JP6371550B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP6371550B2
JP6371550B2 JP2014063408A JP2014063408A JP6371550B2 JP 6371550 B2 JP6371550 B2 JP 6371550B2 JP 2014063408 A JP2014063408 A JP 2014063408A JP 2014063408 A JP2014063408 A JP 2014063408A JP 6371550 B2 JP6371550 B2 JP 6371550B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
magnet
variable
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014063408A
Other languages
Japanese (ja)
Other versions
JP2015186415A (en
Inventor
堺 和人
和人 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Industrial Products and Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products and Systems Corp filed Critical Toshiba Industrial Products and Systems Corp
Priority to JP2014063408A priority Critical patent/JP6371550B2/en
Publication of JP2015186415A publication Critical patent/JP2015186415A/en
Application granted granted Critical
Publication of JP6371550B2 publication Critical patent/JP6371550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、回転速度に応じて極数を変換して電圧を可変し、さらに永久磁石の磁力も可変する極数変換可変磁力の永久磁石式回転電機に関する。   The present invention relates to a permanent magnet type rotating electric machine having a pole number conversion variable magnetic force that changes the voltage by changing the number of poles according to the rotation speed and also changes the magnetic force of the permanent magnet.

環境とエネルギー問題からプラグインハイブリッド車や電気自動車の実用化が急速に進められており、低消費電力量で高出力、全運転領域で高効率のモータが必要とされている。希土類元素の永久磁石は従来の数十倍の磁力を生じるため高出力で高効率のモータが得られる。そのようなモータでは、電源電圧の制限下で中〜高速回転域でモータを駆動するため、インバータ制御を用い、弱め磁束制御と言われる永久磁石の磁力(磁束)と逆方向の磁力を形成して磁力(電圧)を制御している。そして、埋め込み型永久磁石式モータ(IPMモータ)はこの制御が効果的に作用する磁気的構造を持つ永久磁石式モータである。   Due to environmental and energy issues, plug-in hybrid vehicles and electric vehicles are rapidly being put into practical use, and there is a need for low power consumption, high output, and high efficiency motors in all operating areas. Rare earth element permanent magnets generate a magnetic force several tens of times that of conventional magnets, so that a high output and high efficiency motor can be obtained. In such a motor, in order to drive the motor in the middle to high speed rotation range under the limitation of the power supply voltage, inverter control is used to form a magnetic force in the opposite direction to the magnetic force (magnetic flux) of the permanent magnet, which is called weak magnetic flux control. The magnetic force (voltage) is controlled. The embedded permanent magnet motor (IPM motor) is a permanent magnet motor having a magnetic structure in which this control is effective.

しかしながら、弱め磁束制御を用いると、出力にならない制御電流による銅損と高調波鉄損が発生して効率が大幅に低下する。そのため、この永久磁石式モータをハイブリッド自動車に搭載する場合、モータの高速回転域では燃費が低下する問題点がある。また、この永久磁石式モータを電車に搭載する場合、電車では駅間の高速走行時にはモータから駆動力をもらわない惰行運転モードに移行する。しかし、惰行運転モードでも車輪の高速回転によってモータのロータが回転させられ、これによってロータに埋め込まれている永久磁石によりインバータに高電圧の誘起電圧がかかる。そこで、インバータを保護するため、弱め磁束制御をしているが、駆動力を必要としない惰行運転モードで弱め磁束制御のために電力を消費する必要があり、省エネルギーにならない問題点がある。   However, when the flux-weakening control is used, the copper loss and the harmonic iron loss due to the control current that does not become an output are generated, and the efficiency is greatly reduced. Therefore, when this permanent magnet type motor is mounted on a hybrid vehicle, there is a problem that fuel efficiency is reduced in the high-speed rotation range of the motor. When this permanent magnet motor is mounted on a train, the train shifts to a coasting operation mode in which no driving force is obtained from the motor when traveling at high speed between stations. However, even in the coasting operation mode, the rotor of the motor is rotated by the high-speed rotation of the wheels, whereby a high induced voltage is applied to the inverter by the permanent magnet embedded in the rotor. Therefore, although flux weakening control is performed to protect the inverter, it is necessary to consume power for the flux weakening control in the coasting operation mode that does not require a driving force, and there is a problem that energy is not saved.

特開2013−183515号公報JP 2013-183515 A

松井信行編著、「省レアアース・脱レアアースモータ」、日刊工業新聞社(2013年)Edited by Nobuyuki Matsui, “Reduced Rare Earth / Derare Earth Motor”, Nikkan Kogyo Shimbun (2013) 堺和人、湯澤成彰、「巻線切り替え無し極数変換永久磁石式モータの基礎研究」、平成25年電気学会全大、No.5−008(2013年)Kazuhito Tsuji and Shigeaki Yuzawa, “Basic research on pole-changing permanent magnet motors without coil switching”, 2013 IEEJ, No. 5-008 (2013) 中里圭佑、湯澤成彰、堺和人、「極数変換の永久磁石リラクタンスモータの基本特性」、平成25年電気学会全大、No.5−009(2013年)Satoshi Nakazato, Shigeaki Yuzawa, Kazuhito Tsuji, “Basic Characteristics of Permanent Magnet Reluctance Motors with Pole Conversion”, 2013 IEEJ, No. 5-009 (2013)

本発明は、上記従来技術の課題に鑑みてなされたもので、低速回転域から高速回転域まで広い運転範囲で高効率が得られ、運転時の消費電力量を大幅に低減できる永久磁石式回転電機を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and can achieve a high efficiency in a wide operation range from a low speed rotation range to a high speed rotation range, and can significantly reduce power consumption during operation. The purpose is to provide an electric machine.

本発明は、固定子鉄心と電機子巻線から成る固定子と、外部磁界により磁化される永久磁石を持つ回転子とから構成され、永久磁石は、外部磁界により極性が不可逆的に反転し、かつ外部磁界により磁力が不可逆的に変化する低保磁力の磁気特性の可変磁力磁石と、外部磁界により極性が不可逆的に反転せず、かつ外部磁界により磁力が不可逆的に変化しない高保磁力の磁気特性の固定磁力磁石とで構成され、可変磁力磁石を外向きに開くV字状の配置で2個1組とし、固定磁力磁石を外向きに開くV字状の配置で2個1組として、回転子の回転方向に交互に1組ずつ可変磁力磁石と固定磁力磁石が回転子の鉄心に配置され、前記外部磁界により前記永久磁石の極性を反転させて極数変換を行い、かつ前記外部磁界により前記永久磁石を増磁あるいは減磁して磁化状態を変化させて鎖交磁束を可変する永久磁石式回転電機であって、V字状に配置された可変磁力磁石の磁化を変化させて、低速回転域と高速回転域で極数を可変し、かつ永久磁石の鎖交磁束数を可変して運転する永久磁石式回転電機を特徴とする。 The present invention is composed of a stator composed of a stator core and an armature winding, and a rotor having a permanent magnet magnetized by an external magnetic field, and the polarity of the permanent magnet is irreversibly reversed by the external magnetic field, In addition, a low-coercivity magnetic property variable magnetic magnet whose magnetic force changes irreversibly by an external magnetic field, and a high coercivity magnetism whose polarity does not reverse irreversibly by an external magnetic field and whose magnetic force does not change irreversibly by an external magnetic field. It is composed of fixed magnetic magnets with characteristics, and one set of two in a V-shaped arrangement that opens the variable magnetic magnet outward, and one set of two in the V-shaped arrangement that opens the fixed magnetic magnet outward, A pair of variable magnetic magnets and fixed magnetic magnets are alternately arranged in the rotor core in the rotational direction of the rotor , and the number of poles is changed by reversing the polarity of the permanent magnet by the external magnetic field. By magnetizing the permanent magnet Rui is a permanent magnet type rotary electric machine which varies the flux linkage by changing the magnetized state demagnetized, by changing the magnetization of the variable magnetic force magnets that are arranged in a V-shape, the low rotational speed range and high speed It is characterized by a permanent magnet type rotating electrical machine that operates by varying the number of poles in the region and varying the number of flux linkages of the permanent magnet.

また本発明は、固定子鉄心と電機子巻線から成る固定子と、電機子電流により生じる磁界で磁化される永久磁石を持つ回転子とから構成され、永久磁石は、電機子電流によって生じる磁界により極性が不可逆的に反転し、かつ電機子電流によって生じる磁界により磁力が不可逆的に変化する低保磁力の磁気特性の可変磁力磁石と、電機子電流によって生じる磁界により極性が不可逆的に反転せず、かつ電機子電流によって生じる磁界により磁力が不可逆的に変化しない高保磁力の磁気特性の固定磁力磁石とで構成され、可変磁力磁石を外向きに開くV字状の配置で2個1組とし、固定磁力磁石を外向きに開くV字状の配置で2個1組として、回転子の回転方向に交互に1組ずつ可変磁力磁石と固定磁力磁石が前記回転子の鉄心に配置され、前記電機子電流によって生じる磁界により前記永久磁石の極性を反転させて極数変換を行い、かつ前記電機子電流によって生じる磁界により前記永久磁石を増磁あるいは減磁して磁化状態を変化させて鎖交磁束も可変する永久磁石式回転電機であって、V字状に配置された可変磁力磁石の磁化を変化させて、低速回転域と高速回転域で極数を可変し、かつ永久磁石の鎖交磁束数を可変して運転する永久磁石式回転電機を特徴とする。 The present invention also includes a stator including a stator core and an armature winding, and a rotor having a permanent magnet that is magnetized by a magnetic field generated by the armature current. The permanent magnet is a magnetic field generated by the armature current. The polarity is irreversibly reversed and the magnetic force is irreversibly changed by the magnetic field generated by the armature current. And a fixed magnetic magnet having a high coercive magnetic characteristic in which the magnetic force does not change irreversibly due to the magnetic field generated by the armature current, and a set of two in a V-shaped arrangement that opens the variable magnetic force magnet outward. the fixed magnetic force magnet as two pair with V-shaped arrangement that opens outward, variable magnetic force magnet and the fixed magnetic force magnet one set alternately in the rotational direction of the rotor is arranged on the iron core of the rotor, before Polarity conversion is performed by reversing the polarity of the permanent magnet by the magnetic field generated by the armature current, and the magnetization state is changed by increasing or decreasing the magnetization of the permanent magnet by the magnetic field generated by the armature current. This is a permanent magnet type rotating electric machine that also changes the magnetic flux, and changes the magnetization of the variable magnetic magnets arranged in a V shape to change the number of poles in the low speed rotation range and the high speed rotation range. It is characterized by a permanent magnet type rotating electrical machine that operates with a variable number of magnetic fluxes .

本発明の永久磁石式回転電機によれば、弱め磁束制御で電圧を制御するのではなく、回転速度に応じて極数を変換して電圧を可変し、さらに永久磁石の磁力も可変することにより、低速回転域から高速回転域まで広い運転範囲で高効率が得られ、運転時の消費電力量を大幅に低減できる。   According to the permanent magnet type rotating electrical machine of the present invention, the voltage is controlled by changing the number of poles according to the rotation speed, and the magnetic force of the permanent magnet is also changed, instead of controlling the voltage by the magnetic flux weakening control. High efficiency can be obtained in a wide operating range from the low-speed rotation range to the high-speed rotation range, and the power consumption during operation can be greatly reduced.

本発明の1つの実施の形態の永久磁石式モータの速度、トルクとモードとの対応図。The correspondence diagram of the speed, torque, and mode of the permanent magnet type motor of one embodiment of the present invention. 上記実施の形態の永久磁石式モータの半分の断面図。Sectional drawing of the half of the permanent magnet type motor of the said embodiment. 上記実施の形態の永久磁石式モータを制御する永久磁石式モータ制御回路の回路図。The circuit diagram of the permanent magnet type motor control circuit which controls the permanent magnet type motor of the said embodiment. 上記実施の形態の永久磁石式モータの電機子巻線の8極モード時の接続図。The connection diagram at the time of 8 pole mode of the armature winding of the permanent-magnet-type motor of the said embodiment. 上記実施の形態の永久磁石式モータの電機子巻線の4極モード時の接続図。The connection diagram at the time of 4 pole mode of the armature winding of the permanent-magnet-type motor of the said embodiment. 上記実施の形態の永久磁石式モータの8極モード、4極モード時の可変磁力磁石の磁化状態を示す説明図。Explanatory drawing which shows the magnetization state of the variable magnetic force magnet at the time of 8 pole mode of the permanent magnet type motor of the said embodiment, and 4 pole mode. 本発明の実施例1の永久磁石式モータの諸元図。FIG. 2 is a specification diagram of the permanent magnet motor according to the first embodiment of the present invention. 図8(a)は実施例1の永久磁石式モータの8極モードでの磁束密度の分布と磁極分布を示す断面図、図8(b)は実施例1の永久磁石式モータの4極モードでの磁束密度の分布と磁極分布を示す断面図。8A is a cross-sectional view showing the magnetic flux density distribution and the magnetic pole distribution in the 8-pole mode of the permanent magnet motor of the first embodiment, and FIG. 8B is the 4-pole mode of the permanent magnet motor of the first embodiment. Sectional drawing which shows distribution of magnetic flux density and magnetic pole distribution in FIG. 実施例1の永久磁石式モータの8極モード時と4極モード時の誘導電圧と調波成分を対比として示したグラフ。The graph which showed the induced voltage and harmonic component at the time of the 8 pole mode and 4 pole mode of the permanent magnet type motor of Example 1 as contrast. 実施例1の永久磁石式モータの8極モード時と4極モード時の回転速度−トルク特性のグラフ。The graph of the rotational speed-torque characteristic at the time of the 8-pole mode and the 4-pole mode of the permanent magnet type motor of Example 1. FIG. 実施例1の永久磁石式モータの8極モード時の可変磁力磁石の磁力変更時の回転速度−トルク特性のグラフ。The graph of the rotational speed-torque characteristic at the time of the magnetic force change of the variable magnetic force magnet at the time of the 8-pole mode of the permanent magnet type motor of Example 1. FIG. 実施例1の永久磁石式モータの4極モード時の可変磁力磁石の磁力変更時の回転速度−トルク特性のグラフ。The graph of the rotational speed-torque characteristic at the time of the magnetic force change of the variable magnetic force magnet at the time of the 4-pole mode of the permanent magnet type motor of Example 1. FIG. 実施例1の永久磁石式モータの8極モード時の可変磁力磁石の磁力変更時のモータ効率のグラフ。The graph of the motor efficiency at the time of the magnetic force change of the variable magnetic force magnet at the time of the 8-pole mode of the permanent magnet type motor of Example 1. FIG. 実施例1の永久磁石式モータの4極モード時の可変磁力磁石の磁力変更時のモータ効率のグラフ。The graph of the motor efficiency at the time of the magnetic force change of the variable magnetic force magnet at the time of the 4-pole mode of the permanent magnet type motor of Example 1. FIG.

以下、本発明の実施の形態を図に基づいて詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明の永久磁石式回転電機の原理を説明する。回転子鉄心内に外に向かって開くV字状の配置の固定磁力磁石の組の複数L組を円周方向に等角度間隔に、かつ、回転子の外周に現れる磁極が全周で同極となる向きに埋め込み、かつ、磁化方向が固定磁力磁石と同じとする複数L組の可変磁力磁石を、同じく外に向かって開くV字状の配置に隣り合う固定磁力磁石の組の間各々に、円周方向に等角度間隔に埋め込んだ回転子と、極数切替にて電機子巻線の結線を2L極と4L極の間で極数切替ができる固定子とを備え、低速回転(大トルク)域では、電機子巻線の結線を2L極にして所定の短時間だけ通常の運転時の電流よりも大きい第1の磁化電流を流すことによって発生する磁界によりL組の可変磁力磁石それぞれを隣り合う固定磁力磁石の組と同一方向に不可逆的に磁化させ、可変磁力磁石と固定磁力磁石はN極S極のいずれか同極に揃え、隣り合う可変磁力磁石と固定磁力磁石との間の凸鉄心部に隣り合う可変磁力磁石及び固定磁力磁石の各組の磁極とは反対の磁極のイメージポールを形成することにより磁石トルク主体の4L極PMモード状態とし、中速及び高速回転域では、電機子巻線を2L極にして所定の短時間だけ第1の磁化電流とは逆の方向の第2の磁化電流を流すことによって発生する磁界によりL組の可変磁力磁石を隣り合う固定磁力磁石とは逆方向に不可逆的に磁化させて磁石トルクとリラクタンストルクの両方で動作する2L極IPMモード状態とし、4L極PMモード状態と2L極IPMモード状態との間で相互にモード状態を切り替えて4L極PMモードと2L極IPMモードとのいずれでも運転できる永久磁石式回転電機である。そして本発明の永久磁石式回転電機は、各組の可変磁力磁石の磁化状態を不可逆的に増磁しあるいは減磁することによりトルク特性を可変することもできる。   First, the principle of the permanent magnet type rotating electrical machine of the present invention will be described. Multiple L sets of V-shaped arrangement of fixed magnetic magnets that open outwardly into the rotor core are equiangularly spaced in the circumferential direction, and the magnetic poles appearing on the outer periphery of the rotor are the same A plurality of L sets of variable magnetic magnets having the same magnetization direction as that of the fixed magnetic magnets are embedded between each pair of adjacent fixed magnetic magnets in a V-shaped arrangement that also opens outward. And a rotor embedded at equal angular intervals in the circumferential direction, and a stator capable of switching the number of poles between 2L poles and 4L poles by switching the number of poles, and rotating at low speed (large In the (torque) region, each of the L variable magnetic magnets is generated by a magnetic field generated by flowing a first magnetizing current larger than the current during normal operation for a predetermined short time with the armature winding connected to the 2L pole. Is magnetized irreversibly in the same direction as the pair of adjacent fixed magnetic magnets, The magnet and the fixed magnetic magnet are arranged in the same polarity of either the N pole or the S pole, and the variable magnetic magnet adjacent to the convex core portion between the adjacent variable magnetic magnet and the fixed magnetic magnet and the magnetic poles of each set of the fixed magnetic magnets. Forms an image pole of the opposite magnetic pole to enter a 4L pole PM mode state mainly composed of magnet torque, and in the middle speed and high speed rotation regions, the armature winding is set to 2L pole and the first magnetizing current is applied for a predetermined short time. The magnets generated by passing the second magnetizing current in the opposite direction are magnetized irreversibly in the opposite direction to the adjacent fixed magnetic magnets by the magnetic field generated by flowing a second magnetizing current in both directions, both in magnet torque and reluctance torque. Operate in either the 4L-pole PM mode or the 2L-pole IPM mode by switching the mode state between the 4L-pole PM mode state and the 2L-pole IPM mode state. A Kill permanent magnet type rotating electrical machine. The permanent magnet type rotating electrical machine of the present invention can also change the torque characteristics by irreversibly increasing or decreasing the magnetization state of each set of variable magnetic force magnets.

次に、本発明の1つの実施の形態の永久磁石式モータについて説明する。図1に示すように低速回転域では8極の永久磁石トルクモータ(8極PM)として、中速から高速回転域では4極永久磁石トルクとリラクタンストルクのモータ(4極IPM)として動作させ、さらに、8極PMモード、4極IPMモードそれぞれで、可変磁力磁石の組の磁化状態を不可逆的に増磁しあるいは減磁することにより、モータとして常に効率の良い領域で運転する。   Next, a permanent magnet motor according to one embodiment of the present invention will be described. As shown in FIG. 1, it is operated as an 8-pole permanent magnet torque motor (8-pole PM) in the low-speed rotation range, and as a 4-pole permanent magnet torque and reluctance torque motor (4-pole IPM) in the medium to high-speed rotation range, Further, in each of the 8-pole PM mode and 4-pole IPM mode, the motor is always operated in an efficient region by irreversibly increasing or demagnetizing the magnetization state of the set of variable magnetic force magnets.

図2は本実施の形態の永久磁石式モータ1の半分の断面を示し、円筒状の固定子10の内空部に回転子20をそれらの間にエアギャップを介して挿入した構造である。回転子20の中心部には回転軸30が嵌め込まれている。   FIG. 2 shows a half cross section of the permanent magnet motor 1 of the present embodiment, and has a structure in which a rotor 20 is inserted into an inner space of a cylindrical stator 10 through an air gap therebetween. A rotating shaft 30 is fitted in the center of the rotor 20.

永久磁石式モータ1の固定子10は、円筒形の固定子鉄心11の内周面に等間隔に形成されているスロット12各々に電機子巻線13を巻装した構成である。この固定子10の電機子巻線13は、図3に示す永久磁石式回転電機制御回路100における極数変換器120により3相交流入力に対して8極と4極に結線を切り替えることができる。この極数変換器120は、一般的な誘導回転電機の極数切替回転電機と同様に複数の電磁接触器で巻線の接続を切り替える仕組みである。または、前記の電磁接触器の機械式切替だけでなく、複数の電力用半導体(パワートランジスタやIGBT)のスイッチングで巻線の接続を切り替える電子式切替も同様にできる。電子式では高速応答により滑らかな切替が可能になる。   The stator 10 of the permanent magnet motor 1 has a configuration in which armature windings 13 are wound around slots 12 formed at equal intervals on the inner peripheral surface of a cylindrical stator core 11. The armature winding 13 of the stator 10 can be switched between 8-pole and 4-pole with respect to the three-phase AC input by the pole number converter 120 in the permanent magnet type rotary electric machine control circuit 100 shown in FIG. . This pole number converter 120 is a mechanism for switching the connection of the windings with a plurality of electromagnetic contactors in the same manner as the pole number switching rotating electric machine of a general induction rotating electric machine. Alternatively, not only mechanical switching of the electromagnetic contactor but also electronic switching for switching the connection of windings by switching of a plurality of power semiconductors (power transistors and IGBTs) can be performed in the same manner. In the electronic system, smooth switching is possible due to high-speed response.

電機子巻線回路を図4、図5に示す。図4に示す8極切替時の巻線構成はY結線の4並列接続、図5に示す4極切替時の巻線構成はY結線の2並列接続である。これにより、極数と機器定数を変換することができ、それによって、極数変換による誘導電圧を広い範囲で可変にし、可変速の運転領域が広がる。   The armature winding circuit is shown in FIGS. The winding configuration at the time of 8-pole switching shown in FIG. 4 is 4-parallel connection of Y connection, and the winding configuration at the time of 4-pole switching shown in FIG. 5 is 2-parallel connection of Y connection. As a result, the number of poles and the device constant can be converted, whereby the induced voltage due to the pole number conversion is made variable in a wide range, and the variable speed operating range is expanded.

永久磁石式モータ1の回転子20は、回転子鉄心21内に高保磁力永久磁石22(以下、「固定磁力磁石」と称す)と低保磁力永久磁石23(以下、「可変磁力磁石」と称す)とが埋め込まれた構成である。永久磁石の場合、その磁石材料によらず、減磁磁界の大小はあるとしても、大きな磁界により減磁あるいは増磁するものであるが、ここでは、想定している使用条件の下で瞬間的な所定の大電流により不可逆的に磁力を変化させるものを可変磁力磁石、不可逆的に磁力を変化させないものを固定磁力磁石と称する。   The rotor 20 of the permanent magnet motor 1 has a high coercive force permanent magnet 22 (hereinafter referred to as “fixed magnetic force magnet”) and a low coercive force permanent magnet 23 (hereinafter referred to as “variable magnetic force magnet”) in a rotor core 21. ) And embedded. In the case of a permanent magnet, regardless of the magnet material, even if the demagnetizing magnetic field is large or small, it is demagnetized or magnetized by a large magnetic field, but here it is instantaneous under the assumed use conditions. A magnet that irreversibly changes its magnetic force by a predetermined large current is called a variable magnetic magnet, and a magnet that does not irreversibly change its magnetic force is called a fixed magnetic magnet.

図2に示すように、固定磁力磁石22が外向きに開くV字状の配置で2個1組として回転子鉄心21内に、その回転方向に180度離れた位置それぞれに1組ずつ埋め込まれている。同様に、可変磁力磁石23も外向きに開くV字状の配置で2個1組として回転子鉄心21内に、その回転方向に180度離れた位置それぞれに1組ずつ埋め込まれている。これにより、これらの固定磁力磁石22と可変磁力磁石23とは、回転方向に90度ずつ離れた位置に交互に埋め込まれる配置となっている。   As shown in FIG. 2, the fixed magnetic magnets 22 are embedded in the rotor core 21 as a set in a V-shaped arrangement that opens outward, one set at each position 180 degrees away in the rotation direction. ing. Similarly, the variable magnetic force magnets 23 are also embedded in the rotor core 21 as a set of two in a V-shaped arrangement that opens outward, one set at each position 180 degrees away in the rotation direction. Thus, the fixed magnetic magnets 22 and the variable magnetic magnets 23 are alternately embedded at positions separated by 90 degrees in the rotation direction.

1組の固定磁力磁石22の中心を通る半径方向の線とそれに隣り合う1組の可変磁力磁石23の中心を通る半径方向の線との間は回転角として90度であり、隣り合う固定磁力磁石22と可変磁力磁石23との間は離間している。この離間部が凸鉄心部24となっている。そして凸鉄心部24の中心を通る半径方向の線とその両隣の磁石組の中心を通る半径方向の線との間の回転角は45度である。各永久磁石22,23の両端には磁気障壁として空隙25が形成してある。   The rotation angle is 90 degrees between the radial line passing through the center of one set of fixed magnetic magnets 22 and the radial line passing through the center of one set of variable magnetic magnets 23 adjacent thereto. The magnet 22 and the variable magnetic force magnet 23 are separated from each other. This separated portion is a convex iron core portion 24. The rotation angle between the radial line passing through the center of the convex core portion 24 and the radial line passing through the centers of the adjacent magnet pairs is 45 degrees. A gap 25 is formed as a magnetic barrier at both ends of each permanent magnet 22, 23.

高保磁力の固定磁力磁石22にはネオジム磁石を採用するのが好ましい。そして低保磁力の可変磁力磁石23としては、高保磁力の固定磁力磁石22よりも低保磁力のものを使用する。例えば、高保磁力の永久磁石22には1000〜1800kA/mの保磁力の永久磁石(例えば、NdFeB永久磁石)、低保磁力の永久磁石23にはサマリウムコバルト磁石やAlNiCo永久磁石で100〜500kA/mの保磁力のものを採用することができる。   A neodymium magnet is preferably adopted as the fixed coercive magnet 22 having a high coercive force. As the variable coercive magnet 23 having a low coercive force, a magnet having a lower coercive force than the fixed coercive magnet 22 having a high coercive force is used. For example, the high coercivity permanent magnet 22 has a coercivity permanent magnet (for example, NdFeB permanent magnet) of 1000-1800 kA / m, and the low coercivity permanent magnet 23 has a samarium cobalt magnet or AlNiCo permanent magnet of 100-500 kA / m. Those having a coercive force of m can be employed.

本実施の形態の永久磁石式モータ1は、極数変換、磁力変更のために、回転子20に埋め込まれる可変磁力磁石23を磁化して磁極反転させあるいは再反転させて極数変換を行い、磁石トルク主体の8極PMモード、磁石トルクとリラクタンストルクの両方で動作する4極IPMモードで駆動する。また、可変磁力磁石23の磁力を増磁しあるいは減磁することにより、基本的に弱め磁束制御なしに可変速運転できるようにする。   The permanent magnet motor 1 according to the present embodiment performs pole number conversion by magnetizing the variable magnetic force magnet 23 embedded in the rotor 20 and reversing or re-inverting the magnetic pole for pole number conversion and magnetic force change. It is driven in the 8-pole PM mode mainly based on the magnet torque, and in the 4-pole IPM mode that operates in both the magnet torque and the reluctance torque. Further, by increasing or decreasing the magnetic force of the variable magnetic force magnet 23, it is basically possible to perform variable speed operation without weakening the magnetic flux control.

図6(a)に示す回転子20が8極になる場合(8極PMモード)は、固定磁力磁石22と可変磁力磁石23は同極である。磁石間の凸鉄心部24には、固定磁力磁石22あるいは可変磁力磁石23とは逆の磁極(イメージポール)が形成されて、回転子20は8極となる。この8極PMモードでは、電機子巻線13は図4に示す8極接続にして運転する。   When the rotor 20 shown in FIG. 6A has 8 poles (8-pole PM mode), the fixed magnetic magnet 22 and the variable magnetic magnet 23 have the same polarity. A magnetic pole (image pole) opposite to the fixed magnetic magnet 22 or the variable magnetic magnet 23 is formed on the convex iron core portion 24 between the magnets, and the rotor 20 has eight poles. In this 8-pole PM mode, the armature winding 13 is operated with the 8-pole connection shown in FIG.

図6(b)に示すように、回転子20の極数を8極PMモードから4極IPMモードとする場合、電機子巻線13を図5に示す4極に切り替えて、極短時間のパルス状のd軸電機子電流を通電させ、その磁界を用いて保磁力が低くて磁化されやすい可変磁力磁石23を隣り合う固定磁力磁石22と逆向き磁化する。可変磁力磁石23の磁化方向は隣り合う固定磁力磁石22の磁化方向と逆の極性となり、回転子20の全体で4極となる。こうして4極IPMモードに変更して運転する場合、電機子巻線13はそのまま図5に示す4極接続で運転する。   As shown in FIG. 6B, when the number of poles of the rotor 20 is changed from the 8-pole PM mode to the 4-pole IPM mode, the armature winding 13 is switched to the 4-pole shown in FIG. By applying a pulsed d-axis armature current, the variable magnetic magnet 23 having a low coercive force and easily magnetized is magnetized in the opposite direction to the adjacent fixed magnetic magnet 22 using the magnetic field. The magnetization direction of the variable magnetic force magnet 23 has a polarity opposite to the magnetization direction of the adjacent fixed magnetic force magnets 22, and the entire rotor 20 has four poles. When the operation is changed to the 4-pole IPM mode in this way, the armature winding 13 is operated with the 4-pole connection shown in FIG. 5 as it is.

逆に回転子20の極数を図6(b)の4極IPMモードから図6(a)の8極PMモードとする場合、固定子10の巻線接続を図5に示す4極の状態とし、4極のd軸電機子電流による逆向きの磁界を発生させて可変磁力磁石23を元の磁化方向に戻す。そして電機子巻線13は図4に示す8極接続に戻して運転する。   Conversely, when the number of poles of the rotor 20 is changed from the 4-pole IPM mode in FIG. 6B to the 8-pole PM mode in FIG. 6A, the winding connection of the stator 10 is in the 4-pole state shown in FIG. Then, a reverse magnetic field is generated by a 4-pole d-axis armature current to return the variable magnetic force magnet 23 to the original magnetization direction. The armature winding 13 is operated by returning to the 8-pole connection shown in FIG.

さらに、4極モード、8極モードそれぞれで可変磁力磁石23の磁力を可変にして運転する場合には、図3の永久磁石式モータ制御回路100にて、磁化モード切替信号を入力し、インバータ103から永久磁石式モータ1に対して瞬間的に所定の大電流を流し、可変磁力磁石23の磁力を変更する。この制御は次の通りである。永久磁石式モータ制御回路100は、3相電源を整流する整流器102、整流器102の整流出力をPWMによって所定周波数、所定電圧の3相交流に変換して永久磁石式モータ1に供給するインバータ103、そして前述した極数変換器120を備えている。   Further, in the case where the magnetic force of the variable magnetic force magnet 23 is made variable in each of the 4-pole mode and the 8-pole mode, the magnetization mode switching signal is inputted by the permanent magnet motor control circuit 100 of FIG. Then, a predetermined large current is instantaneously supplied to the permanent magnet motor 1 to change the magnetic force of the variable magnetic magnet 23. This control is as follows. The permanent magnet motor control circuit 100 includes a rectifier 102 that rectifies a three-phase power source, an inverter 103 that converts the rectified output of the rectifier 102 into a three-phase alternating current having a predetermined frequency and a predetermined voltage by PWM, and supplies the three-phase AC to the permanent magnet motor 1. And the pole number converter 120 mentioned above is provided.

さらに、永久磁石式モータ制御回路100は、モータ1の回転速度ωを検出するレゾルバのような回転速度検出器105、回転速度検出器105の出力を積分して回転角度θを得る積分器106、インバータ107の3相出力電流を検出する電流検出器107、電流検出器107の検出信号をdq座標変換してd軸電流Id、q軸電流Iqを出力するDQ変換器108を備えている。また、永久磁石式モータ制御回路100は、外部からの磁化モード切替信号により通常運転時のd軸電流指令IdNormRefとd軸磁化電流指令IdMagRefを切り替えてd軸電流指令IdRefとして出力するd軸電流指令切替器141、上記外部からの磁化モード切替信号により通常運転時のq軸電流指令IqNormRefとq軸磁化電流指令IqMagRefを切り替えてq軸電流指令IqRefとして出力するq軸電流指令切替器142、DQ変換器108のd軸電流Id、q軸電流Iqとd軸電流指令IdRef、q軸電流指令IqRefとのそれぞれの差、そしてモータ速度ωに基づき電流制御演算を行い、d軸電圧指令VdRef、q軸電圧指令VqRefを求める電流制御器109、これら電流制御器109の出力するd軸電圧指令VdRef、q軸電圧指令VqRefをモータ回転角度θに基づいてUVW3相電圧指令に変換するUVW変換器110、そして、UVW変換器110の3相電圧指令に対してPWM演算(パルス幅変調演算)を行い、インバータ103にゲート信号を出力するPWMゲート演算器111を備えている。   Further, the permanent magnet motor control circuit 100 includes a rotational speed detector 105 such as a resolver that detects the rotational speed ω of the motor 1, an integrator 106 that integrates the output of the rotational speed detector 105 to obtain a rotational angle θ, A current detector 107 that detects the three-phase output current of the inverter 107 and a DQ converter 108 that outputs a d-axis current Id and a q-axis current Iq by converting the detection signal of the current detector 107 by dq coordinates are provided. In addition, the permanent magnet motor control circuit 100 switches the d-axis current command IdNormalRef and the d-axis magnetization current command IdMagRef during normal operation by an external magnetization mode switching signal and outputs the d-axis current command IdRef as a d-axis current command IdRef. The switch 141, the q-axis current command switch 142 for switching the q-axis current command IqNormRef and the q-axis magnetization current command IqMagRef during normal operation by the external magnetization mode switching signal and outputting the q-axis current command IqRef, and DQ conversion Current control calculation is performed based on the difference between the d-axis current Id, q-axis current Iq and the d-axis current command IdRef, q-axis current command IqRef, and the motor speed ω, and the d-axis voltage command VdRef, q-axis The current controller 109 for obtaining the voltage command VqRef and the output of these current controllers 109 The UVW converter 110 that converts the d-axis voltage command VdRef and the q-axis voltage command VqRef into the UVW three-phase voltage command based on the motor rotation angle θ, and the PWM calculation (pulse) for the three-phase voltage command of the UVW converter 110 A PWM gate calculator 111 that performs a width modulation calculation and outputs a gate signal to the inverter 103.

この永久磁石式モータ制御回路100では、通常運転時には磁化モード切替信号が与えられず、d軸電流指令切替器141、q軸電流指令切替器142は「0」側にあり、入力される通常運転時の電流指令IdNormRef,IqNormRefを出力する。これに対して、電流制御器109は、DQ変換器108によるモータ電流Id,Iqが通常運転時の電流指令IdNormRef,IqNormRefに一致するように電流制御演算を行い、電圧指令VdRef,VqRefを出力する。そしてUVW変換器110は、d軸電圧指令VdRef、q軸電圧指令VqRefをUVW3相電圧指令に変換し、この3相電圧指令に対してPWMゲート演算器111がPWM演算を行い、インバータ103にゲート信号を出力する。インバータ103はこのPWMゲート信号に基づいて所定周波数、所定電圧の3相交流を生成して永久磁石式モータ1に給電し、所定速度で回転させる。   In this permanent magnet motor control circuit 100, the magnetization mode switching signal is not given during the normal operation, and the d-axis current command switch 141 and the q-axis current command switch 142 are on the “0” side, and the normal operation is input. Current commands IdNormRef and IqNormRef are output. On the other hand, the current controller 109 performs a current control calculation so that the motor currents Id and Iq by the DQ converter 108 coincide with the current commands IdNomRef and IqNormRef during normal operation, and outputs the voltage commands VdRef and VqRef. . The UVW converter 110 converts the d-axis voltage command VdRef and the q-axis voltage command VqRef into a UVW three-phase voltage command. The PWM gate calculator 111 performs PWM calculation on the three-phase voltage command, Output a signal. The inverter 103 generates a three-phase alternating current having a predetermined frequency and a predetermined voltage based on the PWM gate signal, supplies power to the permanent magnet motor 1, and rotates it at a predetermined speed.

一方、磁化反転又は磁化再反転を行う場合には、磁化モード切替信号が入力され、これに応じてd軸電流指令切替器141、q軸電流指令切替器142それぞれは「1」側、つまり磁化電流指令側に短時間(例えば10ms間)だけ切り替わり、極数変換のために磁化反転する時には正のIdMagRef,IqMagRefを出力し、極数再変換のために磁化再反転する時には負のIdMagRef,IqMagRefを出力する。また磁化方向はそのままに可変磁力磁石23の磁力を増磁変化又は減磁変化させる時にはそれぞれ所定の大電流を同方向に流す。これらのd軸磁化電流指令は可変磁力の低保磁力永久磁石23の磁力を変化させる主電流の指令であり、q軸磁化電流指令IqMagRefは磁化中のトルク不連続性を抑制するために必要に応じて設定される。これは通常運転時のq軸電流指令IqNormRefに設定してもよい。   On the other hand, when magnetization reversal or magnetization reinversion is performed, a magnetization mode switching signal is input, and in response to this, each of the d-axis current command switch 141 and the q-axis current command switch 142 is on the “1” side, that is, the magnetization It switches to the current command side for a short time (for example, for 10 ms), and outputs positive IdMagRef and IqMagRef when the magnetization is reversed for pole number conversion, and negative IdMagRef and IqMagRef when the magnetization is reversed for pole number reconversion. Is output. In addition, when the magnetic force of the variable magnetic force magnet 23 is increased or decreased, a predetermined large current flows in the same direction without changing the magnetization direction. These d-axis magnetization current commands are commands for main currents that change the magnetic force of the low-coercivity permanent magnet 23 with variable magnetic force, and the q-axis magnetization current commands IqMagRef are necessary to suppress torque discontinuity during magnetization. Set accordingly. This may be set to the q-axis current command IqNormRef during normal operation.

磁化モード時のd軸磁化電流指令IdMagRefにより、永久磁石式モータ1では低保磁力の永久磁石23が図6(a)に示す磁化方向から図6(b)に示す磁化方向に反転し、これによって回転子20は8極モードから4極モードに極数変換する。図6(b)の4極モードから図6(a)の8極モードに再変換する場合には、d軸磁化電流指令IdMagRefを逆向きに流す。さらに、d軸磁化電流指令IdMagRefを大小変えて設定することもでき、それにより、低保磁力の可変磁力磁石23の磁化状態を増磁したり減磁したりする制御もする。   Due to the d-axis magnetization current command IdMagRef in the magnetization mode, in the permanent magnet motor 1, the low coercivity permanent magnet 23 is reversed from the magnetization direction shown in FIG. 6A to the magnetization direction shown in FIG. Thus, the rotor 20 converts the number of poles from the 8-pole mode to the 4-pole mode. When re-converting from the 4-pole mode of FIG. 6B to the 8-pole mode of FIG. 6A, the d-axis magnetization current command IdMagRef is flowed in the reverse direction. Further, the d-axis magnetizing current command IdMagRef can be set by changing the magnitude thereof, thereby controlling the magnetization state of the low coercive force variable magnetic magnet 23 to be increased or decreased.

以上のように本実施の形態の永久磁石式モータ1によれば、高保磁力の永久磁石22と低保磁力の永久磁石23とを回転子鉄心21内に埋め込み、隣り合う2組の永久磁石22,23の組間には凸磁極部24を形成できるように永久磁石22,23の組を配置したことにより、低保磁力の永久磁石23は固定子10の電機子電流で生じる磁界で磁化して極性を反転させ、また再反転させてモータ極数を変換し、さらにはその磁力を可変することができ、2つの異なる極数を活かして低速回転域では多極モードで運転することによって大トルクを出力し、少極モードに切り替えて運転することによって高速回転を可能にする利点がある。また、高速回転域では可変磁力磁石23の磁力を極力小さくなるように減磁することによって弱め磁束制御なしに高出力運転が可能となり、高出力で広範囲の可変速運転が可能である。   As described above, according to the permanent magnet motor 1 of the present embodiment, the permanent magnet 22 with high coercive force and the permanent magnet 23 with low coercive force are embedded in the rotor core 21 and two sets of adjacent permanent magnets 22 are adjacent. , 23 are arranged so that the convex magnetic pole part 24 can be formed, so that the low coercivity permanent magnet 23 is magnetized by the magnetic field generated by the armature current of the stator 10. The polarity of the motor can be reversed and re-reversed to convert the number of motor poles, and the magnetic force can be varied. By using two different pole numbers and operating in the multi-pole mode in the low-speed rotation range, There is an advantage of enabling high-speed rotation by outputting torque and switching to the low pole mode. Further, in the high speed rotation range, the magnetic force of the variable magnetic magnet 23 is demagnetized so as to be as small as possible, thereby enabling high output operation without weakening magnetic flux control, and high output and wide range variable speed operation is possible.

図7に示す諸元の解析モデルの永久磁石式モータについて、基本的な変換特性とモータ特性を解析した。固定子10の外径は120mm、回転子20の外径は67.4mm、最大電流は3.7A、可変磁力磁石23の保磁力は190kA/mである。   The basic conversion characteristics and motor characteristics were analyzed for the permanent magnet type motor of the specification analysis model shown in FIG. The outer diameter of the stator 10 is 120 mm, the outer diameter of the rotor 20 is 67.4 mm, the maximum current is 3.7 A, and the coercive force of the variable magnetic magnet 23 is 190 kA / m.

解析で得られた8極PMモード、4極IPMモードそれぞれの時の磁束密度分布と磁束線を図8(a),(b)に示している。図8(a)では回転方向に45度ずつN極、S極が交互に現れ、全周で8極が形成されていることが分かる。また図8(b)では、回転方向に90度ずつN極、S極が交互に現れ、全周で4極が形成されていることが分かる。   FIGS. 8A and 8B show magnetic flux density distributions and magnetic flux lines in the 8-pole PM mode and 4-pole IPM mode obtained by the analysis. In FIG. 8A, it can be seen that N poles and S poles alternately appear by 45 degrees in the rotation direction, and 8 poles are formed all around. In FIG. 8B, it can be seen that N poles and S poles alternately appear 90 degrees each in the rotation direction, and four poles are formed on the entire circumference.

誘起電圧の調波成分を図9に示す。回転速度は3000rpmである。誘起電圧の基本波成分は、8極から4極に極数変換すると約100%から約60%まで低下している。このことは、4極の場合には回転数を2倍程度、つまり6000rpmまで上げることができ、高速回転が弱め磁束制御なしに無理なく行えることを意味している。   The harmonic component of the induced voltage is shown in FIG. The rotation speed is 3000 rpm. The fundamental wave component of the induced voltage decreases from about 100% to about 60% when the number of poles is converted from 8 poles to 4 poles. This means that in the case of four poles, the number of rotations can be increased to about twice, that is, up to 6000 rpm, and high-speed rotation is weakened and can be performed without difficulty without magnetic flux control.

さらに、極数変換による可変速運転特性を求めた。図10に示すように、8極多極モードでは曲線C8に示すように3000rpm近くまで一定の大トルクでの運転が可能であり、最高速の4000rpmまで出力が得られる。4極少極モードでは曲線C4に示すように、3000rpm以上では8極多極モードよりもトルクが大きくなり、回転速度の増加で中〜高速回転域で高出力が得られ、出力範囲が大幅に拡大して約9000rpmまで出力を得ることができる。したがって、本発明の極数変換技術を適用した実施例では、(8極モード)最大トルクでの上限回転速度である基底速度の約2000rpmに対して、4極に極数変換して(4極モード)最高回転速度は9000rpmの約4.5倍の広範囲の可変速範囲を実現できる。   Furthermore, variable speed operation characteristics by pole number conversion were obtained. As shown in FIG. 10, in the 8-pole multipole mode, operation at a constant large torque is possible up to near 3000 rpm as shown by the curve C8, and an output is obtained up to the maximum speed of 4000 rpm. In the 4-pole low-pole mode, as shown by the curve C4, the torque is larger than that in the 8-pole multi-pole mode at 3000 rpm or higher, and high output is obtained in the medium to high-speed rotation range by increasing the rotation speed, and the output range is greatly expanded. Thus, an output can be obtained up to about 9000 rpm. Therefore, in the embodiment to which the pole number conversion technique of the present invention is applied, the pole number is converted to 4 poles (4 poles mode) with respect to the base speed of about 2000 rpm which is the upper limit rotation speed at the maximum torque (8 pole mode). Mode) The maximum rotation speed can realize a wide variable speed range of about 4.5 times that of 9000 rpm.

さらに、モータ内の永久磁石の磁力を可変した時の可変速特性の向上について述べる。可変磁力磁石の磁力を可変した時の磁界解析を行い、可変速特性を求めた。図11の可変速特性に示すように、8極モードでは、可変磁力磁石23を定格電流(1pu)で減磁した場合(曲線C81)から定格電流の3倍の電流(3pu)で減磁した場合(曲線C83)までトルク特性は高速側に伸びることを確認できた。磁力可変をしない通常の場合のC8の最高回転速度約4000rpmに対して、減磁したC83の最高回転速度は2倍以上の約8500rpmまで拡大できる。また図12に示すように、4極モードでは、可変磁力磁石23を定格電流(1pu)で減磁した場合(曲線C41)から定格電流の3倍の電流(3pu)で減磁した場合(曲線C43)までトルク特性は高速側に伸び、最高回転速度は15000rpmを超える。したがって、極数変換と可変磁力を組み合わせると、(8極モード)最大トルクでの上限回転速度である基底速度の約2000rpmに対して、4極に極数変換して(4極モード)、さらに磁力可変すると最高回転速度は15000rpmをはるかに超えて、約7倍以上の広範囲の可変速範囲を実現できる。   Furthermore, improvement of variable speed characteristics when the magnetic force of the permanent magnet in the motor is varied will be described. A magnetic field analysis was performed when the magnetic force of the variable magnet was varied, and the variable speed characteristics were obtained. As shown in the variable speed characteristic of FIG. 11, in the 8-pole mode, the variable magnetic force magnet 23 is demagnetized at a current (3pu) that is three times the rated current from the case where the demagnetizing magnet 23 is demagnetized at the rated current (1pu) (curve C81). It was confirmed that the torque characteristic extended to the high speed side until the case (curve C83). The maximum rotation speed of demagnetized C83 can be increased to about 8500 rpm, which is more than twice as high as the maximum rotation speed of C8 in the normal case where C8 is not variable. As shown in FIG. 12, in the 4-pole mode, when the variable magnetic force magnet 23 is demagnetized at a current (3pu) that is three times the rated current (curve C41) (curve C41) (curve). The torque characteristic extends to the high speed side until C43), and the maximum rotation speed exceeds 15000 rpm. Therefore, when pole conversion and variable magnetic force are combined (8-pole mode), the pole number is converted to 4 poles (4-pole mode) against the base speed of about 2000 rpm which is the upper limit rotation speed at maximum torque (4 pole mode). When the magnetic force is variable, the maximum rotation speed far exceeds 15000 rpm, and a wide variable speed range of about 7 times or more can be realized.

最後に極数変換と可変磁力を行って可変速運転を行ったときの効率特性を磁界解析により算出した。8極モード時の効率は図13に示す様に低速側では大トルク域で92〜95%の高効率が得られ、小トルクの軽負荷域では磁力を可変して減磁(1pu)を行ったときの効率が0puより向上していることがわかる。4極モード時の効率を図14に示す。4極にすると低速側の小・中トルク域(2Nm以下)では、4極モードの効率が8極モードよりも1〜7%高く、高速側では全領域で4極モードの効率が8極モードよりも約10〜30%高くなる。   Finally, the efficiency characteristics when performing variable speed operation with pole number conversion and variable magnetic force were calculated by magnetic field analysis. As shown in FIG. 13, the efficiency in the 8-pole mode is as high as 92 to 95% in the large torque region on the low speed side, and demagnetizes (1 pu) by varying the magnetic force in the light load region with small torque. It can be seen that the efficiency at this time is improved from 0 pu. The efficiency in the 4-pole mode is shown in FIG. With 4 poles, the efficiency of the 4-pole mode is 1-7% higher than that of the 8-pole mode in the small / medium torque range (less than 2Nm) on the low-speed side. About 10 to 30% higher.

尚、本発明にあって極数変換は8極−4極間だけではなく、例えば16極−8極間での極数変化等でも適用できる。   In the present invention, the pole number conversion can be applied not only between 8 poles and 4 poles but also, for example, change in the number of poles between 16 poles and 8 poles.

本発明は、交通システムのハイブリッド自動車、電気自動車、鉄道に利用可能であり、またエネルギーシステムの風力発電や海流発電、社会システムのエレベータ、エアコン等家電機器にも利用可能である。   The present invention can be used for a hybrid vehicle, an electric vehicle, and a railway of a transportation system, and can also be used for home appliances such as a wind power generation and an ocean current power generation of an energy system, an elevator of a social system, and an air conditioner.

1 永久磁石式モータ
10 固定子
11 固定子鉄心
12 スロット
13 電機子巻線
20 回転子
21 回転子鉄心
22 高保磁力の永久磁石(固定磁力磁石)
23 低保磁力の永久磁石(可変磁力磁石)
24 凸磁極部
100 永久磁石式モータ制御回路
DESCRIPTION OF SYMBOLS 1 Permanent magnet type motor 10 Stator 11 Stator core 12 Slot 13 Armature winding 20 Rotor 21 Rotor core 22 High coercivity permanent magnet (fixed magnet)
23 Low coercivity permanent magnet (variable magnet)
24 Convex magnetic pole part 100 Permanent magnet motor control circuit

Claims (3)

固定子鉄心と電機子巻線から成る固定子と、外部磁界により磁化される永久磁石を持つ回転子とから構成され、
前記永久磁石は、前記外部磁界により極性が不可逆的に反転し、かつ前記外部磁界により磁力が不可逆的に変化する低保磁力の磁気特性の可変磁力磁石と、前記外部磁界により極性が不可逆的に反転せず、かつ前記外部磁界により磁力が不可逆的に変化しない高保磁力の磁気特性の固定磁力磁石とで構成され、
前記可変磁力磁石を外向きに開くV字状の配置で2個1組とし、前記固定磁力磁石を外向きに開くV字状の配置で2個1組として、前記回転子の回転方向に交互に1組ずつ前記可変磁力磁石と前記固定磁力磁石が前記回転子の鉄心に配置され、
前記外部磁界により前記永久磁石の極性を反転させて極数変換を行い、かつ前記外部磁界により前記永久磁石を増磁あるいは減磁して磁化状態を変化させて鎖交磁束も可変する永久磁石式回転電機であって、
V字状に配置された前記可変磁力磁石の磁化を変化させて、低速回転域と高速回転域で極数を可変し、かつ前記永久磁石の鎖交磁束数を可変して運転することを特徴とする永久磁石式回転電機。
It consists of a stator consisting of a stator core and armature windings, and a rotor with permanent magnets magnetized by an external magnetic field,
The permanent magnet is irreversibly reversed in polarity by the external magnetic field, and has a low coercivity magnetic property variable in which the magnetic force is irreversibly changed by the external magnetic field, and the polarity irreversibly by the external magnetic field. It is composed of a fixed magnetic magnet having a high coercivity magnetic characteristic that does not reverse and the magnetic force does not change irreversibly by the external magnetic field,
The V-shaped arrangement of the variable magnetic magnets that open outwards is used as one set, and the V-shaped arrangement that opens the fixed magnetic magnets as a set of two sets alternately in the rotation direction of the rotor. The variable magnetic magnet and the fixed magnetic magnet are arranged on the rotor iron core one by one,
The external magnetic field by perform pole number converted by inverting the polarity of said permanent magnet, and the external magnetic field by Zo磁or demagnetized by changing the magnetization state of the permanent magnet by by interlinkage flux is also variable permanent magnet A rotating electric machine,
Operation is performed by changing the magnetization of the variable magnetic force magnet arranged in a V shape, changing the number of poles in a low-speed rotation range and a high-speed rotation range, and changing the number of flux linkages of the permanent magnet. Permanent magnet type rotating electrical machine.
固定子鉄心と電機子巻線から成る固定子と、電機子電流により生じる磁界で磁化される永久磁石を持つ回転子とから構成され、
前記永久磁石は、前記電機子電流によって生じる磁界により極性が不可逆的に反転し、かつ前記電機子電流によって生じる磁界により磁力が不可逆的に変化する低保磁力の磁気特性の可変磁力磁石と、前記電機子電流によって生じる磁界により極性が不可逆的に反転せず、かつ前記電機子電流によって生じる磁界により磁力が不可逆的に変化しない高保磁力の磁気特性の固定磁力磁石とで構成され、
前記可変磁力磁石を外向きに開くV字状の配置で2個1組とし、前記固定磁力磁石を外向きに開くV字状の配置で2個1組として、前記回転子の回転方向に交互に1組ずつ前記可変磁力磁石と前記固定磁力磁石が前記回転子の鉄心に配置され、
前記電機子電流によって生じる磁界により前記永久磁石の極性を反転させて極数変換を行い、かつ前記電機子電流によって生じる磁界により前記永久磁石を増磁あるいは減磁して磁化状態を変化させて鎖交磁束も可変する永久磁石式回転電機であって、
V字状に配置された前記可変磁力磁石の磁化を変化させて、低速回転域と高速回転域で極数を可変し、かつ前記永久磁石の鎖交磁束数を可変して運転することを特徴とする永久磁石式回転電機。
It consists of a stator consisting of a stator core and armature windings, and a rotor with permanent magnets magnetized by a magnetic field generated by the armature current,
The permanent magnet is a variable magnetic force magnet having a low coercive force magnetic property in which the polarity is irreversibly reversed by a magnetic field generated by the armature current and the magnetic force is irreversibly changed by the magnetic field generated by the armature current; The magnetic field generated by the armature current is not irreversibly reversed in polarity, and the magnetic force is not irreversibly changed by the magnetic field generated by the armature current.
The V-shaped arrangement of the variable magnetic magnets that open outwards is used as one set, and the V-shaped arrangement that opens the fixed magnetic magnets as a set of two sets alternately in the rotation direction of the rotor. The variable magnetic magnet and the fixed magnetic magnet are arranged on the rotor iron core one by one,
The polarity of the permanent magnet is reversed by the magnetic field generated by the armature current, and the number of poles is changed. The magnetic state of the permanent magnet is increased or decreased by the magnetic field generated by the armature current, thereby changing the magnetization state. A permanent magnet type rotating electrical machine with variable magnetic flux ,
Operation is performed by changing the magnetization of the variable magnetic force magnet arranged in a V shape, changing the number of poles in a low-speed rotation range and a high-speed rotation range, and changing the number of flux linkages of the permanent magnet. Permanent magnet type rotating electrical machine.
前記可変磁力磁石の保磁力は、500kA/m以下であることを特徴とする請求項1又は2に記載の永久磁石式回転電機。 The permanent magnet rotating electric machine according to claim 1 or 2 , wherein the coercive force of the variable magnetic force magnet is 500 kA / m or less.
JP2014063408A 2014-03-26 2014-03-26 Permanent magnet rotating electric machine Active JP6371550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063408A JP6371550B2 (en) 2014-03-26 2014-03-26 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063408A JP6371550B2 (en) 2014-03-26 2014-03-26 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015186415A JP2015186415A (en) 2015-10-22
JP6371550B2 true JP6371550B2 (en) 2018-08-08

Family

ID=54352425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063408A Active JP6371550B2 (en) 2014-03-26 2014-03-26 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP6371550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049392A1 (en) * 2017-09-11 2019-03-14 株式会社 東芝 Rotating electric machine
JP7284503B2 (en) * 2019-08-05 2023-05-31 国立大学法人 岡山大学 Variable magnetic force motor
JP7453766B2 (en) * 2019-09-25 2024-03-21 株式会社Subaru vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201259A (en) * 2008-02-21 2009-09-03 Toshiba Corp Permanent magnet type rotary electric machine, method of assembling permanent magnet type rotary electric machine, method of disassembling permanent magnet type rotary electric machine and drive system for permanent magnet electric motor
JP2011172323A (en) * 2010-02-16 2011-09-01 Toshiba Corp Permanent magnet type rotary electric machine
JP5885423B2 (en) * 2011-08-11 2016-03-15 株式会社東芝 Permanent magnet rotating electric machine
JP5787673B2 (en) * 2011-08-30 2015-09-30 株式会社東芝 Permanent magnet type rotating electric machine
JP5971841B2 (en) * 2012-03-01 2016-08-17 学校法人 東洋大学 Permanent magnet motor and its operation method

Also Published As

Publication number Publication date
JP2015186415A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US9006949B2 (en) Synchronous motor
US20130127280A1 (en) Electric rotating machine and electric vehicle using the same
JP5812476B2 (en) Permanent magnet rotating electric machine and its operating method
US7969057B2 (en) Synchronous motor with rotor having suitably-arranged field coil, permanent magnets, and salient-pole structure
JP6019800B2 (en) Electric motor control device
JP2017169280A (en) Rotary electric machine
JP6202664B2 (en) Pole conversion permanent magnet type rotating electrical machine and drive system thereof
CN104883019A (en) Stator permanent magnet mixed excitation vernier motor
JP6517469B2 (en) Permanent magnet rotating electrical system
JP6325857B2 (en) Permanent magnet rotating electric machine
CN107070154B (en) Five phase magneto of extended-range electric vehicle
JP6371550B2 (en) Permanent magnet rotating electric machine
JP2014007853A (en) Motor
JP6480651B2 (en) Permanent magnet type rotating electrical machine drive system
JP6323220B2 (en) Synchronous motor drive device
Niizuma et al. Electronic motors capable of pole-changing and variable machine constants
JP5885423B2 (en) Permanent magnet rotating electric machine
Ahmad et al. Design investigation of three phase HEFSM with outer-rotor configuration
Hasegawa et al. Basic consideration of switched reluctance motor with auxiliary windings and permanent magnets
CN116317422A (en) Novel double-stator magnetic field modulation memory motor
JP6473567B2 (en) Rotating electric machine
JP2016077052A (en) Magnetless rotary electric machine and rotary electric machine control system
JP6705040B2 (en) Permanent magnet rotating electrical machine system
JP5971841B2 (en) Permanent magnet motor and its operation method
Sakai et al. Permanent magnet motor with reversible salient poles and variable magnetic force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6371550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250