JP6796051B2 - Cover thickness inspection device - Google Patents

Cover thickness inspection device Download PDF

Info

Publication number
JP6796051B2
JP6796051B2 JP2017209475A JP2017209475A JP6796051B2 JP 6796051 B2 JP6796051 B2 JP 6796051B2 JP 2017209475 A JP2017209475 A JP 2017209475A JP 2017209475 A JP2017209475 A JP 2017209475A JP 6796051 B2 JP6796051 B2 JP 6796051B2
Authority
JP
Japan
Prior art keywords
cover thickness
aerial vehicle
unmanned aerial
measuring sensor
small unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017209475A
Other languages
Japanese (ja)
Other versions
JP2019082379A (en
Inventor
文昭 上半
文昭 上半
寿志 田中
寿志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2017209475A priority Critical patent/JP6796051B2/en
Publication of JP2019082379A publication Critical patent/JP2019082379A/en
Application granted granted Critical
Publication of JP6796051B2 publication Critical patent/JP6796051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、鉄道構造物、道路構造物などを含む構造物(以下、単に「構造物」と称する)のうち、鉄道橋梁などの大型の構造物を含む鉄筋コンクリート構造物中の鉄筋のかぶり厚を検査するかぶり厚検査装置に関するものである。 The present invention determines the cover thickness of reinforcing bars in a reinforced concrete structure including a large structure such as a railway bridge among structures including railway structures, road structures, etc. (hereinafter, simply referred to as "structure"). It relates to a cover thickness inspection device to be inspected.

鉄筋コンクリートにおける鉄筋からコンクリート表面までの最短距離を示すかぶり厚は、鉄筋を酸化などから守る役割を果たしており、これが不足すると鉄筋の劣化を促進し、鉄筋コンクリートの強度を著しく低下させる場合がある。 The cover thickness, which indicates the shortest distance from the reinforcing bar to the concrete surface in reinforced concrete, plays a role of protecting the reinforcing bar from oxidation and the like, and if this is insufficient, deterioration of the reinforcing bar may be promoted and the strength of the reinforced concrete may be significantly reduced.

このような理由から、コンクリート構造物では設計基準に定められたかぶり厚が適切に確保されている必要があるが、施工不良などの原因から、必要なかぶり厚が確保されていない構造物が存在する可能性がある。このため、鉄筋コンクリート構造物におけるかぶり厚を測定して適切に検査する必要がある。 For this reason, it is necessary for concrete structures to have an appropriate cover thickness specified in the design standards, but there are structures in which the required cover thickness is not secured due to causes such as poor construction. there is a possibility. Therefore, it is necessary to measure the cover thickness of the reinforced concrete structure and inspect it appropriately.

従来行われているかぶり厚の検査手法としてはつり検査がある。この手法は、鉄筋コンクリートの表面から実際にコンクリートを剥がして鉄筋を露出させた上でかぶり厚を測定する手法である。もっとも確実な方法であるが、コンクリートの表面を破壊する必要がある。 There is a fishing inspection as a conventional method for inspecting the cover thickness. This method is a method of measuring the cover thickness after actually peeling the concrete from the surface of the reinforced concrete to expose the reinforcing bars. The most reliable method is to destroy the concrete surface.

コンクリート表面を破壊せずに検査する非破壊検査手法としては、電磁波レーダー法と呼ばれる検査手法がある(例えば特許文献1参照)。この手法は、コンクリート中に送信された電磁波が、性状の異なる物質の境界面で反射されることを利用したもので、コンクリート表面に装置を押し付けて電磁波を送信し、反射された電磁波を受信することで鉄筋や空洞を探知し、かぶり厚を測定する。 As a non-destructive inspection method for inspecting a concrete surface without destroying it, there is an inspection method called an electromagnetic wave radar method (see, for example, Patent Document 1). This method utilizes the fact that electromagnetic waves transmitted in concrete are reflected at the interface between substances with different properties. The device is pressed against the concrete surface to transmit electromagnetic waves and receive the reflected electromagnetic waves. By detecting the reinforcing bars and cavities, the cover thickness is measured.

もう一つの非破壊検査手法として、電磁誘導法と呼ばれる検査手法がある(例えば特許文献2参照)。この手法は、励磁コイルに交流電流を流すことで交流磁場を発生させた試験プローブをコンクリート表面に押し付けると、磁場内に磁性体である鉄筋が存在すると電流が流れてさらに磁場が形成される。この磁場の変化を検知・解析することで鉄筋位置やかぶり厚を計測する。 As another non-destructive inspection method, there is an inspection method called an electromagnetic induction method (see, for example, Patent Document 2). In this method, when a test probe that generates an alternating current by passing an alternating current through an exciting coil is pressed against the concrete surface, a current flows when a reinforcing bar, which is a magnetic material, exists in the magnetic field, and a further magnetic field is formed. By detecting and analyzing this change in the magnetic field, the position of the reinforcing bar and the cover thickness are measured.

特開2010−107259号公報JP-A-2010-107259 特開2003−106806号公報Japanese Unexamined Patent Publication No. 2003-106806 特開2017−166922号公報JP-A-2017-166922

しかしながら、上述した従来のかぶり厚検査手法は、いずれも検査対象である鉄筋コンクリート構造物に近づいて、表面を破壊したり、検査機器を押し付けたりして検査を行う必要がある。このため、人が近づける構造物であれば容易に検査できるが、大型構造物の中には高所など作業員の接近が困難な場所があり、大掛かりな足場設置等を行わないと検査が難しい。 However, in all of the above-mentioned conventional cover thickness inspection methods, it is necessary to approach the reinforced concrete structure to be inspected, destroy the surface, or press the inspection equipment to perform the inspection. For this reason, it is easy to inspect structures that people can approach, but there are places where it is difficult for workers to approach, such as high places, in large structures, and inspection is difficult unless large-scale scaffolding is installed. ..

例えば、コンクリート橋梁の主桁下面のかぶり厚や高架橋の床版裏コンクリートのかぶり厚は、橋梁自体の事故やコンクリート片の落下等を未然に防止する観点からこれら構造物の健全性を適切に管理する必要があるが、これら鉄筋コンクリート構造物のかぶり厚を検査するには大掛かりな足場設置が不可欠である。 For example, the cover thickness of the lower surface of the main girder of a concrete bridge and the cover thickness of the back slab concrete of the viaduct appropriately manage the soundness of these structures from the viewpoint of preventing accidents of the bridge itself and falling of concrete pieces. However, large-scale scaffolding is indispensable for inspecting the cover thickness of these reinforced concrete structures.

そこで、本発明は、大掛かりな足場設置等を行わなくても大型の鉄筋コンクリート構造物のかぶり厚を検査することが可能なかぶり厚検査装置を提供することを目的としている。 Therefore, an object of the present invention is to provide a cover thickness inspection device capable of inspecting the cover thickness of a large reinforced concrete structure without installing a large-scale scaffolding or the like.

前記目的を達成するために、鉄筋コンクリート構造物中の鉄筋のかぶり厚を検査するかぶり厚検査装置は、小型無人航空機と、小型無人航空機の構造物の表面に対向する側に設けられた移動機構と、小型無人航空機の移動機構側に設けられたかぶり厚測定センサと、かぶり厚測定センサを構造物の表面に向けて付勢する付勢力を付与する付勢機構とを有することを特徴とする。 In order to achieve the above object, the cover thickness inspection device for inspecting the cover thickness of the reinforcing bar in the reinforced concrete structure includes a small unmanned aerial vehicle and a moving mechanism provided on the side facing the surface of the structure of the small unmanned aerial vehicle. It is characterized by having a cover thickness measuring sensor provided on the moving mechanism side of a small unmanned aerial vehicle and an urging mechanism for urging the cover thickness measuring sensor toward the surface of a structure.

ここで、かぶり厚測定センサは構造物の表面に接触する接触面を有し、この接触面は円滑面に形成された構成とすることができる。また、移動機構は無限軌道または車輪を有する構成とすることができる。さらに、かぶり厚測定センサの付勢力に沿った方向の変位を検出する検出機構を有する構成とすることができる。 Here, the cover thickness measuring sensor has a contact surface that comes into contact with the surface of the structure, and this contact surface can be formed as a smooth surface. Further, the moving mechanism may be configured to have an endless track or wheels. Further, it can be configured to have a detection mechanism for detecting the displacement in the direction along the urging force of the cover thickness measuring sensor.

さらに、かぶり厚測定センサの構造物の表面に沿った移動軌跡をこの表面に記録する記録部を有する構成とすることができ、加えて、移動軌跡を検出する軌跡センサを有し、移動機構は軌跡センサの検出結果に基づいて小型無人航空機を移動させる構成とすることもできる。 Further, it is possible to have a configuration having a recording unit that records a movement locus along the surface of the structure of the cover thickness measurement sensor on this surface, and in addition, it has a locus sensor that detects the movement locus, and the movement mechanism has. It is also possible to move a small unmanned aerial vehicle based on the detection result of the trajectory sensor.

そして、かぶり厚測定センサを取り囲む電磁波遮蔽部を有する構成とすることができる。 Then, it can be configured to have an electromagnetic wave shielding portion surrounding the cover thickness measuring sensor.

このように構成された本発明のかぶり厚検査装置は、小型無人航空機の構造物の表面に対向する側に設けられた移動機構と、小型無人航空機の移動機構側に設けられたかぶり厚測定センサと、かぶり厚測定センサを構造物の表面に向けて付勢する付勢力を付与する付勢機構とを有する。 The cover thickness inspection device of the present invention configured as described above includes a moving mechanism provided on the side facing the surface of the structure of the small unmanned aerial vehicle and a cover thickness measuring sensor provided on the moving mechanism side of the small unmanned aerial vehicle. It also has an urging mechanism that applies an urging force that urges the cover thickness measuring sensor toward the surface of the structure.

このようにすることで、例えば構造物の下面であれば、小型無人航空機を浮上させて移動機構を下面に密着させることで、かぶり厚測定センサをこの下面に接触させることができ、作業員が近付けないような箇所でも、大掛かりな足場設置等を行うことなく鉄筋コンクリート構造物のかぶり厚を検査することができる。 By doing so, for example, in the case of the lower surface of a structure, by floating a small unmanned aerial vehicle and bringing the moving mechanism into close contact with the lower surface, the cover thickness measurement sensor can be brought into contact with the lower surface, and the operator can contact the lower surface. It is possible to inspect the cover thickness of a reinforced concrete structure without having to install a large-scale scaffolding even in places that cannot be approached.

ここで、かぶり厚測定センサは構造物の表面に接触する接触面を有し、この接触面は円滑面に形成されているので、構造物の表面に凹凸があった場合でも柔軟に追従することができる。また、移動機構は無限軌道または車輪を有することで、簡単に構成することができる。さらに、かぶり厚測定センサの付勢力に沿った方向の変位を検出する検出機構を有することで、構造物の表面の凹凸も検出することができる。 Here, the cover thickness measurement sensor has a contact surface that contacts the surface of the structure, and since this contact surface is formed as a smooth surface, it can flexibly follow even if the surface of the structure has irregularities. Can be done. Further, the moving mechanism can be easily configured by having an endless track or wheels. Further, by having a detection mechanism for detecting the displacement in the direction along the urging force of the cover thickness measuring sensor, it is possible to detect the unevenness of the surface of the structure.

さらに、かぶり厚測定センサの構造物の表面に沿った移動軌跡をこの表面に記録する記録部を有することで、検査位置を正確に把握することができる。加えて、移動軌跡を検出する軌跡センサを有し、移動機構は軌跡センサの検出結果に基づいて小型無人航空機を移動させることで、小型無人航空機の移動も正確に制御することができる。 Further, by having a recording unit that records the movement locus along the surface of the structure of the cover thickness measurement sensor on this surface, the inspection position can be accurately grasped. In addition, it has a trajectory sensor that detects the movement trajectory, and the movement mechanism moves the small unmanned aerial vehicle based on the detection result of the trajectory sensor, so that the movement of the small unmanned aerial vehicle can be accurately controlled.

そして、かぶり厚測定センサを取り囲む電磁波遮蔽部を有することで、かぶり厚測定センサによる検査を正確に行うことができる。 Then, by having the electromagnetic wave shielding portion surrounding the cover thickness measurement sensor, it is possible to accurately perform the inspection by the cover thickness measurement sensor.

本実施の形態であるかぶり厚検査装置の構成を示す斜視図である。It is a perspective view which shows the structure of the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置の構成を示す側面図である。It is a side view which shows the structure of the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置の構成を示す上面図である。It is a top view which shows the structure of the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置の構成を示す正面図である。It is a front view which shows the structure of the cover thickness inspection apparatus which is this embodiment. かぶり厚測定センサの構成を示す概略側面図である。It is a schematic side view which shows the structure of the cover thickness measurement sensor. 電磁誘導法の原理を説明するための図である。It is a figure for demonstrating the principle of the electromagnetic induction method. 鉄筋のかぶり厚を測定する手法を説明するための図である。It is a figure for demonstrating the method of measuring the cover thickness of a reinforcing bar. 本実施の形態であるかぶり厚検査装置によるかぶり厚測定動作を説明するための図である。It is a figure for demonstrating the cover thickness measurement operation by the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置を含むかぶり厚測定システムの概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the cover thickness measurement system including the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置を用いたかぶり厚測定手法を説明するための図である。It is a figure for demonstrating the cover thickness measurement method using the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置を用いたかぶり厚測定手法を説明するための図である。It is a figure for demonstrating the cover thickness measurement method using the cover thickness inspection apparatus which is this embodiment. 本実施の形態であるかぶり厚検査装置を用いたかぶり厚測定手法を説明するための図である。It is a figure for demonstrating the cover thickness measurement method using the cover thickness inspection apparatus which is this embodiment.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態のかぶり厚検査装置10の全体構成を説明するための斜視図、図2は同側面図、図3は同上面図、図4は同正面図である。まず、かぶり厚検査装置10の概要について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view for explaining the overall configuration of the cover thickness inspection device 10 of the present embodiment, FIG. 2 is a side view of the same, FIG. 3 is a top view of the same, and FIG. 4 is a front view of the same. First, an outline of the cover thickness inspection device 10 will be described.

このかぶり厚検査装置10は、上述した電磁誘導法を用いて鉄筋コンクリート構造物中の鉄筋のかぶり厚を測定するかぶり厚測定センサ3を搭載した小型無人航空機1を利用した装置である。電磁誘導法によるかぶり厚測定は、鉄筋コンクリート構造物に対して非破壊検査を行える点で有利である。 The cover thickness inspection device 10 is a device using a small unmanned aerial vehicle 1 equipped with a cover thickness measuring sensor 3 for measuring the cover thickness of reinforcing bars in a reinforced concrete structure by using the above-mentioned electromagnetic induction method. The cover thickness measurement by the electromagnetic induction method is advantageous in that non-destructive inspection can be performed on a reinforced concrete structure.

そして、小型無人航空機1を利用することで、足場のない高所箇所や作業員が近付きにくい箇所の検査が行えるようになる。例えば橋梁、建築物又は擁壁等の構造物の下面や側面などの表面に対して検査を行うことができる。以下では、図8に示すように、構造物である橋梁のコンクリート桁Mの桁下面M1を検査対象の表面として説明を行う。 Then, by using the small unmanned aerial vehicle 1, it becomes possible to inspect high places without scaffolding and places that are difficult for workers to approach. For example, the inspection can be performed on the lower surface or the side surface of a structure such as a bridge, a building or a retaining wall. In the following, as shown in FIG. 8, the lower surface M1 of the concrete girder M of the bridge, which is a structure, will be described as the surface to be inspected.

本実施の形態のかぶり厚検査装置10は、図1〜図4に示すように、小型無人航空機1と、小型無人航空機1の桁下面M1に対向させる側に設けられた移動機構2と、同じく移動機構2側に設けられたかぶり厚測定センサ3とによって主に構成される。 As shown in FIGS. 1 to 4, the cover thickness inspection device 10 of the present embodiment is the same as the small unmanned aerial vehicle 1 and the moving mechanism 2 provided on the side of the small unmanned aerial vehicle 1 facing the lower surface M1 of the girder. It is mainly composed of a cover thickness measuring sensor 3 provided on the moving mechanism 2 side.

小型無人航空機1は、本体部11と、飛行手段となる複数のプロペラ12と、飛行制御部13とを備えている。本実施の形態の本体部11は、幅方向(図3において上下方向)に架設された一対の横梁部11aと、これら横梁部11aを長さ方向(図2において左右方向)に連結する支持部11bと、この支持部11bの下部に連結された脚部11cとを有する。 The small unmanned aerial vehicle 1 includes a main body 11, a plurality of propellers 12 as flight means, and a flight control unit 13. The main body portion 11 of the present embodiment is a support portion that connects a pair of cross beam portions 11a erected in the width direction (vertical direction in FIG. 3) and these cross beam portions 11a in the length direction (horizontal direction in FIG. 2). It has an 11b and a leg portion 11c connected to the lower portion of the support portion 11b.

プロペラ12は、本体部11の一対の横梁部11aの左右にそれぞれ一対、合計4箇所に設けられている。プロペラ12はモータ部121の駆動によって回転し、モータ部121には、図略の駆動電源部から電力が供給される。駆動電源部は、バッテリーの他にコンバータなどを備えている。 Propellers 12 are provided at a total of four locations, one on each side of the pair of cross beam portions 11a of the main body portion 11. The propeller 12 is rotated by driving the motor unit 121, and electric power is supplied to the motor unit 121 from the drive power supply unit (not shown). The drive power supply unit includes a converter and the like in addition to the battery.

飛行制御部13は、個々のプロペラ12の回転数を制御することで、この小型無人航空機1の浮上や進行などの飛行を制御する。飛行制御部13はジャイロ等を有し、このジャイロ等により小型無人航空機1の姿勢を検出して飛行制御に利用する。また、本実施の形態である小型無人航空機1はGPSアンテナ14を有し、このGPSアンテナ14を介して受信したGPS通信衛星37(図8及び図9参照)からの情報にも基づいて飛行制御部13は小型無人航空機1の姿勢制御及び飛行制御を行う。さらに、飛行制御部13は無線通信部13aを有し(図9参照)、後述する地上側に配置された地上側制御装置30(図9参照)との間で無線通信を行い、種々の情報の送受信を行う。 The flight control unit 13 controls the flight such as the ascent and progress of the small unmanned aerial vehicle 1 by controlling the rotation speed of each propeller 12. The flight control unit 13 has a gyro or the like, and the gyro or the like detects the attitude of the small unmanned aerial vehicle 1 and uses it for flight control. Further, the small unmanned aerial vehicle 1 according to the present embodiment has a GPS antenna 14, and flight control is performed based on information from a GPS communication satellite 37 (see FIGS. 8 and 9) received via the GPS antenna 14. The unit 13 controls the attitude and flight of the small unmanned aerial vehicle 1. Further, the flight control unit 13 has a wireless communication unit 13a (see FIG. 9) and performs wireless communication with the ground side control device 30 (see FIG. 9) arranged on the ground side, which will be described later, to perform various information. To send and receive.

飛行制御部13に予め航路などの飛行データを記憶させておくこともできるが、上述した地上側制御装置30を介して地上から操作することもできる。飛行制御部13では、プロペラ12の回転数などの制御に加えて、移動機構2の制御も行われる。 Flight data such as a route can be stored in advance in the flight control unit 13, but it can also be operated from the ground via the above-mentioned ground side control device 30. In addition to controlling the rotation speed of the propeller 12, the flight control unit 13 also controls the moving mechanism 2.

小型無人航空機1の前端部(図2において左端部)には、構造物の表面(本実施の形態では桁下面M1)を観察するためのカメラ15が設けられている。このカメラ15により撮像された画像は、飛行制御部13を介して地上側制御装置30に送信される。 A camera 15 for observing the surface of the structure (the lower surface M1 of the girder in the present embodiment) is provided at the front end portion (left end portion in FIG. 2) of the small unmanned aerial vehicle 1. The image captured by the camera 15 is transmitted to the ground side control device 30 via the flight control unit 13.

移動機構2は、小型無人航空機1の上面側の図1及び図4において左右両端にそれぞれ設けられている。移動機構2は、無限軌道であるベルト21と、このベルト21が架け回された4個のプーリ22と、これらプーリ22のうち一つの(図2において右端)プーリ22に設けられ、このプーリ22を回転駆動させるモータ及びギアボックス(いずれも図略)とを有する。 The moving mechanism 2 is provided at both the left and right ends in FIGS. 1 and 4 on the upper surface side of the small unmanned aerial vehicle 1. The moving mechanism 2 is provided on a belt 21 having an endless track, four pulleys 22 on which the belt 21 is laid, and one of these pulleys 22 (the right end in FIG. 2), and the pulley 22 is provided. It has a motor and a gearbox (both are not shown) for rotating the drive.

そして、ベルト21の表面が桁下面M1に接触した状態でプーリ22が回転駆動されることで、このプーリ22に架け回されているベルト21が移動し、これにより小型無人航空機1をベルト21の長さ方向に沿って移動させることができる。この際、回転センサ等によってプーリ22の回転量を計測することで、小型無人航空機1の移動距離のデータを得ることができる。 Then, the pulley 22 is rotationally driven in a state where the surface of the belt 21 is in contact with the lower surface M1 of the girder, so that the belt 21 laid around the pulley 22 moves, whereby the small unmanned aerial vehicle 1 is moved by the belt 21. It can be moved along the length direction. At this time, by measuring the amount of rotation of the pulley 22 with a rotation sensor or the like, it is possible to obtain data on the moving distance of the small unmanned aerial vehicle 1.

ベルト21の表面は、摩擦係数が高くなるように形成されている。すなわち、小型無人航空機1の浮力で桁下面M1に押し付けられたかぶり厚検査装置10を、ベルト21の回転駆動で走行させようとすれば、ある程度の摩擦抵抗が必要になる。ベルト21の表面は、ゴム、微細な吸盤構造、超微細毛構造(ファンデルワールス力利用)など、吸着性能の高い構造にすることができる。 The surface of the belt 21 is formed so that the coefficient of friction is high. That is, if the cover thickness inspection device 10 pressed against the girder lower surface M1 by the buoyancy of the small unmanned aerial vehicle 1 is to be driven by the rotational drive of the belt 21, a certain amount of frictional resistance is required. The surface of the belt 21 can have a structure having high adsorption performance such as rubber, a fine suction cup structure, and an ultrafine hair structure (using Van der Waals force).

次に、図1〜図4及び図5を参照して、かぶり厚測定センサ3の詳細について説明する。 Next, the details of the cover thickness measuring sensor 3 will be described with reference to FIGS. 1 to 4 and 5.

かぶり厚測定センサ3は、図5に最もよく示すように、外形略直方体状に形成され、構造物の表面である桁下面M1に接触する接触面である図5における上面3aの端部3bが曲線状に面取り形成されることで、この上面3aが円滑面に形成されている。 As best shown in FIG. 5, the cover thickness measuring sensor 3 is formed in a substantially rectangular parallelepiped shape, and the end portion 3b of the upper surface 3a in FIG. 5 which is a contact surface in contact with the girder lower surface M1 which is the surface of the structure is formed. By chamfering the upper surface 3a in a curved shape, the upper surface 3a is smoothly formed.

かぶり厚測定センサ3は、上述したように電磁誘導法によるかぶり厚測定可能なセンサ3である。図6及び図7を参照して、電磁誘導法の原理及びかぶり厚測定手法について説明する。 As described above, the cover thickness measuring sensor 3 is a sensor 3 capable of measuring the cover thickness by the electromagnetic induction method. The principle of the electromagnetic induction method and the cover thickness measuring method will be described with reference to FIGS. 6 and 7.

図6に示すように、かぶり厚測定センサ3内には励磁コイル3c及び検出コイル3dが内蔵されており、励磁コイル3cには小型無人航空機1の駆動電源部から励磁電流が供給される。この励磁電流が励磁コイル3cに供給されると、図6の上下方向に沿って磁束が発生し、この磁束Hの電磁誘導により鉄筋Fに電流が発生し、さらに、この誘導電流によっても磁束Hが発生する。そして、鉄筋Fの誘導電流に基づく磁束Hを検出コイル3dにより検出し、検出信号として取り出す。 As shown in FIG. 6, an exciting coil 3c and a detection coil 3d are built in the cover thickness measuring sensor 3, and an exciting current is supplied to the exciting coil 3c from the drive power supply unit of the small unmanned aerial vehicle 1. When this exciting current is supplied to the exciting coil 3c, a magnetic flux is generated along the vertical direction in FIG. 6, a current is generated in the reinforcing bar F by electromagnetic induction of the magnetic flux H, and further, the magnetic flux H is also generated by this induced current. Occurs. Then, the magnetic flux H based on the induced current of the reinforcing bar F is detected by the detection coil 3d and taken out as a detection signal.

このため、かぶり厚測定センサ3に内蔵された励磁コイル3c及び検出コイル3dは、上面3aが桁下面M1に接触した状態で最も効率良くコンクリート桁M内の鉄筋Fからの磁束Hが検出できるように、その位置及び大きさ等が設定されている。 Therefore, the exciting coil 3c and the detection coil 3d built in the cover thickness measuring sensor 3 can detect the magnetic flux H from the reinforcing bar F in the concrete girder M most efficiently when the upper surface 3a is in contact with the girder lower surface M1. The position, size, etc. are set in.

図7に示すように、コンクリート桁Mの桁下面M1にかぶり厚測定センサ3の上面3aを接触させ、この状態で励磁コイル3cに励磁電流を供給すると、鉄筋Fからの磁束Hに基づいて検出コイル3dにより検出される検出信号は、図中模式的に矢印で示すように、かぶり厚が厚い(h>h)ほど小さくなる。従って、この検出信号に基づいて鉄筋Fのかぶり厚h、hを測定、検出することができる。また、図7の左右方向にかぶり厚測定センサ3を走査すれば、検出信号が最も大きい場所が鉄筋Fの直下であるので、鉄筋Fの位置も検出することができる。 As shown in FIG. 7, when the upper surface 3a of the cover thickness measuring sensor 3 is brought into contact with the girder lower surface M1 of the concrete girder M and the exciting current is supplied to the exciting coil 3c in this state, it is detected based on the magnetic flux H from the reinforcing bar F. The detection signal detected by the coil 3d becomes smaller as the cover thickness is thicker (h 1 > h 2 ), as schematically shown by an arrow in the figure. Accordingly, the cover thickness h 1, h 2 rebar F measurement can be detected based on the detection signal. Further, by scanning the cover thickness measuring sensor 3 in the left-right direction of FIG. 7, since the place where the detection signal is the largest is directly under the reinforcing bar F, the position of the reinforcing bar F can also be detected.

図5に戻って、かぶり厚測定センサ3は、付勢機構でもある付勢部4により小型無人航空機1の支持部11b上に固定、支持されている。付勢部4は、円筒状のゴム等の弾性部材からなる支持筒4aと、この支持筒4a内に収納されたスプリング等の付勢部材4bとを有し、これら支持筒4a及び付勢部材4bによりかぶり厚測定センサ3を下方から支持するとともに、このかぶり厚測定センサ3を桁下面M1に向けて付勢する付勢力を付与している。 Returning to FIG. 5, the cover thickness measuring sensor 3 is fixed and supported on the support portion 11b of the small unmanned aerial vehicle 1 by the urging portion 4, which is also an urging mechanism. The urging portion 4 has a support cylinder 4a made of an elastic member such as a cylindrical rubber and an urging member 4b such as a spring housed in the support cylinder 4a, and the support cylinder 4a and the urging member 4a. The cover thickness measuring sensor 3 is supported from below by 4b, and an urging force is applied to urge the cover thickness measuring sensor 3 toward the lower surface M1 of the girder.

かぶり厚測定センサ3と支持部11bとの間には変位計5が介在されている。この変位計5は、付勢部4によるかぶり厚測定センサ3の桁下面M1への付勢力に沿った変位を検出する。変位計5による測定結果(変位結果)は、飛行制御部13を介して地上側制御装置30に送信される。 A displacement meter 5 is interposed between the cover thickness measuring sensor 3 and the support portion 11b. The displacement meter 5 detects the displacement of the cover thickness measuring sensor 3 by the urging unit 4 along the urging force on the lower surface M1 of the girder. The measurement result (displacement result) by the displacement meter 5 is transmitted to the ground side control device 30 via the flight control unit 13.

また、かぶり厚測定センサ3の側面には、記録部であるマーカー6が取り付けられている。マーカー6の先端6a、つまりマーキングを行う部位は、かぶり厚測定センサ3の上面3aが桁下面M1に接触した状態で、同様に桁下面M1に接触して、小型無人航空機1の移動に伴い、かぶり厚測定センサ3の桁下面M1に沿った移動軌跡を記録する。 Further, a marker 6 which is a recording unit is attached to the side surface of the cover thickness measuring sensor 3. The tip 6a of the marker 6, that is, the part to be marked, is in contact with the lower surface M1 of the girder while the upper surface 3a of the cover thickness measurement sensor 3 is in contact with the lower surface M1 of the girder, and as the small unmanned aerial vehicle 1 moves. The movement locus along the girder lower surface M1 of the cover thickness measuring sensor 3 is recorded.

さらに、かぶり厚測定センサ3の側方を取り囲むように、電磁波を遮蔽する物質(例えばフェライト)により形成された中空筒状の電磁波遮蔽部7が設けられている。この電磁波遮蔽部7は、その上端部7aがかぶり厚測定センサ3の上面3aよりやや低くなるように、すなわち、かぶり厚測定センサ3によるかぶり厚測定のためにその上面3aが桁下面M1に接触している際にもこの桁下面M1に接触しないように、その高さが設定されている。なお、電磁波遮蔽部7は、図示を簡略化するために図3及び図5においてのみ図示している。 Further, a hollow tubular electromagnetic wave shielding portion 7 formed of a substance (for example, ferrite) that shields electromagnetic waves is provided so as to surround the side of the cover thickness measuring sensor 3. The upper end portion 7a of the electromagnetic wave shielding portion 7 is in contact with the lower surface M1 of the girder so that the upper end portion 7a is slightly lower than the upper surface 3a of the cover thickness measurement sensor 3, that is, for the cover thickness measurement by the cover thickness measurement sensor 3. The height is set so as not to come into contact with the lower surface M1 of the girder even when the girder is being used. The electromagnetic wave shielding unit 7 is shown only in FIGS. 3 and 5 for the sake of simplification.

さらに、図12に示すように、小型無人航空機1の横梁部11aの一端部(図示例では左端部)には、マーカー6により記録された移動軌跡を検出する軌跡センサ8が設けられている。軌跡センサ8により移動軌跡を検出する手法は周知のものから適宜選択されれば良く、一例として、小型カメラによりマーカー6によるマーキングを色で識別するような手法が好適に挙げられる。軌跡センサ8による移動軌跡の検出結果は、飛行制御部13を介して地上側制御装置30に送信される。 Further, as shown in FIG. 12, a locus sensor 8 for detecting a movement locus recorded by the marker 6 is provided at one end (left end in the illustrated example) of the cross beam portion 11a of the small unmanned aerial vehicle 1. The method of detecting the movement locus by the locus sensor 8 may be appropriately selected from well-known ones, and as an example, a method of identifying the marking by the marker 6 by color with a small camera is preferably mentioned. The detection result of the movement locus by the locus sensor 8 is transmitted to the ground side control device 30 via the flight control unit 13.

次に、本実施の形態であるかぶり厚検査装置10を含むかぶり厚検査システムについて、図8及び図9を参照して説明する。 Next, the cover thickness inspection system including the cover thickness inspection device 10 according to the present embodiment will be described with reference to FIGS. 8 and 9.

本実施の形態であるかぶり厚検査システムは、かぶり厚検査装置10と地上に配置された地上側制御装置30とを有する。地上側制御装置30は、かぶり厚検査装置10の飛行制御部13の無線通信部13aと無線通信が可能な無線通信部31と、かぶり厚検査装置10による測定結果等を受信して管理する地上側制御部32と、測定結果等が格納される記憶部33と、かぶり厚検査装置10等が撮像した画像や測定結果を表示する表示部34とを有する。 The cover thickness inspection system according to the present embodiment includes a cover thickness inspection device 10 and a ground side control device 30 arranged on the ground. The ground side control device 30 receives and manages a wireless communication unit 31 capable of wireless communication with the wireless communication unit 13a of the flight control unit 13 of the cover thickness inspection device 10 and measurement results by the cover thickness inspection device 10. It has a side control unit 32, a storage unit 33 for storing measurement results and the like, and a display unit 34 for displaying images and measurement results captured by the cover thickness inspection device 10 and the like.

また、地上側制御装置30にはビデオカメラ35が接続され、ビデオカメラ35による撮像結果は入力インタフェース(I/O)36を介して地上側制御部32に入力され、適宜表示部34に表示される。ビデオカメラ35は、かぶり厚検査装置10の位置を把握するためのカメラであり、このため、小型無人航空機1の好適な位置にトラッキングターゲット(図略)が設けられ、ビデオカメラ35はこのトラッキングターゲットを追跡することが好ましい。 Further, a video camera 35 is connected to the ground side control device 30, and the image pickup result by the video camera 35 is input to the ground side control unit 32 via the input interface (I / O) 36 and displayed on the display unit 34 as appropriate. To. The video camera 35 is a camera for grasping the position of the cover thickness inspection device 10. Therefore, a tracking target (not shown) is provided at a suitable position of the small unmanned aerial vehicle 1, and the video camera 35 is the tracking target. It is preferable to track.

次に、本実施の形態であるかぶり厚検査システムを使用したかぶり厚検査方法について、図8〜図12を参照して説明する。 Next, a cover thickness inspection method using the cover thickness inspection system according to the present embodiment will be described with reference to FIGS. 8 to 12.

まず、図8に示すように、検査対象とする橋梁のコンクリート桁Mの桁下面M1に向けてかぶり厚検査装置10を浮上させる。 First, as shown in FIG. 8, the cover thickness inspection device 10 is levitated toward the girder lower surface M1 of the concrete girder M of the bridge to be inspected.

小型無人航空機1のプロペラ12の回転駆動によって得られる浮力でかぶり厚検査装置10を桁下面M1に押し付けると、移動機構2のベルト21が桁下面M1に接触して、かぶり厚検査装置10は安定した姿勢となる。 When the cover thickness inspection device 10 is pressed against the girder lower surface M1 by the buoyancy obtained by the rotational drive of the propeller 12 of the small unmanned aerial vehicle 1, the belt 21 of the moving mechanism 2 comes into contact with the girder lower surface M1 and the cover thickness inspection device 10 is stable. It becomes a posture.

飛行中のかぶり厚検査装置10と地上側制御装置30とは、無線W1,W2によって交信した状態となっている。地上側制御装置30からは、小型無人航空機1の操縦信号、測定開始指示信号などが無線W1で送信される。 The cover thickness inspection device 10 and the ground side control device 30 during flight are in a state of communication by radio W1 and W2. From the ground side control device 30, a control signal of the small unmanned aerial vehicle 1, a measurement start instruction signal, and the like are transmitted by wireless W1.

本実施の形態であるかぶり厚検査システムが検査をするコンクリート桁Mにおいて、検査対象となる鉄筋Fは、図10に示すように、桁Mの長手方向(図中左右方向)に延在する鉄筋である。そこで、本実施の形態であるかぶり厚検査システムでは、桁Mを横断する方向(図10において下から上)に小型無人航空機1を移動させて、この移動軌跡に沿ってかぶり厚測定センサ3により桁下面M1から鉄筋Fのかぶり厚を検査する。 In the concrete girder M to be inspected by the cover thickness inspection system according to the present embodiment, the reinforcing bar F to be inspected is a reinforcing bar extending in the longitudinal direction (left-right direction in the figure) of the girder M as shown in FIG. Is. Therefore, in the cover thickness inspection system of the present embodiment, the small unmanned aerial vehicle 1 is moved in the direction across the girder M (from bottom to top in FIG. 10), and the cover thickness measurement sensor 3 is used along the movement locus. The cover thickness of the reinforcing bar F is inspected from the lower surface M1 of the girder.

地上側制御装置30からは、桁下面M1の検査開始位置へかぶり厚測定センサ3が到達するように操縦信号を無線W1で送信するとともに、ビデオカメラ35により小型無人航空機1に設けられたトラッキングターゲットを撮影することで実際の小型無人航空機1の位置を把握し、実際に検査開始位置へ到達するように操縦信号を調整する。 From the ground side control device 30, a maneuvering signal is transmitted by wireless W1 so that the cover thickness measurement sensor 3 reaches the inspection start position of the girder lower surface M1, and a tracking target provided on the small unmanned aerial vehicle 1 by the video camera 35. The actual position of the small unmanned aerial vehicle 1 is grasped by photographing the image, and the control signal is adjusted so as to actually reach the inspection start position.

小型無人航空機1の飛行制御部13は、地上側制御装置30からの操縦信号、及びGPS通信衛星37(図8、図9参照)から受信した情報に基づいて、かぶり厚測定センサ3が検査開始位置に到達するようにプロペラ12及びベルト21の回転数を制御する。また、飛行制御部13は、カメラ15により撮像された桁下面M1の画像を無線W2で地上側制御装置30に送信し、地上側制御装置30は、このカメラ15の画像を確認しながら、小型無人航空機1の位置制御及び検査位置の確認、決定を行う。 In the flight control unit 13 of the small unmanned aerial vehicle 1, the cover thickness measurement sensor 3 starts inspection based on the control signal from the ground side control device 30 and the information received from the GPS communication satellites 37 (see FIGS. 8 and 9). The rotation speed of the propeller 12 and the belt 21 is controlled so as to reach the position. Further, the flight control unit 13 transmits the image of the lower surface M1 of the girder imaged by the camera 15 to the ground side control device 30 by wireless W2, and the ground side control device 30 is small while checking the image of the camera 15. The position control of the unmanned aerial vehicle 1 and the confirmation and determination of the inspection position are performed.

検査位置は、ベルト21の走行方向(つまり桁Mを横断する方向)に間隔を置いた位置になる。このベルト21の走行方向に沿ってマーカー6がマーキングすることで移動軌跡である測線Lが記録される。図11に示す検査位置Pにおいて、飛行制御部13はかぶり厚測定センサ3によるかぶり厚測定結果、すなわちかぶり厚及び鉄筋径を取得し、検査開始位置からの走行距離及び検査を行った時刻とともに無線W2で地上側制御装置30に送信する。 The inspection positions are positions spaced apart from each other in the traveling direction of the belt 21 (that is, the direction across the girder M). By marking the marker 6 along the traveling direction of the belt 21, the survey line L, which is the movement locus, is recorded. At the inspection position P shown in FIG. 11, the flight control unit 13 acquires the cover thickness measurement result by the cover thickness measurement sensor 3, that is, the cover thickness and the reinforcing bar diameter, and wirelessly performs the mileage from the inspection start position and the time when the inspection is performed. It is transmitted to the ground side control device 30 by W2.

検査開始位置は、コンクリート桁Mにおける鉄筋Fの配筋計画等から定めることができ、個々の検査位置は、ベルト21の回転量を指定する信号を地上側制御装置30から送信することで設定することができる。また、上述した走行距離も実際のベルト21の回転量に基づいて測定することができる。このように位置データを収集することで、実際の移動距離を正確に把握することができる。 The inspection start position can be determined from the bar arrangement plan of the reinforcing bar F in the concrete girder M, and each inspection position is set by transmitting a signal specifying the amount of rotation of the belt 21 from the ground side control device 30. be able to. Further, the above-mentioned mileage can also be measured based on the actual amount of rotation of the belt 21. By collecting the position data in this way, the actual travel distance can be accurately grasped.

地上側制御装置30に送信された各種データは、記憶部33に一時的に格納されるとともに、適宜表示部34に表示される。 Various data transmitted to the ground side control device 30 are temporarily stored in the storage unit 33 and appropriately displayed on the display unit 34.

コンクリート桁Mの桁下面M1全体のかぶり厚検査を行うには、まず、図12(a)に示すように、桁Mを横断する方向(図中下から上)に小型無人航空機1を移動させてかぶり厚測定センサ3による検査を行う。この時、マーカー6により測線Lが桁下面M1に記録される。次いで、図12(b)に示すように、軌跡センサ8により測線Lを検出し、この測線Lから所定距離だけ離れた検査位置において、同様にかぶり厚測定センサ3による検査を行う。そして、図12(c)に示すように、グリッド状に配置された測定位置においてかぶり厚測定センサ3による検査を行う。この際、測線Lの間隔は、軌跡センサ8の設置位置により調整可能である。 In order to inspect the entire cover thickness of the concrete girder M under the girder surface M1, first, as shown in FIG. 12A, the small unmanned aerial vehicle 1 is moved in the direction across the girder M (from bottom to top in the figure). The inspection is performed by the cover thickness measuring sensor 3. At this time, the marker 6 records the survey line L on the lower surface M1 of the girder. Next, as shown in FIG. 12B, the trajectory sensor 8 detects the survey line L, and the cover thickness measurement sensor 3 similarly performs the inspection at the inspection position separated from the survey line L by a predetermined distance. Then, as shown in FIG. 12 (c), the cover thickness measurement sensor 3 is used for inspection at the measurement positions arranged in a grid pattern. At this time, the interval of the survey lines L can be adjusted by the installation position of the locus sensor 8.

このように構成された本実施の形態であるかぶり厚検査装置10は、小型無人航空機1の桁下面M1に対向する側に設けられた移動機構2と、小型無人航空機1の移動機構2側に設けられたかぶり厚測定センサ3と、かぶり厚測定センサ3を桁下面M1に向けて付勢する付勢力を付与する付勢部4とを有する。 The cover thickness inspection device 10 according to the present embodiment configured in this way is provided on the side of the small unmanned aerial vehicle 1 facing the lower surface M1 of the girder and on the side of the moving mechanism 2 of the small unmanned aerial vehicle 1. It has a cover thickness measuring sensor 3 provided, and an urging portion 4 that applies an urging force to urge the cover thickness measuring sensor 3 toward the lower surface M1 of the girder.

このようにすることで、例えば桁下面M1のような構造物の下面であれば、小型無人航空機1を浮上させて移動機構2を下面に密着させることで、かぶり厚測定センサ3をこの下面に接触させることができ、作業員が近付けないような箇所でも、大掛かりな足場設置等を行うことなく鉄筋コンクリート構造物のかぶり厚を検査することができる。 By doing so, in the case of the lower surface of a structure such as the lower surface of the girder M1, the small unmanned aerial vehicle 1 is levitated and the moving mechanism 2 is brought into close contact with the lower surface, so that the cover thickness measuring sensor 3 is attached to the lower surface. It is possible to inspect the cover thickness of a reinforced concrete structure without having to install a large-scale scaffolding even in places where it can be brought into contact with each other and cannot be approached by workers.

特に、本実施の形態であるかぶり厚検査装置10では、付勢部4によりかぶり厚測定センサ3を桁下面M1に向けて付勢する付勢力を付与しているので、桁下面M1に不陸や浮き等の凹凸があった場合でも、この桁下面M1の凹凸に追従してかぶり厚測定センサ3を桁下面M1に接触させ続けることができ、かぶり厚測定センサ3による検査を円滑、正確かつ確実に行うことができる。 In particular, in the cover thickness inspection device 10 of the present embodiment, since the urging unit 4 imparts an urging force for urging the cover thickness measurement sensor 3 toward the girder lower surface M1, the girder lower surface M1 is not landed. Even if there is unevenness such as floating or floating, the cover thickness measurement sensor 3 can continue to be in contact with the girder lower surface M1 by following the unevenness of the girder lower surface M1, and the inspection by the cover thickness measurement sensor 3 is smooth, accurate and accurate. You can do it with certainty.

ここで、かぶり厚測定センサ3は桁下面M1に接触する接触面3aを有し、この接触面3aは円滑面に形成されているので、桁下面M1に凹凸があった場合でも柔軟に追従することができる。また、移動機構2は無限軌道であるベルト21を有するので、簡単に構成することができる。さらに、かぶり厚測定センサ3の付勢力に沿った方向の変位を検出する変位計5を有することで、桁下面M1の凹凸も検出することができる。 Here, the cover thickness measuring sensor 3 has a contact surface 3a that contacts the girder lower surface M1, and since this contact surface 3a is formed on a smooth surface, it flexibly follows even if the girder lower surface M1 has irregularities. be able to. Further, since the moving mechanism 2 has a belt 21 having an endless track, it can be easily configured. Further, by having the displacement meter 5 that detects the displacement in the direction along the urging force of the cover thickness measuring sensor 3, it is possible to detect the unevenness of the lower surface M1 of the girder.

さらに、かぶり厚測定センサ3の桁下面M1に沿った移動軌跡をこの表面に記録するマーカー6を有することで、検査位置を正確に把握することができる。加えて、移動軌跡を検出する軌跡センサ8を有し、移動機構2は軌跡センサ8の検出結果に基づいて小型無人航空機1を移動させることで、小型無人航空機1の移動も正確に制御することができる。 Further, by having the marker 6 that records the movement locus along the girder lower surface M1 of the cover thickness measuring sensor 3 on this surface, the inspection position can be accurately grasped. In addition, it has a locus sensor 8 that detects the movement locus, and the movement mechanism 2 moves the small unmanned aerial vehicle 1 based on the detection result of the locus sensor 8 to accurately control the movement of the small unmanned aerial vehicle 1. Can be done.

そして、かぶり厚測定センサ3を取り囲む電磁波遮蔽部7を有することで、かぶり厚測定センサ3による検査を正確に行うことができる。すなわち、上述したように、かぶり厚測定センサ3は鉄筋Fからの磁束Hを検出してかぶり厚を測定しているので、小型無人航空機1が金属等の磁性体からなる場合、鉄筋F以外の磁性体からの磁束がノイズとなってかぶり厚測定センサ3の測定結果に影響する可能性がある。本実施の形態であるかぶり厚検査装置10では、電磁波遮蔽部7によりかかるノイズを低減させることができる。 Further, by having the electromagnetic wave shielding portion 7 surrounding the cover thickness measurement sensor 3, the inspection by the cover thickness measurement sensor 3 can be accurately performed. That is, as described above, since the cover thickness measuring sensor 3 detects the magnetic flux H from the reinforcing bar F and measures the cover thickness, when the small unmanned aircraft 1 is made of a magnetic material such as metal, other than the reinforcing bar F The magnetic flux from the magnetic material may become noise and affect the measurement result of the cover thickness measuring sensor 3. In the cover thickness inspection device 10 of the present embodiment, the noise applied by the electromagnetic wave shielding unit 7 can be reduced.

以上、図面を参照して、本発明の実施の形態を詳述してきたが、具体的な構成は、この実施の形態及び実施例に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to the embodiments and the examples, and the design changes to the extent that the gist of the present invention is not deviated. Is included in the present invention.

例えば、上述した実施の形態であるかぶり厚検査装置10では無限軌道タイプの移動機構2について説明したが、これに限定されるものではなく、例えば車輪を有する移動機構2であっても小型無人航空機を構造物の表面に沿って移動させることができる。 For example, in the cover thickness inspection device 10 according to the above-described embodiment, the endless track type moving mechanism 2 has been described, but the present invention is not limited to this, and for example, even a moving mechanism 2 having wheels is a small unmanned aerial vehicle. Can be moved along the surface of the structure.

また、前記実施の形態では、橋梁の桁下面M1の検査を例に説明したが、これに限定されるものではなく、高層建築物などの鉄筋コンクリート構造物の高所箇所を検査する場合にも、かぶり厚検査装置10を適用することができる。さらに、橋脚の側面、擁壁や建物などの壁面の検査を行う場合には、移動機構が設けられた胴体部の上半部が起立する構造の小型無人航空機を使用することで、本発明を適用することができるようになる。 Further, in the above-described embodiment, the inspection of the lower surface M1 of the girder of the bridge has been described as an example, but the present invention is not limited to this, and the inspection of a high place of a reinforced concrete structure such as a high-rise building is also performed. The cover thickness inspection device 10 can be applied. Further, when inspecting the side surface of a pier, a retaining wall, a building, or the like, the present invention is made by using a small unmanned aerial vehicle having a structure in which the upper half of the fuselage provided with a moving mechanism stands up. Be able to apply.

1 小型無人航空機
2 移動機構
3 かぶり厚測定センサ
3a 上面(接触面)
4 付勢部(付勢機構)
5 変位計(検出機構)
6 マーカー(記録部)
7 電磁波遮蔽部
8 軌跡センサ
10 かぶり厚検査装置
F 鉄筋
M コンクリート桁(鉄筋コンクリート構造物)
M1 桁下面(表面)
1 Small unmanned aerial vehicle 2 Moving mechanism 3 Cover thickness measurement sensor 3a Top surface (contact surface)
4 Biasing part (Bending mechanism)
5 Displacement meter (detection mechanism)
6 Marker (recording section)
7 Electromagnetic wave shield 8 Trajectory sensor 10 Cover thickness inspection device F Reinforcing bar M Concrete girder (Reinforced concrete structure)
M1 girder lower surface (front surface)

Claims (5)

鉄筋コンクリート構造物中の鉄筋のかぶり厚を検査するかぶり厚検査装置であって、
小型無人航空機と、
前記小型無人航空機の前記構造物の表面に対向する側に設けられた移動機構と、
前記小型無人航空機の前記移動機構側に設けられたかぶり厚測定センサと、
前記かぶり厚測定センサを前記構造物の前記表面に向けて付勢する付勢力を付与する付勢機構と
前記かぶり厚測定センサの前記構造物の前記表面に沿った移動軌跡をこの表面に記録する記録部と、
前記移動軌跡を検出する軌跡センサとを有し、
前記移動機構は前記軌跡センサの検出結果に基づいて前記小型無人航空機を移動させることを特徴とするかぶり厚検査装置。
It is a cover thickness inspection device that inspects the cover thickness of reinforcing bars in reinforced concrete structures.
With a small unmanned aerial vehicle,
A moving mechanism provided on the side of the small unmanned aerial vehicle facing the surface of the structure,
A cover thickness measuring sensor provided on the moving mechanism side of the small unmanned aerial vehicle,
An urging mechanism that applies an urging force that urges the cover thickness measuring sensor toward the surface of the structure .
A recording unit that records the movement locus of the structure of the cover thickness measuring sensor along the surface of the structure on the surface.
It has a locus sensor that detects the movement locus.
The movement mechanism is a cover thickness inspection device characterized in that the small unmanned aerial vehicle is moved based on the detection result of the trajectory sensor .
前記かぶり厚測定センサは前記構造物の前記表面に接触する接触面を有し、この接触面は円滑面に形成されていることを特徴とする請求項1に記載のかぶり厚検査装置。 The cover thickness inspection device according to claim 1, wherein the cover thickness measuring sensor has a contact surface that contacts the surface of the structure, and the contact surface is formed on a smooth surface. 前記移動機構は無限軌道または車輪を有することを特徴とする請求項1または2に記載のかぶり厚検査装置。 The cover thickness inspection device according to claim 1 or 2, wherein the moving mechanism has an endless track or wheels. 前記かぶり厚測定センサの前記付勢力に沿った方向の変位を検出する検出機構を有することを特徴とする請求項1〜3のいずれか1項に記載のかぶり厚検査装置。 Head thickness inspection apparatus according to claim 1, characterized in that it comprises a detection mechanism for detecting a displacement in a direction along the urging force of the head thickness measuring sensor. 前記かぶり厚測定センサを取り囲む電磁波遮蔽部を有することを特徴とする請求項1〜のいずれか1項に記載のかぶり厚検査装置。 Head thickness inspection apparatus according to any one of claims 1 to 4, characterized in that it has an electromagnetic wave shielding portion surrounding the head thickness measuring sensor.
JP2017209475A 2017-10-30 2017-10-30 Cover thickness inspection device Active JP6796051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017209475A JP6796051B2 (en) 2017-10-30 2017-10-30 Cover thickness inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017209475A JP6796051B2 (en) 2017-10-30 2017-10-30 Cover thickness inspection device

Publications (2)

Publication Number Publication Date
JP2019082379A JP2019082379A (en) 2019-05-30
JP6796051B2 true JP6796051B2 (en) 2020-12-02

Family

ID=66669577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017209475A Active JP6796051B2 (en) 2017-10-30 2017-10-30 Cover thickness inspection device

Country Status (1)

Country Link
JP (1) JP6796051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088486B2 (en) * 2018-01-27 2022-06-21 テクノス三原株式会社 Drone flying object and shooting method using drone flying object
DE102019130045B4 (en) 2019-11-07 2024-03-28 Emqopter GmbH Device and method for autonomous locomotion in canal systems
JP6817660B1 (en) * 2020-01-29 2021-01-20 株式会社ウオールナット Flying internal spacecraft

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238507A (en) * 1987-03-27 1988-10-04 Fujita Corp Measuring method for cracking
JPH07224544A (en) * 1994-02-10 1995-08-22 Chiyuuo:Kk Exterior wall diagnostic method and device
JP2002033437A (en) * 2000-07-14 2002-01-31 Hitachi Maxell Ltd Semiconductor device and its manufacturing method
JP4461299B2 (en) * 2005-04-20 2010-05-12 三井造船株式会社 Embedded depth measuring device
JP4423642B2 (en) * 2005-06-03 2010-03-03 五洋建設株式会社 Non-destructive inspection method for concrete structures
JP5341788B2 (en) * 2010-01-22 2013-11-13 株式会社トーヨーアサノ Nondestructive measuring jig, concrete covering thickness measuring apparatus using the same, and concrete covering thickness measuring method in SC pile
JP6263147B2 (en) * 2015-04-30 2018-01-17 新日本非破壊検査株式会社 Structure inspection system using a floating robot
JP6363632B2 (en) * 2016-01-13 2018-07-25 公益財団法人鉄道総合技術研究所 Remote structure inspection system using a small unmanned aerial vehicle

Also Published As

Publication number Publication date
JP2019082379A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6796051B2 (en) Cover thickness inspection device
EP3433154B1 (en) Combined passive and active method and systems to detect and measure internal flaws within metal rails
EP3497016B1 (en) Unmanned airborne vehicle for the non-destructive testing of a three-dimensional structure
Pham et al. Design and implementation of an autonomous robot for steel bridge inspection
JP6521971B2 (en) Modular mobile inspection vehicle
CN108021143A (en) For carrying out the method and system of non-destructive testing using unmanned vehicle
US10866318B2 (en) Remote scanning and detection apparatus and method
CN107764862B (en) System and method for non-destructive evaluation of test objects
CN112009719A (en) Method for inspecting and repairing a structure and unmanned aerial vehicle
JP6864644B2 (en) Cover thickness inspection method and cover thickness inspection device
EP3333043B1 (en) Rail inspection system and method
JP7025180B2 (en) Suspended drone
JP2019158793A (en) Crack investigation device
JP6847813B2 (en) Cover thickness inspection method
JP6474070B2 (en) Checking method for cable stayed bridges
JP6691878B2 (en) Elastic wave measurement system
JP2020134173A (en) Measurement system and measuring method
Gucunski et al. Advancing condition assessment of reinforced concrete bridge elements through automation, visualization, and improved interpretation of multi-NDE technology data
KR20220064573A (en) Apparatus for inspecting lower part of bridge
JP6308529B2 (en) Cable stay inspection device and method for cable stay inspection of cable stayed bridge
EP3421986B1 (en) Device, system and method for automated non-destructive inspection of metal structures
US11467096B1 (en) System, apparatus, and method for structural fault detection
KR20190124596A (en) System and method for monitoring track irregularity
Nichoha et al. Magnetic flux leakage method of railway rails defects diagnostics and its place among mobile means of non-destructive testing
Tallent et al. Determination of Plate Corrosion and Thickness of Anti-Corrosion Coatings for Above-and Below-Water Metal Structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201113

R150 Certificate of patent or registration of utility model

Ref document number: 6796051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150