JP6363632B2 - Remote structure inspection system using a small unmanned aerial vehicle - Google Patents

Remote structure inspection system using a small unmanned aerial vehicle Download PDF

Info

Publication number
JP6363632B2
JP6363632B2 JP2016004075A JP2016004075A JP6363632B2 JP 6363632 B2 JP6363632 B2 JP 6363632B2 JP 2016004075 A JP2016004075 A JP 2016004075A JP 2016004075 A JP2016004075 A JP 2016004075A JP 6363632 B2 JP6363632 B2 JP 6363632B2
Authority
JP
Japan
Prior art keywords
small
remote structure
small unmanned
remote
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016004075A
Other languages
Japanese (ja)
Other versions
JP2017124689A (en
Inventor
文昭 上半
文昭 上半
賢司 黒岩
賢司 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2016004075A priority Critical patent/JP6363632B2/en
Publication of JP2017124689A publication Critical patent/JP2017124689A/en
Application granted granted Critical
Publication of JP6363632B2 publication Critical patent/JP6363632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、小型無人飛行機(ドローン)を利用した遠隔構造物の検査システムに係り、特に、橋りょう等の大型の社会インフラ構造物の維持管理などを目的とした小型無人飛行機を利用した遠隔構造物の検査システムに関するものである。   The present invention relates to a remote structure inspection system using a small unmanned aerial vehicle (drone), and in particular, a remote structure using a small unmanned aerial vehicle for the purpose of maintaining and managing a large social infrastructure structure such as a bridge. This relates to the inspection system.

(1)遠隔構造物の外観検査に、小型無人飛行機(ドローン)を用いた空撮技術が活用され始めている。   (1) Aerial imaging technology using a small unmanned aerial vehicle (drone) is beginning to be used for visual inspection of remote structures.

(2)また、遠隔構造物に付着して遠隔構造物の検査を行うロボットも開発され始めている。   (2) In addition, robots that attach to a remote structure and inspect the remote structure have begun to be developed.

「ドローン規制 商機浮上」朝日新聞、2015年12月7日月曜日夕刊第1面“Drone regulation business opportunity rises” Asahi Shimbun, Monday, December 7, 2015 Evening first page 「非破壊検査、米ICM製垂直走行ロボ投入−足場設置不要、壁面・天井に張り付き検査」、日刊工業新聞 Business Line 掲載日2015年10月14日“Non-destructive inspection, USM made vertical running robot input-no scaffolding required, inspection for sticking to walls and ceilings”, Nikkan Kogyo Shimbun Business Line, October 14, 2015

しかしながら、上記した(1)については、
(a)小型無人飛行機の機体の姿勢制御技術、自律飛行技術などの進展により操縦の簡単化が進んでいるものの、強風などの外乱、送信機から送信される制御信号やGPS信号の受信不良、人為ミスによる小型無人飛行機の機体の不安定化は避けられない。そのため、構造物や構造物上を走行する車両などへの小型無人飛行機の機体衝突の危険性を排除することができず、特に鉄道分野では小型無人飛行機による外観検査の導入は困難である。
(b)小型無人飛行機の飛行中の空撮では、小型無人飛行機の振動、運動によって撮影画像などにブレが生じる。撮影画像などのブレは、大まかな外観写真の撮影には問題が無いが、橋りょう等の大型の社会インフラ構造物の維持管理などを目的とした外観検査用の小型無人飛行機による微細なひび割れの検出精度などには悪影響を与える。記録用カメラ以外の各種センサ搭載時にも測定精度の低下を引き起こす。
However, for (1) above,
(A) Aircraft attitude control technology for small unmanned aerial vehicles, autonomous flight technology, etc. are making maneuvering easier, but disturbances such as strong winds, poor reception of control signals and GPS signals transmitted from transmitters, Instability of the airframe of a small unmanned aerial vehicle due to human error is inevitable. For this reason, it is not possible to eliminate the danger of a small unmanned airplane collision with a structure or a vehicle traveling on the structure. In particular, in the railway field, it is difficult to introduce appearance inspection using a small unmanned airplane.
(B) In aerial photography during the flight of a small unmanned aerial vehicle, the captured image is blurred due to the vibration and movement of the small unmanned aerial vehicle. Although there is no problem with taking pictures of rough appearances, such as blurring of photographed images, etc., detection of fine cracks by a small unmanned airplane for appearance inspection aimed at maintenance management of large social infrastructure structures such as bridges The accuracy is adversely affected. When various sensors other than the recording camera are mounted, the measurement accuracy is lowered.

上記(2)については、
(a)磁石を用いて遠隔構造物に付着させる場合には、鋼材で構成された遠隔構造物にしか適用できない。
(b)掃除機のように吸気によって吸着する方式のものは、遠隔構造物の表面が粗い場合には吸着力が低下する。また、その吸着には大きな電力を必要とする。
(c)有線での電力供給が不可欠なものが多く、遠隔構造物上での移動範囲や、操作場所に制限がある。また、遠隔構造物の表面の段差などを乗り越えられず、移動が制限される場合がある。
(d)橋桁下面などへの小型無人飛行機の吸着力には課題があり、小型無人飛行機の落下の危険が避けられない。
Regarding (2) above,
(A) When attaching to a remote structure using a magnet, it can be applied only to a remote structure made of steel.
(B) In the case of a method of sucking by suction, such as a vacuum cleaner, the suction force is reduced when the surface of the remote structure is rough. Moreover, a large electric power is required for the adsorption.
(C) In many cases, power supply by wire is indispensable, and there are restrictions on the range of movement on the remote structure and the operation location. In addition, there are cases where the movement cannot be overcome because the step on the surface of the remote structure cannot be overcome.
(D) There is a problem with the attractive force of a small unmanned airplane on the underside of a bridge girder, and the risk of a small unmanned airplane falling is inevitable.

といった問題があった。   There was a problem.

このように、上記した(1)の従来の小型無人飛行機を用いた空撮では、小型無人飛行機の機体の遠隔構造物への衝突被害の問題、空中撮影(測定)による画像(データ)の質の低下などの問題があった。   As described above, in the aerial photography using the conventional small unmanned aerial vehicle described in (1) above, the problem of collision damage to the remote structure of the airframe of the small unmanned aerial vehicle, the quality of the image (data) by the aerial photographing (measurement). There were problems such as lowering.

また、(2)の遠隔構造物への吸着型のロボットでは、適用対象(材料、表面状態)の制限、有線での運用による使用場所の制限、ロボット機体の落下の危険などの問題があった。   In addition, the robot (2) that is attracted to a remote structure has problems such as restrictions on applicable objects (materials and surface conditions), restrictions on places of use due to wired operation, and danger of dropping the robot body. .

本発明は、上記状況に鑑みて、上記した問題を解決するために、遠隔構造物まで無線で飛行して接近するとともに、遠隔構造物に付着して、かつ移動することができる、小型無人飛行機を利用した遠隔構造物の検査システムを提供することを目的とする。   In view of the above circumstances, the present invention is a small unmanned aerial vehicle capable of flying and approaching a remote structure by radio, approaching and moving to the remote structure in order to solve the above-described problems. It aims at providing the inspection system of the remote structure using the.

本発明は、上記目的を達成するために、
〔1〕小型無人飛行機を利用した遠隔構造物の検査システムにおいて、小型無人飛行機に移動用の小型移動機構及び記録用カメラを取り付け、前記小型無人飛行機を遠隔構造物まで無線で飛行して前記遠隔構造物に付着させ、かつ前記小型無人飛行機を前記小型移動機構により前記遠隔構造物の検査すべき箇所である橋桁の下面及び前記遠隔構造物の壁面に移動させることにより、前記遠隔構造物の検査を行う小型無人飛行機を利用した遠隔構造物の検査システムであって、前記橋桁の下面に移動させる場合には、前記小型無人飛行機を前記橋桁の下面に付着させ、付着後は前記小型無人飛行機は一定の上昇力を維持し、前記橋桁の下面を前記小型移動機構の駆動制御によって前記小型無人飛行機を移動させることを特徴とする。
〔2〕小型無人飛行機を利用した遠隔構造物の検査システムにおいて、小型無人飛行機に移動用の小型移動機構及び記録用カメラを取り付け、前記小型無人飛行機を遠隔構造物まで無線で飛行して前記遠隔構造物に付着させ、かつ前記小型無人飛行機を前記小型移動機構により前記遠隔構造物の検査すべき箇所である橋桁の下面及び前記遠隔構造物の壁面に移動させることにより、前記遠隔構造物の検査を行う小型無人飛行機を利用した遠隔構造物の検査システムであって、前記遠隔構造物の壁面に移動させる場合には、前記小型無人飛行機が前記遠隔構造物の壁面への押し付け力を発揮できるように前記小型移動機構を前記小型無人飛行機のプロペラ面に対して鋭角に設置することにより、前記小型移動機構を前記遠隔構造物の壁面に押し付けた状態で、前記小型無人飛行機を移動させることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a remote structure inspection system using a small unmanned aerial vehicle, a small moving mechanism for moving and a recording camera are attached to the small unmanned aerial vehicle, and the small unmanned airplane is wirelessly flew to the remote structure to Inspection of the remote structure by adhering to the structure and moving the small unmanned airplane to the lower surface of the bridge girder and the wall surface of the remote structure, which are locations to be inspected of the remote structure, by the small movement mechanism the an inspection system of a remote structure using row cormorants small type non human plane, when moving to the lower surface of the bridge deck, the small unmanned airplanes adhered to the lower surface of the bridge deck, after adhering the small unmanned The airplane maintains a constant ascending force, and the small unmanned airplane is moved by the drive control of the small movement mechanism on the lower surface of the bridge girder .
[2] In a remote structure inspection system using a small unmanned aerial vehicle, a small moving mechanism for moving and a recording camera are attached to the small unmanned aerial vehicle, and the small unmanned airplane is wirelessly flew to the remote structure to Inspection of the remote structure by adhering to the structure and moving the small unmanned airplane to the lower surface of the bridge girder and the wall surface of the remote structure, which are locations to be inspected of the remote structure, by the small movement mechanism the an inspection system of a remote structure using row cormorants small type non human airplane, in the case of moving on the wall surface of the remote structure, exert a pressing force of the small unmanned airplane to the wall surface of the remote structure The small moving mechanism is installed at an acute angle with respect to the propeller surface of the small unmanned airplane so that the small moving mechanism is pushed against the wall surface of the remote structure. In only state, and wherein the moving the small unmanned aircraft.

本発明によれば、次のような効果を奏することができる。
(1)遠隔構造物への接近は小型無人飛行機の無線飛行で行うため、操縦場所を選ばず、遠隔構造物の任意箇所に到達できる。
(2)遠隔構造物への接近後は、安全な位置に小型無人飛行機を付着して作業を行うため、検査位置以外への衝突被害発生の危険を低減できる。
(3)遠隔構造物に付着して画像撮影などの検査を行うため、空撮と比較して記録用カメラ等の計測装置のブレを低減でき、より高精度な撮影(測定)を実施できる。
(4)一般の吸着型装置が乗り越えられない段差なども小型無人飛行機の飛行との併用により乗り越えて移動することができる。
(5)小型無人飛行機の吸着力の不足が生じた場合も、飛行するため、遠隔構造物からの小型無人飛行機の落下の心配がない。
(6)小型無人飛行機が遠隔構造物に吸着することにより、その小型無人飛行機上空の流体量が少なくなるために、その上空の気圧が低くなり、電力消費を低減することができ、バッテリーによる飛行時間を長く維持することができる。
According to the present invention, the following effects can be achieved.
(1) Since the approach to the remote structure is performed by wireless flight of a small unmanned airplane, it is possible to reach an arbitrary place of the remote structure regardless of the control location.
(2) After approaching a remote structure, work is performed with a small unmanned airplane attached to a safe position, so that the risk of collision damage other than the inspection position can be reduced.
(3) Since inspection such as image shooting is performed by attaching to a remote structure, blurring of a measuring device such as a recording camera can be reduced compared to aerial shooting, and more accurate shooting (measurement) can be performed.
(4) Steps and the like that cannot be overcome by a general adsorption type device can be overcome and moved together with the flight of a small unmanned airplane.
(5) Even when the small unmanned aerial vehicle has insufficient adsorption power, it will fly, so there is no worry of the small unmanned aircraft falling from the remote structure.
(6) Since a small unmanned aerial vehicle is adsorbed to a remote structure, the amount of fluid over the small unmanned aerial vehicle is reduced, so that the air pressure over the small unmanned aerial vehicle can be reduced, and power consumption can be reduced. Long time can be maintained.

本発明に係る遠隔構造物検査用小型無人飛行機の模式図である。It is a schematic diagram of the small unmanned aerial vehicle for remote structure inspection according to the present invention. 図1に示す遠隔構造物検査用小型無人飛行機の概略上面図である。It is a schematic top view of the small unmanned airplane for remote structure inspection shown in FIG. 図1に示す遠隔構造物検査用小型無人飛行機の概略側面図である。It is a schematic side view of the small unmanned airplane for remote structure inspection shown in FIG. 図1に示す遠隔構造物検査用小型無人飛行機の概略正面図である。It is a schematic front view of the small unmanned airplane for remote structure inspection shown in FIG. 本発明に係る遠隔構造物検査用小型無人飛行機の下面移動型から側面移動型への変形例を示す模式図である。It is a schematic diagram which shows the modification from the lower surface movement type | mold of the small unmanned airplane for a remote structure inspection which concerns on this invention to a side surface movement type | mold. 本発明に係る遠隔構造物検査用小型無人飛行機(側面移動型)の模式図である。It is a schematic diagram of the small unmanned aerial vehicle (side movement type) for remote structure inspection according to the present invention. 図6に示す遠隔構造物検査用小型無人飛行機の概略上面図である。It is a schematic top view of the small unmanned airplane for remote structure inspection shown in FIG. 図6に示す遠隔構造物検査用小型無人飛行機の概略側面図である。It is a schematic side view of the small unmanned airplane for remote structure inspection shown in FIG. 図6に示す遠隔構造物検査用小型無人飛行機の概略正面図である。It is a schematic front view of the small unmanned airplane for remote structure inspection shown in FIG. 本発明に係る遠隔構造物検査用小型無人飛行機による検査態様を示す図である。It is a figure which shows the test | inspection aspect by the small unmanned airplane for remote structure inspection which concerns on this invention.

本発明の小型無人飛行機を利用した遠隔構造物の検査システムは、小型無人飛行機に移動用の小型移動機構及び記録用カメラを取り付け、前記小型無人飛行機を遠隔構造物まで無線で飛行して前記遠隔構造物に付着させ、かつ前記小型無人飛行機を前記小型移動機構により前記遠隔構造物の検査すべき箇所である橋桁の下面及び前記遠隔構造物の壁面に移動させることにより、前記遠隔構造物の検査を行う小型無人飛行機を利用した遠隔構造物の検査システムであって、前記橋桁の下面に移動させる場合には、前記小型無人飛行機を前記橋桁の下面に付着させ、付着後は前記小型無人飛行機は一定の上昇力を維持し、前記橋桁の下面を前記小型移動機構の駆動制御によって前記小型無人飛行機を移動させるThe inspection system for a remote structure using a small unmanned aerial vehicle according to the present invention has a small moving mechanism for moving and a recording camera attached to the small unmanned aerial vehicle. Inspection of the remote structure by adhering to the structure and moving the small unmanned airplane to the lower surface of the bridge girder and the wall surface of the remote structure, which are locations to be inspected of the remote structure, by the small movement mechanism the an inspection system of a remote structure using row cormorants small type non human plane, when moving to the lower surface of the bridge deck, the small unmanned airplanes adhered to the lower surface of the bridge deck, after adhering the small unmanned The airplane maintains a constant ascending force, and moves the small unmanned airplane on the lower surface of the bridge girder by driving control of the small movement mechanism .

また、本発明の小型無人飛行機を利用した遠隔構造物の検査システムは、小型無人飛行機に移動用の小型移動機構及び記録用カメラを取り付け、前記小型無人飛行機を遠隔構造物まで無線で飛行して前記遠隔構造物に付着させ、かつ前記小型無人飛行機を前記小型移動機構により前記遠隔構造物の検査すべき箇所である橋桁の下面及び前記遠隔構造物の壁面に移動させることにより、前記遠隔構造物の検査を行う小型無人飛行機を利用した遠隔構造物の検査システムであって、前記遠隔構造物の壁面に移動させる場合には、前記小型無人飛行機が前記遠隔構造物の壁面への押し付け力を発揮できるように前記小型移動機構を前記小型無人飛行機のプロペラ面に対して鋭角に設置することにより、前記小型移動機構を前記遠隔構造物の壁面に押し付けた状態で、前記小型無人飛行機を移動させる The remote structure inspection system using a small unmanned aerial vehicle according to the present invention includes a small unmanned aerial vehicle equipped with a small moving mechanism for moving and a recording camera, and the small unmanned aerial vehicle flies wirelessly to the remote structure. By attaching the small unmanned airplane to the remote structure and moving the small unmanned airplane to the lower surface of the bridge girder and the wall surface of the remote structure, which are locations to be inspected by the small movement mechanism, the remote structure A remote structure inspection system using a small unmanned aerial vehicle for inspecting the remote structure, wherein the small unmanned airplane exerts a pressing force on the wall of the remote structure when moved to the wall surface of the remote structure. By installing the small moving mechanism at an acute angle with respect to the propeller surface of the small unmanned aerial vehicle, the small moving mechanism can be pushed against the wall surface of the remote structure. In attached state, moving the small unmanned aircraft.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明に係る遠隔構造物検査用小型無人飛行機の模式図、図2はその遠隔構造物検査用小型無人飛行機の概略上面図、図3はその遠隔構造物検査用小型無人飛行機の概略側面図、図4はその遠隔構造物検査用小型無人飛行機の概略正面図である。   FIG. 1 is a schematic diagram of a small unmanned airplane for remote structure inspection according to the present invention, FIG. 2 is a schematic top view of the small unmanned airplane for remote structure inspection, and FIG. 3 is an outline of the small unmanned airplane for remote structure inspection. FIG. 4 is a schematic front view of the small unmanned aerial vehicle for remote structure inspection.

これらの図において、1は遠隔構造物検査用小型無人飛行機、2はその小型無人飛行機の本体部、4はプロペラ、5はバッテリー、6はモータアンプ、7は受信機,8はジャイロ、9はFPV(First Person View)アンテナ、10は本体部2の先端に配置される第1のFPVカメラ、11はFPV送信機、12は記録用カメラ、13は記録用カメラ12の先端に配置される第2のFPVカメラ、14はカメラ角度調整用サーボ、15はGPSアンテナ、16は小型無人飛行機の脚、17は小型移動機構、18は小型移動機構用ギアボックス、19は小型移動機構用モータである。   In these drawings, 1 is a small unmanned airplane for remote structure inspection, 2 is a main body of the small unmanned airplane, 4 is a propeller, 5 is a battery, 6 is a motor amplifier, 7 is a receiver, 8 is a gyro, 9 is An FPV (First Person View) antenna, 10 is a first FPV camera disposed at the tip of the main body 2, 11 is an FPV transmitter, 12 is a recording camera, and 13 is a first camera disposed at the tip of the recording camera 12. 2 FPV cameras, 14 is a camera angle adjusting servo, 15 is a GPS antenna, 16 is a small unmanned airplane leg, 17 is a small moving mechanism, 18 is a small moving mechanism gear box, and 19 is a small moving mechanism motor. .

図1では、後述で例示するが下面移動型遠隔構造物検査用小型無人飛行機を示している。   FIG. 1 shows a small unmanned aerial vehicle for inspecting a lower surface moving type remote structure, which will be exemplified later.

橋桁下などではGPSを受信できず小型無人飛行機の操縦が困難になる場合が多いが、本発明では、橋桁下面などに付着した後は、小型移動機構で移動することができ、カメラ情報を参考にしながら橋桁下面等を自由に任意箇所に移動できる。なお、小型移動機構としては、キャタピラ、ベルト、もしくは車輪を用いることができる。以下、小型移動機構としてキャタピラを例に説明する。   In many cases, it is difficult to control a small unmanned aerial vehicle because GPS cannot be received under a bridge girder. However, in the present invention, after adhering to the underside of a bridge girder, etc., it can be moved by a small moving mechanism. The bottom surface of the bridge girder etc. can be moved freely to any location. In addition, a caterpillar, a belt, or a wheel can be used as the small moving mechanism. Hereinafter, a caterpillar will be described as an example of the small moving mechanism.

また、小型移動機構の回転量を計測する装置を追加することによって、小型移動機構の回転量で移動距離を計測することができる。よって、小型移動機構の回転量を用いて等間隔での撮影、測定などを実施することができる。   Further, by adding a device for measuring the rotation amount of the small movement mechanism, the movement distance can be measured by the rotation amount of the small movement mechanism. Therefore, it is possible to perform photographing, measurement, etc. at equal intervals using the rotation amount of the small moving mechanism.

なお、ここでは、小型移動機構表面に摩擦係数の高いゴム、微細な吸盤構造、超微細毛(ファンデルワールス力利用)などを用いることにより、吸着性能を向上させるようにした。   In this case, the adsorption performance is improved by using a rubber having a high friction coefficient, a fine sucker structure, ultrafine hair (using van der Waals force), etc. on the surface of the small moving mechanism.

図5は本発明に係る遠隔構造物検査用小型無人飛行機の下面移動型から側面移動型への変形例を示す模式図である。   FIG. 5 is a schematic view showing a modification of the small unmanned aerial vehicle for inspecting a remote structure according to the present invention from the lower surface moving type to the side surface moving type.

図5(a)に示す小型移動機構17は下面移動用から回転して,図5(b)に示すように側面移動用に変形できる。その際、記録用カメラ12の角度も側面測定用に回転して移動するように構成している。   The small moving mechanism 17 shown in FIG. 5 (a) can be rotated from the bottom side and can be deformed for side movement as shown in FIG. 5 (b). At this time, the angle of the recording camera 12 is also configured to rotate and move for side measurement.

以下、側面移動型の遠隔構造物検査用小型無人飛行機について説明する。   Hereinafter, a small unmanned aerial vehicle for inspecting a remote structure of a side movement type will be described.

図6は本発明に係る遠隔構造物検査用小型無人飛行機 (側面移動型)の模式図、図7はその遠隔構造物検査用小型無人飛行機の概略上面図、図8はその遠隔構造物検査用小型無人飛行機の概略側面図、図9はその遠隔構造物検査用小型無人飛行機の概略正面図である。図6において、3Aはその小型無人飛行機の横はり、3Bその小型無人飛行機の縦はりである。 6 is a schematic diagram of a small unmanned aerial vehicle (side-moving type) for inspecting a remote structure according to the present invention, FIG. 7 is a schematic top view of the small unmanned aerial vehicle for inspecting a remote structure, and FIG. 8 is for inspecting the remote structure. FIG. 9 is a schematic side view of a small unmanned airplane, and FIG. 9 is a schematic front view of the small unmanned airplane for remote structure inspection. In FIG. 6, 3A is a horizontal beam of the small unmanned airplane, and 3B is a vertical beam of the small unmanned airplane.

ここでは、小型移動機構17をプロペラ面に対してやや鋭角に設置することにより、小型移動機構17の駆動により遠隔構造物の壁面に押し付けた状態で、遠隔構造物検査用小型無人飛行機が壁面への押し付け力を発揮できる。   Here, the small unmanned airplane for remote structure inspection is placed on the wall surface in a state where the small movement mechanism 17 is installed at a slightly acute angle with respect to the propeller surface and pressed against the wall surface of the remote structure by driving the small movement mechanism 17. The pressing force of can be demonstrated.

図10は本発明に係る遠隔構造物検査用小型無人飛行機の適用例を示す模式図である。   FIG. 10 is a schematic view showing an application example of a small unmanned airplane for remote structure inspection according to the present invention.

この図において、20は遠隔構造物検査用小型無人飛行機、21、22は記録用カメラ、23は橋脚、24は橋桁、25は橋桁24の下面である。   In this figure, 20 is a small unmanned aircraft for remote structure inspection, 21 and 22 are recording cameras, 23 is a bridge pier, 24 is a bridge girder, and 25 is a lower surface of the bridge girder 24.

橋桁24の下面25に遠隔構造物検査用小型無人飛行機20が付着後の移動は、前後進は小型移動機構の前方・後方回転により、回転は左右の小型移動機構を異なる方向に回転させることにより行う。   The movement after the small unmanned aerial vehicle 20 for remote structure inspection is attached to the lower surface 25 of the bridge girder 24 can be moved forward and backward by rotating the small moving mechanism forward and backward, and by rotating the left and right small moving mechanisms in different directions. Do.

本発明の遠隔構造物検査用小型無人飛行機20は、記録用カメラ21、22で得られた撮影画像をリアルタイムで送信する機能を持っている。小型無人飛行機の飛行時に機体前方を確認しながら衝突を回避し(FPV:First Person View)、遠隔構造物に付着後は前方をFPVカメラで確認するとともに、検査用の高解像度カメラの撮影方向の状況も別途地上から確認できる。   The small unmanned airplane 20 for inspecting a remote structure according to the present invention has a function of transmitting captured images obtained by the recording cameras 21 and 22 in real time. Collisions are avoided while confirming the front of the aircraft during the flight of a small unmanned aerial vehicle (FPV: First Person View). After adhering to a remote structure, the front is confirmed with an FPV camera, and the direction of shooting of a high-resolution camera for inspection is checked. The situation can also be confirmed separately from the ground.

本発明の遠隔構造物検査用小型無人飛行機の場合は、上昇力により小型移動機構を面に十分な力で押し付け、小型移動機構と面の摩擦により、小型無人飛行機の機体を安定させる。   In the case of the small unmanned aircraft for remote structure inspection of the present invention, the small moving mechanism is pressed against the surface by the ascending force, and the body of the small unmanned aircraft is stabilized by the friction between the small moving mechanism and the surface.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の小型無人飛行機を利用した遠隔構造物の検査システムは、遠隔構造物まで無線で飛行して接近するとともに、遠隔構造物に付着して、かつ移動することができる,小型無人飛行機を利用した遠隔構造物の検査システムとして利用可能である。   The inspection system for a remote structure using a small unmanned aerial vehicle of the present invention uses a small unmanned aerial vehicle that can fly to and approach a remote structure, attach to the remote structure, and move. It can be used as an inspection system for remote structures.

1、20 遠隔構造物検査用小型無人飛行機
2 小型無人飛行機の本体部
3A 小型無人飛行機の横はり
3B 小型無人飛行機の縦はり
4 プロペラ
5 バッテリー
6 モータアンプ
7 受信機
8 ジャイロ
9 FPV(First Person View)アンテナ
10 第1のFPVカメラ
11 FPV送信機
12、21、22 記録用カメラ
13 第2のFPVカメラ
14 カメラ角度調整用サーボ
15 GPSアンテナ
16 小型無人飛行機の脚
17 小型移動機構
18 小型移動機構用ギアボックス
19 小型移動機構用モータ
23 橋脚
24 橋桁
25 橋桁の下面
DESCRIPTION OF SYMBOLS 1,20 Small unmanned airplane for remote structure inspection 2 Main part of small unmanned airplane 3A Horizontal beam of small unmanned airplane 3B Vertical beam of small unmanned airplane 4 Propeller 5 Battery 6 Motor amplifier 7 Receiver 8 Gyro 9 FPV (First Person View ) Antenna 10 First FPV camera 11 FPV transmitter 12, 21, 22 Recording camera 13 Second FPV camera 14 Camera angle adjustment servo 15 GPS antenna 16 Small unmanned airplane leg 17 Small moving mechanism 18 Small moving mechanism Gear box 19 Motor for small movement mechanism 23 Bridge pier 24 Bridge girder 25 Bottom surface of bridge girder

Claims (2)

小型無人飛行機に移動用の小型移動機構及び記録用カメラを取り付け、前記小型無人飛行機を遠隔構造物まで無線で飛行して前記遠隔構造物に付着させ、かつ前記小型無人飛行機を前記小型移動機構により前記遠隔構造物の検査すべき箇所である橋桁の下面及び前記遠隔構造物の壁面に移動させることにより、前記遠隔構造物の検査を行う小型無人飛行機を利用した遠隔構造物の検査システムであって、前記橋桁の下面に移動させる場合には、前記小型無人飛行機を前記橋桁の下面に付着させ、付着後は前記小型無人飛行機は一定の上昇力を維持し、前記橋桁の下面を前記小型移動機構の駆動制御によって前記小型無人飛行機を移動させることを特徴とする小型無人飛行機を利用した遠隔構造物の検査システム。 A small moving mechanism for moving and a recording camera are attached to a small unmanned airplane, the small unmanned airplane is wirelessly flew to a remote structure and attached to the remote structure, and the small unmanned airplane is attached to the remote structure by the small moving mechanism. by moving the wall surface of the lower surface and said remote structures girders are portion to be examined of the remote structure, the inspection system of the remote structure using row cormorants small-type non-human airplane inspection of the remote structure In the case of moving to the lower surface of the bridge girder, the small unmanned airplane is attached to the lower surface of the bridge girder, and after the attachment, the small unmanned airplane maintains a constant lifting force, and the lower surface of the bridge girder is A remote structure inspection system using a small unmanned aerial vehicle, wherein the small unmanned aerial vehicle is moved by driving control of a moving mechanism . 小型無人飛行機に移動用の小型移動機構及び記録用カメラを取り付け、前記小型無人飛行機を遠隔構造物まで無線で飛行して前記遠隔構造物に付着させ、かつ前記小型無人飛行機を前記小型移動機構により前記遠隔構造物の検査すべき箇所である橋桁の下面及び前記遠隔構造物の壁面に移動させることにより、前記遠隔構造物の検査を行う小型無人飛行機を利用した遠隔構造物の検査システムであって、前記遠隔構造物の壁面に移動させる場合には、前記小型無人飛行機が前記遠隔構造物の壁面への押し付け力を発揮できるように前記小型移動機構を前記小型無人飛行機のプロペラ面に対して鋭角に設置することにより、前記小型移動機構を前記遠隔構造物の壁面に押し付けた状態で、前記小型無人飛行機を移動させることを特徴とする小型無人飛行機を利用した遠隔構造物の検査システム。 A small moving mechanism for moving and a recording camera are attached to a small unmanned airplane, the small unmanned airplane is wirelessly flew to a remote structure and attached to the remote structure, and the small unmanned airplane is attached to the remote structure by the small moving mechanism. by moving the wall surface of the lower surface and said remote structures girders are portion to be examined of the remote structure, the inspection system of the remote structure using row cormorants small-type non-human airplane inspection of the remote structure And when moving to the wall surface of the remote structure, the small movement mechanism is set against the propeller surface of the small unmanned airplane so that the small unmanned airplane can exert a pressing force on the wall surface of the remote structure. by installing an acute angle Te, the small moving mechanism in a state pressed against the wall surface of the remote structure, small, characterized in that moving the small unmanned aircraft Inspection system of remote structures utilizing the human plane.
JP2016004075A 2016-01-13 2016-01-13 Remote structure inspection system using a small unmanned aerial vehicle Active JP6363632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004075A JP6363632B2 (en) 2016-01-13 2016-01-13 Remote structure inspection system using a small unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004075A JP6363632B2 (en) 2016-01-13 2016-01-13 Remote structure inspection system using a small unmanned aerial vehicle

Publications (2)

Publication Number Publication Date
JP2017124689A JP2017124689A (en) 2017-07-20
JP6363632B2 true JP6363632B2 (en) 2018-07-25

Family

ID=59363679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004075A Active JP6363632B2 (en) 2016-01-13 2016-01-13 Remote structure inspection system using a small unmanned aerial vehicle

Country Status (1)

Country Link
JP (1) JP6363632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022055032A (en) * 2020-09-28 2022-04-07 公益財団法人鉄道総合技術研究所 Small unmanned aircraft

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6796051B2 (en) * 2017-10-30 2020-12-02 公益財団法人鉄道総合技術研究所 Cover thickness inspection device
JP7025180B2 (en) * 2017-11-02 2022-02-24 株式会社移動ロボット研究所 Suspended drone
JP6448071B2 (en) * 2018-02-23 2019-01-09 株式会社佐竹技研 Drone
JP2019158793A (en) * 2018-03-16 2019-09-19 公益財団法人鉄道総合技術研究所 Crack investigation device
CN108275274A (en) * 2018-03-28 2018-07-13 朱晓博 A kind of intelligent patrol detection maintenance equipment
NL2020695B1 (en) 2018-03-30 2019-10-07 Ronik Inspectioneering B V Method for inspecting and/or manipulating a beam using an unmanned aerial vehicle
CN108867368B (en) * 2018-09-25 2020-11-13 泰州市威力液压机具制造有限公司 Bridge detection and maintenance device
US20200249357A1 (en) * 2019-01-31 2020-08-06 Faro Technologies, Inc. Measurement of three dimensional coordinates using an unmanned aerial drone
JP7157967B2 (en) * 2019-03-15 2022-10-21 株式会社Tkkワークス Unmanned helicopter and inspection equipment attachment device
JP7219192B2 (en) * 2019-08-29 2023-02-07 株式会社奥村組 Structure deterioration diagnosis method
JP7323694B2 (en) * 2019-08-29 2023-08-08 株式会社奥村組 Structure deterioration diagnosis method
US11555693B2 (en) * 2020-05-12 2023-01-17 The Boeing Company Measurement of surface profiles using unmanned aerial vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5566267B2 (en) * 2010-11-15 2014-08-06 日新製鋼株式会社 Reinforcement method for concrete structures
JP6344791B2 (en) * 2013-01-23 2018-06-20 国立大学法人 名古屋工業大学 Aircraft with protection frame and automatic charger that can run on land (and over water if possible)
DE102013104447A1 (en) * 2013-04-30 2014-10-30 Niederberger-Engineering Ag Automated and flexible self-climbing landing gear with flight characteristics
JP6648971B2 (en) * 2014-03-27 2020-02-19 株式会社フジタ Structure inspection device
JP2015189321A (en) * 2014-03-28 2015-11-02 株式会社熊谷組 Unmanned flight imaging device
WO2016163482A1 (en) * 2015-04-07 2016-10-13 株式会社日本自動車部品総合研究所 Mobile unit
JP6263147B2 (en) * 2015-04-30 2018-01-17 新日本非破壊検査株式会社 Structure inspection system using a floating robot
JP6679100B2 (en) * 2015-10-09 2020-04-15 国立大学法人 名古屋工業大学 Aircraft that can run on land

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022055032A (en) * 2020-09-28 2022-04-07 公益財団法人鉄道総合技術研究所 Small unmanned aircraft
JP7365308B2 (en) 2020-09-28 2023-10-19 公益財団法人鉄道総合技術研究所 small unmanned aircraft

Also Published As

Publication number Publication date
JP2017124689A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6363632B2 (en) Remote structure inspection system using a small unmanned aerial vehicle
JP6199418B2 (en) Remote structure inspection system using a small unmanned aerial vehicle
US10565732B2 (en) Sensor fusion using inertial and image sensors
US11604479B2 (en) Methods and system for vision-based landing
CN109911188B (en) Bridge detection unmanned aerial vehicle system in non-satellite navigation and positioning environment
EP3158293B1 (en) Sensor fusion using inertial and image sensors
US9778661B2 (en) Selective processing of sensor data
EP3158417B1 (en) Sensor fusion using inertial and image sensors
EP3158411B1 (en) Sensor fusion using inertial and image sensors
KR101574601B1 (en) Multi rotor unmanned aerial vehicle, autonomous flight control method augmented by vision sensor thereof and record media recorded program for implement thereof
CN112009719A (en) Method for inspecting and repairing a structure and unmanned aerial vehicle
US20230122535A1 (en) Processes for Generating and Updating Flyable Airspace for Unmanned Aerial Vehicles
AU2021397333B2 (en) Systems and methods for autonomous airworthiness pre-flight checks for UAVs
CN112638770A (en) Safe unmanned aerial vehicle
KR101637972B1 (en) Air photograpy system for multi-aspect photographing of a moving target using unmanned aerial vehicle and method therefor
JP7026272B1 (en) Aircraft unit and inspection system
US20240019246A1 (en) Using Unwound Tether Length to Measure Altitude
US20240019876A1 (en) Tether-Based Wind Estimation
WO2021070308A1 (en) Unmanned aircraft, and method for controlling unmanned aircraft
Ryu et al. OPTICAL FLOW ON A FLAPPING WING-MICRO AIR VEHICLE TO AVOID COLLSIONS AND STEER
JP2019138739A (en) Position measurement device and method for position measurement

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180628

R150 Certificate of patent or registration of utility model

Ref document number: 6363632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150