO粒子を解砕によって劈開させることで、LiCoO板状粒子を作製することができる。
上記板状粒子を単独で原料粉末として用いてもよいし、上記板状粉末と他の原料粉末(例えばCo粒子)との混合粉末を原料粉末として用いてもよい。後者の場合、板状粉末を配向性を与えるためのテンプレート粒子として機能させ、他の原料粉末(例えばCo粒子)をテンプレート粒子に沿って成長可能なマトリックス粒子として機能させるのが好ましい。この場合、テンプレート粒子とマトリックス粒子を100:0〜3:97に混合した粉末を原料粉末とするのが好ましい。Co原料粉末をマトリックス粒子として用いる場合、Co原料粉末の体積基準D50粒径は特に制限されず、例えば0.1〜1.0μmとすることができるが、LiCoOテンプレート粒子の体積基準D50粒径より小さいことが好ましい。このマトリックス粒子は、Co(OH)原料を500℃〜800℃で1〜10時間熱処理を行なうことによっても得ることができる。また、マトリックス粒子には、Coのほか、Co(OH)粒子を用いてもよいし、LiCoO粒子を用いてもよい。
原料粉末がLiCoOテンプレート粒子100%で構成される場合、又はマトリックス粒子としてLiCoO粒子を用いる場合、焼成により、大判(例えば90mm×90mm平方)でかつ平坦なLiCoO焼結板を得ることができる。そのメカニズムは定かではないが、焼成過程でLiCoOへの合成が行われないため、焼成時の体積変化が生じにくい若しくは局所的なムラが生じにくいことが予想される。
原料粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。スラリーには、後述する焼成工程中における粒成長の促進ないし揮発分の補償の目的で、LiMO以外のリチウム化合物(例えば炭酸リチウム)が0.5〜30mol%程度過剰に添加されてもよい。スラリーには造孔材を添加しないのが望ましい。スラリーは減圧下で撹拌して脱泡するとともに、粘度を4000〜10000cPに調整するのが好ましい。得られたスラリーをシート状に成形してリチウム複合酸化物含有グリーンシートを得る。こうして得られるグリーンシートは独立したシート状の成形体である。独立したシート(「自立膜」と称されることもある)とは、他の支持体から独立して単体で取り扱い可能なシートのことをいう(アスペクト比が5以上の薄片も含む)。すなわち、独立したシートには、他の支持体(基板等)に固着されて当該支持体と一体化された(分離不能ないし分離困難となった)ものは含まれない。シート成形は、原料粉末中の板状粒子(例えばテンプレート粒子)にせん断力を印加可能な成形手法を用いて行われるのが好ましい。こうすることで、一次粒子の平均傾斜角を板面に対して0°超30°以下にすることができる。板状粒子にせん断力を印加可能な成形手法としては、ドクターブレード法が好適である。リチウム複合酸化物含有グリーンシートの厚さは、焼成後に上述したような所望の厚さとなるように、適宜設定すればよい。
(b)過剰リチウム源含有グリーンシートの作製
一方、上記リチウム複合酸化物含有グリーンシートとは別に、過剰リチウム源含有グリーンシートを作製する。この過剰リチウム源は、Li以外の成分が焼成により消失するようなLiMO以外のリチウム化合物であるのが好ましい。そのようなリチウム化合物(過剰リチウム源)の好ましい例としては炭酸リチウムが挙げられる。過剰リチウム源は粉末状であるのが好ましく、過剰リチウム源粉末の体積基準D50粒径は0.1〜20μmが好ましく、より好ましくは0.3〜10μmである。そして、リチウム源粉末を、分散媒及び各種添加剤(バインダー、可塑剤、分散剤等)と混合してスラリーを形成する。得られたスラリーを減圧下で撹拌して脱泡するとともに、粘度を1000〜20000cPに調整するのが好ましい。得られたスラリーをシート状に成形して過剰リチウム源含有グリーンシートを得る。こうして得られるグリーンシートもまた独立したシート状の成形体である。シート成形は、周知の様々な方法で行いうるが、ドクターブレード法により行うのが好ましい。過剰リチウム源含有グリーンシートの厚さは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1〜1.1とすることができるような厚さに設定するのが好ましい。
(c)グリーンシートの積層及び焼成
下部セッターに、リチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)、及び過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)を順に載置し、その上に上部セッターを載置する。上部セッター及び下部セッターはセラミックス製であり、好ましくはジルコニア又はマグネシア製である。セッターがマグネシア製であると気孔が小さくなる傾向がある。上部セッターは多孔質構造やハニカム構造のものであってもよいし、緻密質構造であってもよい。上部セッターが緻密質であると焼結体板において気孔が小さくなり、気孔の数が多くなる傾向がある。必要に応じて、過剰リチウム源含有グリーンシートは、リチウム複合酸化物含有グリーンシートにおけるCo含有量に対する、過剰リチウム源含有グリーンシートにおけるLi含有量のモル比(Li/Co比)が好ましくは0.1以上、より好ましくは0.1〜1.1となるようなサイズに切り出して用いられるのが好ましい。
下部セッターにリチウム複合酸化物含有グリーンシート(例えばLiCoOグリーンシート)を載置した段階で、このグリーンシートを、所望により脱脂した後、600〜850℃で1〜10時間仮焼してもよい。この場合、得られた仮焼板の上に過剰リチウム源含有グリーンシート(例えばLiCOグリーンシート)及び上部セッタを順に載置すればよい。
そして、上記グリーンシート及び/又は仮焼板をセッターで挟んだ状態で、所望により脱脂した後、中温域の焼成温度(例えば700〜1000℃)で熱処理(焼成)することで、リチウム複合酸化物焼結体板が得られる。この焼成工程は、2度に分けて行ってもよいし、1度に行なってもよい。2度に分けて焼成する場合には、1度目の焼成温度が2度目の焼成温度より低いことが好ましい。こうして得られる焼結体板もまた独立したシート状である。
(d)まとめ
上述した好ましい製造方法は、特許文献1〜3に記載される公知の製造方法に対して、以下の特徴ないし相違点を有しており、これらが本発明のリチウム複合酸化物焼結体板の諸特性の実現に寄与するものと考えられる。
1)一段階プロセスの採用:特許文献1〜3には、リチウム含有焼成体を中間焼成体を経ずに1回の焼成で作製する一段階プロセスと、リチウム非含有の中間焼成体の作製及びその後のリチウム導入処理(熱処理、二回目の焼成)を行う二段階プロセスとが開示されているが、上記好ましい製造方法においては一段階プロセスが採用される。
2)リチウム複合酸化物原料粉末の使用:上記好ましい製造方法においては、Li、Co等の化合物の粒子を適宜混合したものではなく、LiMOなる組成(Mは前述したとおりである)の合成済みの板状粒子(例えばLiCoO板状粒子)が用いられる。特に、板状粒子を含む原料粉末にせん断力を印加可能な成形手法を用いてシート形成することにより、一次粒子の平均傾斜角を板面に対して0°超30°以下にすることができる。
3)Liの過剰使用(過剰量:30mol%以上):過剰リチウム源含有グリーンシート(外部過剰リチウム源)やリチウム複合酸化物含有グリーンシート内の過剰リチウム源(内部過剰リチウム源)を用いて過剰量のLiを焼成時に存在させることで、中温域の焼成においても気孔率を望ましく制御することができる。外部過剰リチウム源は気孔を小さくする傾向がある一方、内部過剰リチウム源は気孔率及び平均気孔径を増大させる傾向がある。
4)中温域の焼成温度:中温域(例えば700〜1000℃)で焼成することにより、微細な気孔が残りやすくなる。
5)原料の粒度分布:造孔剤を用いる場合と比べ、造孔剤を用いない上記好ましい製造方法では粒子隙間で空隙が形成するため、気孔径分布が広くなる。
6)焼成時のセッター配置:上下からセッターで挟んでグリーンシート積層体を焼成することにより、微細な気孔が残りやすくなる。
所望により、本発明の焼結体板を正極板として用いてラミネート電池を作製する際に、集電体との接触性を向上する、あるいは電池内部で正極板が動くのを抑制するために、焼結体板をラミネート集電体に貼り付けてもよい。
また、電解液にはγ−ブチロラクトン、プロピレンカーボネート、及びエチレンカーボネートから選択される1種又は2種以上を96体積%以上含有させてもよい。このような電解液を用いることで、電池の高温動作及び高温プロセスを経て電池を作製する際に、電池を劣化させることなく安定的に電池製造を行うことができる。特に電解液にエチレンカーボネートを用いない場合又は電解液中におけるエチレンカーボネートの含有比率が20体積%以下の場合、負極材料としてLiTi12(LTO)、NbTiO、TiO等のセラミックス板を好適に用いることができる。
特に、本発明のリチウム複合酸化物焼結体板を正極板として用いて作製したラミネート電池は、一般的な塗工電極と異なりPVDF(ポリフッ化ビニリデン)に代表されるバインダーを含まないという特徴を有しうる。そのため、PVDFに代表されるバインダーを含むと高温(例えば80℃以上)にてバインダーを分解することから使用できない、耐熱性の高いγ−ブチロラクトンを含む電解液を使用することができる。その結果、高い温度で電池を動作させることができる、また、120℃程度の高温プロセスにて電池製造できるといった利点がある。
また、本発明のリチウム複合酸化物焼結体板を正極板として用いて作製したラミネート電池には、リチウム二次電池に一般的に用いられる負極を用いることができる。そのような一般的な負極材料の例としては、炭素系材料や、Li、In、Al、Sn、Sb、Bi、Si等の金属若しくは半金属、又はこれらのいずれかを含む合金が挙げられる。その他、チタン酸リチウム(LiTi12)等の酸化物系負極を用いてもよい。酸化物系負極は、チタン酸リチウム等の負極活物質をバインダー及び導電助剤と混合及び塗工して作製されたものであってもよいし、チタン酸リチウム等の負極活物質を焼結させたセラミックス板であってもよい。後者の場合、セラミックス板は緻密であってもよいし、内部に開気孔を含んだものであってもよい。チタン酸リチウムを負極層として使用した場合、炭素系材料を使用した場合と比べて、信頼性及び出力性能が大きく向上するとの利点がある。また、チタン酸リチウム負極と本発明のリチウム複合酸化物焼結板を用いて作製したリチウム二次電池は、サイクル性能が良く、また、保存性能が良い(自己放電が少ない)など高信頼性を示すため、簡易な制御にて直列化することが可能である。
負極活物質としてTiOやNbTiOを用いてもよい。この場合、負極材料は、上記負極活物質、バインダー及び導電助剤の混合物を塗工して作製されたものであってもよいし、上記負極活物質を焼結させたセラミックス板であってもよい。後者の場合、セラミックス板は緻密なものであってもよいし、内部に開気孔を含んだものであってもよい。これらの材料を負極層として使用した場合、炭素系材料を使用した場合と比べて、信頼性及び出力性能が大きく向上するとの利点がある。また、チタン酸リチウム材料を使用した場合と比べて、エネルギー密度が高くなるとの利点もある。これらの材料を負極層として用いた場合も、チタン酸リチウムを用いた場合と同様、サイクル性能、保存性能等の信頼性に優れ、直列化も容易に行えるとの利点もある。
あるいは、負極活物質として炭素系材料を用いてもよい。この場合、炭素系材料、バインダー、及び必要に応じて導電助剤からなる負極合剤層の密度(=(負極合剤層全体の質量)/(空隙を含む負極合剤層の体積))を1.15〜1.55g/cmとするのが好ましく、より好ましくは1.2〜1.4g/cm、さらに好ましくは1.25〜1.35g/cmとする。こうすることで、高レートでのサイクル試験を行っても、電池性能の劣化を防止ないし抑制することができる。
また、負極でのLi金属の析出を防ぐため、正極(C)と負極(A)の対向する面積あたりの容量において、負極の容量を正極の容量より大きくすること、すなわちC/A比を1未満とすることが望ましい。この形態ないしC/A比は、本発明のリチウム複合酸化物焼結体板の厚さに応じて、上記負極合剤層の密度を維持したまま、負極合剤層の厚さを適宜調整することにより望ましく実現することができる。
さらに、JIS C5016(1994)「フレキシブルプリント配線板試験方法」の「8.1導体の引きはがし強さ」に準拠した90度方向引きはがし方法に従い、15mm幅の日東電工製ポリエステル粘着テープNo.31を用いて測定される、負極合剤層の剥離強度を2N/15mm以上とするのが好ましく、より好ましくは3N/15mm以上、さらに好ましくは4N/15mm以上とする。こうすることで、サイクル特性に優れた高い信頼性を示すことができる。なお、負極合剤層の剥離強度は、バインダーの分子量、負極合剤層におけるバインダー比率、プレス圧等によって適宜調整することができる。
本発明を以下の例によってさらに具体的に説明する。
例1
(1)正極板の作製
(1a)LiCoOグリーンシートの作製
まず、表1に示されるようにしてLiCoO原料粉末1を作製して粉末Aとした。得られたLiCoO粉末(すなわち粉末A)100重量部と、分散媒(トルエン:イソプロパノール=1:1)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)10重量部と、可塑剤(DOP:Di(2−ethylhexyl)phthalate、黒金化成株式会社製)4重量部と、分散剤(製品名レオドールSP−O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCoOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCoOグリーンシートを形成した。乾燥後のLiCoOグリーンシートの厚さは60μmであった。
(1b)LiCOグリーンシート(過剰リチウム源)の作製
LiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)100重量部と、バインダー(ポリビニルブチラール:品番BM−2、積水化学工業株式会社製)5重量部と、可塑剤(DOP:フタル酸ジ(2−エチルヘキシル)、黒金化成株式会社製)2重量部と、分散剤(レオドールSP−O30、花王株式会社製)2重量部とを混合した。得られた混合物を減圧下で撹拌して脱泡するとともに、粘度を4000cPに調整することによって、LiCOスラリーを調製した。粘度は、ブルックフィールド社製LVT型粘度計で測定した。こうして調製されたLiCOスラリーを、ドクターブレード法によって、PETフィルム上にシート状に成形することによって、LiCOグリーンシートを形成した。乾燥後のLiCOグリーンシートの厚さは、LiCoOグリーンシートにおけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比を所定の値とすることができるように設定した。
(1c)LiCoO焼結板の作製
PETフィルムから剥がしたLiCoOグリーンシートをカッターで50mm角に切り出し、下部セッターとしてのマグネシア製セッター(寸法90mm角、高さ1mm)の中央に載置した。LiCoOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLiCoO仮焼板におけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比が0.5となるようなサイズに、乾燥されたLiCOグリーンシートを切り出した。LiCoO仮焼板上に、上記切り出されたLiCOグリーンシート片を過剰リチウム源として載置し、その上に上部セッターとしての多孔質マグネシア製セッターを載置した。上記焼結板及びグリーンシート片をセッターで挟んだ状態で、120mm角のアルミナ鞘(株式会社ニッカトー製)内に載置した。このとき、アルミナ鞘を密閉せず、0.5mmの隙間を空けて蓋をした。得られた積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後900℃まで200℃/hで昇温して20時間保持することで焼成を行った。焼成後、室温まで降温させた後に焼成体をアルミナ鞘より取り出した。こうしてLiCoO焼結板を正極板として得た。得られた正極板を9mm×9mm平方の形状にレーザー加工した。
(2)電池の作製
正極板、セパレータ、及びカーボンからなる負極を順に載置して積層体を作製した。この積層体を電解液に浸すことにより、ラミネート型電池を作製した。電解液としては、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒にLiPFを1mol/Lの濃度となるように溶解させたものを用いた。セパレータとしては、厚さ25μmのポリプロピレン製多孔質単層膜(Celgard社製、Celgard(登録商標)2500)を用いた。
(3)評価
上記(1c)で合成されたLiCoO焼結板(正極板)及び上記(2)で作製された電池について、以下に示されるとおり各種の評価を行った。
<気孔率>
LiCoO焼結板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製、JSM6390LA)した。得られたSEM像を画像解析し、全ての気孔の面積を正極の面積で除し、得られた値に100を乗じることにより気孔率(%)を算出した。
<平均気孔径>
水銀ポロシメーター(島津製作所製、オートポアIV9510)を用いて水銀圧入法によりLiCoO焼結板の平均気孔径を測定した。
<開気孔比率>
LiCoO焼結板の開気孔比率をアルキメデス法により求めた。具体的には、閉気孔率をアルキメデス法で測定した見かけ密度より求める一方、全気孔率をアルキメデス法で測定した嵩密度より求めた。そして、開気孔比率を、閉気孔率と全気孔率から以下の計算によって求めた。
(開気孔比率)=(開気孔率)/(全気孔率)
=(開気孔率)/[(開気孔率)+(閉気孔率)]
=[(全気孔率)−(閉気孔率)]/(全気孔率)
<一次粒子の平均傾斜角>
LiCoO焼結板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板断面(正極板の板面に垂直な断面)を1000倍の視野(125μm×125μm)でEBSD測定して、EBSD像を得た。このEBSD測定は、ショットキー電界放出形走査電子顕微鏡(日本電子株式会社製、型式JSM−7800F)を用いて行った。得られたEBSD像において特定される全ての粒子について、一次粒子の(003)面と正極板の板面とがなす角度(すなわち(003)からの結晶方位の傾き)を傾斜角として求め、それらの角度の平均値を一次粒子の平均傾斜角とした。
<傾斜角が0°以上30°以下である一次粒子の占める割合>
上記EBSD測定において得られたEBSD像において、一次粒子の総面積に対する、傾斜角が0°以上30°以下である一次粒子の合計面積の割合(すなわち(003)より0〜30°の範囲内に含まれる面積の割合)を算出し、得られた値を傾斜角が0°以上30°以下である一次粒子の占める割合(%)とした。
<一次粒径>
LiCoO焼結板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板断面を1000倍の視野(125μm×125μm)でSEM観察(日本電子製、JSM6390LA)した。このとき、視野内に20個以上の一次粒子が存在するように視野を設定した。得られたSEM像中の全ての一次粒子について外接円を描いたときの当該外接円の直径を求め、これらの平均値を一次粒径とした。
<板厚>
LiCoO焼結板をクロスセクションポリッシャ(CP)(日本電子株式会社製、IB−15000CP)により研磨し、得られた正極板断面をSEM観察(日本電子製、JSM6390LA)して正極板の厚さを測定した。なお、工程(1a)に関して前述した乾燥後のLiCoOグリーンシートの厚さも、上記同様にして測定されたものである。
<高速充放電容量維持率(1)>
電池の高速充放電容量維持率を4.2V−3.0Vの電位範囲において以下の手順で測定した。
(i)0.2Cレートで電池電圧が4.2Vとなるまで定電流充電し、引き続き電流値が0.02Cレートとなるまで定電圧充電した後、0.2Cレートで3.0Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を初期放電容量とした。
(ii)充電レート2C及び放電レート2Cで高速充放電を合計50回行った。
(iii)0.2Cレートで電池電圧が4.2Vとなるまで定電流充電し、引き続き0.02Cレートで定電圧充電した後、0.2Cレートで3.0Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を高速充放電後放電容量とした。
(iv)上記(i)で得られた初期放電容量に対する、上記(iii)で得られた高速充放電後放電容量の比率を算出して100を乗じることにより、高速充放電容量維持率(%)を得た。
例2
1)仮焼及びその直前の脱脂を行わなかったこと、及び2)LiCOグリーンシート片の載置量をLi/Co比が0.4となるようにしたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例3
LiCoOスラリーにLiCO原料粉末(体積基準D50粒径2.5μm、本荘ケミカル株式会社製)をさらに添加して、LiCoOグリーンシートにおける過剰Li/Co比が0.1となるようにしたこと以外は例2と同様にして正極板及び電池を作製し、各種評価を行った。なお、上記過剰Li/Co比は、LiCoOグリーンシートにおけるCo含有量に対する、LiCoOグリーンシートにおけるLiCO由来の過剰Li含有量のモル比である。
例4
1)粉末Aの代わりに、表1に示されるようにして作製されたLiCoO原料粉末3に相当する粉末Bを用いたこと、2)仮焼温度を800℃としたこと、及び3)LiCOグリーンシート片の載置量をLi/Co比が0.4となるようにしたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例5
1)粉末Aの代わりに、表1に示されるようにして作製されたLiCoO原料粉末2に相当する粉末Cを用いたこと、及び2)LiCOグリーンシート片の載置量をLi/Co比が0.4となるようにしたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例6
1)LiCOグリーンシート片の載置量をLi/Co比が0.4となるようにしたこと、及び2)900℃での焼成時間を40時間としたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例7
乾燥後のLiCoOグリーンシートの厚さが20μmとなるように成形を行ったこと以外は例2と同様にして正極板及び電池を作製し、各種評価を行った。
例8
乾燥後のLiCoOグリーンシートの厚さが120μmとなるように成形を行ったこと以外は例2と同様にして正極板及び電池を作製し、各種評価を行った。
例9
1)仮焼温度を700℃としたこと、及び2)LiCOグリーンシート片の載置量をLi/Co比が0.6となるようにしたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例10
1)LiCOグリーンシート片の載置量をLi/Co比が0.4となるようにしたこと、2)800℃での焼成時間を10時間としたこと、及び3)900℃での焼成を行わなかったこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例11
1)粉末Aの代わりに、表1に示される原料粉末1、3及び4を33:33:34の配合割合(重量比)で含むLiCoO−Co混合粉末Dを用いたこと、及び2)LiCOグリーンシート片の載置量をLi/Co比が1.1となるようにしたこと以外は例2と同様にして正極板及び電池を作製し、各種評価を行った。
例12
粉末Aの代わりに、表1に示される原料粉末2及び5を50:50の配合割合(重量比)で含むLiCoO−Co混合粉末Eを用いたこと以外は例2と同様にして正極板及び電池を作製し、各種評価を行った。
例13
1)粉末Aの代わりに、表1に示される原料粉末1、2及び5を50:25:25の配合割合(重量比)で含むLiCoO−Co混合粉末Fを用いたこと、及び2)仮焼温度を800℃としたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例14
1)粉末Aの代わりに、表1に示される原料粉末1及び4を25:75の配合割合(重量比)で含むLiCoO−Co混合粉末Gを用いたこと、2)仮焼温度を800℃としたこと、及び3)LiCOグリーンシート片の載置量をLi/Co比が0.4となるようにしたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例15(比較)
1)粉末Aの代わりに、表1に示される原料粉末1及び4を25:75の配合割合(重量比)で含むLiCoO−Co混合粉末Hを用いたこと、及び2)LiCOグリーンシート片の載置量をLi/Co比が1.2となるようにしたこと以外は例1と同様にして正極板及び電池を作製し、各種評価を行った。
例16(比較)
1)粉末Aの代わりに、表1に示される原料粉末5及び6を95:5の配合割合(重量比)で含むCo−Bi混合粉末Iを用いることで、LiCoOグリーンシートの代わりに、Biを助剤として含むCoグリーンシートを用いたこと、2)LiCOグリーンシート片の載置量をLi/Co比が1.2となるようにしたこと、3)仮焼を1300℃で5時間行ったこと、4)本焼成を2段階焼成ではなく850℃で20時間の1段階焼成で行ったこと以外は、例1と同様にして正極板及び電池を作製し、各種評価を行った。
例17
1)粉末Aの代わりに、表1に示されるようにして作製されたLiCoO原料粉末3に相当する粉末Jを用いたこと、2)乾燥後のLiCoOグリーンシートの厚さが230μmとなるように成形を行ったこと、3)LiCOグリーンシート片(過剰リチウム源)を載置しなかったこと、4)本焼成を2段階焼成ではなく870℃で20時間の1段階焼成で行ったこと以外は例2と同様にして正極板及び電池を作製し、各種評価を行った。
例18
1)粉末Aの代わりに、表1に示されるようにして作製されたLiCoO原料粉末3に相当する粉末Jを用いたこと、2)乾燥後のLiCoOグリーンシートの厚さが120μmとなるように成形を行ったこと、3)LiCOグリーンシート片(過剰リチウム源)を載置しなかったこと、4)本焼成を2段階焼成ではなく870℃で20時間の1段階焼成で行ったこと、5)高速充放電容量維持率の評価を以下に示される手順及び条件で行ったこと以外は例2と同様にして、正極板及び電池の作製並びに各種評価を行った。
<高速充放電容量維持率(2)>
電池の高速充放電容量維持率を4.35V−3.0Vの電位範囲において以下の手順で測定した。
(i)0.2Cレートで電池電圧が4.35Vとなるまで定電流充電し、引き続き電流値が0.02Cレートとなるまで定電圧充電した後、0.2Cレートで3.0Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を初期放電容量とした。
(ii)充電レート2C及び放電レート2Cで高速充放電を合計50回行った。
(iii)0.2Cレートで電池電圧が4.35Vとなるまで定電流充電し、引き続き0.02Cレートで定電圧充電した後、0.2Cレートで3.0Vになるまで放電することを含む充放電サイクルを合計3回繰り返すことにより放電容量の測定を行い、それらの平均値を高速充放電後放電容量とした。
(iv)上記(i)で得られた初期放電容量に対する、上記(iii)で得られた高速充放電後放電容量の比率を算出して100を乗じることにより、高速充放電容量維持率(%)を得た。
その結果、表3に示されるように、本例で作製した電池を4.35V−3.0Vの電位範囲で駆動させたところ、97.0%という極めて高い高速充放電容量維持率が実現された。すなわち、本発明のリチウム複合酸化物焼結体板を正極板として電池に用いた場合、最大電圧4.3Vを超える電圧(例えば4.35V)で駆動しても劣化しないことが分かる。このような優れた高電圧耐性は、本発明の焼結体板にZrコーティング等の特殊な処理を施さなくても望ましく実現することができる。
例19(比較)
1)乾燥後のLiCoOグリーンシートの厚さが120μmとなるように成形を行ったこと、及び2)高速充放電容量維持率の評価を例18と同様に4.35V−3.0Vの電位範囲で行ったこと以外は、例16と同様にして正極板及び電池の作製並びに各種評価を行った。
製造条件及び評価結果
表2に例1〜16の製造条件を示す一方、表2に例1〜16の評価結果を示す。また、表1には、表2で言及される粉末A〜Iの各々における原料粉末1〜6の配合割合が示される。また、図1に例1で得られたリチウム複合酸化物焼結体板の研磨断面(板面に垂直な断面)のSEM像を示すとともに、図2に、図1に示される測定領域における、例1で得られたリチウム複合酸化物焼結体板の断面のEBSD像を示す。なお、表1に示される原料粉末の粒径はレーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会社製、マイクロトラックMT3000II)により測定されたものである。

Claims (6)

  1. リチウム二次電池の正極に用いられるリチウム複合酸化物焼結体板であって、前記リチウム複合酸化物焼結体板は、層状岩塩構造を有する複数の一次粒子が結合した構造を有しており、かつ、
    気孔率が3〜40%であり、
    平均気孔径が15μm以下であり、
    開気孔比率が70%以上であり、
    厚さが15〜200μmであり、
    前記複数の一次粒子の平均粒径である一次粒径が20μm以下であり、
    前記複数の一次粒子の平均傾斜角が0°を超え30°以下であり、前記平均傾斜角は、前記複数の一次粒子の(003)面と前記リチウム複合酸化物焼結体板の板面とがなす角度の平均値である、リチウム複合酸化物焼結体板。
  2. 前記複数の一次粒子のうち傾斜角が0°以上30°以下である一次粒子の占める割合が60%以上であり、前記傾斜角は、前記一次粒子の(003)面と前記リチウム複合酸化物焼結体板の板面とがなす角度である、請求項1に記載のリチウム複合酸化物焼結体板。
  3. 前記複数の一次粒子のうち傾斜角が0°以上30°以下である一次粒子の占める割合が80%以上である、請求項2に記載のリチウム複合酸化物焼結体板。
  4. 前記複数の一次粒子のうち傾斜角が0°以上30°以下である一次粒子の占める割合が90%以上である、請求項2に記載のリチウム複合酸化物焼結体板。
  5. 厚さが30〜150μmである、請求項1〜4のいずれか一項に記載のリチウム複合酸化物焼結体板。
  6. 厚さが50〜100μmである、請求項1〜4のいずれか一項に記載のリチウム複合酸化物焼結体板。
JP2018526962A 2017-02-13 2018-02-08 リチウム複合酸化物焼結体板 Active JP6374634B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134906A JP6949785B2 (ja) 2017-02-13 2018-07-18 リチウム複合酸化物焼結体板

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2017024345 2017-02-13
JP2017024345 2017-02-13
JP2017101079 2017-05-22
JP2017101079 2017-05-22
JP2017244183 2017-12-20
JP2017244183 2017-12-20
JPPCT/JP2018/001619 2018-01-19
JP2018001619 2018-01-19
PCT/JP2018/004465 WO2018147387A1 (ja) 2017-02-13 2018-02-08 リチウム複合酸化物焼結体板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018134906A Division JP6949785B2 (ja) 2017-02-13 2018-07-18 リチウム複合酸化物焼結体板

Publications (2)

Publication Number Publication Date
JP6374634B1 true JP6374634B1 (ja) 2018-08-15
JPWO2018147387A1 JPWO2018147387A1 (ja) 2019-02-14

Family

ID=63108360

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018526962A Active JP6374634B1 (ja) 2017-02-13 2018-02-08 リチウム複合酸化物焼結体板
JP2018134906A Active JP6949785B2 (ja) 2017-02-13 2018-07-18 リチウム複合酸化物焼結体板

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018134906A Active JP6949785B2 (ja) 2017-02-13 2018-07-18 リチウム複合酸化物焼結体板

Country Status (6)

Country Link
US (2) US11211599B2 (ja)
EP (1) EP3582298B1 (ja)
JP (2) JP6374634B1 (ja)
KR (1) KR102585510B1 (ja)
CN (1) CN110249458B (ja)
WO (1) WO2018147387A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195463A1 (ja) 2019-03-26 2020-10-01 日本碍子株式会社 リチウム複合酸化物焼結体板
WO2022044409A1 (ja) 2020-08-26 2022-03-03 日本碍子株式会社 リチウムイオン二次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905148B2 (ja) * 2018-03-28 2021-07-21 日本碍子株式会社 リチウム二次電池及び電池内蔵カード
EP3780221A4 (en) 2018-03-28 2021-12-22 NGK Insulators, Ltd. RECHARGEABLE LITHIUM BATTERY AND BOARD WITH AN INTEGRATED BATTERY
WO2020090803A1 (ja) * 2018-10-30 2020-05-07 日本碍子株式会社 回路基板アセンブリ
JP7061688B2 (ja) * 2018-11-01 2022-04-28 日本碍子株式会社 リチウム二次電池
EP3902032A4 (en) * 2018-12-18 2022-08-31 NGK Insulators, Ltd. SECONDARY LITHIUM BATTERY
US20200266442A1 (en) 2019-02-19 2020-08-20 Corning Incorporated Sintered electrodes for batteries and method of preparing same
WO2020241714A1 (ja) * 2019-05-29 2020-12-03 国立研究開発法人産業技術総合研究所 含浸性を有する高密度脆性材料構造体
US11271201B2 (en) 2019-07-15 2022-03-08 Corning Incorporated Energy device with lithium
JP7126028B2 (ja) * 2019-08-23 2022-08-25 日本碍子株式会社 リチウムイオン二次電池
WO2021061502A1 (en) * 2019-09-23 2021-04-01 Corning Incorporated Sintered electrodes for batteries and method of preparing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009194A (ja) * 2010-06-23 2012-01-12 Ngk Insulators Ltd リチウム二次電池の正極及びリチウム二次電池
JP2013247022A (ja) * 2012-05-28 2013-12-09 Kyocera Corp 電極材料およびその製造方法ならびに二次電池
WO2016052176A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 コバルト酸リチウム配向焼結板の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144022A (ja) 1974-10-12 1976-04-15 Fujitsu Ltd Yoshioritatamisochi
JPS53146255A (en) * 1977-05-27 1978-12-20 Bridgestone Cycle Ind Co Continuous forming work device of chain stay for bicycle flame
JPS54100573A (en) 1978-01-24 1979-08-08 Tateishi Roka Kougiyou Kk Filter
JPS5941642Y2 (ja) 1978-12-11 1984-12-01 パイオニア株式会社 送受信切換信号発生回路
JPS5856012Y2 (ja) 1980-06-04 1983-12-23 株式会社神戸製鋼所 押出プレス設備のビレツトハンドリング装置
JPS5752303U (ja) 1980-09-11 1982-03-26
US6982132B1 (en) * 1997-10-15 2006-01-03 Trustees Of Tufts College Rechargeable thin film battery and method for making the same
JP2001322817A (ja) * 2000-05-12 2001-11-20 Sakai Chem Ind Co Ltd マンガン固溶水酸化ニッケル粒子及びその製造方法
KR100989537B1 (ko) * 2002-02-15 2010-10-25 에이지씨 세이미 케미칼 가부시키가이샤 리튬 이차 전지용 입자상 정극 활물질
KR100816206B1 (ko) * 2007-07-16 2008-03-28 삼성에스디아이 주식회사 리튬 이차 전지의 양극 활물질, 그 형성 방법 및 리튬 이차전지
JP5564649B2 (ja) * 2010-06-23 2014-07-30 日本碍子株式会社 リチウム二次電池の正極及びリチウム二次電池
WO2012046557A1 (ja) * 2010-10-08 2012-04-12 日本碍子株式会社 リチウム二次電池の正極活物質用の板状粒子
US20120258358A1 (en) * 2011-04-07 2012-10-11 Ngk Insulators, Ltd. Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
JPWO2012137533A1 (ja) * 2011-04-07 2014-07-28 日本碍子株式会社 正極活物質前駆体粒子及びその製造方法、並びにリチウム二次電池の正極活物質粒子の製造方法
CN102544481B (zh) * 2012-02-20 2014-04-09 东莞新能源科技有限公司 锂离子电池及其正极材料
JP5863606B2 (ja) * 2012-09-06 2016-02-16 株式会社デンソー リチウムイオン二次電池用電極活物質、リチウムイオン二次電池用電極、及びそれを用いたリチウムイオン二次電池、並びに、リチウムイオン二次電池用電極活物質の製造方法
JP6498861B2 (ja) * 2012-12-12 2019-04-10 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. リチウム二次電池用正極活物質、並びにこれを含むリチウム二次電池用正極及びリチウム二次電池
JP6076928B2 (ja) * 2013-03-26 2017-02-08 株式会社東芝 電池用活物質材料、非水電解質電池、電池パック及び自動車
JP6288941B2 (ja) * 2013-05-13 2018-03-07 日産自動車株式会社 固溶体活物質を含む正極活物質、該正極活物質を含む正極、および該正極を用いた非水電解質二次電池
WO2015111658A1 (ja) * 2014-01-22 2015-07-30 帝人株式会社 正極活物質、それを用いた正極材料、非水電解質二次電池用正極及び非水電解質二次電池
JP6466074B2 (ja) * 2014-03-13 2019-02-06 国立研究開発法人産業技術総合研究所 ナトリウムイオン二次電池用正極活物質
WO2018087966A1 (ja) * 2016-11-11 2018-05-17 日本碍子株式会社 Ic用電源及びそれを備えた各種ic製品、icへの電力供給方法、並びにicの駆動方法
WO2019093222A1 (ja) * 2017-11-10 2019-05-16 日本碍子株式会社 全固体リチウム電池及びその製造方法
CN111316489A (zh) * 2017-11-10 2020-06-19 日本碍子株式会社 二次电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009194A (ja) * 2010-06-23 2012-01-12 Ngk Insulators Ltd リチウム二次電池の正極及びリチウム二次電池
JP2013247022A (ja) * 2012-05-28 2013-12-09 Kyocera Corp 電極材料およびその製造方法ならびに二次電池
WO2016052176A1 (ja) * 2014-09-30 2016-04-07 日本碍子株式会社 コバルト酸リチウム配向焼結板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195463A1 (ja) 2019-03-26 2020-10-01 日本碍子株式会社 リチウム複合酸化物焼結体板
WO2022044409A1 (ja) 2020-08-26 2022-03-03 日本碍子株式会社 リチウムイオン二次電池
KR20230038792A (ko) 2020-08-26 2023-03-21 엔지케이 인슐레이터 엘티디 리튬 이온 이차 전지

Also Published As

Publication number Publication date
US11211599B2 (en) 2021-12-28
EP3582298B1 (en) 2023-08-16
EP3582298A1 (en) 2019-12-18
US20220029148A1 (en) 2022-01-27
KR20190117487A (ko) 2019-10-16
CN110249458B (zh) 2022-04-26
JP2019096596A (ja) 2019-06-20
WO2018147387A1 (ja) 2018-08-16
KR102585510B1 (ko) 2023-10-05
CN110249458A (zh) 2019-09-17
EP3582298A4 (en) 2020-11-25
JPWO2018147387A1 (ja) 2019-02-14
JP6949785B2 (ja) 2021-10-13
US20190355970A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6374634B1 (ja) リチウム複合酸化物焼結体板
WO2018155155A1 (ja) リチウム複合酸化物焼結体板
JP2016004703A (ja) リチウム二次電池用正極活物質板の製造方法
KR102511257B1 (ko) 티탄산리튬 소결체판
TW201943126A (zh) 鋰二次電池及內建電池的卡片
JP6947814B2 (ja) リチウム複合酸化物焼結体板
JP6643528B1 (ja) リチウム二次電池
US11329285B2 (en) Lithium composite oxide sintered body plate and lithium secondary battery
JP6901632B2 (ja) コイン形リチウム二次電池及びIoTデバイス
JP6392493B1 (ja) チタン酸リチウム焼結体板
US20210336248A1 (en) Lithium composite oxide sintered body plate
JP2019192609A (ja) 全固体リチウム電池及びその製造方法
WO2011162251A1 (ja) リチウム二次電池の正極活物質用の板状粒子、リチウム二次電池の正極、及びリチウム二次電池
JP6947813B2 (ja) リチウム複合酸化物焼結体板
JP7061688B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180524

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6374634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150