JP2011172323A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2011172323A
JP2011172323A JP2010031800A JP2010031800A JP2011172323A JP 2011172323 A JP2011172323 A JP 2011172323A JP 2010031800 A JP2010031800 A JP 2010031800A JP 2010031800 A JP2010031800 A JP 2010031800A JP 2011172323 A JP2011172323 A JP 2011172323A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetization
magnetic
magnet
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010031800A
Other languages
Japanese (ja)
Inventor
Kazuto Sakai
和人 堺
Kazuaki Yuki
和明 結城
Daisuke Misu
大輔 三須
Norio Takahashi
則雄 高橋
Yutaka Hashiba
豊 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010031800A priority Critical patent/JP2011172323A/en
Publication of JP2011172323A publication Critical patent/JP2011172323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type rotary electric machine that achieves the whole operation range from low speed to high speed, and reduces the capacity of the power element of an inverter, by enabling speed-variable operation in a wide range from low speed to high speed. <P>SOLUTION: The rotary electric machine is composed of a rotor having magnetic poles that are made of permanent magnets of two or more kinds where the product of coercive force and thickness in the direction of magnetization differs from those of the other permanent magnets, and a stator consisting of stator cores having coils. The machine also has a function of changing the quantity of magnetic flux of permanent magnets irreversibly by changing the state of magnetization of at least one permanent magnet among the permanent magnets in a field formed by energizing the coils. The permanent magnet has such a magnetization property that a field required to return to a saturated state of magnetization from a partial magnetization state is smaller than a field required to come into the partial magnetization state from the saturated state of magnetization. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、2種類以上の永久磁石を使用し、そのうちの少なくとも1つの永久磁石の磁束量を不可逆的に変化させて、低速から高速までの広範囲での可変速運転を可能とした永久磁石式回転電機に関する。   The present invention uses two or more types of permanent magnets, and irreversibly changes the amount of magnetic flux of at least one of the permanent magnets, thereby enabling a variable speed operation in a wide range from low speed to high speed. It relates to a rotating electrical machine.

回転子内に永久磁石を内蔵した永久磁石式回転電機では、永久磁石の鎖交磁束が常に一定の強さで発生しているので、永久磁石による誘導電圧は回転速度に比例して高くなる。そのため、低速から高速まで可変速運転する場合、高速回転では永久磁石による誘導電圧(逆起電圧)が極めて高くなる。永久磁石による誘導電圧がインバータの電子部品に印加されてその耐電圧以上になると、電子部品が絶縁破壊する。そのため、永久磁石の磁束量が耐電圧以下になるように削減された設計を行うことが考えられるが、その場合には永久磁石式回転電機の低速域での出力及び効率が低下する。   In a permanent magnet type rotating electrical machine in which a permanent magnet is built in a rotor, the interlinkage magnetic flux of the permanent magnet is always generated with a constant strength, so that the induced voltage by the permanent magnet increases in proportion to the rotational speed. Therefore, when variable speed operation is performed from low speed to high speed, the induced voltage (back electromotive voltage) by the permanent magnet becomes extremely high at high speed rotation. When the induced voltage by the permanent magnet is applied to the electronic component of the inverter and exceeds its withstand voltage, the electronic component breaks down. For this reason, it is conceivable to perform a design in which the amount of magnetic flux of the permanent magnet is reduced so as to be equal to or lower than the withstand voltage, but in that case, the output and efficiency in the low speed region of the permanent magnet type rotating electrical machine are reduced.

すなわち、低速から高速まで定出力に近い可変速運転を行う場合、永久磁石の鎖交磁束は一定であるので、高速回転域では回転電機の電圧が電源電圧上限に達して出力に必要な電流が流れなくなる。その結果、高速回転域では出力が大幅に低下し、さらには高速回転までの広範囲で駆動できなくなる。   In other words, when performing variable speed operation close to constant output from low speed to high speed, the flux linkage of the permanent magnet is constant, so in the high speed rotation range, the voltage of the rotating electrical machine reaches the upper limit of the power supply voltage and the current required for output is It stops flowing. As a result, the output is greatly reduced in the high-speed rotation region, and further, it cannot be driven in a wide range up to the high-speed rotation.

そこで、図11のような可変速範囲を拡大する方法として弱め磁束制御を適用する方法が知られている(例えば、非特許文献1参照)。この弱め磁束制御は、負のd軸電流により発生させた磁束であり、回転子巻線の総鎖交磁束量は前記負のd軸電流により発生させた磁束と永久磁石による磁束からなる。また、弱め磁束制御においても高保磁力の永久磁石4は磁気特性(B−H特性)の動作点が可逆の範囲で変化するようにする。このため、永久磁石は弱め磁束制御の減磁界により不可逆的に減磁しないように高保磁力のNdFeB磁石を適用する。この弱め磁束制御を適用した運転では、負のd軸電流による磁束で鎖交磁束が減少するので、鎖交磁束の減少分が電圧上限値に対する電圧の余裕分が生まれる。そのため、トルク成分となる電流を増加できるので高速域での出力が増加する。また、電圧余裕分だけ回転速度を上昇させることができ、可変速運転の範囲が拡大される。   Therefore, a method of applying magnetic flux weakening control is known as a method of expanding the variable speed range as shown in FIG. 11 (see, for example, Non-Patent Document 1). This flux weakening control is a magnetic flux generated by a negative d-axis current, and the total flux linkage of the rotor winding is composed of a magnetic flux generated by the negative d-axis current and a magnetic flux by a permanent magnet. Further, even in the flux-weakening control, the permanent magnet 4 having a high coercive force changes the operating point of the magnetic characteristics (BH characteristics) within a reversible range. For this reason, the NdFeB magnet having a high coercive force is applied to the permanent magnet so as not to be irreversibly demagnetized by the demagnetizing field of the weak magnetic flux control. In the operation using this weakening magnetic flux control, the linkage flux is reduced by the magnetic flux due to the negative d-axis current, so that a decrease in linkage flux provides a voltage margin with respect to the voltage upper limit value. As a result, the current that becomes the torque component can be increased, so that the output in the high speed region increases. Further, the rotational speed can be increased by the voltage margin, and the range of variable speed operation is expanded.

しかしながら、出力には寄与しない負のd軸電流を常時流し続けるため銅損が増加して効率は悪化するという問題点がある。さらに、負のd軸電流による減磁界は高調波磁束を生じ、高調波磁束等で生じる電圧の増加は弱め磁束制御による電圧低減の限界をつくる。これらより埋め込み型永久磁石回転電機に弱め磁束制御を適用しても基底速度の3倍以上の可変速運転は困難である。さらに、前記の高調波磁束により鉄損が増加し、中・高速域で大幅に効率が低下する。また、高調波磁束による電磁力で振動を発生することもある。   However, since a negative d-axis current that does not contribute to the output is constantly flowing, there is a problem that the copper loss increases and the efficiency deteriorates. Further, a demagnetizing field due to a negative d-axis current generates a harmonic magnetic flux, and an increase in voltage generated by the harmonic magnetic flux or the like weakens and creates a limit of voltage reduction by magnetic flux control. Therefore, even if the flux-weakening control is applied to the embedded permanent magnet rotating electric machine, it is difficult to operate at a variable speed more than three times the base speed. Furthermore, the iron loss increases due to the harmonic magnetic flux, and the efficiency is greatly reduced in the middle / high speed range. In addition, vibration may be generated by electromagnetic force due to harmonic magnetic flux.

そこで、回転子内に、固定子巻線のd軸電流で作る磁界により不可逆的に磁束密度が変化する程度の低保磁力の永久磁石(以下、可変磁力磁石という)と、可変磁力磁石の2倍以上の保磁力を有する高保磁力の永久磁石(以下、固定磁力磁石という)を配置し、電源電圧の最大電圧以上となる高速回転域では、可変磁力磁石と固定磁力磁石による全鎖交磁束が減じるように、全鎖交磁束量を調整する技術が知られている(例えば、特許文献1及び2参照)。   Therefore, a permanent magnet having a low coercive force (hereinafter referred to as a variable magnetic force magnet) in which the magnetic flux density is irreversibly changed by a magnetic field generated by the d-axis current of the stator winding, and a variable magnetic force magnet are included in the rotor. In a high-speed rotation range where a high coercivity permanent magnet (hereinafter referred to as a fixed magnet) having a coercive force more than double is placed and the maximum voltage of the power supply voltage is exceeded, the total flux linkage by the variable magnet and the fixed magnet is A technique for adjusting the total interlinkage magnetic flux so as to decrease is known (see, for example, Patent Documents 1 and 2).

特開2006−280195号公報JP 2006-280195 A 特開2008−296080号公報JP 2008-296080 A

埋込磁石同期モータの設計と制御,武田洋次・他,オーム社Design and control of embedded magnet synchronous motor, Yoji Takeda et al., Ohm

しかしながら、特許文献1及び2ので使用される可変磁力磁石は、増磁時と減磁時において対称な磁化特性を有する磁石である。このような可変磁力磁石に外部から磁界を作用させた場合の磁気特性を、図8を用いて説明する。図8中の可変磁力磁石3の磁化状態は、以下に示すとおりになる。
(a):可変磁力磁石3が完全に磁化した状態(仮にN極とする)を初期値。
(b):完全に磁化した状態の可変磁力磁石3に、外部から逆磁界を永久磁石に作用させると、永久磁石の磁化が一定値で推移する。
(c):さらに、外部から逆磁界を作用させると可変磁力磁石の磁化は0になった後、極性は反転し(S極)になる。その後、負の磁界を増すと逆極性方向でほぼ飽和の磁化状態まで変化する。
(d):可変磁力磁石3が逆極性方向(S極)に完全に磁化した状態。
(e):(d)の状態より、正の磁界をかけて増やしていくと、磁化は一定状態で推移する。
(f):さらに正の磁界を増加すると磁化が減少して0になり、その後、極性は反転(N極)して開始時の元の極性方向で磁化が最大となるまで磁化する。
以上のように、可変磁力磁石3に外部から磁界を作用させることにより、(a)〜(f)に変化する。この磁化の変化を磁化のメジャーループとすると、このメジャーループは、図8に示すように可変磁力磁石の増磁時と減磁時において対称な磁化特性を有する。
However, the variable magnetic magnets used in Patent Documents 1 and 2 are magnets having symmetrical magnetization characteristics when magnetized and demagnetized. The magnetic characteristics when a magnetic field is applied to the variable magnetic force magnet from the outside will be described with reference to FIG. The magnetization state of the variable magnetic force magnet 3 in FIG. 8 is as shown below.
(A): The initial value is a state in which the variable magnetic magnet 3 is completely magnetized (assumed to be N pole).
(B): When a reverse magnetic field is applied to the permanent magnet from the outside in the fully magnetized variable magnetic force magnet 3, the magnetization of the permanent magnet changes at a constant value.
(C): Further, when a reverse magnetic field is applied from the outside, the magnetization of the variable magnetic magnet becomes 0, and then the polarity is reversed (S pole). Thereafter, when the negative magnetic field is increased, the magnetic field changes to a substantially saturated magnetization state in the reverse polarity direction.
(D): The state in which the variable magnetic force magnet 3 is completely magnetized in the reverse polarity direction (S pole).
(E): If the magnetic field is increased by applying a positive magnetic field from the state of (d), the magnetization changes in a constant state.
(F): When the positive magnetic field is further increased, the magnetization is decreased to 0, and then the polarity is reversed (N pole), and the magnetization is magnetized until the magnetization becomes the maximum in the original polarity direction at the start.
As described above, when a magnetic field is applied to the variable magnetic force magnet 3 from the outside, the change is made to (a) to (f). If this change in magnetization is taken as a major measurement loop, this major loop has symmetrical magnetization characteristics when the variable magnetic force magnet is increased and decreased as shown in FIG.

図8において、可変磁力磁石が最大磁化に要する磁界は、正極性方向(N極側)でも逆極性側(S極側)でも400kA/mである。そのため、磁化電流の最大値は最大の磁化となるときの磁界(図8ではHmax400kA/m)の発生に要する電流値となる。また、磁化電流の最大値は、磁化時の磁界が大きくなれば必要な磁化電流は大きくなる。   In FIG. 8, the magnetic field required for the maximum magnetization of the variable magnetic force magnet is 400 kA / m in both the positive polarity direction (N pole side) and the reverse polarity side (S pole side). Therefore, the maximum value of the magnetization current is a current value required for generating a magnetic field (Hmax 400 kA / m in FIG. 8) when the maximum magnetization is obtained. The maximum value of the magnetizing current increases as the magnetic field during magnetization increases.

また、図8のような特性を持つ可変磁力磁石の磁化を部分変化させたときの磁化について図9,10を用いて説明する。図9中の可変磁力磁石3の磁化状態は、以下に示すとおりになる。
(a):可変磁力磁石3が完全に磁化した状態(仮にN極とする)を初期値とする。
(b):完全に磁化した状態の可変磁力磁石に、外部から逆磁界を永久磁石に作用させると、永久磁石の磁化が一定値で推移する。
(c):さらに、外部から逆磁界を作用させると可変磁力磁石の磁化は0になった後、永久磁石の極性は反転し(S極)になる。ここで、逆極性方向(S極)の磁化は最大にならない状態までとする。
(d):可変磁力磁石3が逆極性方向(S極)に飽和する手前で部分磁化した状態。
(e):(d)の状態の可変磁力磁石3に、正の磁界をかけると、磁化は一定状態で推移する。(図9の(4)のマイナーループ)
(f):さらに正の磁界を増加すると磁化が減少して0になり、その後、極性は反転(N極)して開始時の元の極性方向で磁化が最大となるまで磁化する。
以上のように、可変磁力磁石3に外部から磁界を作用させることにより、(a)〜(f)に変化する。この磁化の変化を磁化のマイナーループとすると、マイナーループにおいても、図9に示すように可変磁力磁石の増磁時と減磁時において対称な磁化特性を有する。
Further, the magnetization when the magnetization of the variable magnetic magnet having the characteristics as shown in FIG. 8 is partially changed will be described with reference to FIGS. The magnetization state of the variable magnetic force magnet 3 in FIG. 9 is as shown below.
(A): The state in which the variable magnetic magnet 3 is completely magnetized (assumed to be N pole) is set as an initial value.
(B): When a reverse magnetic field is applied to a permanent magnet from the outside in a fully magnetized variable magnetic force magnet, the magnetization of the permanent magnet changes at a constant value.
(C): Further, when a reverse magnetic field is applied from the outside, the magnetization of the variable magnetic force magnet becomes zero, and then the polarity of the permanent magnet is reversed (S pole). Here, it is assumed that the magnetization in the reverse polarity direction (S pole) is not maximized.
(D): A state in which the variable magnetic force magnet 3 is partially magnetized before it is saturated in the reverse polarity direction (S pole).
(E): When a positive magnetic field is applied to the variable magnetic force magnet 3 in the state of (d), the magnetization changes in a constant state. (Minor loop of (4) in Fig. 9)
(F): When the positive magnetic field is further increased, the magnetization is decreased to 0, and then the polarity is reversed (N pole), and the magnetization is magnetized until the magnetization becomes the maximum in the original polarity direction at the start.
As described above, when a magnetic field is applied to the variable magnetic force magnet 3 from the outside, the change is made to (a) to (f). If this change in magnetization is a minor loop of magnetization, the minor loop also has symmetrical magnetization characteristics when the variable magnetic force magnet is increased and decreased as shown in FIG.

さらに、磁化のマイナーループは、可変磁力磁石に外部から作用させる磁化の強さにより変化する。すなわち、図10の(3)のマイナーループは、可変磁力磁石3の磁化が0になるまで、磁化電流を加えた場合のマイナーループである。(1)と(2)のマイナーループでは、可変磁力磁石3の極性は反転せずに磁化が減少する範囲まで、磁化電量を加えた場合のマイナーループである。このマイナーループの変化範囲における磁化電流の最大値は、磁化が反転または、最小となった状態から開始時の最大の磁化状態に要する電流となる。   Further, the minor loop of magnetization changes depending on the strength of magnetization that acts on the variable magnetic force magnet from the outside. That is, the minor loop of (3) in FIG. 10 is a minor loop when a magnetization current is applied until the magnetization of the variable magnetic force magnet 3 becomes zero. The minor loops (1) and (2) are minor loops in the case where the amount of magnetization is added to the extent that the magnetization decreases without reversing the polarity of the variable magnetic force magnet 3. The maximum value of the magnetization current in the minor loop change range is a current required for the maximum magnetization state at the start from the state where the magnetization is reversed or minimized.

以上より、図9,10に示すようにマイナーループ(1)〜(4)の部分的に変化させた磁化から最大磁化にするときの磁界(h1,h2,h3,h4)は、メジャーループ(5)の反転した最大磁化から開始時の最大磁化にするときの磁界(h5)とほぼ同じ値(実施例における最大磁化に要する磁界は400kA/m)である。すなわち部分変化後に元の最大磁化に要する磁化電流は逆極性の最大変化で要する電流と同じになる。   From the above, as shown in FIGS. 9 and 10, the magnetic fields (h1, h2, h3, h4) for changing from the partially changed magnetization of the minor loops (1) to (4) to the maximum magnetization are the major loops ( It is almost the same value as the magnetic field (h5) when changing from the reversed maximum magnetization of 5) to the maximum magnetization at the start (the magnetic field required for the maximum magnetization in the embodiment is 400 kA / m). That is, the magnetization current required for the original maximum magnetization after the partial change is the same as the current required for the maximum change in reverse polarity.

そのため、このような特性の可変磁力磁石を使用する特許文献1及び2の永久磁石式回転電機では、可変磁力磁石に加える磁界の大きさは、増磁時と減磁時で同じ強さの磁界を作用させる必要があった。しかしながら、可変磁力磁石を増磁した場合には、固定子の鉄心も磁気飽和するため、可変磁力磁石の増磁動作での磁化電流は減磁動作時よりも大きくする必要がある。そのため、起磁力が費やされるので必要な磁化電流は増えるという問題点があった。この磁化電流のためのインバータのパワー素子の能力は、最大電流で決定されるので増磁または減磁のどちらかでも増えるとパワー素子の容量が大きくなる場合があり、増磁側で磁化電流が増加しない方が望ましくなる。   Therefore, in the permanent magnet type rotating electrical machines of Patent Documents 1 and 2 using a variable magnetic magnet having such characteristics, the magnitude of the magnetic field applied to the variable magnetic magnet is the same as that when magnetizing. It was necessary to act. However, when the variable magnetic force magnet is increased, the stator iron core is also magnetically saturated, so that the magnetizing current in the magnetic increase operation of the variable magnetic force magnet needs to be larger than that in the demagnetization operation. For this reason, a magnetomotive force is consumed, so that there is a problem that a necessary magnetization current increases. The capacity of the power element of the inverter for this magnetizing current is determined by the maximum current. Therefore, the capacity of the power element may increase when either the magnetization is increased or demagnetized. It is desirable not to increase.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、非対称な磁化特性を有する可変磁力磁石を用いることにより、可変磁力磁石の増磁動作での磁化電流を低減させることを目的とする。これにより、低速から高速までの全運転範囲で高効率にでき、インバータのパワー素子容量も低減できる永久磁石式回転電機を得ることを目的とする。   The present invention has been proposed in order to solve the above-described problems of the prior art. By using a variable magnetic magnet having an asymmetrical magnetization characteristic, a magnetizing current in a magnetizing operation of the variable magnetic magnet can be obtained. It aims at reducing. Accordingly, an object of the present invention is to obtain a permanent magnet type rotating electrical machine that can be highly efficient in the entire operation range from low speed to high speed and that can reduce the power element capacity of the inverter.

前記の目的を達成するために、本発明の永久磁石式回転電機は、固定子鉄心に電機子コイルを設けた固定子と、回転子鉄心と前記回転子鉄心に設けた永久磁石からなる回転子から構成され、前記固定子の電機子コイルの電流が作る磁界で永久磁石を磁化させることにより永久磁石の磁束量を不可逆的に変化させ、前記不可逆変化させる永久磁石は、磁化の飽和状態から部分的な磁化状態にするために要する磁界に対して、前記部分的な磁化状態から磁化の飽和状態に戻すときに要する磁界が小さくなる磁化特性であることを特徴とする。   In order to achieve the above object, a permanent magnet type rotating electrical machine according to the present invention includes a stator having an armature coil provided on a stator core, and a rotor comprising a rotor core and a permanent magnet provided on the rotor core. The permanent magnet for irreversibly changing the amount of magnetic flux of the permanent magnet by magnetizing the permanent magnet with a magnetic field generated by the current of the armature coil of the stator The magnetic characteristics are such that the magnetic field required to return from the partial magnetization state to the saturation state of the magnetization is smaller than the magnetic field required to obtain a specific magnetization state.

なお、本発明における磁化が飽和している状態とは、完全な飽和状態だけでなく飽和する直前の磁化状態も含むものとする。また、前記の構成に加えて、可変磁力磁石の磁気特性及び回転子の構成を、次の1つまたは複数の組み合わせとすることも、本発明に包含される。
(1)不可逆変化させる永久磁石は、磁化が飽和している状態から反転させて逆極性で磁化の飽和状態にするために要する磁界に対して、逆極性の磁化状態から再度極性反転させて開始時の磁化が飽和している状態に戻すときに要する磁界が小さくなる磁化特性。
(2)永久磁石を保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石で形成。
(3)不可逆的に変化する永久磁石は、q軸電流で形成される磁界によって前記永久磁石の一部が磁化される磁気特性。
The state in which the magnetization in the present invention is saturated includes not only a completely saturated state but also a magnetization state immediately before saturation. In addition to the above-described configuration, the present invention includes the following one or more combinations of the magnetic characteristics of the variable magnetic force magnet and the configuration of the rotor.
(1) The irreversible change of the permanent magnet is started again by reversing the polarity from the reversed polarity magnetization state to the magnetic field required to reverse the magnetization from the saturated state to the saturation state of the reversed polarity. Magnetization characteristics that reduce the magnetic field required to return to a state in which the magnetization at the time is saturated.
(2) The permanent magnet is formed of two or more types of permanent magnets having a product of coercive force and magnetization direction thickness different from those of other permanent magnets.
(3) A permanent magnet that changes irreversibly has a magnetic property in which a part of the permanent magnet is magnetized by a magnetic field formed by a q-axis current.

以上のような構成を有する本発明によれば、非対称な磁化特性を有する可変磁力磁石を用いることにより、可変磁力磁石の増磁動作での磁化電流を低減させることができる。これにより、同時に鎖交磁束量を可変するときに要する磁化電流(d軸電流)を小さくできるので回転電機を運転するパワー素子や電源容量を小さくできる。   According to the present invention having the above-described configuration, it is possible to reduce the magnetization current in the magnetizing operation of the variable magnetic magnet by using the variable magnetic magnet having asymmetric magnetization characteristics. Thereby, since the magnetization current (d-axis current) required when changing the amount of flux linkage can be reduced at the same time, the power element and power supply capacity for operating the rotating electrical machine can be reduced.

本発明の実施例1における回転子の断面図Sectional drawing of the rotor in Example 1 of this invention 本発明の実施例1における回転子において、可変磁力磁石と固定磁力磁石を直列に並べた断面図Sectional drawing which arranged the variable magnetic force magnet and the fixed magnetic force magnet in series in the rotor in Example 1 of this invention 本発明の永久磁石式回転電機の制御回路の一例を示すブロック図The block diagram which shows an example of the control circuit of the permanent-magnet-type rotary electric machine of this invention 本発明の実施例1における可変磁力磁石の磁気特性(極性反転まで変化)を示す図The figure which shows the magnetic characteristic (change until polarity reversal) of the variable magnetic force magnet in Example 1 of this invention. 本発明の実施例1における可変磁力磁石の磁気特性(同一極性で変化)を示す図The figure which shows the magnetic characteristic (change with the same polarity) of the variable magnetic force magnet in Example 1 of this invention 本発明の実施例1における可変磁力磁石の磁気特性(部分磁化での変化)を示す図The figure which shows the magnetic characteristic (change by partial magnetization) of the variable magnetic force magnet in Example 1 of this invention. 本発明の実施例2における可変磁力磁石の磁気特性を示す図The figure which shows the magnetic characteristic of the variable magnetic force magnet in Example 2 of this invention. 従来の永久磁石における磁気特性(メジャーループの変化)を示す図The figure which shows the magnetic characteristic (change of the major loop) in the conventional permanent magnet 従来の永久磁石における磁気特性(極性反転まで変化)を示す図The figure which shows the magnetic characteristic (change until polarity reversal) in the conventional permanent magnet 従来の永久磁石における磁気特性(同一極性で変化)を示す図The figure which shows the magnetic characteristic (change with the same polarity) in the conventional permanent magnet 従来の固定磁力磁石を埋め込んだ永久磁石回転電機の回転子の断面図Sectional view of a rotor of a permanent magnet rotating electric machine with a conventional fixed magnetic magnet embedded

以下、本発明に係る永久磁石式回転電機の実施例について、図面を参照して説明する。本実施例の回転電機は8極の場合で説明しており、他の極数でも同様に適用できる。   Embodiments of a permanent magnet type rotating electrical machine according to the present invention will be described below with reference to the drawings. The rotary electric machine of the present embodiment is described in the case of 8 poles, and can be similarly applied to other pole numbers.

[1−1.構成]
本発明の実施例1について、図1を用いて説明する。実施例1の回転子1は、回転子鉄心2、保磁力と磁化方向の厚みの積が小となる可変磁力磁石3、保磁力と磁化方向の厚みの積が大となる固定磁力磁石4から構成する。
[1-1. Constitution]
A first embodiment of the present invention will be described with reference to FIG. The rotor 1 of the first embodiment includes a rotor core 2, a variable magnetic magnet 3 having a small product of coercive force and thickness in the magnetization direction, and a fixed magnetic magnet 4 having a large product of coercive force and thickness in the magnetization direction. Constitute.

本実施例では、可変磁力磁石3として、図3に示すような磁気特性を有する磁石を使用する。すなわち、横軸の磁界と縦軸の磁束密度で表す磁化特性において部分変化時のマイナーループの磁化特性は縦軸と横軸の交点を中心として非対称な特性とする。一方、メジャーループの磁気特性は、縦軸と横軸の交点を中心として対称な特性とする。   In the present embodiment, a magnet having magnetic characteristics as shown in FIG. 3 is used as the variable magnetic force magnet 3. That is, in the magnetization characteristic represented by the magnetic field on the horizontal axis and the magnetic flux density on the vertical axis, the magnetization characteristic of the minor loop at the time of partial change is an asymmetric characteristic around the intersection of the vertical axis and the horizontal axis. On the other hand, the magnetic characteristics of the major loop are symmetrical with respect to the intersection of the vertical axis and the horizontal axis.

具体的には、可変磁力磁石3は、最大磁化から逆磁界(負の磁界)をかけると、磁化は最大の一定状態からある点で低下するまでは、メジャーループに沿って変化する。この後、部分的な磁化状態から元の磁化に戻すため正の磁界を作用させると、永久磁石の磁化が一定値で推移した後に、磁化が大きく増加する。この時の磁界の変化は、メジャーループと一致せず、メジャーループにおいて、磁化が大きく増加する場合の正の磁界の大きさよりも十分に小さい値になる。また、この値は、可変磁力磁石3の保磁力よりも小さい値になる。すなわち、本発明の回転電機を構成する可変磁力磁石の磁化特性は、部分磁化の状態から磁化が大きく増加するときの磁界は保磁力よりも十分に小さい値となる。   Specifically, when the variable magnetic force magnet 3 applies a reverse magnetic field (negative magnetic field) from the maximum magnetization, the magnetization changes along a major loop until the magnetization drops at a certain point from the maximum constant state. Thereafter, when a positive magnetic field is applied to return from the partial magnetization state to the original magnetization, the magnetization greatly increases after the magnetization of the permanent magnet changes at a constant value. The change of the magnetic field at this time does not coincide with the major loop, and becomes a value sufficiently smaller than the magnitude of the positive magnetic field when the magnetization greatly increases in the major loop. This value is smaller than the coercive force of the variable magnetic magnet 3. That is, as for the magnetization characteristics of the variable magnetic force magnet constituting the rotating electrical machine of the present invention, the magnetic field when the magnetization is greatly increased from the state of partial magnetization is a value sufficiently smaller than the coercive force.

このような可変磁力磁石3は、例えばSmCo系磁石は、
Sm(Co1−x−y−pFexCuyZrp)Z
(x=0.16〜0.20,y=0.08〜0.1,p=0.01〜0.04,Z=7.2〜7.5)
とからなる組成を有する。この磁性粉末を磁場中プレス成形し、所定の温度で焼結することで焼結体を得る。この焼結体を溶体化処理の後、所定の温度で時効処理を行うことにより、非対称な磁化特性を有する磁石を作製する。
Such a variable magnetic magnet 3 is, for example, an SmCo magnet.
Sm (Co1-x-y-pFexCuyZrp) Z
(X = 0.16-0.20, y = 0.08-0.1, p = 0.01-0.04, Z = 7.2-7.5)
It has the composition which consists of these. This magnetic powder is press-molded in a magnetic field and sintered at a predetermined temperature to obtain a sintered body. The sintered body is subjected to aging treatment at a predetermined temperature after solution treatment, thereby producing a magnet having asymmetric magnetization characteristics.

本実施例では、可変磁力磁石3としてはフェライト磁石、固定磁力磁石4としてはNdFeB磁石を使用する。また、可変磁力磁石3としては、SmCo系磁石、CeCo系磁石、NdFeB系磁石の中でも保持力を低下させた磁石を使用することもできる。また、一例として、可変磁力磁石3の保磁力を300kA/m、固定磁力磁石4の保磁力は1000kA/mとするが、必ずしもこのような値に限定されるものではない。可変磁力磁石3はインバータが許容できる電流値のd軸電流によって不可逆的に磁化され、固定磁力磁石4はd軸電流によって不可逆的に磁化されないものであれば良い。また、磁化方向の磁石厚みは同一で5mmとする。磁化に要する起磁力は磁化に要する磁界と永久磁石の厚みの積で概算する。   In this embodiment, a ferrite magnet is used as the variable magnetic magnet 3 and an NdFeB magnet is used as the fixed magnetic magnet 4. As the variable magnetic force magnet 3, a magnet having a reduced holding force among SmCo magnets, CeCo magnets, and NdFeB magnets may be used. Further, as an example, the coercive force of the variable magnetic magnet 3 is 300 kA / m, and the coercive force of the fixed magnetic magnet 4 is 1000 kA / m. However, the values are not necessarily limited to these values. The variable magnetic magnet 3 is only required to be irreversibly magnetized by the d-axis current having a current value acceptable by the inverter, and the fixed magnetic magnet 4 is not irreversibly magnetized by the d-axis current. The magnet thickness in the magnetization direction is the same, 5 mm. The magnetomotive force required for magnetization is approximated by the product of the magnetic field required for magnetization and the thickness of the permanent magnet.

低保磁力のSmCo磁石の90%の着磁磁界は約290kA/mなので磁化に要する起磁力は290kA/m×5×10−3=1450Aとなる。NdFeB磁石の90%の着磁磁界は約1500kA/mなので磁化に要する起磁力は1500kA/m×5×10−3=7500Aとなる。可変磁力の磁石である低保磁のSmCo磁石の磁力可変に必要な起磁力は、NdFeB磁石の約20%となる。したがって、SmCo磁石を可変できる電流では、NdFeB磁石の磁力は変わらずに維持できる。これより、これらの磁石を組み合わせて回転電機を構成すると、NdFeB磁石の磁力をベース分として維持して、SmCo磁石の磁力を可変することにより、永久磁石の総鎖交磁束量を調整できる。   Since the 90% magnetization magnetic field of the low coercivity SmCo magnet is about 290 kA / m, the magnetomotive force required for magnetization is 290 kA / m × 5 × 10 −3 = 1450 A. Since the 90% magnetization field of the NdFeB magnet is about 1500 kA / m, the magnetomotive force required for magnetization is 1500 kA / m × 5 × 10 −3 = 7500 A. The magnetomotive force required to change the magnetic force of the low coercivity SmCo magnet, which is a variable magnetic force magnet, is about 20% of that of the NdFeB magnet. Therefore, the magnetic force of the NdFeB magnet can be maintained unchanged with a current that can vary the SmCo magnet. Thus, when a rotating electrical machine is configured by combining these magnets, the total interlinkage magnetic flux of the permanent magnet can be adjusted by changing the magnetic force of the SmCo magnet while maintaining the magnetic force of the NdFeB magnet as a base component.

回転子鉄心2は珪素鋼板を積層して構成し、前記の可変磁力磁石3及び固定磁力磁石4,4は回転子鉄心2内に埋め込む。本実施例の回転電機は8極であり、1つの磁石磁極5は、1つの可変磁力磁石3とこの両側に配置した2つの固定磁力磁石4,4とより構成する。可変磁力磁石3と固定磁力磁石4は磁気回路上では並列回路を構成するように回転子鉄心2に埋め込んで配置する。図1では、d軸中心部に可変磁力磁石3を配置し、その左右の両側に固定磁力磁石4を配置する。   The rotor core 2 is formed by laminating silicon steel plates, and the variable magnetic magnet 3 and the fixed magnetic magnets 4 and 4 are embedded in the rotor core 2. The rotating electric machine of the present embodiment has eight poles, and one magnet magnetic pole 5 is composed of one variable magnetic magnet 3 and two fixed magnetic magnets 4 and 4 disposed on both sides thereof. The variable magnetic magnet 3 and the fixed magnetic magnet 4 are embedded in the rotor core 2 so as to form a parallel circuit on the magnetic circuit. In FIG. 1, the variable magnetic force magnet 3 is disposed at the center of the d-axis, and the fixed magnetic force magnets 4 are disposed on both the left and right sides thereof.

したがって、回転子1内でq軸方向の磁路となる部分には磁石や磁気障壁となる穴は配置されてなく鉄心となっているので、磁気抵抗が極めて小さい部分がある。この部分が、負のd軸電流を流してリラクタンストルクを発生させた場合において、鉄の磁極部6となる。一方、d軸方向の永久磁石の磁極となる部分には前記可変磁力磁石3と固定磁力磁石4を配置し、磁気抵抗を大きくしている。これにより、回転子の周方向に磁気抵抗が異なる回転子が構成できる。   Therefore, in the portion that becomes the magnetic path in the q-axis direction in the rotor 1, the magnet and the hole that becomes the magnetic barrier are not arranged but the iron core, and therefore there is a portion having a very small magnetic resistance. This portion becomes the iron magnetic pole portion 6 when a reluctance torque is generated by flowing a negative d-axis current. On the other hand, the variable magnetic force magnet 3 and the fixed magnetic force magnet 4 are arranged in the portion that becomes the magnetic pole of the permanent magnet in the d-axis direction, thereby increasing the magnetic resistance. Thereby, the rotor from which magnetic resistance differs in the circumferential direction of a rotor can be comprised.

また、可変磁力磁石3は、1個の可変磁力磁石のみで構成するのではなく、図2に示すように、可変磁力磁石と固定磁力磁石とを組み合わせて作製した可変磁力磁石を用いてもよい。具体的には、可変磁力磁石3と固定磁力磁石4aを各磁石の磁化方向に重ね合わせて1つの磁石を構成する。すなわち、可変磁力磁石3と固定磁力磁石4aの磁化方向を同じくして、磁気的に直列に配置する。この直列に重ねた磁石は、磁化方向がd軸方向(ここでは、ほぼ回転子の半径方向)となる位置で回転子鉄心2内に配置する。一方、可変磁力磁石3と固定磁力磁石4aを直列に重ねた磁石の両側に、固定磁力磁石4,4を磁化方向がd軸方向となる位置で配置する。この横に配置した固定磁力磁石4,4は、前記直列に重ねた磁石に対して、磁気回路上で並列回路を構成する。すなわち、磁気回路上では、可変磁力磁石3に対して、直列に固定磁力磁石4aを、並列に固定磁力磁石4,4を配置する。以上より、可変磁力磁石と固定磁力磁石とを組み合わせて作製した可変磁力磁石を用いた場合は、磁気回路上では可変磁力磁石に対して、直列と並列の両方に固定磁力磁石が配置されることになる。   Further, the variable magnetic magnet 3 is not composed of only one variable magnetic magnet, but a variable magnetic magnet produced by combining a variable magnetic magnet and a fixed magnetic magnet as shown in FIG. 2 may be used. . Specifically, the variable magnetic magnet 3 and the fixed magnetic magnet 4a are overlapped in the magnetization direction of each magnet to constitute one magnet. That is, the magnetization directions of the variable magnetic force magnet 3 and the fixed magnetic force magnet 4a are the same, and are arranged magnetically in series. The magnets stacked in series are arranged in the rotor core 2 at a position where the magnetization direction is the d-axis direction (here, approximately the radial direction of the rotor). On the other hand, the fixed magnetic magnets 4 and 4 are arranged on both sides of a magnet in which the variable magnetic magnet 3 and the fixed magnetic magnet 4a are stacked in series at a position where the magnetization direction is the d-axis direction. The fixed magnetic magnets 4 and 4 arranged on the side form a parallel circuit on the magnetic circuit with respect to the magnets stacked in series. That is, on the magnetic circuit, with respect to the variable magnetic force magnet 3, the fixed magnetic force magnet 4a is arranged in series, and the fixed magnetic force magnets 4 and 4 are arranged in parallel. From the above, when a variable magnetic magnet manufactured by combining a variable magnetic magnet and a fixed magnetic magnet is used, the fixed magnetic magnet must be arranged both in series and in parallel with the variable magnetic magnet on the magnetic circuit. become.

さらに、前記回転子鉄心2内に埋め込まれた固定磁力磁石4を、そのd軸電流の磁化方向と平行に取り囲むように、短絡コイル7を設ける。短絡コイル7は、リング状の導電性部材から構成し、回転子鉄心2内に設けた空洞8の縁にはめ込むように装着する。短絡コイル7は、回転子1の鉄心に設けた穴に高温で溶けた導電性物質を流し込んで鋳造することも可能である。   Further, a short-circuit coil 7 is provided so as to surround the fixed magnetic magnet 4 embedded in the rotor core 2 in parallel with the magnetization direction of the d-axis current. The short-circuit coil 7 is composed of a ring-shaped conductive member, and is mounted so as to fit into the edge of the cavity 8 provided in the rotor core 2. The short-circuit coil 7 can be cast by pouring a conductive material melted at a high temperature into a hole provided in the iron core of the rotor 1.

この短絡コイル7は、電機子巻線にd軸電流を通電させた場合に発生する磁束で、短絡電流が発生するものである。そのため、この短絡コイル7は、可変磁力磁石3を除いた固定磁力磁石4の磁路部分に設ける。その場合、固定磁力磁石4の磁化方向を中心軸として、固定磁力磁石4周囲に短絡コイル7を設ける。   The short-circuit coil 7 is a magnetic flux generated when a d-axis current is passed through the armature winding and generates a short-circuit current. Therefore, the short-circuit coil 7 is provided in the magnetic path portion of the fixed magnetic magnet 4 excluding the variable magnetic magnet 3. In this case, a short-circuit coil 7 is provided around the fixed magnetic magnet 4 with the magnetization direction of the fixed magnetic magnet 4 as the central axis.

さらに、図示していないが、回転子鉄心2の外周には、エアギャップを介して固定子を設ける。この固定子は、電機子鉄心と電機子巻線とを有する。この電機子巻線に流れる電流により、回転子内の短絡コイル7に誘導電流が誘起される。また、この電機子巻線は、永久磁石式回転電機の外部に設けられた電源システムに接続される。電源システムでは、インバータを利用して、永久磁石式回転電機が駆動するのに必要な電力を供給する。   Further, although not shown, a stator is provided on the outer periphery of the rotor core 2 via an air gap. This stator has an armature core and an armature winding. An induced current is induced in the short-circuit coil 7 in the rotor by the current flowing through the armature winding. The armature winding is connected to a power supply system provided outside the permanent magnet type rotating electric machine. In the power supply system, an electric power necessary for driving the permanent magnet type rotating electric machine is supplied using an inverter.

[1−2.制御回路の構成]
図3は、実施例1の永久磁石式回転電機を電動機として回転駆動するための制御回路の一例を示すブロック図である。この制御回路は、基本的には、前記特許文献2に示す回路と同様な構成を有するものであることから、PWM制御部分に関する構成は省略してある。
[1-2. Configuration of control circuit]
FIG. 3 is a block diagram illustrating an example of a control circuit for rotationally driving the permanent magnet type rotating electric machine according to the first embodiment as an electric motor. Since this control circuit basically has the same configuration as the circuit shown in Patent Document 2, the configuration relating to the PWM control portion is omitted.

運転指令とトルク指令を受け付ける運転制御部120には、可変磁力磁石を使用した永久磁石式回転電機に共通の可変磁束制御部121及びPWM回路123に加え、本発明に特有の誘導−同期運転の切替制御部122が設けられている。   In addition to the variable magnetic flux control unit 121 and the PWM circuit 123 common to the permanent magnet type rotating electric machine using the variable magnetic force magnet, the operation control unit 120 that receives the operation command and the torque command includes the induction-synchronous operation unique to the present invention. A switching control unit 122 is provided.

一方、この運転制御部120により制御される本発明の永久磁石式回転電機101は、次のような構成を有している。電源である直流電源(例えば、バッテリー)102、直流電力を交流に変換するインバータ103と、電動機電力を検出するための交流電流する電流センサ104などの検出器である。これらの検出器は、すべて必要なものではなく、以下述べる各実施例に記載したように、1つあるいは複数の検出器を使用し、その検出情報に基づいて、前記運転制御部120が永久磁石式回転電機101を運転する。   On the other hand, the permanent magnet type rotating electrical machine 101 of the present invention controlled by the operation control unit 120 has the following configuration. A detector such as a DC power source (for example, a battery) 102 that is a power source, an inverter 103 that converts DC power into AC, and a current sensor 104 that generates AC current for detecting motor power. Not all of these detectors are necessary. As described in each embodiment described below, one or a plurality of detectors are used, and the operation control unit 120 uses the permanent magnet based on the detection information. The rotary electric machine 101 is operated.

検出器としては、例えば、次のようなものがある。
(1) 回転子1の回転速度を計測する速度センサ105
(2) 回転電機の駆動制御盤であるインバータの出力電流を計測する電流センサ104
(3) 電源システムの電源電圧(インバータの直流側電圧)を計測する電圧計107
(4) 永久磁石の磁極位置を検出する磁極位置センサ109
(5) 永久磁石の磁束により発生する固定子コイルに流れる誘起電圧を検出する検出器110
Examples of detectors include the following.
(1) Speed sensor 105 that measures the rotational speed of the rotor 1
(2) Current sensor 104 that measures the output current of the inverter that is the drive control panel of the rotating electrical machine
(3) Voltmeter 107 that measures the power supply voltage of the power supply system (DC side voltage of the inverter)
(4) Magnetic pole position sensor 109 for detecting the magnetic pole position of the permanent magnet
(5) Detector 110 for detecting the induced voltage flowing in the stator coil generated by the magnetic flux of the permanent magnet

[1−3.可変磁力磁石と並列に配置された固定磁力磁石の作用]
可変磁力磁石と並列に配置された固定磁力磁石の作用について説明する。回転子1の固定磁力磁石4は固定子の電機子巻線に一定の鎖交磁束を発生する。可変磁力磁石3も同様に電機子巻線に鎖交磁束を発生する。可変磁力磁石3は電機子巻線に極短時間のd軸電流を流すことにより磁力を可変でき、磁束を増減できる。さらに可変磁力磁石3と固定磁力磁石4の磁力と逆方向になるように極性を反転もさせることができ。これにより固定磁力磁石と可変磁力磁石の合計の鎖交磁束量を大幅に減少する。
[1-3. Action of fixed magnetic magnet arranged in parallel with variable magnetic magnet]
The operation of the fixed magnetic magnet arranged in parallel with the variable magnetic magnet will be described. The fixed magnetic magnet 4 of the rotor 1 generates a constant flux linkage in the armature winding of the stator. Similarly, the variable magnetic magnet 3 generates an interlinkage magnetic flux in the armature winding. The variable magnetic force magnet 3 can change the magnetic force by flowing a d-axis current for an extremely short time through the armature winding, and can increase or decrease the magnetic flux. Further, the polarity can be reversed so as to be opposite to the magnetic force of the variable magnetic magnet 3 and the fixed magnetic magnet 4. As a result, the total amount of flux linkage between the fixed magnetic magnet and the variable magnetic magnet is greatly reduced.

[1−4.可変磁力磁石と直列に配置された固定磁力磁石の作用]
可変磁石と直列に配置された固定磁力磁石4の作用について説明する。前記に述べた並列に配置された固定磁力磁石4は鎖交磁束を大きく変化させる作用がある。しかし、可変磁力磁石3に対しては並列配置された固定磁力磁石4は逆磁界を作用する。したがって、可変磁力磁石3の磁気的な動作点が下がって磁石の磁束密度が低下する。さらに負のd軸電流で可変磁力磁石3を不可逆減磁させた状態から増磁させる場合、極性を反転させた状態から元の極性に戻す場合では、並列に配置された固定磁力磁石4は可変磁力磁石3を変化させようとするd軸電流による磁界に対して逆方向の磁界を形成することになる。したがって、可変磁力磁石の磁力を変化させるときに要する磁化電流(d軸電流)は大きくなる問題が生じる。
[1-4. Action of fixed magnetic magnet arranged in series with variable magnetic magnet]
The operation of the fixed magnetic magnet 4 arranged in series with the variable magnet will be described. The fixed magnetic magnets 4 arranged in parallel as described above have the effect of greatly changing the flux linkage. However, the fixed magnetic magnet 4 arranged in parallel to the variable magnetic magnet 3 acts against a reverse magnetic field. Therefore, the magnetic operating point of the variable magnetic force magnet 3 is lowered, and the magnetic flux density of the magnet is lowered. Furthermore, when the variable magnetic force magnet 3 is magnetized from the irreversibly demagnetized state with a negative d-axis current, the fixed magnetic force magnet 4 arranged in parallel is variable when the polarity is reversed and returned to the original polarity. A magnetic field in the opposite direction to the magnetic field generated by the d-axis current to change the magnetic magnet 3 is formed. Therefore, there arises a problem that the magnetization current (d-axis current) required for changing the magnetic force of the variable magnetic magnet becomes large.

そこで、磁気回路上では、固定磁力磁石4を可変磁力磁石3に対して直列に設ける。本発明では、固定磁力磁石4を可変磁力磁石3に重ねて1つの磁石とする。固定磁力磁石4は磁化方向が同方向で直列に配置されるので、可変磁力磁石中に磁界を発生する。このとき、重ねた固定磁力磁石4の磁界は並列に配置された固定磁石の磁界と逆方向であり、互いに相殺するように作用する。したがって、可変磁力磁石3の磁気的な動作点が低下を抑制し、条件によっては動作点を高くできるので、可変磁力磁石3の磁束密度を増加できる。また、さらに負のd軸電流で可変磁力磁石を不可逆減磁させた状態から増磁させる場合、極性を反転させた状態から元の極性に戻す場合では、変化を妨げるような固定磁力磁石による磁界を小さくできるので、可変磁力磁石の磁力を変化させるときに要する磁化電流(d軸電流)を低減できる。以上より、本発明の回転電機では、少ない磁化電流で永久磁石の鎖交磁束量を大幅に変化させることができ、同時に大きな出力を発生することができる。   Therefore, the fixed magnetic magnet 4 is provided in series with the variable magnetic magnet 3 on the magnetic circuit. In the present invention, the fixed magnetic magnet 4 is superposed on the variable magnetic magnet 3 to form one magnet. Since the fixed magnetic magnets 4 are arranged in series with the same direction of magnetization, a magnetic field is generated in the variable magnetic magnet. At this time, the magnetic field of the stacked fixed magnetic magnets 4 is opposite to the magnetic field of the fixed magnets arranged in parallel and acts to cancel each other. Therefore, the magnetic operating point of the variable magnetic force magnet 3 can be prevented from lowering, and the operating point can be increased depending on conditions, so that the magnetic flux density of the variable magnetic force magnet 3 can be increased. Further, when the variable magnetic force magnet is magnetized from the irreversibly demagnetized state with a negative d-axis current, or when the polarity is reversed and returned to the original polarity, the magnetic field generated by the fixed magnetic force magnet prevents the change. Therefore, the magnetization current (d-axis current) required when changing the magnetic force of the variable magnetic magnet can be reduced. As described above, in the rotating electrical machine of the present invention, the amount of flux linkage of the permanent magnet can be changed greatly with a small magnetization current, and a large output can be generated at the same time.

[1−5.q軸電流によるトルクの作用]
次に、前記のような構成を有する本実施例の永久磁石式回転電機では、永久磁石式回転電機を電流位相進み制御した場合において、固定子の電機子巻線に電流位相がq軸基準位置(電流位相角90度)のq軸電流を流すことにより、永久磁石の鎖交磁束とq軸電流に基づくトルク(以下、磁石トルク)を発生させる。永久磁石式回転電機の軽負荷時にはq軸電流は小さく、大きなトルクを発生するときには大きなq軸電流が必要となる。
[1-5. Action of torque by q-axis current]
Next, in the permanent magnet type rotating electrical machine of the present embodiment having the above-described configuration, when the permanent magnet type rotating electrical machine is subjected to current phase advance control, the current phase is q-axis reference position in the stator armature winding. By passing a q-axis current having a current phase angle of 90 degrees, a torque based on the flux linkage of the permanent magnet and the q-axis current (hereinafter referred to as magnet torque) is generated. When the permanent magnet type rotating electrical machine is lightly loaded, the q-axis current is small, and when a large torque is generated, a large q-axis current is required.

また、q軸電流で形成される磁界の可変磁力磁石3の磁化方向成分により、可変磁力磁石2の減磁と増磁界が作用する。この状態で、永久磁石の磁化はq軸電流で形成する磁界分布の永久磁石の減磁界側では変化なく、増磁界側では増加する磁気特性とする。これにより、q軸電流はトルクを発生させる成分の電流であるので、q軸電流で増磁側の磁化が増すと磁束が増加してより大きなトルクを発生できる。さらにq軸電流の増加とともに永久磁石の磁化が進むと、トルクの増加に応じて磁束量が増す。すなわち、トルクに応じて永久磁石の磁束が変化するので効果的にトルクを発生できて高効率になる。   Further, the demagnetizing and increasing magnetic fields of the variable magnetic force magnet 2 act due to the magnetization direction component of the variable magnetic force magnet 3 of the magnetic field formed by the q-axis current. In this state, the magnetization of the permanent magnet has a magnetic characteristic that does not change on the demagnetizing side of the permanent magnet of the magnetic field distribution formed by the q-axis current but increases on the increasing magnetic field side. Thereby, since the q-axis current is a current of a component that generates torque, when the magnetization on the magnetizing side is increased by the q-axis current, the magnetic flux increases and a larger torque can be generated. Further, when the magnetization of the permanent magnet advances with the increase of the q-axis current, the amount of magnetic flux increases as the torque increases. That is, since the magnetic flux of the permanent magnet changes according to the torque, the torque can be generated effectively and the efficiency becomes high.

[1−6.可変磁力磁石の磁気特性の作用]
本実施例の可変磁力磁石3の作用について述べる。図4〜6は、本実施例で使用する可変磁力磁石3の磁気特性(保磁力と磁束密度との関係)を示したグラフである。
[1-6. Effect of magnetic properties of variable magnets]
The operation of the variable magnetic magnet 3 of this embodiment will be described. 4 to 6 are graphs showing the magnetic characteristics (relationship between coercive force and magnetic flux density) of the variable magnetic force magnet 3 used in this embodiment.

(極性反転を含む変化の場合)
図4は、可変磁力磁石3の極性が反転する場合の磁気特性を示す図である。図4の(4)において、可変磁力磁石3の磁気特性は、最大磁化から部分変化までの過程は、メジャーループと同じ軌跡を描く。つぎに正の磁界を増やすと、磁化は一定状態で推移した後、保磁力の絶対値よりも十分に小さな値に達した状態から(実施例では70kA/m以上)磁化は大きく変化し始める。磁化が減少して実施例では磁界が120kA/mで磁化は0になる。さらに正の磁界を大きくすると極性が反転(N極)して磁界が200kA/m程度(h4)で磁化が最大となる。すなわち、可変磁力磁石3が極性反転を含む変化をする場合は、磁化が飽和している状態から部分的な磁化状態にするために要する磁界に対して、前記部分的な磁化状態から磁化が飽和している状態に戻すときに要する磁界が小さくなる磁化特性となる。
(For changes including polarity reversal)
FIG. 4 is a diagram showing magnetic characteristics when the polarity of the variable magnetic force magnet 3 is reversed. In (4) of FIG. 4, the magnetic characteristic of the variable magnetic force magnet 3 draws the same locus as the major loop in the process from the maximum magnetization to the partial change. Next, when the positive magnetic field is increased, the magnetization changes in a constant state, and then the magnetization starts to change greatly from a state where it has reached a value sufficiently smaller than the absolute value of the coercive force (70 kA / m or more in the embodiment). The magnetization decreases, and in the embodiment, the magnetization becomes 0 at a magnetic field of 120 kA / m. When the positive magnetic field is further increased, the polarity is reversed (N pole), and the magnetization becomes maximum when the magnetic field is about 200 kA / m (h4). That is, when the variable magnetic force magnet 3 changes including polarity reversal, the magnetization is saturated from the partial magnetization state with respect to the magnetic field required to change the magnetization from the saturated state to the partial magnetization state. It becomes a magnetization characteristic that the magnetic field required when returning to the state of being reduced becomes small.

(同一極性での変化の場合)
図5は、可変磁力磁石3の極性が同一極性で変化する場合の磁気特性を示す図である。図5の(1)〜(3)において、可変磁力磁石3の磁気特性は、最大磁化から部分変化までの過程は、メジャーループと同じ軌跡を描く。図5の(3)のマイナーループでは磁化が0まで変化させた場合、(1)と(2)のマイナーループでは極性は反転せずに磁化が減少する範囲で変化させた場合を示す。いずれも部分的に磁化が変化した状態からほぼ初期の最大値になるときの磁界はh4(200kA/m)以下と小さくし、最大値から磁化を変化させるのに要する磁界h5よりも小さな値になる。
(For changes with the same polarity)
FIG. 5 is a diagram showing magnetic characteristics when the polarity of the variable magnetic force magnet 3 changes with the same polarity. In (1) to (3) in FIG. 5, the magnetic characteristics of the variable magnetic force magnet 3 draw the same locus as the major loop in the process from the maximum magnetization to the partial change. The minor loop of (3) in FIG. 5 shows the case where the magnetization is changed to 0, and the minor loops of (1) and (2) show the case where the polarity is changed within a range in which the magnetization decreases without reversing the polarity. In either case, the magnetic field when the magnetization is partially changed to a substantially initial maximum value is reduced to less than h4 (200 kA / m), and is smaller than the magnetic field h5 required to change the magnetization from the maximum value. Become.

以上により、図4と図5に示すようにマイナーループ(1)〜(4)の部分的に変化させた磁化から最大磁化にするときの磁界(h1,h2,h3,h4)は、メジャーループ(5)の反転した最大磁化から開始時の最大磁化にするときの磁界(h5:400kA/m)と比較して大幅に小さくなる。そして、磁界が小さくなれば必要な磁化電流も小さくなるので、マイナーループの部分的に変化させた磁化から最大磁化にするときに要する本発明の磁石の磁化電流は、メジャーループに沿った変化となる従来の磁石の磁化電流よりも大幅に小さくなる。   Thus, as shown in FIGS. 4 and 5, the magnetic fields (h1, h2, h3, h4) for changing from the partially changed magnetization of the minor loops (1) to (4) to the maximum magnetization are the major loops. Compared with the magnetic field (h5: 400 kA / m) for changing from the reversed maximum magnetization of (5) to the maximum magnetization at the start, it is significantly smaller. And if the magnetic field is reduced, the necessary magnetizing current is also reduced. Therefore, the magnetizing current of the magnet of the present invention required to change from the partially changed magnetization of the minor loop to the maximum magnetization is changed along the major loop. This is much smaller than the magnetizing current of the conventional magnet.

(部分磁化での変化)
図6は、可変磁力磁石3の磁化の状態が、磁化が飽和している状態に満たない部分的な磁化状態から、さらに磁化量の減少または極性反転した部分的な磁化状態した場合の磁気特性を示す図である。図6では、部分磁化を順次行って磁化を小さくしていく過程の磁化の軌跡(ループ)を示している。この磁化の軌跡では、磁化量の減少または極性反転した部分的な磁化状態から前記の変化前の部分磁化状態に戻すときに要する磁界は、変化前の磁界よりも小さくする。このように磁化を小さくすると必要な磁界も小さくなり、また、磁化を増やすときに要する磁界は磁化を減らすときに要する磁界よりも少なくなる。
(Change in partial magnetization)
FIG. 6 shows magnetic characteristics when the state of magnetization of the variable magnetic force magnet 3 is changed from a partial magnetization state in which the magnetization is not saturated to a partial magnetization state in which the amount of magnetization is further reduced or the polarity is reversed. FIG. FIG. 6 shows a magnetization locus (loop) in the process of sequentially performing partial magnetization to reduce the magnetization. In this magnetization trajectory, the magnetic field required for returning from the partial magnetization state in which the amount of magnetization is reduced or the polarity is reversed to the partial magnetization state before the change is made smaller than the magnetic field before the change. Thus, if the magnetization is reduced, the required magnetic field is also reduced, and the magnetic field required for increasing the magnetization is less than the magnetic field required for reducing the magnetization.

[1−7.永久磁石式回転電機の作用]
次に、永久磁石式回転電機の作用としては、永久磁石式回転電機の永久磁石として、マイナーループの場合に磁化を最大にするために必要な磁界は、最大まで磁化するメジャーループの磁界より小さくなる特性の可変磁力磁石3を使用する。そのため、回転電機においては鎖交磁束を減少後に最大鎖交磁束に戻す動作では、増磁状態になって鉄心が磁気飽和状態になるので磁化電流が増加するが、部分変化後から最大磁化に戻す増磁動作で磁化電流を低減できるので、磁気飽和による磁化電流増加の影響を緩和できる。
[1-7. Action of permanent magnet type rotating electrical machine]
Next, as a function of the permanent magnet type rotating electric machine, as a permanent magnet of the permanent magnet type rotating electric machine, the magnetic field necessary for maximizing the magnetization in the case of the minor loop is smaller than the magnetic field of the major loop magnetized to the maximum. The variable magnetic magnet 3 having the following characteristics is used. Therefore, in the rotating electrical machine, in the operation of returning the interlinkage magnetic flux to the maximum interlinkage magnetic flux after the decrease, the magnetizing current is increased and the iron core is in a magnetic saturation state, so that the magnetizing current increases. Since the magnetizing current can be reduced by the magnetizing operation, the influence of the magnetizing current increase due to magnetic saturation can be mitigated.

すなわち、従来の磁石を適用した可変磁束の回転電機では、鎖交磁束を減少させる減磁動作で要する磁化電流よりも、鎖交磁束が減少後に増加させる増磁動作で要する磁化電流がかなり大きくなる。一方、前記の非対称磁気特性の磁石を適用した可変磁束の回転電機は鎖交磁束が減少後に増加させる増磁動作で要する磁化電流を減少させることができるので、増磁動作で要する磁化電流は減磁動作で要する電流と同等レベルに低減できる。   That is, in a variable magnetic flux rotating electrical machine using a conventional magnet, the magnetizing current required for the magnetizing operation to increase after the interlinkage flux decreases is considerably larger than the magnetizing current required for the demagnetizing operation to decrease the interlinkage magnetic flux. . On the other hand, the variable magnetic flux rotating electrical machine using the magnet having the asymmetric magnetic characteristics can reduce the magnetizing current required for the magnetizing operation to be increased after the interlinkage magnetic flux is reduced, so that the magnetizing current required for the magnetizing operation is reduced. It can be reduced to the same level as the current required for magnetic operation.

回転電機の運転時で説明すると、例えば回転電機が高速域では鎖交磁束量は減少させた状態で運転し、低速から中速の回転域では電圧に余裕があるので鎖交磁束量を増加させる。すなわち、高速回転域では弱め磁束制御電流による銅損や鎖交磁束による鉄損を減少させ、周波数の低いため鉄損が小さくなる低速域では鎖交磁束量を大きくして最小の電流で最大のトルクを発生させる。これにより、低速から高速回転域まで高効率で運転できる。そして、このような場合に要する磁化電流を低減できる。   When explaining the operation of the rotating electrical machine, for example, the rotating electrical machine operates in a state where the amount of flux linkage is reduced in the high speed range, and increases the amount of flux linkage because there is a margin in voltage in the range of low speed to medium speed. . In other words, the copper loss due to the weak flux control current and the iron loss due to the interlinkage magnetic flux are reduced in the high-speed rotation region, and the interlinkage magnetic flux amount is increased in the low-speed region where the iron loss is low due to the low frequency. Generate torque. Thereby, it can drive | operate with high efficiency from a low speed to a high-speed rotation area. And the magnetization current required in such a case can be reduced.

[1−8.効果]
この実施例1の効果としては、部分変化時のマイナーループの磁化特性が縦軸と横軸の交点を中心として非対称な磁気特性の可変磁力磁石を用いることで、部分変化後に元の最大磁化に要する磁化電流を大幅に小さくすることができる。これにより、増磁時の磁化電流を抑制することができ、磁化電流用のインバータのパワー素子容量も少なくすることができる。
[1-8. effect]
As an effect of the first embodiment, a variable magnetic magnet having an asymmetric magnetic characteristic centered on the intersection of the vertical axis and the horizontal axis is used for the minor loop magnetization characteristic at the time of partial change, so that the original maximum magnetization is obtained after the partial change. The required magnetizing current can be greatly reduced. Thereby, the magnetizing current at the time of magnetizing can be suppressed, and the power element capacity of the inverter for magnetizing current can also be reduced.

[2−1.構成]
本発明の実施例2は、実施例1と同様の構成を有する永久磁石式回転電機において、可変磁力磁石3の磁気特性を変更したものである。本実施例の可変磁力磁石3としては、図7に示すような磁気特性を有する磁石を使用する。
[2-1. Constitution]
The second embodiment of the present invention is a permanent magnet type rotating electrical machine having the same configuration as that of the first embodiment, in which the magnetic characteristics of the variable magnetic force magnet 3 are changed. As the variable magnetic force magnet 3 of the present embodiment, a magnet having magnetic characteristics as shown in FIG. 7 is used.

本実施例の可変磁力磁石3は、磁化が飽和している状態から反転させて逆極性で磁化が飽和している状態にするために要する磁界に対して、前記逆極性の磁化状態から再度極性反転させて開始時の磁化が飽和している状態に戻すときに要する磁界が小さくなる磁化特性である。   The variable magnetic magnet 3 of the present embodiment is repolarized from the reverse polarity magnetization state to the magnetic field required to reverse the magnetization from the saturated state to the reverse polarity. This is a magnetization characteristic in which the magnetic field required for reversing and returning to the state where the magnetization at the start is saturated is reduced.

[2−2.可変磁力磁石の磁気特性]
本発明の実施例の可変磁力用磁石の磁気特性を図7に示す。永久磁石が完全に磁化した状態(仮にN極とする)を初期値とする。この初期値の可変磁力磁石3に、外部から逆磁界を永久磁石に作用させると、永久磁石の磁化が一定値で推移した後に低下する領域に入る。さらに負の磁界が増加すると、減少して磁化は0になった後、永久磁石の極性は反転し(S極)になる。すなわち、負の磁界を増して逆極性方向でほぼ飽和まで磁化させる。
[2-2. Magnetic properties of variable magnets]
FIG. 7 shows the magnetic characteristics of the variable magnetic force magnet of the embodiment of the present invention. A state in which the permanent magnet is completely magnetized (assumed to be N pole) is set as an initial value. When a reverse magnetic field is applied to the initial value of the variable magnetic magnet 3 from the outside, the permanent magnet enters a region where the magnetization of the permanent magnet decreases after transitioning to a constant value. When the negative magnetic field further increases, the magnetization decreases to 0 and the polarity of the permanent magnet is reversed (S pole). That is, the negative magnetic field is increased and magnetized to almost saturation in the reverse polarity direction.

つぎに、逆極性方向でほぼ飽和まで磁化した可変磁力磁石3に対して、正の磁界を作用させると、可変磁力磁石3の磁化が一定値で推移した後に、正の磁界により磁化が大きく増加する。この磁化が大きく増加する磁界の値は、N極からS極に変化させる場合に磁化が大きく変化する場合の磁界の大きさよりも十分に小さい値になる。また、この値は、可変磁力磁石3の保磁力よりも小さい値になる。したがって、最大磁化の状態から逆極性の最大磁化まで変化するのに要する磁化電流と比較して、逆極性の最大磁化から元の最大磁化に戻すときに要する磁化電流は少なくなる。   Next, when a positive magnetic field is applied to the variable magnetic magnet 3 that is magnetized to almost saturation in the reverse polarity direction, the magnetization of the variable magnetic magnet 3 greatly increases due to the positive magnetic field after the magnetization of the variable magnetic magnet 3 changes at a constant value. To do. The value of the magnetic field at which the magnetization greatly increases is a value sufficiently smaller than the magnitude of the magnetic field when the magnetization changes greatly when changing from the N pole to the S pole. This value is smaller than the coercive force of the variable magnetic magnet 3. Therefore, compared with the magnetization current required for changing from the maximum magnetization state to the maximum magnetization of the reverse polarity, the magnetization current required for returning from the maximum magnetization of the reverse polarity to the original maximum magnetization is reduced.

[2−3.効果]
このような実施例2においては、可変磁力磁石3を磁化が飽和している状態から反転させて逆極性で磁化が飽和している状態にした場合においても、最大磁化に要する磁化電流を大幅に小さくすることができる。これにより、増磁時の磁化電流を抑制することができ、インバータのパワー素子容量も低減できる永久磁石式回転電機を得ることができる。
[2-3. effect]
In the second embodiment, even when the variable magnetic force magnet 3 is reversed from the state in which the magnetization is saturated and the magnetization is saturated in the reverse polarity, the magnetization current required for the maximum magnetization is greatly increased. Can be small. Thereby, the permanent magnet type rotary electric machine which can suppress the magnetizing current at the time of magnetization and can also reduce the power element capacity | capacitance of an inverter can be obtained.

1…回転子
2…回転子鉄心
3…可変磁力磁石
4…固定磁力磁石
5…磁極部
6…リラクタンストルク発生の鉄心の磁極
7…短絡コイル
101… 永久磁石式回転電機
102… 直流電源
103… インバータ
104… 電流センサ
105… 速度センサ
106… 電圧計
107… 電圧計
108… 出力計
109… 磁極位置センサ
110… 誘起電圧検出器
120… 運転制御部
121… 可変磁束制御部
122… 誘導−同期切替制御部
123… PWM回路
DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor core 3 ... Variable magnetic magnet 4 ... Fixed magnetic magnet 5 ... Magnetic pole part 6 ... Iron magnetic pole of reluctance torque generation 7 ... Short-circuit coil 101 ... Permanent magnet type rotating electrical machine 102 ... DC power supply 103 ... Inverter 104 ... Current sensor 105 ... Speed sensor 106 ... Voltmeter 107 ... Voltmeter 108 ... Output meter 109 ... Magnetic pole position sensor 110 ... Induced voltage detector 120 ... Operation control unit 121 ... Variable magnetic flux control unit 122 ... Induction-synchronization switching control unit 123 ... PWM circuit

Claims (21)

固定子鉄心に電機子コイルを設けた固定子と、
回転子鉄心と前記回転子鉄心に設けた永久磁石からなる回転子から構成され、
前記固定子の電機子コイルの電流が作る磁界で永久磁石を磁化させることにより永久磁石の磁束量を不可逆的に変化させる永久磁石式回転電機において、
前記不可逆変化させる永久磁石は、磁化が飽和している状態から部分的な磁化状態にするために要する磁界に対して、前記部分的な磁化状態から磁化が飽和している状態に戻すときに要する磁界が小さくなる磁化特性であることを特徴とする永久磁石式回転電機。
A stator provided with armature coils in the stator core;
It is composed of a rotor composed of a rotor core and a permanent magnet provided on the rotor core,
In the permanent magnet type rotating electrical machine that irreversibly changes the amount of magnetic flux of the permanent magnet by magnetizing the permanent magnet with the magnetic field created by the current of the armature coil of the stator,
The irreversibly changing permanent magnet is required to return the magnetization from the partial magnetization state to the saturation state with respect to the magnetic field required to change from the saturation state to the partial magnetization state. A permanent magnet type rotating electric machine characterized by having a magnetization characteristic that reduces a magnetic field.
前記不可逆的に変化する永久磁石は、磁化が飽和している状態に満たない部分的な磁化状態からさらに磁化量の減少または極性反転した部分的な磁化状態にするために要する磁界に対して、前記磁化量の減少または極性反転した部分的な磁化状態から、前記の変化前の部分磁化状態に戻すときに要する磁界が小さくなる磁化特性であることを特徴とする請求項1に記載の永久磁石式回転電機。   The irreversibly changing permanent magnet has a magnetic field required to change from a partially magnetized state in which the magnetization is not saturated to a partially magnetized state in which the amount of magnetization is further reduced or the polarity is reversed. 2. The permanent magnet according to claim 1, wherein the permanent magnet has a magnetization characteristic that reduces a magnetic field required for returning from the partial magnetization state in which the amount of magnetization is reduced or the polarity is reversed to the partial magnetization state before the change. Rotary electric machine. 前記不可逆的に変化する永久磁石は、磁極の磁束が最大になる側の極性を基準として、極性を反転したときの磁化は飽和磁化である最大値よりも小さな範囲とし、
磁化電流を低減する場合は変化させる磁化量を0近傍までとすることを特徴とする請求項1または請求項2に記載の永久磁石式回転電機。
The permanent magnet that changes irreversibly is based on the polarity on the side where the magnetic flux of the magnetic pole becomes maximum, and the magnetization when reversing the polarity is in a range smaller than the maximum value that is saturation magnetization,
3. The permanent magnet type rotating electrical machine according to claim 1, wherein when the magnetization current is reduced, the amount of magnetization to be changed is close to zero.
固定子鉄心に電機子コイルを設けた固定子と、
回転子鉄心と前記回転子鉄心に設けた永久磁石からなる回転子から構成され、
前記固定子の電機子コイルの電流が作る磁界で永久磁石を磁化させることにより永久磁石の磁束量を不可逆的に変化させる永久磁石式回転電機において、
前記不可逆変化させる永久磁石は、磁化が飽和している状態から反転させて逆極性で磁化が飽和している状態にするために要する磁界に対して、
前記逆極性の磁化状態から再度極性反転させて開始時の磁化が飽和している状態に戻すときに要する磁界が小さくなる磁化特性であることを特徴とする永久磁石式回転電機。
A stator provided with armature coils in the stator core;
It is composed of a rotor composed of a rotor core and a permanent magnet provided on the rotor core,
In the permanent magnet type rotating electrical machine that irreversibly changes the amount of magnetic flux of the permanent magnet by magnetizing the permanent magnet with the magnetic field created by the current of the armature coil of the stator,
The permanent magnet for irreversibly changing the magnetic field required for reversing from the state where the magnetization is saturated to the state where the magnetization is saturated with the reverse polarity,
A permanent magnet type rotating electrical machine characterized by having a magnetization characteristic that reduces a magnetic field required for reversing the polarity from the reverse polarity magnetization state to return to a state in which the magnetization at the start is saturated.
前記永久磁石は、保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石で形成され、
前記永久磁石のうち少なくとも1個の永久磁石の磁化状態を変化させて永久磁石の磁束量を不可逆的に変化させることを特徴とする請求項1〜4のいずれか1項に記載の永久磁石式回転電機。
The permanent magnet is formed of two or more kinds of permanent magnets having a product of coercive force and magnetization direction thickness different from other permanent magnets,
The permanent magnet type according to any one of claims 1 to 4, wherein the amount of magnetic flux of the permanent magnet is irreversibly changed by changing the magnetization state of at least one of the permanent magnets. Rotating electric machine.
前記不可逆的に変化する永久磁石は、q軸電流で形成される磁界によって前記永久磁石の一部が磁化される磁気特性であることを特徴とする請求項1〜5のいずれか1項に記載の永久磁石式回転電機。   The irreversibly changing permanent magnet has a magnetic characteristic in which a part of the permanent magnet is magnetized by a magnetic field formed by a q-axis current. Permanent magnet type rotating electric machine. 前記不可逆的に変化する永久磁石は、q軸電流で形成される磁界によって永久磁石の磁化はq軸電流で形成する磁界分布の永久磁石の減磁界側では変化なく、増磁界側では増加する磁気特性であることを特徴とする請求項1〜6のいずれか1項に記載の永久磁石式回転電機。   In the irreversibly changing permanent magnet, the magnetization of the permanent magnet is not changed on the demagnetizing side of the permanent magnet of the magnetic field distribution formed by the q-axis current due to the magnetic field formed by the q-axis current, but increases on the increasing magnetic field side. The permanent magnet type rotating electrical machine according to claim 1, wherein the permanent magnet type rotating electrical machine is a characteristic. 保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石で磁極を形成し、前記2種類以上の永久磁石が磁気回路上で直列と並列に配置される回転子であることを特徴とする請求項1〜7のいずれか1項に記載の永久磁石式回転電機。   A rotor in which a magnetic pole is formed by two or more types of permanent magnets having a product of coercive force and magnetization direction thickness different from other permanent magnets, and the two or more types of permanent magnets are arranged in series and in parallel on a magnetic circuit. The permanent magnet type rotating electric machine according to any one of claims 1 to 7, wherein 保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石で磁極を形成し、保磁力と磁化方向厚の積が大の磁石が保磁力と磁化方向厚の積が小の磁石に対して磁気回路上では直列回路と並列回路で配置される回転子であることを特徴とする請求項1〜8のいずれか1項に記載の永久磁石式回転電機。   A magnetic pole is formed by two or more types of permanent magnets whose coercive force and magnetization direction thickness are different from those of other permanent magnets. Magnets with a large product of coercive force and magnetization direction thickness have a small product of coercive force and magnetization direction thickness. The permanent magnet type rotating electrical machine according to any one of claims 1 to 8, wherein the permanent magnet type rotating electric machine is a rotor arranged in a series circuit and a parallel circuit on a magnetic circuit. 保磁力と磁化方向厚の積が他の永久磁石と異なる2種類以上の永久磁石で磁極を形成し、前記の複数の磁極において、保磁力と磁化方向厚の積が大の磁石で構成される磁極と、
保磁力と磁化方向厚の積が大の磁石と保磁力と磁化方向厚の積が小の磁石で構成される磁極を有する回転子であることを特徴とする請求項1〜9のいずれか1項に記載の永久磁石式回転電機。
A magnetic pole is formed by two or more types of permanent magnets having a product of coercive force and magnetization direction thickness different from other permanent magnets, and the plurality of magnetic poles are composed of magnets having a large product of coercive force and magnetization direction thickness. Magnetic poles,
10. The rotor according to claim 1, wherein the rotor has a magnetic pole composed of a magnet having a large product of coercive force and magnetization direction thickness and a magnet having a small product of coercive force and magnetization direction thickness. The permanent magnet type rotating electrical machine according to the item.
保磁力と磁化方向厚の積が大の磁石で構成される磁極と、保磁力と磁化方向厚の積が大の磁石と保磁力と磁化方向厚の積が小の磁石で構成される磁極において、
前記2種類の磁極は磁気回路上で直列に構成され、
前記の保磁力と磁化方向厚の積が大の磁石と保磁力と磁化方向厚の積が小の磁石で構成される磁極において、
保磁力と磁化方向厚の積が大の磁石と保磁力と磁化方向厚の積が小の磁石は磁気回路上で並列に構成され、
電機子巻線の電流が作る磁界により少なくとも1個の永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させることを特徴とする請求項1〜10のいずれか1項に記載の永久磁石式回転電機。
In a magnetic pole composed of a magnet with a large product of coercive force and magnetization direction thickness, and a magnetic pole composed of a magnet with a large product of coercive force and magnetization direction thickness and a magnet with a small product of coercive force and magnetization direction thickness. ,
The two types of magnetic poles are configured in series on a magnetic circuit,
In a magnetic pole composed of a magnet having a large product of the coercive force and the magnetization direction thickness and a magnet having a small product of the coercive force and the magnetization direction thickness,
A magnet having a large product of coercive force and magnetization direction thickness and a magnet having a small product of coercive force and magnetization direction thickness are configured in parallel on the magnetic circuit,
The permanent magnet according to any one of claims 1 to 10, wherein at least one permanent magnet is magnetized by a magnetic field generated by an electric current of an armature winding to irreversibly change a magnetic flux amount of the permanent magnet. Magnet rotating electric machine.
電機子巻線の電流が作る磁界により前記永久磁石の一部を磁化させて永久磁石による鎖交磁束を不可逆的に減少させ、
減少後に電流による磁界を前記と逆方向に発生させて前記永久磁石の一部を磁化させて鎖交磁束量を不可逆的に増加させることを特徴とする請求項1〜11のいずれか1項に記載の永久磁石式回転電機。
Magnetizing a part of the permanent magnet by the magnetic field created by the current of the armature winding to irreversibly reduce the interlinkage magnetic flux by the permanent magnet,
The magnetic flux due to an electric current is generated in the opposite direction after the decrease to magnetize a part of the permanent magnet to increase the amount of flux linkage irreversibly. The permanent magnet type rotating electric machine described.
電機子巻線の電流が作る磁界により保磁力と磁化方向厚の積が小の磁石を磁化させて永久磁石による鎖交磁束を不可逆的に減少させ、
減少後に電流による磁界を前記と逆方向に発生させて前記保磁力と磁化方向厚の積が小の磁石を磁化させて鎖交磁束量を不可逆的に増加させることを特徴とする請求項1〜12のいずれか1項に記載の永久磁石式回転電機。
Magnetizing the magnet with a small product of the coercive force and the magnetization direction thickness by the magnetic field generated by the current of the armature winding, irreversibly reducing the interlinkage magnetic flux by the permanent magnet,
The magnetic flux due to current is generated in the opposite direction after the decrease to magnetize the magnet having a small product of the coercive force and the magnetization direction thickness, thereby irreversibly increasing the amount of flux linkage. The permanent magnet type rotating electrical machine according to any one of 12.
d軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させ、永久磁石を磁化するd軸電流を流すと同時にq軸電流によりトルクを制御することを特徴とする請求項1〜13のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet is magnetized by a magnetic field caused by a d-axis current to irreversibly change the amount of magnetic flux of the permanent magnet, and the torque is controlled by the q-axis current at the same time as the d-axis current for magnetizing the permanent magnet flows. Item 14. The permanent magnet type rotating electrical machine according to any one of Items 1 to 13. 運転時にd軸電流による磁界で永久磁石を磁化させて永久磁石の磁束量を不可逆的に変化させる動作、d軸電流で生じる磁束により電流と永久磁石で生じる電機子巻線の鎖交磁束量をほぼ可逆的に変化させる動作を有することを特徴とする請求項1〜16のいずれか1項に記載の永久磁石式回転電機。   An operation of irreversibly changing the amount of magnetic flux of the permanent magnet by magnetizing the permanent magnet with a magnetic field generated by the d-axis current during operation, and the amount of flux linkage between the current and the armature winding generated by the permanent magnet by the magnetic flux generated by the d-axis current. The permanent magnet type rotating electrical machine according to any one of claims 1 to 16, wherein the permanent magnet type rotating electrical machine has an operation of reversibly changing. 最大トルク時には永久磁石の全鎖交磁束が大となるように保磁力と磁化方向厚みの積が他よりも小さな永久磁石を磁化させ、トルクの小さな軽負荷時や、中速回転域と高速回転域では、前記の保磁力と磁化方向厚みの積が他よりも小さな永久磁石は、電流による磁界で磁化させて、永久磁石の全鎖交磁束を減少させることを特徴とする請求項1〜16のいずれか1項に記載の永久磁石式回転電機。   A permanent magnet with a product of coercive force and magnetization direction thickness smaller than the others is magnetized so that the total interlinkage magnetic flux of the permanent magnet becomes large at the maximum torque, and at a light load with a small torque or at a medium speed rotation range and high speed rotation. In the region, the permanent magnet having a product of the coercive force and the thickness in the magnetization direction smaller than the others is magnetized by a magnetic field caused by an electric current to reduce the total interlinkage magnetic flux of the permanent magnet. The permanent magnet type rotating electrical machine according to any one of the above. 磁気回路上で直列に配置される保磁力と磁化方向厚の積が小の磁石と、保磁力と磁化方向厚の積が大の磁石において、前記2種類の磁石が重ねて配置されることを特徴とする請求項1〜16のいずれか1項に記載の永久磁石式回転電機。   In a magnet having a small product of coercive force and magnetization direction thickness and a magnet having a large product of coercive force and magnetization direction thickness arranged in series on the magnetic circuit, the two types of magnets are arranged in an overlapping manner. The permanent magnet type rotating electrical machine according to any one of claims 1 to 16, wherein 磁気回路上で並列に配置する磁石はほぼ一直線上か、V字上に配置されることを特徴とする請求項1〜17のいずれか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 17, wherein the magnets arranged in parallel on the magnetic circuit are arranged substantially on a straight line or on a V-shape. 磁気回路上で並列に配置する磁石において、磁極の側面のほぼq軸上に配置される磁石と、磁極の中央部に配置される磁石から構成されることを特徴とする請求項1〜18のいずれか1項に記載の永久磁石式回転電機。   19. The magnet disposed in parallel on the magnetic circuit, comprising: a magnet disposed substantially on the q-axis of the side surface of the magnetic pole; and a magnet disposed in the center of the magnetic pole. The permanent magnet type rotating electrical machine according to any one of the preceding claims. 磁極の磁石を不可逆変化させて鎖交磁束を最小にした状態で回転子が最高回転速度になったときに、永久磁石による誘導起電圧が、回転電機の電源であるインバータ電子部品の耐電圧以下とすることを特徴とする請求項1〜19のいずれか1項に記載の永久磁石式回転電機。   When the rotor reaches the maximum rotation speed with the magnetic flux linkage minimized by irreversibly changing the magnetic pole magnet, the induced electromotive force of the permanent magnet is less than the withstand voltage of the inverter electronic component that is the power supply of the rotating electrical machine The permanent magnet type rotating electrical machine according to any one of claims 1 to 19, wherein 回転子を固定子に挿入して組み立てる時は、永久磁石による回転電機の鎖交磁束量が小になるように、保磁力と磁化方向厚の積が小さな永久磁石を不可逆変化させた状態とすることを特徴とする請求項1〜20のいずれか1項に記載の永久磁石式回転電機。
When the rotor is inserted into the stator and assembled, the permanent magnet having a small product of the coercive force and the magnetization direction thickness is irreversibly changed so that the amount of flux linkage of the rotating electrical machine by the permanent magnet is small. The permanent magnet type rotating electric machine according to any one of claims 1 to 20, wherein
JP2010031800A 2010-02-16 2010-02-16 Permanent magnet type rotary electric machine Pending JP2011172323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031800A JP2011172323A (en) 2010-02-16 2010-02-16 Permanent magnet type rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031800A JP2011172323A (en) 2010-02-16 2010-02-16 Permanent magnet type rotary electric machine

Publications (1)

Publication Number Publication Date
JP2011172323A true JP2011172323A (en) 2011-09-01

Family

ID=44685865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031800A Pending JP2011172323A (en) 2010-02-16 2010-02-16 Permanent magnet type rotary electric machine

Country Status (1)

Country Link
JP (1) JP2011172323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186415A (en) * 2014-03-26 2015-10-22 学校法人 東洋大学 Permanent magnet type rotary electric machine
KR20180131099A (en) * 2017-05-31 2018-12-10 한양대학교 에리카산학협력단 Motor and the Operating Method thereof
CN109950992A (en) * 2019-04-08 2019-06-28 哈尔滨工业大学 Separated type combination magnetic pole hybrid permanent magnet is adjustable flux permanent magnet synchronous motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864408A (en) * 1994-08-19 1996-03-08 Fuji Elelctrochem Co Ltd Permanent magnet
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864408A (en) * 1994-08-19 1996-03-08 Fuji Elelctrochem Co Ltd Permanent magnet
JP2006280195A (en) * 2005-03-01 2006-10-12 Toshiba Corp Permanent magnet type rotary electric machine
JP2008130781A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Magnet, motor using magnet, and manufacturing method of magnet
JP2010004673A (en) * 2008-06-20 2010-01-07 Toshiba Corp Permanent magnet type rotating electrical machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186415A (en) * 2014-03-26 2015-10-22 学校法人 東洋大学 Permanent magnet type rotary electric machine
KR20180131099A (en) * 2017-05-31 2018-12-10 한양대학교 에리카산학협력단 Motor and the Operating Method thereof
KR101970398B1 (en) 2017-05-31 2019-04-18 한양대학교 에리카산학협력단 Motor and the Operating Method thereof
CN109950992A (en) * 2019-04-08 2019-06-28 哈尔滨工业大学 Separated type combination magnetic pole hybrid permanent magnet is adjustable flux permanent magnet synchronous motor
CN109950992B (en) * 2019-04-08 2021-08-13 哈尔滨工业大学 Separated combined magnetic pole mixed permanent magnet adjustable flux permanent magnet synchronous motor

Similar Documents

Publication Publication Date Title
EP2360814B1 (en) Permanent magnet type rotating electric machine
EP2299558B1 (en) Permanent magnet type rotating electric machine
JP5361261B2 (en) Permanent magnet rotating electric machine
JP5085071B2 (en) Permanent magnet type rotating electrical machine rotor
JP5398103B2 (en) Permanent magnet rotating electric machine
JP5787673B2 (en) Permanent magnet type rotating electric machine
CN109194078A (en) A kind of bilayer permanent magnetism composite magnetic circuit memory electrical machine
JP2008289300A (en) Permanent-magnet rotary electric machine
JP5355055B2 (en) Permanent magnet rotating electric machine
JP5178488B2 (en) Permanent magnet rotating electric machine
JP5198178B2 (en) Permanent magnet type rotating electric machine and permanent magnet motor drive system
JP2011061933A (en) Permanent magnet type rotary electric machine
JP2019068577A (en) Variable magnetic force motor
CN104467333A (en) Rotor excitation multi-phase reluctance motor and control method thereof
JP4735772B1 (en) Magnet excitation rotating electrical machine system
JP2012029563A (en) Permanent magnet type rotary electric machine
Sakai et al. Permanent magnet motor capable of pole changing for high efficiency
Yuzawa et al. A permanent magnet motor capable of pole changing for variable speed drive
JP2011172323A (en) Permanent magnet type rotary electric machine
Yang et al. A novel stator-consequent-pole memory machine
CN101383547A (en) High-speed permanent magnet synchronous electric motor rotor suitable for weak magnet control
JP5390314B2 (en) Permanent magnet rotating electric machine
JP5197551B2 (en) Permanent magnet rotating electric machine
Kondo et al. A new PM-assisted synchronous reluctance motor with 3-D trench air gap
Namba et al. Variable-field machine with three-dimensional magnetic circuit for traction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304