WO2016163482A1 - Mobile unit - Google Patents

Mobile unit Download PDF

Info

Publication number
WO2016163482A1
WO2016163482A1 PCT/JP2016/061446 JP2016061446W WO2016163482A1 WO 2016163482 A1 WO2016163482 A1 WO 2016163482A1 JP 2016061446 W JP2016061446 W JP 2016061446W WO 2016163482 A1 WO2016163482 A1 WO 2016163482A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
rotors
rotor
thruster
attack
Prior art date
Application number
PCT/JP2016/061446
Other languages
French (fr)
Japanese (ja)
Inventor
川崎 宏治
武典 松江
正己 黒坂
道弘 松浦
Original Assignee
株式会社日本自動車部品総合研究所
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本自動車部品総合研究所, 株式会社デンソー filed Critical 株式会社日本自動車部品総合研究所
Priority to JP2017511069A priority Critical patent/JP6508331B2/en
Publication of WO2016163482A1 publication Critical patent/WO2016163482A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/30Undercarriages detachable from the body

Definitions

  • the present invention is a moving body that performs at least one of flying movement and traveling movement unattended by remote control or automatic piloting.
  • an unmanned air vehicle has been equipped with an observation device to observe, for example, a disaster site or the state of a dangerous spot that is difficult for humans to enter.
  • UAV unmanned air vehicle
  • a multicopter which is one of UAVs, is often used as an aerial vehicle.
  • the measurement aircraft described in Patent Document 1 includes a photographing unit that captures still images and moving images, a measuring unit that performs positioning and environment measurement, and a floating body that surrounds the photographing unit and the measuring unit.
  • the floating body protects various devices such as a photographing unit and a measurement unit even when the flying object falls on the ground, and prevents the various devices from being submerged even when the flying object falls on the water.
  • UAVs such as the measurement aircraft described in Patent Document 1 are assumed to be stationary in the air for actions such as shooting, and relatively large energy is required to maintain the aircraft in the air.
  • the airframe needs to be substantially horizontal with respect to the ground surface when stationary, there is a possibility that it cannot enter a portion narrower in the horizontal direction than the lateral width of the airframe.
  • flying bodies and moving bodies that control the thrust by controlling the rotational speed of the rotor are known, but the operational control of the flying bodies and the moving body is limited only by the rotational speed control.
  • the present invention has been made in view of the above problems, and provides a moving body capable of performing efficient operation control by using other parameters in addition to the rotational speed of the rotor. Objective.
  • the present invention has been made in view of the above problems, and provides a movable body that can enter a narrow space in the horizontal direction and can move with relatively small energy. The purpose is to do.
  • a moving body includes a base (10), A plurality of frames (20) formed extending from the base body, and provided on each of the plurality of frames, are arranged in the same plane when the mobile body is flying, and have thrust in a direction perpendicular to the plane.
  • a plurality of thrusters (30) that generate lift by generating a component
  • an inertia measurement unit (51) that measures the posture of the moving body, and the posture of the moving body that is measured by the inertia measuring unit
  • each thruster includes a rotor (30a) having a plurality of blades (B1, B2) whose angle of attack is variable.
  • a thrust vector generated by the thrusters is inclined with respect to a direction orthogonal to the plane on which the thrusters are arranged.
  • each thruster in this moving body generates a thrust by the rotation of the rotor constituting the corresponding thruster.
  • the angle of attack of the plurality of blades constituting the rotor is variable.
  • the angle of attack is an angle formed by chord lines of a plurality of blades and an air flow. When the angle of attack is approximately zero degrees, the plurality of blades cut through the sky, so that no lift is generated.
  • lift occurs when the angle of attack is greater than zero degrees. If a plurality of blades are not symmetrical blades, lift may occur even if the angle of attack is zero degrees, but the zero degree shown here indicates a so-called zero lift angle.
  • the moving body can invert the plane on which the corresponding thruster is arranged with respect to the ground surface by controlling the thrust of each thruster while the guard portion is in contact with the ground surface. . Furthermore, the inverted state can be maintained by appropriately controlling the angle of attack.
  • the plane of the moving body on which a plurality of thrusters are arranged when the plane of the moving body on which a plurality of thrusters are arranged is horizontal, the plane of the moving body can be inclined with respect to the ground surface by causing a bias in the thrust of each thruster. .
  • the angle of attack of a plurality of blades of a certain thruster is set to zero degrees.
  • the angle of attack is set to be greater than zero degrees.
  • the moving body in a state where the plane is inverted at right angles to the ground surface, the rotor of a thruster is rotated so that thrust is generated on the front side and the back side of the plane.
  • the moving body can be stably maintained in an inverted state against disturbance.
  • the thrust vector of a thruster is inclined with respect to the direction orthogonal to the plane on which the thruster is disposed, the thrust of the thruster is applied to the lift in the direction orthogonal to the plane and the plane. It can be decomposed into force along the direction.
  • the component force directed in the direction along the plane is a torque for the moving body to rotate in the plane. That is, the moving body can rotate in the plane by the resultant force of the thrust force of the thruster and the counter torque related to the rotation of the rotor. That is, the moving body can move while rotating while grounding the guard portion on the ground surface.
  • this moving body can rotate in an inverted state and self-propelled on the ground surface. Therefore, this moving body can enter even in a narrow space that is narrow in the horizontal direction perpendicular to gravity. Further, the energy for maintaining the posture in which the moving body is in contact with the ground surface in an inverted state is smaller than the energy for allowing the moving body to stand still in the air. Therefore, this moving body can move with less energy than flight.
  • the moving body includes a base body (10), a plurality of arms (20) extending outward from the base body, and a plurality of thrusters respectively attached to the plurality of arms.
  • the thruster includes a rotor (30a) having a plurality of blades (B1, B2) with variable angles of attack, and driving the rotor causes a thrust on the moving body to be generated in a first direction in a predetermined first direction.
  • a plurality of thrusters (30) that can be divided into a component force and a second component force in a predetermined second direction different from the first direction, and a rolling roller that surrounds the base and the plurality of arms.
  • the inertia measuring unit (51) for measuring the posture of the moving body, and the posture of the moving body measured by the inertia measuring unit, the rotational speed of each rotor and the rotor Multiple blades By controlling the angle of attack, respectively, and a, a control unit 52 which selects and executes either of the travel movement through flight and the rolling element of the movable body.
  • control unit controls the number of rotations of each rotor and the angle of attack of a plurality of blades of each rotor based on the posture of the moving body measured by the inertia measurement unit, respectively. Either one of the flight of the moving body and the traveling movement through the rolling element is selected and executed. As a result, in addition to the number of rotations of each rotor, the angle of attack of the plurality of blades of each rotor can be taken into account, so that the operation control of the moving body can be performed efficiently.
  • FIG. 2 is a side view of the flying object showing a schematic configuration of the flying object shown in FIG. 1. It is a side view which shows the detailed structure of the thruster shown in FIG. It is a block diagram which shows schematic structure of the microcomputer part shown in FIG. It is a flowchart which shows roughly an example of the procedure of the mobile body control process of the control part shown in FIG. It is a flowchart which shows roughly an example of the procedure of the mobile body control process of the control part shown in FIG. It is a figure explaining operation
  • FIG. 1 is a top view of the moving body 100 when the xy plane is viewed from the front
  • FIG. 2 is a side view of the moving body 100 when the yz plane is viewed from the front.
  • the moving body 100 in this embodiment can function as an unmanned air vehicle (UAV) of a multi-rotor wing type, and its uses include, for example, aerial photography and rescue of a rescuer.
  • UAV unmanned air vehicle
  • the moving body 100 includes a base body 10, a frame 20, a plurality of thrusters 30, a guard unit 40 that constitutes a rolling element, and a microcomputer unit 50. Moreover, as shown in FIG.
  • the moving body 100 according to the first embodiment functions as a so-called quad copter including four thrusters 30 as described later.
  • the base 10 is a member that supports the frame 20, the microcomputer unit 50 is mounted, and supports the battery 60. Note that a plastic material or a metal material can be used for the base 10.
  • the base body 10 in the present embodiment is a rectangular parallelepiped composed of sides along the x-axis, y-axis, and z-axis.
  • the frame 20, which will be described later, is configured in a total of four arms, two each in the x-axis direction and the y-axis direction. That is, the arm-shaped portions of the frame 20 have the same length, and the tips thereof reach the guard portion 40 and are connected to the guard portion 40.
  • the center of gravity of the entire moving body 100 including the base body 10, the frame 20, the thruster 30, the guard part 40, the microcomputer part 50, and the battery 60 is located at the center of the base body 10. ing.
  • the frame 20 includes a first frame 21 extending in the positive direction of the y axis from the first side surface along the x axis of the base 10 and a second of the base 10 along the y axis.
  • the second frame 22 extending in the negative x-axis direction from the side surface of the substrate 10 and the third side surface opposite to the first side surface of the substrate 10 from the first frame 21 in the opposite direction along the y-axis (negative y-axis
  • a fourth frame extending in the direction opposite to the second frame 22 along the x axis from the fourth side surface facing the second side surface of the substrate 10 (the positive direction of the x axis). 24.
  • the first frame 21 to the fourth frame 24 may be collectively referred to as the frame 20.
  • the four frames 20 extend from the base body 10 in all directions and are provided between a guard unit 40 described later. That is, as will be described later, the guard portion 40 has an annular shape, and the frame 20 is configured to cross in the diameter direction of the annular guard portion 40 as shown in FIG. .
  • the thruster 30 is attached to a part of each frame 20. For example, in the present embodiment, the attachment position of the thruster 30 from the center of the base body 10 (that is, the length from the center of the base body 10) is the same.
  • the thruster 30 attached to each frame 20 has, for example, a rotor 30a, and thrust is generated by the rotation of the rotor 30a.
  • the thruster 30 has a rotor 30a and a motor 30b for rotating the rotor 30a.
  • the thruster 30 is configured to be able to change the rotational speed of the rotor 30a based on the control of the microcomputer unit 50, which will be described later, and can exert a thrust corresponding to the rotational speed. That is, thrust increases as the rotational speed of the rotor 30a increases. More specifically, the microcomputer unit 50 can freely adjust the magnitude of the thrust generated by the thruster 30 by adjusting the rotational speed of the rotor 30a.
  • each rotor 30a in this embodiment has a rotating shaft C and two blades B1 and B2 extending in the radial direction from the rotating shaft C, as shown in FIGS.
  • the blades B1 and B2 extend in opposite directions from opposing symmetrical side surfaces on the rotation axis C, and generate thrust by rotating together with the rotation axis C about the rotation axis C.
  • the blade B ⁇ b> 1 is indicated by a solid line
  • the blade B ⁇ b> 2 protruding to the opposite side of the rotation axis C from the blade B ⁇ b> 1 is indicated by a broken line.
  • Each thruster 30 in the present embodiment has a variable mechanism 30c that makes the angle ⁇ of each blade B1 and B2 variable under the control of the microcomputer unit 50. That is, under the control of the microcomputer unit 50, the variable mechanism 30c can obtain a free thrust corresponding to the angle ⁇ by setting the angle ⁇ of each blade B1 and B2 to a predetermined value within the stall angle. .
  • the angle ⁇ is referred to as an angle of attack (pitch angle) ⁇ .
  • the thruster 30 is configured as a variable pitch rotor that can variably set the angle of attack ⁇ of each blade B1 and B2.
  • the blades B1 and B2 in the present embodiment are symmetric wings, and the angle of attack ⁇ corresponding to the zero lift angle at which the thrust due to rotation is almost eliminated is zero degrees.
  • the thruster 30 in the present embodiment includes four thrusters, that is, a first thruster 31, a second thruster 32, a third thruster 33, and a fourth thruster 34.
  • the first thruster 31 is a predetermined portion of the first frame 21
  • the second thruster 32 is a predetermined portion of the second frame 22
  • the third thruster 33 is a predetermined portion of the third frame 23, and the fourth thruster.
  • Reference numerals 34 are respectively fixed to predetermined portions of the fourth frame 24. That is, when the moving body 100 is viewed from the positive direction of the z-axis shown in FIG. 1, the thruster 30 is arranged such that the first thruster 31, the second thruster 32, the third thruster 33, and the fourth thruster 34 are arranged counterclockwise.
  • Each thruster 30 is disposed in the middle of the corresponding frame 20 from the base 10 to the guard unit 40, and the four thrusters 30 exist in a plane along the xy plane.
  • the corresponding thruster 30 is, as shown in FIG. 2, the direction of the rotation axis C of the motor 30b, that is, the thrust direction of the thruster 30, in other words, the thrust vector of the thruster 30.
  • the direction of the rotation axis C of the motor 30b that is, the thrust direction of the thruster 30, in other words, the thrust vector of the thruster 30.
  • the inclination angle
  • the inclination direction of the thruster 30 with respect to the virtual line P orthogonal to the xy plane, that is, the plane including the rotor 30a, is determined based on the rotation direction of the rotor 30a.
  • Each thruster 30 generates counter torque as its rotor 30a rotates.
  • the counter torque generated by each thruster 30 acts in a direction in which the moving body 100 is rotated in the direction opposite to the rotation direction of the rotor 30a.
  • the thrust direction of each thruster 30 since the thrust direction of each thruster 30, in other words, the thrust vector of the thruster 30 is attached to the virtual line P orthogonal to the xy plane by an inclination angle ⁇ , the thrust of each thruster 30 is Can be broken down into lift along the z-direction and force along the xy plane.
  • the thrust inclination direction (inclination angle ⁇ ) of each thruster 30 is set such that the direction of the component force along the xy plane of the thrust is the same as the counter torque direction.
  • the first thruster 31 is attached to the virtual line P so as to be inclined clockwise by ⁇ when the moving body 100 is viewed from the positive direction of the x-axis.
  • the third thruster 33 disposed on the opposite side of the first thruster 31 with respect to the base body 10 is inclined by ⁇ clockwise relative to the virtual line P when the moving body 100 is viewed from the negative direction of the x axis. It is attached.
  • the second thruster 32 is attached to the virtual line P by being inclined counterclockwise by ⁇ . That is, in FIG. 2, it is inclined to the back side of the page.
  • the fourth thruster 34 disposed on the opposite side of the second thruster 32 with respect to the base body 10 is inclined by ⁇ counterclockwise with respect to the virtual line P when the moving body 100 is viewed from the positive direction of the y-axis. Attached. That is, in FIG. 2, it is inclined toward the front side of the page.
  • the microcomputer unit 50 controls the first thruster 31 to the fourth thruster 34, thereby rotating the rotor 30a of each of the first and third thrusters 31 and 33, and the second and fourth thrusters 32 and 34.
  • the rotational directions of the rotors 30a are opposite to each other, and the rotational speeds of all the rotors 30a are the same.
  • the counter torque and thrust component due to the rotation of the rotor 30a of each of the first and third thrusters 31 and 33, the component force along the xy plane, the rotor 30a of each of the second and fourth thrusters 32 and 34 respectively. Counter torque caused by rotation and component force along the xy plane of thrust can be offset.
  • the power supply to the motor 30b of each thruster 30 is performed from the battery 60 via a corresponding cable (not shown).
  • the microcomputer unit 50 controls the rotation speed and direction of the motor 30b of each thruster 30, that is, controls the magnitude and direction of thrust generated by each thruster 30 via a cable (not shown). Yes.
  • the guard portion 40 is an annular or torus-shaped member having an axis along the z direction as the axis of the rotating body, and covers the base body 10 and the thruster 30, thereby The substrate 10 and the thruster 30 are guarded.
  • the base body 10 is located at the center of the annular guard portion 40 when viewed from the front in the z direction.
  • the guard part 40 in this embodiment has an annular shape having a curvature, and has a shape like a tire whose outer edge is convex outward in the radial direction.
  • the constituent material of the guard part 40 is not specifically limited, it is possible to select a material having elasticity.
  • the moving body 100 to which the guard portion 40 made of such an elastic material is attached can easily travel on the ground surface when traveling in a tire mode described later. Further, due to the spring property of the guard part 40, for example, when the moving body 100 is moved, the vibration load on the structure in the part surrounded by the guard part 40 can be reduced.
  • the moving body 100 can land on the water by making the guard part 40 a floating body that floats on water.
  • the microcomputer unit 50 is a part that detects a command from the outside by the user and the posture of the moving body 100 and instructs the thruster 30 on an appropriate rotation speed and rotation direction.
  • the microcomputer unit 50 is fixed at a position where the center of gravity of the moving body 100 substantially coincides with the center of the base body 10 when the xy plane is viewed from the front side of the base body 10.
  • the microcomputer unit 50 includes an inertia measurement unit 51 and a control unit 52.
  • the inertial measurement unit 51 is configured to include a three-axis (pitching axis, rolling axis, yawing axis) gyroscope and the above-described three-axis acceleration sensor, which are used in general aircraft and the like.
  • the inertial measurement unit 51 is a part that detects the posture of the moving body 100, the angular velocity around each of the three axes, and the acceleration around each of the three axes as information related to the posture of the moving body 100.
  • a vibration gyro sensor that uses the Coriolis force of a vibrating object may be used, but it can be increased by using a mechanical gyroscope that has a rotating disk or a laser ring gyroscope that uses the Sagnac effect. Accuracy and weight can be reduced. Further, as the acceleration sensor, in addition to the mechanical displacement measurement method, an optical method or a semiconductor method using piezoresistance may be employed.
  • the inertial measurement unit 51 is connected to the control unit 52 so as to be communicable, and outputs information related to the posture of the moving body 100 to the control unit 52.
  • the inertial measurement unit 51 has a gyroscope and an acceleration sensor as well as a global positioning system (GPS), a pressure sensor, a flow sensor, a magnetic sensor, a starter tracker, and other devices, so that the attitude of the moving body 100 and the altitude can be increased. It can be measured with high accuracy.
  • GPS global positioning system
  • the control unit 52 estimates the posture of the moving body 100 based on the information related to the posture of the moving body 100 output from the inertial measurement unit 51, and is operated by the estimated posture of the moving body 100 and a user, for example. This is a part for controlling the output (rotation direction and rotation speed) of the motor 30b in each thruster 30 based on a command from the remote controller RC.
  • the control unit 52 can receive a command sent from the remote controller RC through wireless communication between the antenna 53 connected to the control unit 52 and, for example, a remote controller operated by the user.
  • the battery 60 is a generally known secondary battery.
  • the battery 60 supplies power to the motor 30b and the microcomputer unit 50 in the thruster 30.
  • the battery 60 is fixed to the base 10 at a position where the center of gravity of the moving body 100 substantially coincides with the center of the base 10 when the xy plane is viewed from the front.
  • the moving body 100 includes a flight mode in which the moving body 100 moves away from the ground surface against gravity, and a tire mode (rolling mode) in which the guard unit 40 constituting the moving body 100 moves while contacting the ground surface.
  • a flight mode in which the moving body 100 moves away from the ground surface against gravity
  • a tire mode rolling mode
  • the guard unit 40 constituting the moving body 100 moves while contacting the ground surface.
  • control unit 52 controls the rotational speed of the rotor 30a of each thruster 30 and the angle of attack ⁇ of each blade B1 and B2 of the rotor 30a to fly the moving body 100 as the operation mode of the moving body 100. And a tire mode in which the moving body 100 is moved (rolled) while the guard portion 40 is in contact with the ground surface.
  • the control unit 52 controls the rotational speed of the rotor 30a of each thruster 30 and the angle of attack ⁇ of each blade B1 and B2 of the rotor 30a, the attitude of the moving body 100 measured by the inertia measurement unit 51, and the external This is performed based on the deviation from the target posture instructed from the remote controller RC.
  • the controller 52 can realize the control of the rotation speed of the rotor 30a of each thruster 30 and the angle of attack ⁇ of each blade B1 and B2 of the rotor 30a by using, for example, PID control.
  • PID control the moving body control process based on the flight mode and the tire mode will be described.
  • the angle of attack ⁇ of each blade B1 and B2 of the rotor 30a in the thruster 30 may be simply referred to as the angle of attack ⁇ of the thruster 30.
  • control unit 52 receives the instruction signal, starts the moving body control process, and the received instruction signal is one of the flight mode and the tire mode. Is determined (step S1).
  • step S1 When the determination result of step S1 is the flight mode (flight mode of determination of step S1), for example, the control unit 52 changes the rotational speeds of the rotors 30a of all the thrusters 30 with respect to the moving body 100. For example, they are set substantially the same as each other so as to generate lift exceeding the gravity of the body 100 (step S2 in FIG. 5). Further, the control unit 52 sets the attack angles ⁇ of the blades B1 and B2 in the rotors 30a of all the thrusters 30 to the same value other than zero (step S3). Note that the process of step S2 and the process of S3 may be performed at the same time or first.
  • the rotational speeds of the rotors 30a of the thrusters 30 are set to be substantially the same as each other.
  • the thrust from each thruster 30 on the body 100 that is, the lift force can be made the same.
  • step S1 the control unit 52 rotates the rotor 30a of the first thruster 31 and the third thruster 33 clockwise when viewed from the positive direction of the z-axis.
  • the rotors 30a of the second thruster 32 and the fourth thruster 34 are rotated counterclockwise. Thereby, the counter torque by rotation of the rotor 30a can be canceled.
  • each thruster 30 in the present embodiment has its rotation axis C inclined at an inclination angle ⁇ with respect to the z axis or the virtual line P. For this reason, a component force along the xy plane of the thrust generated by each thruster 30 is generated.
  • the inclination directions of the rotation axes C of the second thruster 32 and the fourth thruster 34 are opposite to the inclination directions of the rotation axes C of the first thruster 31 and the third thruster 33, respectively. For this reason, the component force along the xy plane of the thrust generated by the first thruster 31 and the third thruster 33 is also canceled with the component force generated by the second thruster 32 and the fourth thruster 34.
  • control unit 52 can float the moving body 100 in the air without rotating around the z axis.
  • control unit 52 monitors an instruction signal from the remote controller RC and determines what operation instruction is the next instruction (step S4). For example, if the instruction from the remote controller RC is still an ascending instruction, the processes of steps S2 and S3 are continued.
  • the control unit 52 sets the rotational speed of the rotors 30a of all the thrusters 30 to the moving body 100 with the same lift force as the gravity of the moving body 100. For example, they are set substantially the same as each other (step S5). As a result, the moving body 100 can be stopped at a desired point in the air.
  • the control unit 52 increases the rotational speed of the rotor 30a of the first thruster 31 and increases the rotational speed of the rotor 30a of the third thruster 33.
  • the moving body 100 can be rolled clockwise as viewed from the negative direction of the x-axis (step S6).
  • the control unit 52 increases the rotational speed of the rotor 30a of the second thruster 32 and increases the rotational speed of the rotor 30a of the fourth thruster 34.
  • the moving body 100 can be pitched clockwise as viewed from the negative direction of the y-axis (step S7). That is, the control unit 52 appropriately adjusts the number of rotations of the rotor 30a of each thruster 30, so that the roll that is the rotational motion of the moving body 100 around the x axis and the pitch that is the rotational motion around the y axis are Each can be realized.
  • the control unit 52 controls the angle of attack ⁇ of each blade B1 and B2 of the rotor 30a of each thruster 30, thereby moving the moving body.
  • the posture of 100 that is, the thrust direction of each rotor 30a
  • the rotor speed of each thruster 30 is increased as a whole, so that the moving body 100 is Translational movement can be performed in the translational direction (step S8).
  • the control unit 52 controls the rotational speed of the rotors 30a of all the thrusters 30, for example, to move the lift generated by the thrusters 30 to the movement Lower than the gravity of the body 100 (step S9). As a result, the moving body 100 can be lowered.
  • the control unit 52 After executing the processing of steps S5 to S9, the control unit 52 returns to the processing of step S4 and repeats the instruction signal determination processing.
  • the moving body 100 can be freely moved in the air.
  • the control unit 52 recognizes the tire mode instruction.
  • the tire mode is a mode in which the moving body 100 is rotated around the z-axis while the guard unit 40 is in contact with the ground surface.
  • the control unit 52 estimates the current posture of the moving body 100 based on the information regarding the posture of the moving body 100 output from the inertial measurement unit 51 (FIG. 6, step S10). Normally, the moving body 100 is in a state of landing (initial state) with its xy plane parallel to a surface such as the ground surface.
  • control unit 52 executes a process for causing the moving body 100 to transition from the initial state to the inverted state (step S11). Note that a period until the moving body 100 moves from the initial state to the inverted state is defined as a transient period.
  • the control unit 52 rotates the rotor 30a of the fourth thruster 34 at a predetermined angle of attack ⁇ and a predetermined number of rotations in the same manner as in the flight mode, and thrusts in the positive z-axis direction.
  • Is generated (step S11a) and the angle of attack ⁇ of the rotor 30a of each of the first to third thrusters 31 to 33 is set to zero degrees and rotated to make the thrust zero (step S11b).
  • the moving body 100 rotates around the x axis. That is, an attempt is made to transition to the inverted state with the guard portion 40 in contact with the ground surface.
  • the rotor 30a of the fourth thruster 34 corresponds to, for example, the first rotor of the present disclosure.
  • step S11a the control unit 52 makes the rotational speeds of the rotors 30a of the first thruster 31 and the third thruster 33 larger than the rotational speeds of the rotor 30a of the fourth thruster 34, and distributes the rotational speed by the counter torque. Offset power.
  • the moving body 100 can be inverted from the initial state while preventing rotation around the z-axis.
  • the rotors 30a of the first thruster 31 and the third thruster 33 correspond to, for example, the third and fourth rotors of the present disclosure.
  • the rotor 30a of the second thruster 32 corresponds to the second rotor of the present disclosure.
  • control unit 52 executes a process for maintaining the moving body 100 in the inverted state (steps S12 and S13).
  • step S ⁇ b> 12 based on the information regarding the posture of the moving body 100 output from the inertial measurement unit 51, the control unit 52 indicates that the y-axis is along the vertical direction as the current posture of the moving body 100. Is estimated. At this time, the control unit 52 changes the driving of the rotor 30a of each thruster 30 to maintain the current posture of the moving body 10, that is, the inverted state (step S13).
  • step S13a the control unit 52 continuously generates thrust in the positive z-axis direction from the rotor 30a by continuing the rotation of the rotor 30a of the fourth thruster 34.
  • the control unit 52 changes the rotational speed of the fourth thruster 34 from the initial state, which is the landing state, to the inverted state. You may make it smaller than the rotation speed at the time of transition.
  • the control unit 52 controls the first thruster 31 and the third thruster 33 for the first thruster 31 and the third thruster 33 in which the angle of attack ⁇ is set to zero degrees.
  • the angle of attack ⁇ of each thruster 33 is set to an angle that is opposite to that in the flight mode, and thrust is generated in the negative direction of the z-axis (step S13b). That is, the controller 52 generates a component force in the positive direction of the z axis generated by the rotor 30a of the fourth thruster 34 and the negative direction of the z axis by the rotors 30a of the first and third thrusters 31 and 33, respectively. By setting so as to balance the resultant force directed to, the inverted state of the moving body 100 can be maintained (step S13b).
  • the thrust generated from each thruster 30 acts in the direction of rotating the moving body 100 around the x axis.
  • the frictional force between the ground surface and the guard portion 40 causes the rotation around the x axis.
  • the balance of the moment of force is ensured.
  • the control unit 52 sets the angle of attack ⁇ in the same direction as that in the flight mode for the blades B1 and B2 of the rotor 30a of each second thruster 32, so that the thrust of the second thruster 32 is positive on the z axis. It is also possible to ensure the balance of the moment of force related to rotation around the x-axis by generating in the direction.
  • control unit 52 sets the angles of attack ⁇ of all the thrusters 30 to zero degrees in a state where the moving body 100 is inverted vertically to the ground surface, and the moving body 100 output from the inertial measurement unit 51 is set.
  • the angle of attack ⁇ of the first thruster 31 is adjusted so as to cancel the tilt. That is, when the moving body 100 is alternately rotated and tilted about the x-axis, the control unit 52 may reverse the inclination of the first thruster 31 with respect to the angle of attack ⁇ and cancel each inclination.
  • the moving body 100 is not necessarily in an inverted state in which the y-axis is oriented in the vertical direction.
  • the control unit 52 sets the angle of attack ⁇ and the rotation speed of the first thruster 31 appropriately.
  • the moving body 100 can be stationary in a state where the y-axis is inclined at an arbitrary angle other than 90 degrees with respect to the ground surface.
  • control unit 52 performs a process of rotating and moving the moving body 100 while maintaining the inverted state (step S14).
  • step S14 the control unit 52 performs a process of rotating and moving the moving body 100 while maintaining the inverted state.
  • FIG. 9 it demonstrates supposing the state which the mobile body 100 turned upside down so that the x-axis may follow a perpendicular direction.
  • step S14 the control unit 52, for example, inverts the angle of attack ⁇ of the second thruster 32 and the fourth thruster 34 with respect to the angle of attack ⁇ of the first thruster 31 and the third thruster 33, and the absolute value is
  • the settings are made to be the same, and all the rotors 30a of the thrusters 30 have the same rotational speed.
  • the rotation directions of the second thruster 32 and the fourth thruster 34 are opposite to the rotation directions of the first thruster 31 and the third thruster 33, so The torque is canceled out, and the thrust components in the z direction are canceled out from each other.
  • the component force along the xy plane of the thrust of the thruster 30 is a torque that rotates around the z-axis as shown by the arrow in FIG. Therefore, the moving body 100 can be moved by rolling in the negative direction of the y-axis by the process of step S14 of the control unit 52.
  • step S14 if the sign of the angle of attack ⁇ is reversed for each of the thrusters 30, the control unit 52 performs the process of step S14 to cause the moving body 100 to be positive on the y axis by the torque. It can be rolled by rotating in the direction.
  • the moving body 100 can rotate in an inverted state and run on the ground surface on the basis of the control of the control unit 52. However, you can enter while rolling. Further, the energy for maintaining the posture in which the moving body 100 is in contact with the ground surface in an inverted state is smaller than the energy for allowing the moving body 100 to stand still in the air. Therefore, in addition to flying in the air, the moving body 100 can roll and move on the ground surface with less energy than at the time of flight.
  • the moving body 100 can roll and move while arbitrarily changing the tilt angle with respect to the ground surface in the inverted state, the approach is performed while changing the tilt angle according to the shape of the approach destination. For example, by installing a camera, even if it is difficult for humans to enter, such as disaster sites and unexplored areas, it is possible to enter by itself and obtain image information of the location with the camera. be able to.
  • the inclination angle ⁇ of the thrust generated by the thruster 30 can be arbitrarily set by the designer of the moving body 100. As the inclination angle ⁇ is set larger, the component force along the xy plane of the thrust becomes larger, so that the rotational force in the tire mode can be increased, and the rotational force of the yaw in the flight mode can be increased. However, since the maximum lift of the moving body 100 is reduced when the inclination angle ⁇ is set to be large, the inclination angle ⁇ should be appropriately set based on the payload required for the moving body 100.
  • guard unit 40 with a floating body that floats against water. If comprised in this way, the mobile body 100 can rotate and be self-propelled in the inverted state not only on the ground surface but also on the water.
  • the guard portion 40 in the first embodiment described above has been described with respect to an example in which the guard portion 40 has an annular shape having a curvature, and the outer edge of the guard portion 40 has a shape that is convex outward in the radial direction. It is not limited to.
  • the guard portion 40A has an annular shape with a curvature, and the guard portion 40A has a concave portion 40B whose outer edge is concave in the radial direction. Yes. That is, the guard part 40A is configured to have a shape like a pulley.
  • the moving body 100A having the guard portion 40A according to this modification can be inverted on a rod-like member such as an electric wire by the concave portion 40B on the outer edge of the guard portion 40A. For this reason, the moving body 100A having the guard portion 40A according to the present modification can move while rotating on a bar-like member such as an electric wire in addition to a flat surface. Since the moving body 100A having the guard portion 40 according to this modification can move while rotating on a rod-like or linear member even in a place such as a disaster site where the flat surface cannot be guaranteed. In addition, it is possible to easily conduct surveys of disaster sites while realizing energy saving.
  • the flying body 200 includes a floating ring 110 that floats on water, for example, in addition to the moving body 100 described in the first embodiment.
  • the floating ring 110 is detachably attached to the moving body 100 on the side where the moving body 100 faces the ground surface in the flight mode.
  • the floating ring 110 is suspended from the moving body 100 on the side where the moving body 100 faces the ground surface.
  • the flying body 200 can be dropped after releasing the suspension of the floating ring 110 at an arbitrary position. According to this flying body 200, when the moving body 100 is configured as a floating body, the flying body 200 travels on the water as much as possible to a rescuer who needs to rescue on the water due to a water accident or the like. By approaching the rescuer and separating the float 110, the float 110 can be dropped on the rescuer. In addition, since the flying body 200 is a so-called UAV that can fly unattended, it is possible to perform a rescue operation without exposing the rescuer and other rescue personnel.
  • the floating ring 110 preferably has the same shape as the guard part 40 as shown in FIG.
  • the floating ring 110 in the present embodiment has the same torus shape as that of the guard part 40, and the radius is set substantially the same as that of the guard part 40.
  • the flying body 200 is inverted in the same manner as the moving body 100 of the first embodiment with the buoyancy ring 110 being detachably attached, and moves on the water in addition to the flat surface while rotating. can do. For this reason, it is expected to play an active role in water disaster sites.
  • each thruster 30 has the rotor 30a and the motor 30b individually is shown.
  • each thruster 30X includes a rotor 30a and a pulley 30p, and does not include a motor 30b.
  • the flying body 300 has a single main motor 30d fixed to the base body 10.
  • the main motor 30d is connected to the main pulley 30e, and the main pulley 30e is rotated by the rotation of the main motor 30d. It is like that.
  • the main pulley 30e is connected to a pulley 30p included in each thruster 30 via a belt 30f. The rotation of the main pulley 30e is transmitted to the pulley 30p included in each thruster 30X via the belt 30f.
  • the belt 30f extends from the main motor 30d attached to the base body 10 in two positive and negative directions along the x axis and two positive and negative directions along the y axis, and the rotation of the main pulley 30e is the pulley of each thruster 30X. It is transmitted to 30p. That is, in the flying object 300 in the present embodiment, the rotation of the main motor 30d is used as the motive power for the rotation of the rotors 30a of all the thrusters 30X.
  • the motor 30b used for the plurality of thrusters 30 may have variations in input voltage-rotational speed characteristics due to manufacturing variations and the like, and even if the same voltage is supplied, the motor 30b rotates between the plurality of motors 30b.
  • the numbers may not match exactly.
  • the rotation of the single main motor 30d is transmitted to the rotors 30a of all the thrusters 30X. Variations can be reduced. Therefore, it is possible to stably realize the maneuver of the flying object 300 only by adjusting the angle of attack ⁇ of each rotor 30a without performing the calibration of the rotational speed of each rotor 30a of the thruster 30X.
  • a quadcopter having four thrusters 30 is mainly described, but the number of thrusters 30 is not limited. Specifically, the present invention can also be applied to twin twin copters, six hexacopters, and eight or more multicopters.
  • the number of blades may be three or more.
  • the guard portion 40 may not be an annular shape as long as it can roll in the tire mode.
  • the guard portion 40 may have a shape that can approximate a circle, such as an octagon or a dodecagon.
  • the configuration in which the flying body 200 is provided with the floating ring 110 so as to be detachable is described.
  • the element that is detachably provided is not limited to the floating ring 110.
  • food supplies and building materials may be detachably provided.

Abstract

A mobile unit, which is provided with a plurality of frames formed to extend from a base body (10) and provided with a plurality of thrusters arranged in the same plane, the plurality of thrusters generating a thrust component in a direction perpendicular to the plane and thereby providing lift while the mobile unit is traveling. The orientation of the mobile unit is measured by an inertial measurement unit, and each of the thrusters is controlled by a control unit on the basis of the orientation of the mobile unit measured by the inertial measurement unit. An annular guard portion for rolling is formed so as to surround the base body and the plurality of thrusters. The frames extend between the base body and the guard portion, and each of the thrusters has a rotor (30a) which has a plurality of blades having a variable angle of attack. The thrust vector generated by each of the thrusters is inclined with respect to the direction perpendicular to the plane where the thrusters are arranged.

Description

移動体Moving body
 本発明は、遠隔操作や自動操縦により無人で飛行移動および走行移動の少なくとも一方を行う移動体にする。 The present invention is a moving body that performs at least one of flying movement and traveling movement unattended by remote control or automatic piloting.
 近年、無人飛行体(Unmanned Air Vehicle :UAV)に観測機器を搭載して、例えば災害現場や人間が立ち入ることが困難な危険箇所の状態を観測することが行われている。UAVのひとつであるマルチコプターは、空撮用の飛行体としてしばしば用いられている。 In recent years, an unmanned air vehicle (UAV) has been equipped with an observation device to observe, for example, a disaster site or the state of a dangerous spot that is difficult for humans to enter. A multicopter, which is one of UAVs, is often used as an aerial vehicle.
 例えば、特許文献1に記載の測定用飛行体は、静止画や動画を撮影する撮影部と、測位や環境測定を行う測定部と、この撮影部および測定部を囲む浮体とを備えている。浮体は、飛行体が地上へ落下しても撮影部や測定部などの各種機器を保護し、水上へ落下しても各種機器の水没を防止するものである。 For example, the measurement aircraft described in Patent Document 1 includes a photographing unit that captures still images and moving images, a measuring unit that performs positioning and environment measurement, and a floating body that surrounds the photographing unit and the measuring unit. The floating body protects various devices such as a photographing unit and a measurement unit even when the flying object falls on the ground, and prevents the various devices from being submerged even when the flying object falls on the water.
特開2013-189036号公報JP 2013-189036 A
 しかしながら、特許文献1に記載の測定用飛行体をはじめ、UAVは、撮影などの行動に際して空中での静止を前提としており、機体を空中に維持するための比較的大きなエネルギーが必要であった。 However, UAVs such as the measurement aircraft described in Patent Document 1 are assumed to be stationary in the air for actions such as shooting, and relatively large energy is required to maintain the aircraft in the air.
 また、静止時には機体を地表面に対して略水平にする必要があるため、機体の横幅よりも水平方向に狭い箇所には進入できない虞があった。
 また、従来では、ロータの回転数を制御して推力を制御する飛行体や移動体は知られているが、回転数制御のみでは、飛行体や移動体の動作制御には限界があった。
Further, since the airframe needs to be substantially horizontal with respect to the ground surface when stationary, there is a possibility that it cannot enter a portion narrower in the horizontal direction than the lateral width of the airframe.
Conventionally, flying bodies and moving bodies that control the thrust by controlling the rotational speed of the rotor are known, but the operational control of the flying bodies and the moving body is limited only by the rotational speed control.
 本発明は、上記問題点を鑑みてなされたものであり、ロータの回転数に加えて、他のパラメータを用いることにより、効率的な動作制御を行うことができる移動体を提供することをその目的とする。また、本発明は、上記問題点を鑑みてなされたものであり、水平方向に狭い狭所に対して進入することが可能で、且つ、比較的小さなエネルギーで移動することのできる移動体を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a moving body capable of performing efficient operation control by using other parameters in addition to the rotational speed of the rotor. Objective. The present invention has been made in view of the above problems, and provides a movable body that can enter a narrow space in the horizontal direction and can move with relatively small energy. The purpose is to do.
 ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。 The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate a corresponding relationship with specific means described in the embodiments described later as one aspect, and limit the technical scope of the invention. Not what you want.
 上記目的を達成するために、本発明の第1の態様に関わる移動体は、基体(10)と、
 前記基体から延びて形成された複数のフレーム(20)と、前記複数のフレームそれぞれに設けられ、前記移動体の飛行時において、互いに同一平面内に配置され、該平面に直交する方向に推力の成分を生じることにより揚力を生じさせる複数のスラスタ(30)と、前記移動体の姿勢を計測する慣性計測部(51)と、前記慣性計測部によって計測される前記移動体の姿勢に基づいて前記各スラスタを制御する制御部(52)と、前記基体および前記複数のスラスタを取り囲むように形成された転動用の環状のガード部(40)を備えている。前記フレームは、前記基体と前記ガード部との間に渡設され、前記各スラスタは、迎え角が可変とされた複数のブレード(B1,B2)を有するロータ(30a)を有するとともに、前記各スラスタにより生成される推力のベクトルが、当該各スラスタが配置される前記平面に直交する方向に対して傾斜している。
In order to achieve the above object, a moving body according to the first aspect of the present invention includes a base (10),
A plurality of frames (20) formed extending from the base body, and provided on each of the plurality of frames, are arranged in the same plane when the mobile body is flying, and have thrust in a direction perpendicular to the plane. Based on a plurality of thrusters (30) that generate lift by generating a component, an inertia measurement unit (51) that measures the posture of the moving body, and the posture of the moving body that is measured by the inertia measuring unit A control unit (52) for controlling each thruster, and an annular guard unit (40) for rolling formed so as to surround the base body and the plurality of thrusters. The frame is provided between the base body and the guard portion, and each thruster includes a rotor (30a) having a plurality of blades (B1, B2) whose angle of attack is variable. A thrust vector generated by the thrusters is inclined with respect to a direction orthogonal to the plane on which the thrusters are arranged.
 ところで、この移動体における各スラスタは、対応するスラスタを構成するロータの回転により推力を生じるものである。さらに、ロータを構成する複数のブレードは、その迎え角が可変とされている。迎え角とは複数のブレードの翼弦線と気流との成す角であり、迎え角がほぼゼロ度の場合は該複数のブレードが空を切るため揚力を生じない。一方、迎え角がゼロ度より大きい場合は揚力を生ずる。なお、複数のブレードが対称翼でない場合には迎え角がゼロ度でも揚力を生じることがあるが、ここに示すゼロ度は、いわゆる零揚力角のことを指している。 By the way, each thruster in this moving body generates a thrust by the rotation of the rotor constituting the corresponding thruster. Furthermore, the angle of attack of the plurality of blades constituting the rotor is variable. The angle of attack is an angle formed by chord lines of a plurality of blades and an air flow. When the angle of attack is approximately zero degrees, the plurality of blades cut through the sky, so that no lift is generated. On the other hand, lift occurs when the angle of attack is greater than zero degrees. If a plurality of blades are not symmetrical blades, lift may occur even if the angle of attack is zero degrees, but the zero degree shown here indicates a so-called zero lift angle.
 これによれば、この移動体は、ガード部が地表面に接地した状態で、各スラスタの推力を制御することによって、対応するスラスタが配置される平面が地表面に対して倒立するようにできる。さらに、迎え角を適切に制御することによって、倒立した状態を維持することができる。 According to this, the moving body can invert the plane on which the corresponding thruster is arranged with respect to the ground surface by controlling the thrust of each thruster while the guard portion is in contact with the ground surface. . Furthermore, the inverted state can be maintained by appropriately controlling the angle of attack.
 具体的には、例えば複数のスラスタが配置される移動体の平面が水平な状態において、各スラスタの推力に偏りを生じさせることによって上記移動体の平面を地表面に対して傾斜させることができる。そして、上記の平面が地表面に対して直角に倒立した状態では、あるスラスタの複数のブレードの迎え角をゼロ度に設定する。これにより、そのスラスタは推力を生じないから移動体が倒立状態を維持される。一方、移動体が外乱により倒立状態から傾いた場合には迎え角をゼロ度より大きく設定する。これにより、傾きに対して逆方向に推力を生じさせ、移動体を倒立状態に復帰させることができる。 Specifically, for example, when the plane of the moving body on which a plurality of thrusters are arranged is horizontal, the plane of the moving body can be inclined with respect to the ground surface by causing a bias in the thrust of each thruster. . In the state where the plane is inverted at right angles to the ground surface, the angle of attack of a plurality of blades of a certain thruster is set to zero degrees. Thereby, since the thruster does not generate thrust, the moving body is maintained in an inverted state. On the other hand, when the moving body is tilted from the inverted state due to disturbance, the angle of attack is set to be greater than zero degrees. Thereby, a thrust can be produced in the reverse direction with respect to the inclination, and the moving body can be returned to the inverted state.
 あるいは、上記の平面が地表面に対して直角に倒立した状態において、上記平面の表側およびその裏側に推力を生じるように、あるスラスタのロータを回転させる。これにより、移動体を、外乱に対して安定して倒立状態を維持することができる。 Or, in a state where the plane is inverted at right angles to the ground surface, the rotor of a thruster is rotated so that thrust is generated on the front side and the back side of the plane. Thereby, the moving body can be stably maintained in an inverted state against disturbance.
 さらに、推力を調整することにより上記の平面が地表面に対して任意の角度に傾いた状態で制御することも可能である。そのため水平状態から倒立状態に移行することもできる。 Furthermore, it is possible to control the above-mentioned plane in an inclined state with respect to the ground surface by adjusting the thrust. Therefore, it is possible to shift from the horizontal state to the inverted state.
 さらに、あるスラスタの推力のベクトルが、スラスタが配置される上記平面に直交する方向に対して傾斜しているので、該スラスタの推力は、上記平面に直交する方向への揚力と、上記平面に沿う方向へ力に分解することができる。上記平面に沿う方向を向く分力は、移動体がその上記平面内で回転するトルクとなる。つまり、この移動体は、該スラスタの推力の分力と、ロータの回転に係るカウンタートルクと、の合力によって、上記平面内で回転することができる。すなわち、移動体は、地表面にガード部を接地しながら、回転しつつ移動することができる。 Further, since the thrust vector of a thruster is inclined with respect to the direction orthogonal to the plane on which the thruster is disposed, the thrust of the thruster is applied to the lift in the direction orthogonal to the plane and the plane. It can be decomposed into force along the direction. The component force directed in the direction along the plane is a torque for the moving body to rotate in the plane. That is, the moving body can rotate in the plane by the resultant force of the thrust force of the thruster and the counter torque related to the rotation of the rotor. That is, the moving body can move while rotating while grounding the guard portion on the ground surface.
 このように、この移動体は、倒立した状態で回転して地表面を自走することができる。したがって、この移動体は、重力に直交する水平方向に狭い狭所においても進入することができる。また、移動体が倒立状態で地表面に接地する姿勢を維持するためのエネルギーは、移動体が空中静止するためのエネルギーよりも小さい。よって、この移動体は飛行に較べて小さなエネルギーで移動することができる。 Thus, this moving body can rotate in an inverted state and self-propelled on the ground surface. Therefore, this moving body can enter even in a narrow space that is narrow in the horizontal direction perpendicular to gravity. Further, the energy for maintaining the posture in which the moving body is in contact with the ground surface in an inverted state is smaller than the energy for allowing the moving body to stand still in the air. Therefore, this moving body can move with less energy than flight.
 本発明の第2の態様に関わる移動体は、基体(10)と、この基体から外方に延びる複数のアーム(20)と、前記複数のアームにそれぞれ取り付けられた複数のスラスタであり、各スラスタは、迎え角が可変な複数のブレード(B1、B2)を有するロータ(30a)を備えており、該ロータの駆動により、前記移動体に対する推力を、所定の第1の方向の第1の分力および前記第1の方向とは異なる所定の第2の方向の第2の分力に分割可能に生成する複数のスラスタ(30)と、前記基体および前記複数のアームを取り囲む転動用の転動体(40)と、前記移動体の姿勢を計測する慣性計測部(51)と、前記慣性計測部によって計測される前記移動体の姿勢に基づいて、前記各ロータの回転数および当該各ロータの複数のブレードの迎え角をそれぞれ制御することにより、前記移動体の飛行および前記転動体を介した走行移動の内のどちらか一方を選択して実行する制御部52と、を備えている。 The moving body according to the second aspect of the present invention includes a base body (10), a plurality of arms (20) extending outward from the base body, and a plurality of thrusters respectively attached to the plurality of arms. The thruster includes a rotor (30a) having a plurality of blades (B1, B2) with variable angles of attack, and driving the rotor causes a thrust on the moving body to be generated in a first direction in a predetermined first direction. A plurality of thrusters (30) that can be divided into a component force and a second component force in a predetermined second direction different from the first direction, and a rolling roller that surrounds the base and the plurality of arms. Based on the moving body (40), the inertia measuring unit (51) for measuring the posture of the moving body, and the posture of the moving body measured by the inertia measuring unit, the rotational speed of each rotor and the rotor Multiple blades By controlling the angle of attack, respectively, and a, a control unit 52 which selects and executes either of the travel movement through flight and the rolling element of the movable body.
 上述したように、制御部は、前記慣性計測部によって計測される前記移動体の姿勢に基づいて、前記各ロータの回転数および当該各ロータの複数のブレードの迎え角をそれぞれ制御することにより、前記移動体の飛行および前記転動体を介した走行移動の内のどちらか一方を選択して実行する。この結果、前記各ロータの回転数に加えて、当該各ロータの複数のブレードの迎え角を加味することにより、移動体の動作制御を効率よく行うことができる。 As described above, the control unit controls the number of rotations of each rotor and the angle of attack of a plurality of blades of each rotor based on the posture of the moving body measured by the inertia measurement unit, respectively. Either one of the flight of the moving body and the traveling movement through the rolling element is selected and executed. As a result, in addition to the number of rotations of each rotor, the angle of attack of the plurality of blades of each rotor can be taken into account, so that the operation control of the moving body can be performed efficiently.
本発明の第1実施形態における移動体の概略構成を示す上面図である。It is a top view which shows schematic structure of the moving body in 1st Embodiment of this invention. 図1に示す飛行体の概略構成を示す該飛行体の側面図である。FIG. 2 is a side view of the flying object showing a schematic configuration of the flying object shown in FIG. 1. 図1に示すスラスタの詳細な構成を示す側面図である。It is a side view which shows the detailed structure of the thruster shown in FIG. 図1に示すマイコン部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the microcomputer part shown in FIG. 図4に示す制御部の移動体制御処理の手順の一例を概略的に示すフローチャートである。It is a flowchart which shows roughly an example of the procedure of the mobile body control process of the control part shown in FIG. 図4に示す制御部の移動体制御処理の手順の一例を概略的に示すフローチャートである。It is a flowchart which shows roughly an example of the procedure of the mobile body control process of the control part shown in FIG. 図1に示す移動体の初期状態から倒立状態の間の過渡期間における移動体の動作を説明する図である。It is a figure explaining operation | movement of the moving body in the transition period between the initial state of the moving body shown in FIG. 1, and an inverted state. 図1に示す移動体の状態が倒立状態に維持されている場合の移動体の動作を説明する図である。It is a figure explaining operation | movement of a moving body when the state of the moving body shown in FIG. 1 is maintained in the inverted state. 図1に示す移動体の状態が転倒状態を維持したまま走行する状態である場合の移動体の動作を説明する図である。It is a figure explaining operation | movement of a moving body when the state of the moving body shown in FIG. 1 is a state which drive | works while maintaining a falling state. 第1実施形態の変形例にかかる移動体の概略構成を示す側面図である。It is a side view which shows schematic structure of the moving body concerning the modification of 1st Embodiment. 本発明の第2実施形態にかかる移動体の概略構成を示す側面図である。It is a side view which shows schematic structure of the moving body concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかる移動体の概略構成を示す側面図である。It is a side view which shows schematic structure of the moving body concerning 3rd Embodiment of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。また、移動体に固定された座標系として、x軸と、x軸に直交するy軸と、x軸およびy軸に対して一次独立なz軸を定義する。なお、x軸の正の向き、y軸の正の向きに対して、これらの外積が向く方向をz軸の正の方向と定義して以下説明する。この座標系は、地表面に対して固定ではなく、移動体の姿勢に依存して変動する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same reference numerals are given to the same or equivalent parts. In addition, as a coordinate system fixed to the moving body, an x-axis, a y-axis orthogonal to the x-axis, and a z-axis that is primarily independent of the x-axis and the y-axis are defined. In the following description, the direction in which these outer products face the positive direction of the x axis and the positive direction of the y axis is defined as the positive direction of the z axis. This coordinate system is not fixed with respect to the ground surface, but varies depending on the posture of the moving body.
 (第1実施形態)
 最初に、図1~図4を参照して、本実施形態に係る移動体100の概略構成について説明する。図1はxy平面を正面視したときの移動体100の上面図であり、図2はyz平面を正面視したときの移動体100の側面図である。
(First embodiment)
First, a schematic configuration of the moving body 100 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a top view of the moving body 100 when the xy plane is viewed from the front, and FIG. 2 is a side view of the moving body 100 when the yz plane is viewed from the front.
 本実施形態における移動体100は、多回転翼式の無人飛行体(Unmanned Air Vehicle :UAV)として機能することが可能であり、その用途として、例えば空撮や要救助者の救助などがある。 The moving body 100 in this embodiment can function as an unmanned air vehicle (UAV) of a multi-rotor wing type, and its uses include, for example, aerial photography and rescue of a rescuer.
 図1に示すように、移動体100は、基体10と、フレーム20と、複数のスラスタ30と、転動体を構成するガード部40と、マイコン部50と、を備えている。また、図2に示すように、バッテリ60を備えている。第1実施形態に関わる移動体100は、後述するように、4つのスラスタ30を備えた、いわゆるクアッドコプターとして機能する。 As shown in FIG. 1, the moving body 100 includes a base body 10, a frame 20, a plurality of thrusters 30, a guard unit 40 that constitutes a rolling element, and a microcomputer unit 50. Moreover, as shown in FIG. The moving body 100 according to the first embodiment functions as a so-called quad copter including four thrusters 30 as described later.
 基体10は、フレーム20を支持し、マイコン部50が載置され、バッテリ60を支持する部材である。なお、基体10にはプラスチック材や金属材を採用することができる。本実施形態における基体10は、図1に示すように、x軸、y軸、z軸に沿った辺から構成される直方体である。後述のフレーム20は、x軸方向とy軸方向にそれぞれ2本ずつ、計4本のアーム状に構成されている。
 すなわち、フレーム20の各アーム状部分は、互い長さが同一であり、その先端がガード部40に達して該ガード部40に接続されている。本実施形態では、xy平面を正面視したとき、基体10、フレーム20、スラスタ30、ガード部40、マイコン部50、バッテリ60を含めた移動体100全体の重心は、基体10の中心に位置している。
The base 10 is a member that supports the frame 20, the microcomputer unit 50 is mounted, and supports the battery 60. Note that a plastic material or a metal material can be used for the base 10. As shown in FIG. 1, the base body 10 in the present embodiment is a rectangular parallelepiped composed of sides along the x-axis, y-axis, and z-axis. The frame 20, which will be described later, is configured in a total of four arms, two each in the x-axis direction and the y-axis direction.
That is, the arm-shaped portions of the frame 20 have the same length, and the tips thereof reach the guard portion 40 and are connected to the guard portion 40. In this embodiment, when the xy plane is viewed from the front, the center of gravity of the entire moving body 100 including the base body 10, the frame 20, the thruster 30, the guard part 40, the microcomputer part 50, and the battery 60 is located at the center of the base body 10. ing.
 すなわち、フレーム20は、図1に示すように、基体10におけるx軸に沿った第1の側面からy軸の正の方向に延びる第1フレーム21と、基体10におけるy軸に沿った第2の側面からx軸の負の方向に延びる第2フレーム22と、基体10における第1の側面に対向する第3の側面からy軸に沿って第1フレーム21と反対方向(y軸の負の方向)に延びる第3フレーム23と、基体10における第2の側面に対向する第4の側面からx軸に沿って第2フレーム22と反対方向(x軸の正の方向)に延びる第4フレーム24とを有している。以降、第1フレーム21~第4フレーム24をフレーム20と総称することがある。 That is, as shown in FIG. 1, the frame 20 includes a first frame 21 extending in the positive direction of the y axis from the first side surface along the x axis of the base 10 and a second of the base 10 along the y axis. The second frame 22 extending in the negative x-axis direction from the side surface of the substrate 10 and the third side surface opposite to the first side surface of the substrate 10 from the first frame 21 in the opposite direction along the y-axis (negative y-axis A fourth frame extending in the direction opposite to the second frame 22 along the x axis from the fourth side surface facing the second side surface of the substrate 10 (the positive direction of the x axis). 24. Hereinafter, the first frame 21 to the fourth frame 24 may be collectively referred to as the frame 20.
 すなわち、4つのフレーム20は、基体10から四方に延びて後述のガード部40との間に渡設されている。つまり、後述するようにガード部40は円環状を有しており、フレーム20は、図1に示すように、この円環状のガード部40の直径方向に、十字に交わるように構成されている。
 スラスタ30は、各フレーム20の一部に取り付けられている。例えば、本実施形態では、スラスタ30の基体10の中心からの取り付け位置(すなわち、基体10の中心からの長さ)は、それぞれ等しいものとなっている。
That is, the four frames 20 extend from the base body 10 in all directions and are provided between a guard unit 40 described later. That is, as will be described later, the guard portion 40 has an annular shape, and the frame 20 is configured to cross in the diameter direction of the annular guard portion 40 as shown in FIG. .
The thruster 30 is attached to a part of each frame 20. For example, in the present embodiment, the attachment position of the thruster 30 from the center of the base body 10 (that is, the length from the center of the base body 10) is the same.
 各フレーム20に取り付けられたスラスタ30は、例えば、ロータ30aを有しており、このロータ30aの回転により推力を生じるものである。図2に示すように、スラスタ30は、ロータ30aと、ロータ30aを回転させるためのモータ30bと、を有している。スラスタ30は、後述するマイコン部50の制御に基づいて、ロータ30aの回転数を変更可能に構成されており、回転数に対応した推力を発揮できるようになっている。すなわち、ロータ30aの回転数が大きくなるにしたがって推力が向上する。より具体的に言えば、マイコン部50は、ロータ30aの回転数を調整することにより、スラスタ30により生成される推力の大きさを自在に調整することができる。 The thruster 30 attached to each frame 20 has, for example, a rotor 30a, and thrust is generated by the rotation of the rotor 30a. As shown in FIG. 2, the thruster 30 has a rotor 30a and a motor 30b for rotating the rotor 30a. The thruster 30 is configured to be able to change the rotational speed of the rotor 30a based on the control of the microcomputer unit 50, which will be described later, and can exert a thrust corresponding to the rotational speed. That is, thrust increases as the rotational speed of the rotor 30a increases. More specifically, the microcomputer unit 50 can freely adjust the magnitude of the thrust generated by the thruster 30 by adjusting the rotational speed of the rotor 30a.
 また、本実施形態における各自ロータ30aは、図1および図3に示すように、回転軸Cと、この回転軸Cからその径方向に伸びる2つのブレードB1,B2を有している。ブレードB1,B2は、回転軸Cにおける対向する対称的な側面からそれぞれ反対方向に延びており、これが回転軸Cを軸として回転軸Cとともに一体に回転することによって推力を生じるようになっている。なお、図3では、ブレードB1を実線で示し、回転軸Cに対してブレードB1と反対側に突出したブレードB2を破線で示している。 Further, each rotor 30a in this embodiment has a rotating shaft C and two blades B1 and B2 extending in the radial direction from the rotating shaft C, as shown in FIGS. The blades B1 and B2 extend in opposite directions from opposing symmetrical side surfaces on the rotation axis C, and generate thrust by rotating together with the rotation axis C about the rotation axis C. . In FIG. 3, the blade B <b> 1 is indicated by a solid line, and the blade B <b> 2 protruding to the opposite side of the rotation axis C from the blade B <b> 1 is indicated by a broken line.
 ブレードB1,B2が回転すると、ブレードB1,B2は、相対的に回転の周方向に気流を受ける。ブレードB1,B2の翼弦線Lは、その気流に対して、互いに逆向きで角度θで傾いている。本実施形態における各スラスタ30は、マイコン部50の制御により、各ブレードB1およびB2の角度θを可変にする可変機構30cを有している。すなわち、マイコン部50の制御により、可変機構30cは、各ブレードB1およびB2の角度θを失速迎え角以内の所定の値に設定することにより、角度θに対応した自在な推力を得ることができる。以降、角度θを迎え角(ピッチ角)θと称する。このように、スラスタ30は、各ブレードB1およびB2の迎え角θを可変設定できる可変ピッチロータとして構成されている。なお、本実施形態における各ブレードB1,B2は対称翼であり、回転による推力がほぼなくなる零揚力角に相当する迎え角θはゼロ度である。 When the blades B1 and B2 rotate, the blades B1 and B2 receive airflow in the circumferential direction of rotation. The chord lines L of the blades B1 and B2 are inclined at an angle θ in opposite directions with respect to the airflow. Each thruster 30 in the present embodiment has a variable mechanism 30c that makes the angle θ of each blade B1 and B2 variable under the control of the microcomputer unit 50. That is, under the control of the microcomputer unit 50, the variable mechanism 30c can obtain a free thrust corresponding to the angle θ by setting the angle θ of each blade B1 and B2 to a predetermined value within the stall angle. . Hereinafter, the angle θ is referred to as an angle of attack (pitch angle) θ. Thus, the thruster 30 is configured as a variable pitch rotor that can variably set the angle of attack θ of each blade B1 and B2. The blades B1 and B2 in the present embodiment are symmetric wings, and the angle of attack θ corresponding to the zero lift angle at which the thrust due to rotation is almost eliminated is zero degrees.
 本実施形態におけるスラスタ30は、4つのスラスタ、すなわち、第1スラスタ31、第2スラスタ32、第3スラスタ33、第4スラスタ34とから構成されている。上述したように、第1スラスタ31は第1フレーム21の所定部位に、第2スラスタ32は第2フレーム22の所定部位に、第3スラスタ33は第3フレーム23の所定部位に、第4スラスタ34は第4フレーム24の所定部位に、それぞれ固定されている。つまり、スラスタ30は、図1に示すz軸の正の方向から移動体100を正面視すると、第1スラスタ31、第2スラスタ32、第3スラスタ33、第4スラスタ34は反時計回りに配置されている。各スラスタ30は、対応するフレーム20のうち基体10からガード部40に至る途中に配置されており、4つのスラスタ30はxy平面に沿う平面内に存在している。 The thruster 30 in the present embodiment includes four thrusters, that is, a first thruster 31, a second thruster 32, a third thruster 33, and a fourth thruster 34. As described above, the first thruster 31 is a predetermined portion of the first frame 21, the second thruster 32 is a predetermined portion of the second frame 22, the third thruster 33 is a predetermined portion of the third frame 23, and the fourth thruster. Reference numerals 34 are respectively fixed to predetermined portions of the fourth frame 24. That is, when the moving body 100 is viewed from the positive direction of the z-axis shown in FIG. 1, the thruster 30 is arranged such that the first thruster 31, the second thruster 32, the third thruster 33, and the fourth thruster 34 are arranged counterclockwise. Has been. Each thruster 30 is disposed in the middle of the corresponding frame 20 from the base 10 to the guard unit 40, and the four thrusters 30 exist in a plane along the xy plane.
 そして、各フレーム20に対して、対応するスラスタ30は、図2に示すように、そのモータ30bの回転軸Cの方向、すなわち、スラスタ30の推力の向き、言い換えれば、スラスタ30の推力のベクトルが、xy平面に直交する仮想線Pに対して傾斜角φだけ傾いて取り付けられている。スラスタ30の、xy平面、すなわち、ロータ30aを含む平面、に直交する仮想線Pに対する傾斜方向は、ロータ30aの回転方向に基づいて決められている。 For each frame 20, the corresponding thruster 30 is, as shown in FIG. 2, the direction of the rotation axis C of the motor 30b, that is, the thrust direction of the thruster 30, in other words, the thrust vector of the thruster 30. Are attached to the virtual line P orthogonal to the xy plane by an inclination angle φ. The inclination direction of the thruster 30 with respect to the virtual line P orthogonal to the xy plane, that is, the plane including the rotor 30a, is determined based on the rotation direction of the rotor 30a.
 各スラスタ30は、そのロータ30aが回転することによりカウンタートルクを生じる。各スラスタ30により生じたカウンタートルクは、移動体100を、そのロータ30aの回転方向とは逆に回転させる方向に作用する。このとき、各スラスタ30の推力の向き、言い換えれば、スラスタ30の推力のベクトルが、xy平面に直交する仮想線Pに対して傾斜角φだけ傾いて取り付けられているため、各スラスタ30の推力は、z方向に沿う揚力と、xy平面に沿う力に分解することができる。各スラスタ30の推力の傾斜方向(傾斜角φ)は、その推力のxy平面に沿う分力の方向がカウンタートルクの方向と同一になるように設定されている。 Each thruster 30 generates counter torque as its rotor 30a rotates. The counter torque generated by each thruster 30 acts in a direction in which the moving body 100 is rotated in the direction opposite to the rotation direction of the rotor 30a. At this time, since the thrust direction of each thruster 30, in other words, the thrust vector of the thruster 30 is attached to the virtual line P orthogonal to the xy plane by an inclination angle φ, the thrust of each thruster 30 is Can be broken down into lift along the z-direction and force along the xy plane. The thrust inclination direction (inclination angle φ) of each thruster 30 is set such that the direction of the component force along the xy plane of the thrust is the same as the counter torque direction.
 具体的には、第1スラスタ31は、移動体100をx軸の正の方向から見た場合、仮想線Pに対して時計回りにφだけ傾いて取り付けられている。基体10に対して第1スラスタ31と反対側に配置される第3スラスタ33は、移動体100をx軸の負の方向から見た場合、仮想線Pに対して時計回りにφだけ傾いて取り付けられている。 Specifically, the first thruster 31 is attached to the virtual line P so as to be inclined clockwise by φ when the moving body 100 is viewed from the positive direction of the x-axis. The third thruster 33 disposed on the opposite side of the first thruster 31 with respect to the base body 10 is inclined by φ clockwise relative to the virtual line P when the moving body 100 is viewed from the negative direction of the x axis. It is attached.
 一方、第2スラスタ32は、移動体100をy軸の負の方向から見た場合、仮想線Pに対して反時計回りにφだけ傾いて取り付けられている。つまり、図2においては紙面奥側に傾斜している。基体10に対して第2スラスタ32と反対側に配置される第4スラスタ34は、移動体100をy軸の正の方向から見た場合、仮想線Pに対して反時計回りにφだけ傾いて取り付けられている。つまり、図2においては紙面手前側に傾斜している。 On the other hand, when the moving body 100 is viewed from the negative direction of the y-axis, the second thruster 32 is attached to the virtual line P by being inclined counterclockwise by φ. That is, in FIG. 2, it is inclined to the back side of the page. The fourth thruster 34 disposed on the opposite side of the second thruster 32 with respect to the base body 10 is inclined by φ counterclockwise with respect to the virtual line P when the moving body 100 is viewed from the positive direction of the y-axis. Attached. That is, in FIG. 2, it is inclined toward the front side of the page.
 例えば、マイコン部50は、第1スラスタ31~第4スラスタ34をそれぞれ制御することにより、第1および第3スラスタ31および33それぞれのロータ30aの回転方向と、第2および第4スラスタ32および34それぞれのロータ30aの回転方向を、互いに逆向きとし、かつ全てのロータ30aの回転数を同一とする。この制御により、第1および第3のスラスタ31および33それぞれのロータ30aの回転に起因するカウンタートルクおよび推力のxy平面沿う分力と、第2および第4のスラスタ32および34それぞれのロータ30aの回転に起因するカウンタートルクおよび推力のxy平面沿う分力とを相殺することができる。 For example, the microcomputer unit 50 controls the first thruster 31 to the fourth thruster 34, thereby rotating the rotor 30a of each of the first and third thrusters 31 and 33, and the second and fourth thrusters 32 and 34. The rotational directions of the rotors 30a are opposite to each other, and the rotational speeds of all the rotors 30a are the same. By this control, the counter torque and thrust component due to the rotation of the rotor 30a of each of the first and third thrusters 31 and 33, the component force along the xy plane, the rotor 30a of each of the second and fourth thrusters 32 and 34, respectively. Counter torque caused by rotation and component force along the xy plane of thrust can be offset.
 各スラスタ30のモータ30bに対する電力の供給は、バッテリ60から対応する図示しないケーブルを介して行われる。また、上記マイコン部50は、各スラスタ30のモータ30bの回転数および回転方向の制御、すなわち、各スラスタ30により生成される推力の大きさおよび方向の制御を、図示しないケーブルを介して行っている。 The power supply to the motor 30b of each thruster 30 is performed from the battery 60 via a corresponding cable (not shown). The microcomputer unit 50 controls the rotation speed and direction of the motor 30b of each thruster 30, that is, controls the magnitude and direction of thrust generated by each thruster 30 via a cable (not shown). Yes.
 ガード部40は、例えば、図1に示すように、z方向に沿う軸を回転体の軸とするような円環状、すなわちトーラス状の部材であり、基体10およびスラスタ30を覆うことにより、該基体10およびスラスタ30をガードしている。上記したように、基体10は、z方向から正面視したときに、円環状のガード部40の中心に位置している。なお、本実施形態におけるガード部40は、曲率を有する円環形状を有し、その外縁が径方向外側に凸状になっているタイヤのような形状を成している。ガード部40の構成材料はとくに限定しないが、弾性を有する材料を選択することが可能である。このような弾性材料で構成されたガード部40が取り付けられた移動体100は、後述するタイヤモードにおける走行の際に、地表面を走行し易くなる。また、ガード部40のスプリング性により、例えば、移動体100の移動時において、ガード部40に囲まれた部分の構造物への振動負荷を軽減できる。 For example, as shown in FIG. 1, the guard portion 40 is an annular or torus-shaped member having an axis along the z direction as the axis of the rotating body, and covers the base body 10 and the thruster 30, thereby The substrate 10 and the thruster 30 are guarded. As described above, the base body 10 is located at the center of the annular guard portion 40 when viewed from the front in the z direction. In addition, the guard part 40 in this embodiment has an annular shape having a curvature, and has a shape like a tire whose outer edge is convex outward in the radial direction. Although the constituent material of the guard part 40 is not specifically limited, it is possible to select a material having elasticity. The moving body 100 to which the guard portion 40 made of such an elastic material is attached can easily travel on the ground surface when traveling in a tire mode described later. Further, due to the spring property of the guard part 40, for example, when the moving body 100 is moved, the vibration load on the structure in the part surrounded by the guard part 40 can be reduced.
 さらに言えば、ガード部40を水に浮く浮体とすることにより、移動体100は、水上に着水可能になる。 Furthermore, the moving body 100 can land on the water by making the guard part 40 a floating body that floats on water.
 マイコン部50は、ユーザによる外部からの指令や、移動体100の姿勢を検出し、スラスタ30に対して適切な回転数および回転方向を指示する部分である。マイコン部50は、基体10において、xy平面を正面視したとき、移動体100の重心が基体10の中心とほぼ一致するような位置に固定されている。マイコン部50は、図4に示すように、慣性計測部51と制御部52とを有している。 The microcomputer unit 50 is a part that detects a command from the outside by the user and the posture of the moving body 100 and instructs the thruster 30 on an appropriate rotation speed and rotation direction. The microcomputer unit 50 is fixed at a position where the center of gravity of the moving body 100 substantially coincides with the center of the base body 10 when the xy plane is viewed from the front side of the base body 10. As shown in FIG. 4, the microcomputer unit 50 includes an inertia measurement unit 51 and a control unit 52.
 慣性計測部51は、一般の航空機等に用いられるような、3軸(ピッチング軸、ローリング軸、ヨーイング軸)のジャイロスコープと上記3軸の加速度センサを含んで構成されている。慣性計測部51は、移動体100の姿勢、上記3軸それぞれの回りの角速度および上記3軸それぞれの回りの加速度を、上記移動体100の姿勢に関する情報として検出する部分である。ジャイロスコープとしては、振動している物体のコリオリ力を利用した振動ジャイロセンサを使っても良いが、回転円盤を有する機械式ジャイロスコープや、サニャック効果を利用するレーザーリングジャイロスコープを用いることによって高精度化と軽量化が可能である。また、加速度センサとしては、機械的変位測定方式のほか、光学的な方式やピエゾ抵抗を利用した半導体方式を採用しても良い。 The inertial measurement unit 51 is configured to include a three-axis (pitching axis, rolling axis, yawing axis) gyroscope and the above-described three-axis acceleration sensor, which are used in general aircraft and the like. The inertial measurement unit 51 is a part that detects the posture of the moving body 100, the angular velocity around each of the three axes, and the acceleration around each of the three axes as information related to the posture of the moving body 100. As a gyroscope, a vibration gyro sensor that uses the Coriolis force of a vibrating object may be used, but it can be increased by using a mechanical gyroscope that has a rotating disk or a laser ring gyroscope that uses the Sagnac effect. Accuracy and weight can be reduced. Further, as the acceleration sensor, in addition to the mechanical displacement measurement method, an optical method or a semiconductor method using piezoresistance may be employed.
 慣性計測部51は、図4に示すように、制御部52に通信可能に接続されており、移動体100の姿勢に関する情報を制御部52に出力する。慣性計測部51は、ジャイロおよび加速度センサの他、全地球測位システム(GPS)や圧力センサ、流量センサ、磁気センサ、スタートラッカ等のデバイスを有していると移動体100の姿勢さらには高度を高精度で計測することができる。 As shown in FIG. 4, the inertial measurement unit 51 is connected to the control unit 52 so as to be communicable, and outputs information related to the posture of the moving body 100 to the control unit 52. The inertial measurement unit 51 has a gyroscope and an acceleration sensor as well as a global positioning system (GPS), a pressure sensor, a flow sensor, a magnetic sensor, a starter tracker, and other devices, so that the attitude of the moving body 100 and the altitude can be increased. It can be measured with high accuracy.
 制御部52は、慣性計測部51から出力される移動体100の姿勢に関する情報に基づいて、移動体100の姿勢を推定し、推定された移動体100の姿勢、およびユーザ等により操作された例えばリモートコントローラRCからの指令に基づいて、各スラスタ30におけるモータ30bの出力(回転方向および回転速度)を制御する部分である。制御部52は、該制御部52に接続されたアンテナ53とユーザが操作する例えばリモートコントローラとの間の無線通信により、リモートコントローラRCから送られた指令を受信することができる。 The control unit 52 estimates the posture of the moving body 100 based on the information related to the posture of the moving body 100 output from the inertial measurement unit 51, and is operated by the estimated posture of the moving body 100 and a user, for example. This is a part for controlling the output (rotation direction and rotation speed) of the motor 30b in each thruster 30 based on a command from the remote controller RC. The control unit 52 can receive a command sent from the remote controller RC through wireless communication between the antenna 53 connected to the control unit 52 and, for example, a remote controller operated by the user.
 バッテリ60は、一般的に知られた二次電池である。バッテリ60はスラスタ30におけるモータ30bやマイコン部50に電源を供給している。バッテリ60は、基体10において、xy平面を正面視したとき、移動体100の重心が基体10の中心とほぼ一致するような位置に固定されている。 The battery 60 is a generally known secondary battery. The battery 60 supplies power to the motor 30b and the microcomputer unit 50 in the thruster 30. The battery 60 is fixed to the base 10 at a position where the center of gravity of the moving body 100 substantially coincides with the center of the base 10 when the xy plane is viewed from the front.
 次に、図5~図9を参照して、本実施形態における移動体100の動作および作用効果について説明する。 Next, with reference to FIGS. 5 to 9, the operation and effect of the moving body 100 in this embodiment will be described.
 この移動体100は、移動体100が重力に逆らって地表面から離れる飛行モードと、移動体100を構成するガード部40が地表面に接触しつつ移動するタイヤモード(転動モード)と、を有している。 The moving body 100 includes a flight mode in which the moving body 100 moves away from the ground surface against gravity, and a tire mode (rolling mode) in which the guard unit 40 constituting the moving body 100 moves while contacting the ground surface. Have.
 言い換えれば、制御部52は、各スラスタ30のロータ30aの回転数およびロータ30aの各ブレードB1およびB2の迎え角θを制御することにより、移動体100の動作モードとして、該移動体100を飛行させる飛行モードと、該移動体100を、そのガード部40が地表面に接触しつつ移動(転動)するタイヤモードと、をそれぞれ実行する。 In other words, the control unit 52 controls the rotational speed of the rotor 30a of each thruster 30 and the angle of attack θ of each blade B1 and B2 of the rotor 30a to fly the moving body 100 as the operation mode of the moving body 100. And a tire mode in which the moving body 100 is moved (rolled) while the guard portion 40 is in contact with the ground surface.
 すなわち、制御部52は、各スラスタ30のロータ30aの回転数およびロータ30aの各ブレードB1およびB2の迎え角θの制御を、慣性計測部51により計測された移動体100の姿勢と、外部のリモートコントローラRCから指示された目標姿勢との偏差に基づいて、実施する。制御部52は、上記各スラスタ30のロータ30aの回転数およびロータ30aの各ブレードB1およびB2の迎え角θの制御を、例えばPID制御等を用いることにより、実現することができる。以下、飛行モードおよびタイヤモードに基づく移動体制御処理について、説明する。なお、スラスタ30におけるロータ30aの各ブレードB1およびB2の迎え角θを、単にスラスタ30の迎え角θと記載する場合もある。 That is, the control unit 52 controls the rotational speed of the rotor 30a of each thruster 30 and the angle of attack θ of each blade B1 and B2 of the rotor 30a, the attitude of the moving body 100 measured by the inertia measurement unit 51, and the external This is performed based on the deviation from the target posture instructed from the remote controller RC. The controller 52 can realize the control of the rotation speed of the rotor 30a of each thruster 30 and the angle of attack θ of each blade B1 and B2 of the rotor 30a by using, for example, PID control. Hereinafter, the moving body control process based on the flight mode and the tire mode will be described. The angle of attack θ of each blade B1 and B2 of the rotor 30a in the thruster 30 may be simply referred to as the angle of attack θ of the thruster 30.
 例えば、リモートコントローラRCから動作モードの指示信号が送られてきた際、制御部52は、その指示信号を受信し、移動体制御処理を開始し、受信した指示信号が飛行モードおよびタイヤモードの何れを示しているかを判断する(ステップS1)。 For example, when an operation mode instruction signal is sent from the remote controller RC, the control unit 52 receives the instruction signal, starts the moving body control process, and the received instruction signal is one of the flight mode and the tire mode. Is determined (step S1).
 ステップS1の判断の結果が飛行モードである場合(ステップS1の判断の結果飛行モード)、制御部52は、例えば、すべてのスラスタ30のロータ30aの回転数を、移動体100に対し、該移動体100の重力を超える揚力を生じるように、例えば互いに略同一に設定する(図5、ステップS2)。また、制御部52は、すべてのスラスタ30のロータ30aにおける各ブレードB1およびB2の迎え角θを、ゼロ以外の互いに同一の値に設定する(ステップS3)。なお、ステップS2の処理およびS3の処理は、同時でも、どちらを先に行ってもよい。 When the determination result of step S1 is the flight mode (flight mode of determination of step S1), for example, the control unit 52 changes the rotational speeds of the rotors 30a of all the thrusters 30 with respect to the moving body 100. For example, they are set substantially the same as each other so as to generate lift exceeding the gravity of the body 100 (step S2 in FIG. 5). Further, the control unit 52 sets the attack angles θ of the blades B1 and B2 in the rotors 30a of all the thrusters 30 to the same value other than zero (step S3). Note that the process of step S2 and the process of S3 may be performed at the same time or first.
 すなわち、すべてのスラスタ30のロータ30aにおける各ブレードB1およびB2の迎え角θが互いに同一の値に設定された状態で、スラスタ30のロータ30aの回転数を互いに略同一に設定することにより、移動体100に対する各スラスタ30からの推力、すなわち揚力を同一にすることができる。
 この制御部52の処理により、移動体100は、そのxy平面が地表面と略平行な状態で、空中に浮上する。
That is, when the angle of attack θ of each blade B1 and B2 in the rotors 30a of all the thrusters 30 is set to the same value, the rotational speeds of the rotors 30a of the thrusters 30 are set to be substantially the same as each other. The thrust from each thruster 30 on the body 100, that is, the lift force can be made the same.
By the processing of the control unit 52, the moving body 100 floats in the air with its xy plane being substantially parallel to the ground surface.
 また、ステップS1の処理において、制御部52は、図1に示すように、第1スラスタ31と第3スラスタ33のロータ30aを、z軸の正の方向から見た場合、時計回りに回転させ、第2スラスタ32と第4スラスタ34のロータ30aを、反時計回りに回転させる。これにより、ロータ30aの回転によるカウンタートルクを相殺することができる。 Further, in the process of step S1, as shown in FIG. 1, the control unit 52 rotates the rotor 30a of the first thruster 31 and the third thruster 33 clockwise when viewed from the positive direction of the z-axis. The rotors 30a of the second thruster 32 and the fourth thruster 34 are rotated counterclockwise. Thereby, the counter torque by rotation of the rotor 30a can be canceled.
 このとき、本実施形態における各スラスタ30は、その回転軸Cがz軸あるいは仮想線Pに対して傾斜角φで傾斜している。このため、各スラスタ30により生成される推力のxy平面に沿う分力が生じる。しかしながら、上記したように、第2スラスタ32および第4スラスタ34それぞれの回転軸Cの傾斜方向は、第1スラスタ31および第3スラスタ33それぞれの回転軸Cの傾斜方向とは互いに逆である。このため、第1スラスタ31および第3スラスタ33により生成される推力のxy平面に沿う分力も、第2スラスタ32および第4スラスタ34により生成される分力と相殺される。この結果、移動体100に対し、z軸まわりの回転運動であるヨーを生じさせることを回避することができる。すなわち、制御部52は、移動体100を、z軸まわりに回転させることなく、空中に浮上させることができる。 At this time, each thruster 30 in the present embodiment has its rotation axis C inclined at an inclination angle φ with respect to the z axis or the virtual line P. For this reason, a component force along the xy plane of the thrust generated by each thruster 30 is generated. However, as described above, the inclination directions of the rotation axes C of the second thruster 32 and the fourth thruster 34 are opposite to the inclination directions of the rotation axes C of the first thruster 31 and the third thruster 33, respectively. For this reason, the component force along the xy plane of the thrust generated by the first thruster 31 and the third thruster 33 is also canceled with the component force generated by the second thruster 32 and the fourth thruster 34. As a result, it is possible to avoid causing the moving body 100 to generate yaw, which is a rotational motion around the z axis. That is, the control unit 52 can float the moving body 100 in the air without rotating around the z axis.
 移動体100を浮上させている状態において、制御部52は、リモートコントローラRCからの指示信号をモニタし、次の指示が何の動作指示か判断している(ステップS4)。
 例えば、リモートコントローラRCからの指示が依然として上昇指示である場合、ステップS2および3の処理を継続する。
In a state where the moving body 100 is levitated, the control unit 52 monitors an instruction signal from the remote controller RC and determines what operation instruction is the next instruction (step S4).
For example, if the instruction from the remote controller RC is still an ascending instruction, the processes of steps S2 and S3 are continued.
 また、リモートコントローラRCからの指示が停止指示である場合、制御部52は、例えば、すべてのスラスタ30のロータ30aの回転数を、移動体100に対し、該移動体100の重力と同一の揚力を生じるように、例えば互いに略同一に設定する(ステップS5)。この結果、移動体100を、空中における所望の地点で静止させることができる。 When the instruction from the remote controller RC is a stop instruction, for example, the control unit 52 sets the rotational speed of the rotors 30a of all the thrusters 30 to the moving body 100 with the same lift force as the gravity of the moving body 100. For example, they are set substantially the same as each other (step S5). As a result, the moving body 100 can be stopped at a desired point in the air.
 リモートコントローラRCからの指示信号がx軸まわりの回転運動であるロールを示している場合、制御部52は、第1スラスタ31のロータ30aの回転数を増加させ、第3スラスタ33のロータ30aの回転数を低下させるロール処理を実行することにより、
移動体100を、x軸の負の方向から見て、時計回りにロールさせることができる(ステップS6)。
When the instruction signal from the remote controller RC indicates a roll that is a rotational motion around the x axis, the control unit 52 increases the rotational speed of the rotor 30a of the first thruster 31 and increases the rotational speed of the rotor 30a of the third thruster 33. By performing a roll process that reduces the rotational speed,
The moving body 100 can be rolled clockwise as viewed from the negative direction of the x-axis (step S6).
 リモートコントローラRCからの指示信号がy軸まわりの回転運動であるピッチを示している場合、制御部52は、第2スラスタ32のロータ30aの回転数を増加させ、第4スラスタ34のロータ30aの回転数を低下させるピッチ処理を実行することにより、移動体100を、y軸の負の方向から見て、時計回りにピッチさせることができる(ステップS7)。
 すなわち、制御部52は、各スラスタ30のロータ30aの回転数を適切に調整することにより、移動体100のx軸まわりの回転運動であるロール、およびy軸まわりの回転運動であるピッチを、それぞれ実現することができる。
When the instruction signal from the remote controller RC indicates a pitch that is a rotational movement around the y-axis, the control unit 52 increases the rotational speed of the rotor 30a of the second thruster 32 and increases the rotational speed of the rotor 30a of the fourth thruster 34. By executing the pitch process for decreasing the rotation speed, the moving body 100 can be pitched clockwise as viewed from the negative direction of the y-axis (step S7).
That is, the control unit 52 appropriately adjusts the number of rotations of the rotor 30a of each thruster 30, so that the roll that is the rotational motion of the moving body 100 around the x axis and the pitch that is the rotational motion around the y axis are Each can be realized.
 リモートコントローラRCからの指示信号が所定の方向への並進運動を示している場合、制御部52は、各スラスタ30のロータ30aの各ブレードB1およびB2の迎え角θを制御することにより、移動体100の姿勢(すなわち、各ロータ30aの推力方向)を、目的となる並進方向に傾けた状態で、全体的に各スラスタ30のロータ回転数を増加させることにより、移動体100を、上記目的と並進方向に向かって並進運動させることができる(ステップS8)。 When the instruction signal from the remote controller RC indicates a translational movement in a predetermined direction, the control unit 52 controls the angle of attack θ of each blade B1 and B2 of the rotor 30a of each thruster 30, thereby moving the moving body. In a state where the posture of 100 (that is, the thrust direction of each rotor 30a) is tilted in the target translational direction, the rotor speed of each thruster 30 is increased as a whole, so that the moving body 100 is Translational movement can be performed in the translational direction (step S8).
 一方、リモートコントローラRCからの指示信号が降下を示している場合、制御部52は、例えば、すべてのスラスタ30のロータ30aの回転数を制御して、スラスタ30により生成される揚力を、該移動体100の重力よりも低下させる(ステップS9)。この結果、移動体100を、降下させることができる。 On the other hand, when the instruction signal from the remote controller RC indicates a descent, the control unit 52 controls the rotational speed of the rotors 30a of all the thrusters 30, for example, to move the lift generated by the thrusters 30 to the movement Lower than the gravity of the body 100 (step S9). As a result, the moving body 100 can be lowered.
 制御部52は、ステップS5~S9の処理を実行した後、ステップS4の処理に戻り、指示信号の判断処理を繰り返す。このようにして、飛行モードにおいては、移動体100を、空中において自在に移動させることができる。 After executing the processing of steps S5 to S9, the control unit 52 returns to the processing of step S4 and repeats the instruction signal determination processing. Thus, in the flight mode, the moving body 100 can be freely moved in the air.
 一方、ステップS1の判断の結果がタイヤモードである場合(ステップS1の判断の結果タイヤモード)、制御部52は、タイヤモードの指示を認識する。上述したように、タイヤモードは、移動体100を、ガード部40が地表面に接地した状態でz軸まわりに回転して移動するモードである。 On the other hand, when the result of the determination in step S1 is the tire mode (the tire mode is the result of the determination in step S1), the control unit 52 recognizes the tire mode instruction. As described above, the tire mode is a mode in which the moving body 100 is rotated around the z-axis while the guard unit 40 is in contact with the ground surface.
 まず、ステップS10の処理として、制御部52は、慣性計測部51から出力される移動体100の姿勢に関する情報に基づいて、移動体100の現在の姿勢を推定する(図6、ステップS10)。通常、移動体100は、そのxy平面を地表面等の面に平行にして着地した状態(初期状態とする)となっている。 First, as the processing of step S10, the control unit 52 estimates the current posture of the moving body 100 based on the information regarding the posture of the moving body 100 output from the inertial measurement unit 51 (FIG. 6, step S10). Normally, the moving body 100 is in a state of landing (initial state) with its xy plane parallel to a surface such as the ground surface.
 次いで、制御部52は、移動体100を、その初期状態から、倒立状態に遷移させる処理を実行する(ステップS11)。なお、この移動体100が初期状態から倒立状態に移動するまでの期間を過渡期間とする。 Next, the control unit 52 executes a process for causing the moving body 100 to transition from the initial state to the inverted state (step S11). Note that a period until the moving body 100 moves from the initial state to the inverted state is defined as a transient period.
 図7に示すように、制御部52は、第4スラスタ34のロータ30aを、飛行モード時と同様に、所定の迎え角θおよび所定の回転数で回転させ、z軸の正の方向に推力を生じさせるともに(ステップS11a)、第1~第3スラスタ31~33それぞれのロータ30aの迎え角θをゼロ度に設定して回転させることにより、推力をゼロとする(ステップS11b)。この処理により移動体100を起き上がらせるための力およびトルクを発生させることができ、この力およびトルクにより、ガード部40のうち、第2スラスタ32近傍の部分が地表面に接した状態で、その接地点を支点として、移動体100はx軸まわりに回転する。すなわち、ガード部40を地表面に接地した状態で倒立状態に遷移しようとする。なお、第4スラスタ34のロータ30aは、例えば、本開示の第1のロータに対応する。 As shown in FIG. 7, the control unit 52 rotates the rotor 30a of the fourth thruster 34 at a predetermined angle of attack θ and a predetermined number of rotations in the same manner as in the flight mode, and thrusts in the positive z-axis direction. Is generated (step S11a), and the angle of attack θ of the rotor 30a of each of the first to third thrusters 31 to 33 is set to zero degrees and rotated to make the thrust zero (step S11b). With this process, it is possible to generate a force and a torque for raising the moving body 100. With this force and a torque, a portion of the guard portion 40 near the second thruster 32 is in contact with the ground surface. Using the grounding point as a fulcrum, the moving body 100 rotates around the x axis. That is, an attempt is made to transition to the inverted state with the guard portion 40 in contact with the ground surface. Note that the rotor 30a of the fourth thruster 34 corresponds to, for example, the first rotor of the present disclosure.
 なお、第4スラスタ34の迎え角θはゼロではないから、推力の分力が移動体100をz軸まわりに回転させる方向に作用する。したがって、ステップS11aにおいて、制御部52は、第1スラスタ31および第3スラスタ33それぞれのロータ30aの回転数を、第4スラスタ34のロータ30aの回転数よりも大きくして、カウンタートルクにより該分力を相殺する。この結果、移動体100を、z軸まわりの回転を防止しつつ初期状態から倒立させることができる。なお、第1スラスタ31および第3スラスタ33それぞれのロータ30aは、例えば、本開示の第3および第4のロータに対応する。また、第2スラスタ32のロータ30aは、本開示の第2のロータに対応する。 Note that since the angle of attack θ of the fourth thruster 34 is not zero, the thrust component acts in the direction of rotating the moving body 100 about the z-axis. Therefore, in step S11a, the control unit 52 makes the rotational speeds of the rotors 30a of the first thruster 31 and the third thruster 33 larger than the rotational speeds of the rotor 30a of the fourth thruster 34, and distributes the rotational speed by the counter torque. Offset power. As a result, the moving body 100 can be inverted from the initial state while preventing rotation around the z-axis. The rotors 30a of the first thruster 31 and the third thruster 33 correspond to, for example, the third and fourth rotors of the present disclosure. The rotor 30a of the second thruster 32 corresponds to the second rotor of the present disclosure.
 次いで、制御部52は、移動体100を、その倒立状態を維持させる処理を実行する(ステップS12およびS13)。 Next, the control unit 52 executes a process for maintaining the moving body 100 in the inverted state (steps S12 and S13).
 ステップS12において、慣性計測部51から出力される移動体100の姿勢に関する情報に基づいて、制御部52は、移動体100の現在の姿勢として、そのy軸が鉛直方向に沿うようになったことを推定する。このとき、制御部52は、各スラスタ30のロータ30aの駆動を変更することにより、移動体10の現在の姿勢、すなわち、倒立状態を維持する(ステップS13)。 In step S <b> 12, based on the information regarding the posture of the moving body 100 output from the inertial measurement unit 51, the control unit 52 indicates that the y-axis is along the vertical direction as the current posture of the moving body 100. Is estimated. At this time, the control unit 52 changes the driving of the rotor 30a of each thruster 30 to maintain the current posture of the moving body 10, that is, the inverted state (step S13).
 すなわち、ステップS13aにおいて、制御部52は、図8に示すように、第4スラスタ34のロータ30aの回転を継続することにより、ロータ30aからz軸の正の方向に推力を継続して発生させる。なお、ステップS13の倒立状態維持処理では、移動体100を倒立させるほどのエネルギーは必要ないため、制御部52は、第4スラスタ34の回転数を、着地した状態である初期状態から倒立状態に遷移する際の回転数よりも小さくしても良い。 That is, in step S13a, as shown in FIG. 8, the control unit 52 continuously generates thrust in the positive z-axis direction from the rotor 30a by continuing the rotation of the rotor 30a of the fourth thruster 34. . Note that, in the inverted state maintaining process in step S13, energy sufficient to invert the moving body 100 is not necessary, and thus the control unit 52 changes the rotational speed of the fourth thruster 34 from the initial state, which is the landing state, to the inverted state. You may make it smaller than the rotation speed at the time of transition.
 一方、初期状態から倒立状態へ遷移する過渡期間においては、迎え角θをそれぞれゼロ度に設定していた第1スラスタ31および第3スラスタ33について、制御部52は、第1スラスタ31および第3スラスタ33それぞれの迎え角θを、飛行モード時とは正負が逆となる角度に設定して、z軸の負の方向に推力を発生させるようにする(ステップS13b)。すなわち、制御部52は、第4スラスタ34のロータ30aにより生成されるz軸の正の方向に向く分力と、第1および第3スラスタ31,33それぞれのロータ30aによるz軸の負の方向に向く合力とを釣り合うように設定することにより、移動体100の倒立状態を維持させることができる(ステップS13b)。 On the other hand, during the transition period from the initial state to the inverted state, the control unit 52 controls the first thruster 31 and the third thruster 33 for the first thruster 31 and the third thruster 33 in which the angle of attack θ is set to zero degrees. The angle of attack θ of each thruster 33 is set to an angle that is opposite to that in the flight mode, and thrust is generated in the negative direction of the z-axis (step S13b). That is, the controller 52 generates a component force in the positive direction of the z axis generated by the rotor 30a of the fourth thruster 34 and the negative direction of the z axis by the rotors 30a of the first and third thrusters 31 and 33, respectively. By setting so as to balance the resultant force directed to, the inverted state of the moving body 100 can be maintained (step S13b).
 上記の倒立状態維持状態では、各スラスタ30から生成される推力が移動体100をx軸まわりに回転させる方向に作用するが、地表面とガード部40との摩擦力によりx軸まわりの回転に係る力のモーメントの釣り合いが確保されている。あるいは、制御部52は、第2スラスタ32それぞれのロータ30aのブレードB1,B2について飛行モード時と同一の方向に迎え角θを設定することにより、第2スラスタ32の推力をz軸の正の方向に発生させて、x軸まわりの回転に係る力のモーメントの釣り合いを確保することも可能である。 In the above-described inverted state maintenance state, the thrust generated from each thruster 30 acts in the direction of rotating the moving body 100 around the x axis. However, the frictional force between the ground surface and the guard portion 40 causes the rotation around the x axis. The balance of the moment of force is ensured. Alternatively, the control unit 52 sets the angle of attack θ in the same direction as that in the flight mode for the blades B1 and B2 of the rotor 30a of each second thruster 32, so that the thrust of the second thruster 32 is positive on the z axis. It is also possible to ensure the balance of the moment of force related to rotation around the x-axis by generating in the direction.
 なお、制御部52は、移動体100が地表面に対して垂直に倒立した状態で、一旦全てのスラスタ30の迎え角θをゼロ度に設定し、慣性計測部51から出力される移動体100の姿勢に関する情報に基づいて移動体100がx軸まわりに所定の方向に傾くと推定する毎に、第1スラスタ31の迎え角θを、その傾斜を打ち消すように調整する。すなわち、制御部52は、移動体100がx軸に交互に回転傾くと、第1スラスタ31の迎え角θの正負を相互に反転させて、それぞれの傾斜を打ち消すようにしても良い。 Note that the control unit 52 sets the angles of attack θ of all the thrusters 30 to zero degrees in a state where the moving body 100 is inverted vertically to the ground surface, and the moving body 100 output from the inertial measurement unit 51 is set. Each time it is estimated that the moving body 100 tilts in a predetermined direction around the x-axis based on the information regarding the posture of the first thruster 31, the angle of attack θ of the first thruster 31 is adjusted so as to cancel the tilt. That is, when the moving body 100 is alternately rotated and tilted about the x-axis, the control unit 52 may reverse the inclination of the first thruster 31 with respect to the angle of attack θ and cancel each inclination.
 特に、移動体100を必ずしもy軸が鉛直方向を向くような倒立状態にする必要はなく、例えば、制御部52は、第1スラスタ31の迎え角θおよび回転数を適切に設定することにより、図7に示すように、移動体100を、そのy軸が地表面に対して、90度以外の任意の角度で傾斜して状態で静止させることもできる。 In particular, the moving body 100 is not necessarily in an inverted state in which the y-axis is oriented in the vertical direction. For example, the control unit 52 sets the angle of attack θ and the rotation speed of the first thruster 31 appropriately. As shown in FIG. 7, the moving body 100 can be stationary in a state where the y-axis is inclined at an arbitrary angle other than 90 degrees with respect to the ground surface.
 続いて、制御部52は、移動体100を、その倒立状態を維持させた回転させ移動させる処理を実行する(ステップS14)。なお、図9に示すように、移動体100が、そのx軸が鉛直方向に沿うように倒立した状態を想定して説明する。 Subsequently, the control unit 52 performs a process of rotating and moving the moving body 100 while maintaining the inverted state (step S14). In addition, as shown in FIG. 9, it demonstrates supposing the state which the mobile body 100 turned upside down so that the x-axis may follow a perpendicular direction.
 ステップS14において、制御部52は、例えば、第2スラスタ32および第4スラスタ34の迎え角θを、第1スラスタ31および第3スラスタ33の迎え角θに対して正負を反転し、絶対値が同一になるように設定するとともに、すべてスラスタ30のロータ30aの回転数を同一とする。 In step S14, the control unit 52, for example, inverts the angle of attack θ of the second thruster 32 and the fourth thruster 34 with respect to the angle of attack θ of the first thruster 31 and the third thruster 33, and the absolute value is The settings are made to be the same, and all the rotors 30a of the thrusters 30 have the same rotational speed.
 このような状態にあっては、図9に示すように、第2スラスタ32および第4スラスタ34の回転方向は、第1スラスタ31および第3スラスタ33の回転方向と逆であるため、からカウンタートルクは相殺され、z方向に向く推力の分力は互いに相殺される。一方、スラスタ30の推力のxy平面に沿う分力は、図9の矢印に示すように、z軸のまわりに回転するトルクとなる。したがって、制御部52のステップS14の処理により、移動体100を、y軸の負の向きに転がって移動させることができる。なお、図9に示す状態に対して、すべてのスラスタ30それぞれについて迎え角θの正負を反転すると、制御部52のステップS14の処理により、前記トルクにより、移動体100を、y軸の正の方向に回転して転動させることができる。 In such a state, as shown in FIG. 9, the rotation directions of the second thruster 32 and the fourth thruster 34 are opposite to the rotation directions of the first thruster 31 and the third thruster 33, so The torque is canceled out, and the thrust components in the z direction are canceled out from each other. On the other hand, the component force along the xy plane of the thrust of the thruster 30 is a torque that rotates around the z-axis as shown by the arrow in FIG. Therefore, the moving body 100 can be moved by rolling in the negative direction of the y-axis by the process of step S14 of the control unit 52. 9, if the sign of the angle of attack θ is reversed for each of the thrusters 30, the control unit 52 performs the process of step S14 to cause the moving body 100 to be positive on the y axis by the torque. It can be rolled by rotating in the direction.
 以上記載したように、この移動体100は、制御部52の制御に基づいて、倒立した状態で回転して地表面を自走することができるので、重力に直交する水平方向において狭い所に対しても、転がりながら進入することができる。また、移動体100が倒立状態で地表面に接地する姿勢を維持するためのエネルギーは、移動体100が空中で静止するためのエネルギーよりも小さい。よって、この移動体100は、空中での飛行に加えて、飛行時よりも小さなエネルギーで地表面上も転動移動することができる。 As described above, the moving body 100 can rotate in an inverted state and run on the ground surface on the basis of the control of the control unit 52. However, you can enter while rolling. Further, the energy for maintaining the posture in which the moving body 100 is in contact with the ground surface in an inverted state is smaller than the energy for allowing the moving body 100 to stand still in the air. Therefore, in addition to flying in the air, the moving body 100 can roll and move on the ground surface with less energy than at the time of flight.
 しかも、移動体100は、倒立状態における地表面に対する傾斜角も、任意に変えながら、転動して移動することができるため、進入先の形状に合わせて、その傾斜角を変えながら、該進入先に進入することができ、例えばカメラを設置することにより、災害現場や秘境等、人間が進入することが困難な場所に対しても、自力で進入し、カメラによりその場所の画像情報を得ることができる。 Moreover, since the moving body 100 can roll and move while arbitrarily changing the tilt angle with respect to the ground surface in the inverted state, the approach is performed while changing the tilt angle according to the shape of the approach destination. For example, by installing a camera, even if it is difficult for humans to enter, such as disaster sites and unexplored areas, it is possible to enter by itself and obtain image information of the location with the camera. be able to.
 なお、スラスタ30により生成される推力の傾斜角φは、移動体100の設計者が任意に設定できる。傾斜角φが大きく設定するほど、推力のxy平面に沿う分力が大きくなるため、タイヤモードにおける回転する力を大きくすることができるとともに、飛行モードにおけるヨーの回転力も大きくすることができる。ただし、傾斜角φを大きく設定すると移動体100の最大揚力が小さくなるため、傾斜角φは、移動体100に対して要求されるペイロードに基づいて適宜設定されるべきである。 It should be noted that the inclination angle φ of the thrust generated by the thruster 30 can be arbitrarily set by the designer of the moving body 100. As the inclination angle φ is set larger, the component force along the xy plane of the thrust becomes larger, so that the rotational force in the tire mode can be increased, and the rotational force of the yaw in the flight mode can be increased. However, since the maximum lift of the moving body 100 is reduced when the inclination angle φ is set to be large, the inclination angle φ should be appropriately set based on the payload required for the moving body 100.
 また、ガード部40を水に対して浮く浮体で構成することも可能である。このように構成されていれば、移動体100は、地表面だけでなく、水上においても倒立した状態で回転して自走することができる。 It is also possible to configure the guard unit 40 with a floating body that floats against water. If comprised in this way, the mobile body 100 can rotate and be self-propelled in the inverted state not only on the ground surface but also on the water.
 (変形例)
 上記した第1実施形態におけるガード部40は、曲率を有する円環形状を有し、その外縁が径方向外側に凸状になっているタイヤのような形状を成す例について説明したが、この例に限定されない。例えば、図10に示すように、ガード部40Aは、曲率を有する円環形状を有しているとともに、ガード部40Aは、その外縁が径方向内側に凹状となる、凹状部40Bを有している。すなわち、ガード部40Aは、滑車のような形状を成すように構成されている。
(Modification)
The guard portion 40 in the first embodiment described above has been described with respect to an example in which the guard portion 40 has an annular shape having a curvature, and the outer edge of the guard portion 40 has a shape that is convex outward in the radial direction. It is not limited to. For example, as shown in FIG. 10, the guard portion 40A has an annular shape with a curvature, and the guard portion 40A has a concave portion 40B whose outer edge is concave in the radial direction. Yes. That is, the guard part 40A is configured to have a shape like a pulley.
 本変形例に関わるガード部40Aを有する移動体100Aは、そのガード部40Aの外縁の凹状部40Bにより、電線等の棒状の部材上に倒立することができる。このため、本変形例に関わるガード部40Aを有する移動体100Aは、平らな面に加えて、電線等の棒状の部材の上を、回転しながら移動することができる。本変形例に関わるガード部40を有する移動体100Aは、例えば、災害現場等、平らな面の存在が保証できない場所においても、棒状あるいは線状の部材上を回転しながら移動することができるため、省エネルギーを実現しつつ災害現場の調査等を容易に行うことができる。 The moving body 100A having the guard portion 40A according to this modification can be inverted on a rod-like member such as an electric wire by the concave portion 40B on the outer edge of the guard portion 40A. For this reason, the moving body 100A having the guard portion 40A according to the present modification can move while rotating on a bar-like member such as an electric wire in addition to a flat surface. Since the moving body 100A having the guard portion 40 according to this modification can move while rotating on a rod-like or linear member even in a place such as a disaster site where the flat surface cannot be guaranteed. In addition, it is possible to easily conduct surveys of disaster sites while realizing energy saving.
 (第2実施形態)
 本実施形態における飛行体200は、図11に示すように、第1実施形態に記載の移動体100に加えて、例えば水に浮く浮き輪110を備えている。浮き輪110は、飛行モード時に移動体100が地表面と対向する側において、該移動体100に対して着脱自在に取り付けられている。例えば、浮き輪110は、移動体100が地表面と対向する側において、移動体100に対して吊架されている。
(Second Embodiment)
As shown in FIG. 11, the flying body 200 according to the present embodiment includes a floating ring 110 that floats on water, for example, in addition to the moving body 100 described in the first embodiment. The floating ring 110 is detachably attached to the moving body 100 on the side where the moving body 100 faces the ground surface in the flight mode. For example, the floating ring 110 is suspended from the moving body 100 on the side where the moving body 100 faces the ground surface.
 この飛行体200は、任意の位置において、浮き輪110の吊架を解除して投下することができるようになっている。この飛行体200によれば、その移動体100を浮体として構成されている場合、飛行体200は、水難事故等により水上で救助を待つ要救助者に対して、水上を走行して可能な限り要救助者に近付き、浮き輪110を切り離すことにより、要救助者に対して浮き輪110を投下することができる。また、飛行体200は、無人において飛行できる、いわゆるUAVであるから、救急隊員などの救助する側の人員の身を危険に晒すことなく、救助活動を行うことができる。 The flying body 200 can be dropped after releasing the suspension of the floating ring 110 at an arbitrary position. According to this flying body 200, when the moving body 100 is configured as a floating body, the flying body 200 travels on the water as much as possible to a rescuer who needs to rescue on the water due to a water accident or the like. By approaching the rescuer and separating the float 110, the float 110 can be dropped on the rescuer. In addition, since the flying body 200 is a so-called UAV that can fly unattended, it is possible to perform a rescue operation without exposing the rescuer and other rescue personnel.
 この浮き輪110は、図11に示すように、ガード部40と同一の形状であることが好ましい。本実施形態における浮き輪110は、ガード部40と同一のトーラス形状を成し、半径もガード部40と略同一に設定されている。 The floating ring 110 preferably has the same shape as the guard part 40 as shown in FIG. The floating ring 110 in the present embodiment has the same torus shape as that of the guard part 40, and the radius is set substantially the same as that of the guard part 40.
 これによれば、飛行体200は、浮き輪110を着脱自在に取り付けられた状態で第1実施形態の移動体100と同様に倒立して、回転しながら、平らな面に加えて水上を移動することができる。このため、水上の災害現場等において活躍が期待される。 According to this, the flying body 200 is inverted in the same manner as the moving body 100 of the first embodiment with the buoyancy ring 110 being detachably attached, and moves on the water in addition to the flat surface while rotating. can do. For this reason, it is expected to play an active role in water disaster sites.
 (第3実施形態)
 上記した各実施形態および変形例では、各スラスタ30が個別にロータ30aとモータ30bとを有する例を示した。これに対して、本実施形態における飛行体300は、図12に示すように、各スラスタ30Xは、ロータ30aとプーリ30pとを有しており、モータ30bを有していない。
(Third embodiment)
In each of the above-described embodiments and modified examples, the example in which each thruster 30 has the rotor 30a and the motor 30b individually is shown. On the other hand, as shown in FIG. 12, in the flying body 300 in the present embodiment, each thruster 30X includes a rotor 30a and a pulley 30p, and does not include a motor 30b.
 一方、飛行体300は、基体10に固定された単一のメインモータ30dを有しており、メインモータ30dは、メインプーリ30eに連結され、メインモータ30dの回転により、メインプーリ30eが回転するようになっている。メインプーリ30eは、ベルト30fを介して、各スラスタ30の有するプーリ30pに連結されており、メインプーリ30eの回転は、ベルト30fを介して、各スラスタ30Xの有するプーリ30pにそれぞれ伝達される。ベルト30fは、基体10に取り付けられたメインモータ30dから、x軸に沿う正負の2方向と、y軸に沿う正負の2方向に延びて設置され、メインプーリ30eの回転が各スラスタ30Xのプーリ30pに伝達されるようになっている。すなわち、本実施形態における飛行体300では、メインモータ30dの回転が、すべてのスラスタ30Xのロータ30aの回転の動力として用いられている。 On the other hand, the flying body 300 has a single main motor 30d fixed to the base body 10. The main motor 30d is connected to the main pulley 30e, and the main pulley 30e is rotated by the rotation of the main motor 30d. It is like that. The main pulley 30e is connected to a pulley 30p included in each thruster 30 via a belt 30f. The rotation of the main pulley 30e is transmitted to the pulley 30p included in each thruster 30X via the belt 30f. The belt 30f extends from the main motor 30d attached to the base body 10 in two positive and negative directions along the x axis and two positive and negative directions along the y axis, and the rotation of the main pulley 30e is the pulley of each thruster 30X. It is transmitted to 30p. That is, in the flying object 300 in the present embodiment, the rotation of the main motor 30d is used as the motive power for the rotation of the rotors 30a of all the thrusters 30X.
 一般に、複数のスラスタ30に用いられるモータ30bには、製造ばらつき等を原因として入力電圧-回転数特性にばらつきがある場合があり、同一の電圧を供給しても、複数のモータ30b間で回転数が完全に一致しない場合がある。これに対して、本実施形態の飛行体300では、単一のメインモータ30dの回転をすべてのスラスタ30Xのロータ30aに伝達するようになっているので、スラスタ30それぞれのロータ30aの回転数のばらつきを低減することができる。したがって、スラスタ30Xそれぞれのロータ30aの回転数のキャリブレーションを行うことなく、それぞれのロータ30aの迎え角θの調整のみで、飛行体300の機動を安定して実現することができる。 In general, the motor 30b used for the plurality of thrusters 30 may have variations in input voltage-rotational speed characteristics due to manufacturing variations and the like, and even if the same voltage is supplied, the motor 30b rotates between the plurality of motors 30b. The numbers may not match exactly. On the other hand, in the flying body 300 of the present embodiment, the rotation of the single main motor 30d is transmitted to the rotors 30a of all the thrusters 30X. Variations can be reduced. Therefore, it is possible to stably realize the maneuver of the flying object 300 only by adjusting the angle of attack θ of each rotor 30a without performing the calibration of the rotational speed of each rotor 30a of the thruster 30X.
 (その他の実施形態)
 以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
(Other embodiments)
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
 上記した各実施形態では、主に4つのスラスタ30を有するクアッドコプターについて記載したが、スラスタ30の数は限定されるものではない。具体的には、双発のツインコプターや、6発のヘキサコプター、8発以上のマルチコプターにも本発明を適用することができる。 In each embodiment described above, a quadcopter having four thrusters 30 is mainly described, but the number of thrusters 30 is not limited. Specifically, the present invention can also be applied to twin twin copters, six hexacopters, and eight or more multicopters.
 また、上記した各実施形態では、ロータ30aが有するブレードB1,B2が2枚である例について説明したが、ブレードの枚数は3枚以上であっても良い。 In each of the above embodiments, the example in which the rotor 30a has two blades B1 and B2 has been described. However, the number of blades may be three or more.
 また、上記した各実施形態では、ガード部40が円環状である例を示したが、タイヤモードにおいて転がることができれば円環でなくても良い。例えば、z軸方向から正面視した際に、ガード部40が八角形や十二角形など、円に近似できる形状であっても良い。 Further, in each of the above-described embodiments, an example in which the guard portion 40 has an annular shape has been shown, but it may not be an annular shape as long as it can roll in the tire mode. For example, when viewed from the front in the z-axis direction, the guard portion 40 may have a shape that can approximate a circle, such as an octagon or a dodecagon.
 また、第2実施形態において、飛行体200が浮き輪110を着脱自在に設ける構成について記載したが、着脱自在に設ける要素は浮き輪110に限定されるものではない。例えば、食料物資や建築資材を着脱自在に設けても良い。 Further, in the second embodiment, the configuration in which the flying body 200 is provided with the floating ring 110 so as to be detachable is described. However, the element that is detachably provided is not limited to the floating ring 110. For example, food supplies and building materials may be detachably provided.
10…基体,20…フレーム,30…スラスタ,40…ガード部,50…マイコン部,60…バッテリ DESCRIPTION OF SYMBOLS 10 ... Base | substrate, 20 ... Frame, 30 ... Thruster, 40 ... Guard part, 50 ... Microcomputer part, 60 ... Battery

Claims (18)

  1.  移動体であって、
     基体(10)と、
     前記基体から延びて形成された複数のフレーム(20)と、
     前記複数のフレームそれぞれに設けられ、前記移動体の飛行時において、互いに同一平面内に配置され、該平面に直交する方向に推力の成分を生じることにより揚力を生じさせる複数のスラスタ(30)と、
     前記移動体の姿勢を計測する慣性計測部(51)と、
     前記慣性計測部によって計測される前記移動体の姿勢に基づいて前記各スラスタを制御する制御部(52)と、
     前記基体および前記複数のスラスタを取り囲むように形成された転動用の環状のガード部(40)を備え、
     前記フレームは、前記基体と前記ガード部との間に渡設され、
     前記各スラスタは、迎え角が可変とされた複数のブレード(B1,B2)を有するロータ(30a)を有するとともに、
     前記各スラスタにより生成される推力のベクトルが、当該各スラスタが配置される前記平面に直交する方向に対して傾斜していることを特徴とする移動体。
    A moving object,
    A substrate (10);
    A plurality of frames (20) formed extending from the substrate;
    A plurality of thrusters (30) provided in each of the plurality of frames, and arranged in the same plane when the moving body is flying, and generating lift by generating a thrust component in a direction perpendicular to the plane; ,
    An inertial measurement unit (51) for measuring the posture of the moving body;
    A control unit (52) for controlling each thruster based on the posture of the movable body measured by the inertial measurement unit;
    An annular guard part (40) for rolling formed so as to surround the base body and the plurality of thrusters;
    The frame is provided between the base and the guard part,
    Each of the thrusters has a rotor (30a) having a plurality of blades (B1, B2) whose angle of attack is variable,
    A moving body, wherein a thrust vector generated by each thruster is inclined with respect to a direction orthogonal to the plane on which the thrusters are arranged.
  2.  前記各スラスタが配置される前記平面を正面視したとき、
     前記ガード部は円環状を成し、
     前記基体は前記ガード部の成す円の中心に位置し、
     前記各フレームは、前記基体から放射方向に延設されることによって前記基体と前記ガード部とを連結し、
     前記複数のスラスタは、前記基体と前記ガード部との間に渡設された複数のフレームそれぞれに固定されるとともに、
     前記各スラスタのロータの回転により生成される推力の前記平面に沿う分力が、当該ロータの回転にかかるカウンタートルクと同一方向を向くように傾斜していることを特徴とする請求項1に記載の移動体。
    When the plane on which each thruster is arranged is viewed from the front,
    The guard part has an annular shape,
    The base is located at the center of a circle formed by the guard;
    Each frame extends in a radial direction from the base body, thereby connecting the base body and the guard portion;
    The plurality of thrusters are fixed to each of a plurality of frames provided between the base body and the guard portion, and
    The component force along the plane of the thrust generated by the rotation of the rotor of each thruster is inclined so as to face the same direction as the counter torque applied to the rotation of the rotor. Moving body.
  3.  前記ガード部はトーラス状の浮体であることを特徴とする請求項1または請求項2に記載の移動体。 The moving body according to claim 1 or 2, wherein the guard portion is a torus-like floating body.
  4.  前記移動体は、該移動体に着脱自在に取り付けられた浮き輪(110)を備え、
     前記移動体は、前記浮き輪が着脱自在に取り付けられた状態で移動して、外部からの指示に基づいて前記浮き輪を投下することを特徴とする請求項1~3のいずれか1項に記載の移動体。
    The moving body includes a floating ring (110) removably attached to the moving body,
    4. The moving body according to claim 1, wherein the movable body moves in a state where the floating ring is detachably attached, and drops the floating ring based on an instruction from the outside. The moving body described.
  5.  前記浮き輪は、前記ガード部と同一形状を成すことを特徴とする請求項4に記載の移動体。 The movable body according to claim 4, wherein the floating ring has the same shape as the guard portion.
  6.  前記複数のロータが連結された単一のモータ(30d)をさらに備え、この単一のモータの動力が前記複数のロータそれぞれに伝達されることにより、該複数のロータそれぞれが駆動されることを特徴とする請求項1~5のいずれか1項に記載の移動体。 It further comprises a single motor (30d) to which the plurality of rotors are coupled, and the power of the single motor is transmitted to each of the plurality of rotors, whereby each of the plurality of rotors is driven. The moving body according to any one of claims 1 to 5, characterized in that:
  7.  移動体であって、
     基体(10)と、
     この基体から外方に延びる複数のアーム(20)と、
     前記複数のアームにそれぞれ取り付けられた複数のスラスタであり、各スラスタは、迎え角が可変な複数のブレード(B1、B2)を有するロータ(30a)を備えており、該ロータの駆動により、前記移動体に対する推力を、所定の第1の方向の第1の分力および前記第1の方向とは異なる所定の第2の方向の第2の分力に分割可能に生成する複数のスラスタ(30)と、
     前記基体および前記複数のアームを取り囲む転動用の転動体(40)と、
     前記移動体の姿勢を計測する慣性計測部(51)と、
     前記慣性計測部によって計測される前記移動体の姿勢に基づいて、前記各ロータの回転数、前記各ロータの複数のブレードの迎え角をそれぞれ制御することにより、前記移動体の飛行および前記転動体を介した走行移動の内のどちらか一方を選択して実行する制御部52と、
    を備えたことを特徴とする移動体。
    A moving object,
    A substrate (10);
    A plurality of arms (20) extending outward from the substrate;
    A plurality of thrusters respectively attached to the plurality of arms, each thruster comprising a rotor (30a) having a plurality of blades (B1, B2) having variable angles of attack; A plurality of thrusters (30) that generate a thrust on the moving body in a separable manner into a first component force in a predetermined first direction and a second component force in a predetermined second direction different from the first direction. )When,
    A rolling element (40) for rolling surrounding the base and the plurality of arms;
    An inertial measurement unit (51) for measuring the posture of the moving body;
    Based on the posture of the moving body measured by the inertia measuring unit, the number of rotations of each rotor and the angle of attack of a plurality of blades of each rotor are controlled, so that the flight of the moving body and the rolling body A control unit 52 that selects and executes one of the travel movements via
    A moving object comprising:
  8.  前記各ロータは、対応するロータの内の一方により生成された推力のベクトルが、前記複数のロータを含む平面に直交する方向に対して傾斜するように配置されたことを特徴とする請求項7記載の移動体。 8. Each of the rotors is arranged such that a thrust vector generated by one of the corresponding rotors is inclined with respect to a direction perpendicular to a plane including the plurality of rotors. The moving body described.
  9.  前記制御部は、前記移動体を飛行させる飛行モードにおいて、前記複数のロータの回転数を、前記移動体の重力を超える揚力を生じるように調整し、かつ前記各ロータにおける前記複数のブレードの迎え角を、ゼロ以外の互いに同一の値に設定することを特徴とする請求項7記載の移動体。 The control unit adjusts the rotation speeds of the plurality of rotors so as to generate lift exceeding the gravity of the moving body in a flight mode in which the moving body flies, and welcomes the plurality of blades in each rotor. The mobile body according to claim 7, wherein the corners are set to the same value other than zero.
  10.  前記制御部は、前記移動体を飛行させる飛行モードにおいて、前記複数のロータの回転数を、前記移動体の重力を超える揚力を生じるように調整し、かつ前記各ロータにおける前記複数のブレードの迎え角が、ゼロ以外の互いに同一の値になるように設定することにより、前記移動体を空中上昇させることを特徴とする請求項7記載の移動体。 The control unit adjusts the rotation speeds of the plurality of rotors so as to generate lift exceeding the gravity of the moving body in a flight mode in which the moving body flies, and welcomes the plurality of blades in each rotor. The moving body according to claim 7, wherein the moving body is raised in the air by setting the angles to be equal to each other other than zero.
  11.  前記制御部は、前記移動体を飛行させる飛行モードにおいて、前記複数のロータの回転数を、前記移動体の重力に一致する揚力を生じるように調整し、かつ前記各ロータにおける前記複数のブレードの迎え角が、ゼロ以外の互いに同一の値となるように設定することにより、前記移動体を空中で停止させることを特徴とする請求項10記載の移動体。 The control unit adjusts the rotation speeds of the plurality of rotors so as to generate a lift force that matches the gravity of the moving body in a flight mode in which the moving body flies, and the plurality of blades of the rotors. The moving body according to claim 10, wherein the moving body is stopped in the air by setting the angle of attack to be the same value other than zero.
  12.  前記複数のアームは、前記基体に対して互いに対向するように延びており、
     前記制御部は、前記移動体を飛行させる飛行モードにおいて、前記複数のロータの内の一方の回転数を増加させ、かつ前記複数のロータの内の他方の回転数を低下させることにより、所定の方向を回転軸として前記移動体を回転させることを特徴とする請求項10記載の移動体。
    The plurality of arms extend so as to face each other with respect to the base body,
    In the flight mode in which the moving body is caused to fly, the control unit increases a rotation speed of one of the plurality of rotors and decreases a rotation speed of the other of the plurality of rotors, The moving body according to claim 10, wherein the moving body is rotated about a direction as a rotation axis.
  13.  前記複数のアームは、前記基体に対して互いに対向するように延び、前記複数のロータとして第1~第4のロータが設けられた第1~第4のアームを含んでおり、
     前記制御部は、前記移動体がある面に着地されている初期状態である際、前記移動体を走行させる走行モードにおいて、前記第1のロータを回転させながら前記第1のロータにおける前記複数のブレードの迎え角をゼロ以外の値に設定し、かつ前記第3および第4のロータの回転を回転させながら、前記第3および第4のロータにおける前記複数のブレードの迎え角をゼロに設定することにより、前記移動体を、前記転動体における前記第2のアーム近傍であり前記面に接している点を支点として倒立状態に回転させることを特徴とする請求項7記載の移動体。
    The plurality of arms include first to fourth arms that extend so as to face each other with respect to the base body and are provided with first to fourth rotors as the plurality of rotors,
    In the driving mode in which the moving body travels when the moving body is in an initial state where the moving body is landed on a certain surface, the control unit rotates the first rotor while rotating the plurality of the first rotor. The angle of attack of the blades is set to a value other than zero, and the angle of attack of the plurality of blades in the third and fourth rotors is set to zero while rotating the rotations of the third and fourth rotors. The moving body according to claim 7, wherein the moving body is rotated in an inverted state using a point in the vicinity of the second arm of the rolling element that is in contact with the surface as a fulcrum.
  14.  前記制御部は、前記第1のロータの回転および前記第1のロータにおける前記複数のブレードの迎え角をゼロ以外の値に維持するとともに、前記第3および第4のロータの回転を回転させながら、前記第3および第4のロータにおける前記複数のブレードの迎え角を、前記第1のロータにより生成される推力と、前記第3および第4のロータそれぞれにより生成される推力の合力とが方向が反対で釣り合うようにして、前記移動体を、前記倒立状態に維持させることを特徴とする請求項13記載の移動体。 The controller maintains the rotation of the first rotor and the angle of attack of the plurality of blades in the first rotor at a value other than zero, while rotating the rotation of the third and fourth rotors. The angle of attack of the plurality of blades in the third and fourth rotors is the direction of the thrust generated by the first rotor and the resultant force of the thrust generated by each of the third and fourth rotors. The moving body according to claim 13, wherein the moving body is maintained in the inverted state so as to be balanced in the opposite direction.
  15.  前記制御部は、前記第1~第4のロータの回転数が同一となるように設定し、かつ前記第1のロータにおける前記複数のブレードの迎え角および前記第2のロータにおける前記複数のブレードの迎え角を、前記第3のロータにおける前記複数のブレードの迎え角および前記第4のロータにおける前記複数のブレードの迎え角に対して正負を反転し、かつ絶対体が同一となるように設定することにより、前記移動体を、前記倒立状態を維持した状態で転動させることを特徴とする請求項14記載の移動体。 The control unit sets the rotation speeds of the first to fourth rotors to be the same, and the angle of attack of the plurality of blades in the first rotor and the plurality of blades in the second rotor The angle of attack of the third rotor is set so that the angle of attack of the plurality of blades in the third rotor and the angle of attack of the plurality of blades in the fourth rotor are reversed, and the absolute bodies are the same. The mobile body according to claim 14, wherein the mobile body is rolled while maintaining the inverted state.
  16.  前記制御部は、前記移動体がある面に着地されている初期状態である際、前記移動体を走行させる走行モードにおいて、前記複数のロータを回転させながら、当該複数のロータそれぞれにおける前記複数のブレードの迎え角を変えて推力を制御することにより、前記移動体を起き上がらせるための力およびトルクを発生させ、前記移動体を、前記転動体における前記面に接している点を支点として倒立状態に回転させることを特徴とする請求項7記載の移動体。 The controller is configured to rotate the plurality of rotors while rotating the plurality of rotors in a traveling mode in which the movable body travels in an initial state where the moving body is landed on a certain surface. By controlling the thrust by changing the angle of attack of the blade, a force and a torque for raising the moving body are generated, and the moving body is inverted with respect to a point that is in contact with the surface of the rolling element. The movable body according to claim 7, wherein the movable body is rotated to the right.
  17.  前記制御部は、前記複数のロータを回転させながら当該複数のロータそれぞれの複数のブレードの迎え角を変えて該複数のロータから生成される推力を制御することにより、前記移動体を、前記倒立状態に維持させることを特徴とする請求項16記載の移動体。 The control unit controls the thrust generated by the plurality of rotors by rotating the plurality of rotors and changing the angle of attack of the plurality of blades of the plurality of rotors to thereby invert the movable body. The movable body according to claim 16, wherein the movable body is maintained in a state.
  18.  前記制御部は、前記複数のロータを回転させながら、当該複数のロータそれぞれの複数のブレードの迎え角を変えて推力を制御することにより、前記基体に垂直な軸まわりにトルクを発生させることにより、前記移動体を、前記倒立状態を維持した状態で転動させることを特徴とする請求項17記載の移動体。 The controller is configured to generate torque around an axis perpendicular to the base body by controlling thrust by changing the angle of attack of the blades of the rotors while rotating the rotors. The moving body according to claim 17, wherein the moving body is rolled while maintaining the inverted state.
PCT/JP2016/061446 2015-04-07 2016-04-07 Mobile unit WO2016163482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017511069A JP6508331B2 (en) 2015-04-07 2016-04-07 Moving body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015078667 2015-04-07
JP2015-078667 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016163482A1 true WO2016163482A1 (en) 2016-10-13

Family

ID=57072492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061446 WO2016163482A1 (en) 2015-04-07 2016-04-07 Mobile unit

Country Status (2)

Country Link
JP (1) JP6508331B2 (en)
WO (1) WO2016163482A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235140A (en) * 2017-03-29 2017-10-10 深圳市科卫泰实业发展有限公司 A kind of many rotor oversea flight unmanned plane devices
WO2019109215A1 (en) * 2017-12-04 2019-06-13 深圳市大疆创新科技有限公司 Power device, unmanned aerial vehicle, and flight control method
CN110861453A (en) * 2019-11-15 2020-03-06 上海交通大学 Cross-medium water-air dual-purpose propulsion device with variable output torque and variable screw pitch
KR20220141638A (en) * 2021-04-13 2022-10-20 주식회사 유니텍코리아 Aircraft with a separate and detachable boarding space
KR20220141959A (en) * 2021-04-13 2022-10-21 주식회사 유니텍코리아 Aircraft with outer body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6363632B2 (en) * 2016-01-13 2018-07-25 公益財団法人鉄道総合技術研究所 Remote structure inspection system using a small unmanned aerial vehicle
CN113715570B (en) * 2021-09-27 2023-05-16 北京理工大学重庆创新中心 Air-ground equipment and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292153A (en) * 2001-03-28 2002-10-08 Steven Davis Rotating toy capable of being controlled in resultant thrust
JP2013212832A (en) * 2012-03-30 2013-10-17 Parrot Rotary wing drone altitude estimator including plurality of rotors
US20140131507A1 (en) * 2012-11-14 2014-05-15 Arash Kalantari Hybrid aerial and terrestrial vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292153A (en) * 2001-03-28 2002-10-08 Steven Davis Rotating toy capable of being controlled in resultant thrust
JP2013212832A (en) * 2012-03-30 2013-10-17 Parrot Rotary wing drone altitude estimator including plurality of rotors
US20140131507A1 (en) * 2012-11-14 2014-05-15 Arash Kalantari Hybrid aerial and terrestrial vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235140A (en) * 2017-03-29 2017-10-10 深圳市科卫泰实业发展有限公司 A kind of many rotor oversea flight unmanned plane devices
WO2019109215A1 (en) * 2017-12-04 2019-06-13 深圳市大疆创新科技有限公司 Power device, unmanned aerial vehicle, and flight control method
CN110861453A (en) * 2019-11-15 2020-03-06 上海交通大学 Cross-medium water-air dual-purpose propulsion device with variable output torque and variable screw pitch
CN110861453B (en) * 2019-11-15 2022-10-21 上海交通大学 Cross-medium water-air dual-purpose propulsion device with variable output torque and variable screw pitch
KR20220141638A (en) * 2021-04-13 2022-10-20 주식회사 유니텍코리아 Aircraft with a separate and detachable boarding space
KR20220141959A (en) * 2021-04-13 2022-10-21 주식회사 유니텍코리아 Aircraft with outer body
KR102563256B1 (en) 2021-04-13 2023-08-29 주식회사 유니텍코리아 Aircraft with a separate and detachable boarding space
KR102572063B1 (en) * 2021-04-13 2023-08-30 주식회사 유니텍코리아 Aircraft with outer body

Also Published As

Publication number Publication date
JP6508331B2 (en) 2019-05-08
JPWO2016163482A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2016163482A1 (en) Mobile unit
US10086937B2 (en) Observation device
AU2019260589B2 (en) Thrust allocation for aerial vehicle
KR101767943B1 (en) Multirotor type Unmanned Aerial Vehicle Available for Adjusting Direction of Thrust
KR100812756B1 (en) Quadro copter
JP7374517B2 (en) Unmanned aerial vehicle with crash-resistant propulsion and controller
CN107531325B (en) Unmanned aerial vehicle
JP6456641B2 (en) Attitude stabilization controller for multi-rotor craft
JP7443365B2 (en) Aircraft with separate degrees of freedom
JP2012111475A (en) Vertical takeoff and landing unmanned aircraft by wing-rotor
JPWO2015049798A1 (en) Lightweight small air vehicle
JP2018134908A (en) Unmanned aircraft
CN107908193B (en) Non-planar eight-rotor omnidirectional aircraft and control method
JP7466217B2 (en) Take-off and Landing System
IL279694B1 (en) Systems and methods for payload stabilization
US20190193840A1 (en) Optimally Stabilized Multi Rotor Aircraft
JP2019162980A (en) Unmanned flying body, unmanned flying method and unmanned flying program
JP2018134909A (en) Unmanned aircraft
JP7120587B1 (en) Attitude control method for flying object and flying object
JP2019043394A (en) Rotary wing aircraft
JP2020164120A (en) Drone and flight stabilization method
Morimoto et al. Study on navigation system to arbitrary direction for autonomous aerial robot with quad-rotor
JP2018134910A (en) Unmanned aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776648

Country of ref document: EP

Kind code of ref document: A1