JP6361889B2 - Artificial shallow or tidal flat - Google Patents

Artificial shallow or tidal flat Download PDF

Info

Publication number
JP6361889B2
JP6361889B2 JP2016021485A JP2016021485A JP6361889B2 JP 6361889 B2 JP6361889 B2 JP 6361889B2 JP 2016021485 A JP2016021485 A JP 2016021485A JP 2016021485 A JP2016021485 A JP 2016021485A JP 6361889 B2 JP6361889 B2 JP 6361889B2
Authority
JP
Japan
Prior art keywords
layer
reinforced soil
sand
soil layer
tidal flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021485A
Other languages
Japanese (ja)
Other versions
JP2017141543A (en
Inventor
本田 秀樹
秀樹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016021485A priority Critical patent/JP6361889B2/en
Publication of JP2017141543A publication Critical patent/JP2017141543A/en
Application granted granted Critical
Publication of JP6361889B2 publication Critical patent/JP6361889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Revetment (AREA)

Description

本発明は、沿岸海域などの環境改善を目的に造成される人工浅場又は干潟に関するものである。   The present invention relates to an artificial shallow field or tidal flat constructed for the purpose of improving the environment such as a coastal sea area.

水質環境改善などを目的として、人工浅場や干潟の造成が行われている。従来、人工浅場や干潟の造成は、石材などで沖合に土留め用の潜堤を設置した後、その岸側(陸側)に中詰材として浚渫土を設置し、その表層に天然砂を覆砂するような工法が採られている(例えば、非特許文献1)。中詰材である浚渫土は、港湾域の水深維持などのために海底から浚渫したものであるため、水分を多く含んだ軟弱な土砂であることが多く、このため表層部は緩やかな勾配となる。通常、中詰材である浚渫土と覆砂材の表層は、勾配1:30〜1:50程度で造成されることが多い。   Artificial shallow areas and tidal flats are being created to improve the water quality environment. Conventionally, artificial shallow ground and tidal flats have been constructed by installing a submerged dike for offshore with stones, etc., then installing dredged soil on the shore side (land side) as a filling material, and using natural sand on the surface layer. A construction method that covers sand is employed (for example, Non-Patent Document 1). The dredging material, which is a filling material, is dredged from the bottom of the sea to maintain the water depth in the port area, etc., and is often soft soil with a lot of moisture. Become. Usually, the surface layer of the clay and the sand-capping material, which is a filling material, is often formed with a gradient of about 1:30 to 1:50.

特開2005−240544号公報JP-A-2005-240544 特開2011−208365号公報JP 2011-208365 A

「浚渫土の生物生息環境創造への有効利用」、用水と排水、Vol.39、No.7、1997"Effective use of dredged soil to create biological habitats", Water and drainage, Vol.39, No.7, 1997

人工浅場や干潟を造成する原地盤が、岩盤や砂質土のように十分な支持力を有する場合は、土留め用の潜堤は問題なく設置できる。ところが、原地盤が粘性土などの軟弱地盤の場合、潜堤が設置される地盤部分には、地盤の支持力を増加させるための地盤改良が必要になる。地盤改良の方法には、サンドコンパクションパイル工法、置換工法、ドレーン工法、混合処理工法などがあるが、人工浅場や干潟の造成では、地盤内に砕石や砂などを用いた柱状体を設けることで地盤強度を増加させるサンドコンパクションパイル工法が用いられることが多い。しかし、このような地盤改良には多大な施工コストがかかり、従来の人工浅場や干潟の造成では、造成コスト全体の2〜4割程度を地盤改良が占めることが多い。
また、潜堤には石材などを用いるため、中詰材(浚渫土)の吸出し防止のために、潜堤と中詰材の接触面に防砂シートが設置されるが、防砂シートがなんらかの要因で破損した場合、潜堤から中詰材が吸出されて海側に流出し、周辺海域の環境に悪影響を及ぼす可能性がある。
If the raw ground for constructing artificial shallows and tidal flats has sufficient bearing capacity, such as bedrock and sandy soil, a submerged dike for earth retaining can be installed without problems. However, when the original ground is soft ground such as cohesive soil, the ground portion where the submerged dike is installed needs to be improved to increase the ground support. The ground improvement methods include the sand compaction pile method, the replacement method, the drain method, and the mixed treatment method.In the construction of artificial shallow ground and tidal flats, a columnar body made of crushed stone or sand is provided in the ground. A sand compaction pile method that increases the ground strength is often used. However, such ground improvement requires a large construction cost, and in the construction of conventional artificial shallow ground and tidal flats, the ground improvement often occupies about 20 to 40% of the total construction cost.
In addition, since stones are used for the submerged dike, a sand-proof sheet is installed on the contact surface between the submerged dike and the medium-filling material to prevent sucking out the medium-filling material (soil). In the case of damage, the filling material is sucked out from the submerged levee and flows out to the sea side, which may adversely affect the surrounding sea area environment.

また、人工浅場や干潟には、干潟生物の生息環境を確保するために干潟面積ができるだけ広いこと、覆砂層の波浪安定性が高いこと(波による浸食を受けにくいこと)、などが求められる。
土留め用の潜堤の天端高には、下記するような理由により一定の制限があり、このため従来の人工浅場や干潟では、中詰層と覆砂層の表層は比較的大きな勾配(通常、1:30〜1:50程度の勾配)を有している。覆砂層の波浪安定性は、覆砂層の勾配と覆砂材の粒径に依存しており、従来の人工浅場や干潟の覆砂層は、その勾配のために高い波浪安定性を確保することが難しい。また、覆砂材として比較的粗い粒度のものを用いれば、覆砂層の波浪安定性を高めることは可能であるが、覆砂層の粒径範囲が狭くなると生息できる干潟生物種が減少するため、干潟生物の生息環境の面で問題がある。
In addition, artificial shallow areas and tidal flats are required to have the tidal flat area as large as possible and to ensure high wave stability of the sand-covered layer (to be less susceptible to erosion by waves) in order to ensure a habitat environment for tidal flat organisms.
The top height of the submerged dike is limited for the following reasons. For this reason, in conventional artificial shallows and tidal flats, the surface layer of the middle layer and sand cover layer is relatively large (usually normal) , A gradient of about 1:30 to 1:50). Wave stability of the sand-covering layer depends on the slope of the sand-covering layer and the particle size of the sand-covering material, and conventional artificial shallow ground and tidal flat sand-covering layers can ensure high wave stability due to the slope. difficult. In addition, if a relatively coarse particle size is used as the sand-capping material, it is possible to increase the wave stability of the sand-covering layer, but if the particle size range of the sand-covering layer is narrowed, the tideland species that can inhabit will decrease, There is a problem in terms of the habitat of tidal flats.

また、従来の人工浅場や干潟において、中詰材として設置された浚渫土は、その内部の水分が脱水されることで、長期的に圧密沈下(体積減少)が生じる。干潟面積は、満潮と干潮の間に干出する部分であることから、中詰材(浚渫土)の沈下により覆砂層の天端高が低下すると、干潟面積が減少することになる。
このような問題の解決策としては、沈下高さに相当する量の覆砂材を追加施工することが考えられるが、この方法には、覆砂層の生物生息環境をリセットしてしまうことや、天然砂が大量に必要となるため、天然砂採取のための環境破壊、維持メンテナンスコストの増大といった問題がある。また、他の方法として、事前に浚渫土の沈下量を試算しておき、沈下量に相当する高さ分だけ嵩上げした断面で造成することも考えられる。この方法は、土留め用潜堤の天端高を高くする必要がある。しかし、潜堤の天端高は、付近を航行する船舶の安全性から一定深さに設定されることが多く、また、潜堤の天端高を高くすると、潜堤断面も大きくなるため、原地盤が軟弱な場合には、潜堤部分の地盤改良幅が広くなり、施工コスト増につながるといった問題が生じてしまう。
In addition, in the conventional artificial shallow ground and tidal flats, dredged soil (volume reduction) occurs in the long term because the water inside the clay is dehydrated. Since the tidal flat area is a portion that lies out between high tide and low tide, the tidal flat area will decrease if the top edge of the sand-covering layer decreases due to the subsidence of the padding material.
As a solution to such a problem, it is conceivable to add a sand-capping material in an amount equivalent to the settlement height, but this method can reset the biological habitat environment of the sand-capping layer, Since a large amount of natural sand is required, there are problems such as environmental destruction for natural sand collection and an increase in maintenance and maintenance costs. As another method, it is also conceivable to calculate the amount of settlement of the dredged soil in advance and to create a cross-section that is raised by a height corresponding to the amount of settlement. In this method, it is necessary to increase the top height of the earth retaining dike. However, the height of the top of the submerged dike is often set to a certain depth from the safety of ships navigating nearby, and the height of the submerged dike increases the cross section of the submerged dike, When the original ground is soft, there is a problem that the ground improvement width of the submerged dike portion becomes wide, leading to an increase in construction cost.

一方、中詰材の圧密沈下や中詰材の流出などを防止するために、中詰材である浚渫土に鉄鋼スラグなどの固化材を混合する方法が知られている(例えば、特許文献1、2)。
しかし、この方法では、中詰材として膨大な量の浚渫土が使用されるため、大量の固化材が必要であり、材料コストや混合処理のためのコストが嵩み、全体の施工コストが高くなる問題がある。
また、浚渫土の有効利用の観点からは、中詰材としてなるべく多くの浚渫土を使用することが好ましいが、上述したように、従来の人工浅場や干潟では中詰層の表層が比較的大きな勾配を有する構造のために、中詰材として使用できる浚渫土の量が制限される。
On the other hand, a method is known in which solidified material such as steel slag is mixed with the clay, which is an intermediate filler, in order to prevent the consolidation of the intermediate filler and the outflow of the intermediate filler (for example, Patent Document 1). 2).
However, in this method, a huge amount of clay is used as the filling material, so a large amount of solidifying material is required, the material cost and the cost for the mixing process are increased, and the overall construction cost is high. There is a problem.
From the viewpoint of effective utilization of dredged soil, it is preferable to use as much dredged material as possible as filling material. However, as described above, the surface layer of the filled layer is relatively large in conventional artificial shallow ground and tidal flats. Due to the gradient structure, the amount of clay that can be used as a filling material is limited.

したがって本発明の目的は、以上のような従来技術の課題を解決し、中詰材として浚渫土を用いる人工浅場又は干潟であって、潜堤を設置する地盤部分の地盤改良の規模を小さくすることにより、施工コストを大幅に低減することができ、また、潜堤からの中詰材(浚渫土)の吸出しを適切に防止することができる人工浅場又は干潟を提供することにある。
また、本発明の他の目的は、上記の点に加えて、広い干潟面積が得られるともに、特に粗い粒度の覆砂材を用いなくても覆砂層の高い波浪安定性が得られ、さらに、長期的に中詰材(浚渫土)に圧密沈下が発生しても、干潟面積の減少を抑えることができ、また、中詰材として多量の浚渫土を用いることができる人工浅場又は干潟を提供することにある。
Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to reduce the scale of ground improvement in the ground portion where the submerged levee is installed in an artificial shallow field or tidal flat using dredged soil as a filling material. Therefore, it is to provide an artificial shallow place or a tidal flat that can significantly reduce the construction cost and can appropriately prevent the suction of the filling material (soil) from the submerged dike.
In addition to the above points, the present invention provides a wide tidal flat area, and particularly high wave stability of the sand-covering layer without using a coarse sand-covering material. Providing an artificial shallow area or tidal flat that can suppress the decrease in tidal flat area and can use a large amount of dredged soil as a filling material even if consolidation subsidence occurs in the filling material (plow soil) over the long term. There is to do.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]浅場又は干潟の造成水域を囲むようにして設けられる土留め用の潜堤(A)と、該潜堤(A)の岸側に、その側面(但し、側面が法面である場合を含む。)に接して設けられ、潜堤(A)を補強する所定幅の補強土層(B)と、該補強土層(B)の岸側に設けられる、浚渫土を中詰材とする中詰層(C)と、補強土層(B)の表層を覆うように設置される被覆石(D)と、中詰層(C)の表層上に設けられる覆砂層(E)を備える人工浅場又は干潟であって、
補強土層(B)は、水中での単位体積質量が潜堤(A)の構成材の水中での単位体積質量よりも小さく、且つ28日養生後の一軸圧縮強さが10kN/m以上となる補強土で構成されるとともに、補強土層(B)の表層の一部又は全部が岸側に向かって高くなる勾配を有することを特徴とする人工浅場又は干潟。
The gist of the present invention for solving the above problems is as follows.
[1] A submerged dike (A) for retaining earth that surrounds the shallow water or tidal flats, and the side of the submerged dike (A) on the side (including the case where the side is a slope) )), A reinforcing soil layer (B) of a predetermined width that reinforces the submerged levee (A), and a medium that is provided on the shore side of the reinforcing soil layer (B) and uses clay as a filling material. Artificial shallow ground with a covering layer (C), a covering stone (D) installed so as to cover the surface layer of the reinforced soil layer (B), and a sand-covering layer (E) provided on the surface layer of the filling layer (C) Or a tidal flat,
The reinforced soil layer (B) has a unit volume mass in water smaller than the unit volume mass in water of the constituent material of the submerged dike (A), and the uniaxial compressive strength after curing for 28 days is 10 kN / m 2 or more. An artificial shallow field or tidal flat characterized in that the surface layer of the reinforced soil layer (B) has a gradient that increases toward the shore side.

[2]浅場又は干潟の造成水域を囲むようにして設けられる土留め用の潜堤(A)と、該潜堤(A)の岸側に、その側面(但し、側面が法面である場合を含む。)に接して設けられ、潜堤(A)を補強する所定幅の補強土層(B)と、該補強土層(B)の岸側に設けられる、浚渫土を中詰材とする中詰層(C)と、補強土層(B)の表層のうちの海側の領域を覆うように設置される被覆石(D)と、中詰層(C)の表層上及び補強土層(B)の表層の残部領域上に設けられる覆砂層(E)を備える人工浅場又は干潟であって、
補強土層(B)は、水中での単位体積質量が潜堤(A)の構成材の水中での単位体積質量よりも小さく、且つ28日養生後の一軸圧縮強さが10kN/m以上となる補強土で構成されるとともに、補強土層(B)の表層の一部又は全部が岸側に向かって高くなる勾配を有することを特徴とする人工浅場又は干潟。
[2] Earth retaining dike (A) provided so as to surround the shallow water or tidal flats, and the side of the dike (A) on the shore side (including the case where the side is a slope) )), A reinforcing soil layer (B) of a predetermined width that reinforces the submerged levee (A), and a medium that is provided on the shore side of the reinforcing soil layer (B) and uses clay as a filling material. Filling layer (C), covering stone (D) installed so as to cover the area on the sea side of the surface layer of reinforced soil layer (B), surface layer of reinforcing layer (C) and reinforced soil layer ( B) an artificial shallow field or tidal flat provided with a sand-capping layer (E) provided on the remaining area of the surface layer of B),
The reinforced soil layer (B) has a unit volume mass in water smaller than the unit volume mass in water of the constituent material of the submerged dike (A), and the uniaxial compressive strength after curing for 28 days is 10 kN / m 2 or more. An artificial shallow field or tidal flat characterized in that the surface layer of the reinforced soil layer (B) has a gradient that increases toward the shore side.

[3]上記[1]又は[2]の人工浅場又は干潟において、潜堤(A)の天端高さが補強土層(B)の天端高さよりも低いことを特徴とする人工浅場又は干潟。
[4]上記[1]〜[3]のいずれかの人工浅場又は干潟において、補強土層(B)の表層の前記勾配が1:3〜1:5であることを特徴とする人工浅場又は干潟。
[5]上記[1]〜[4]のいずれかの人工浅場又は干潟において、補強土層(B)を構成する補強土は、浚渫土又は/及び土砂に水和反応を生じさせる改質材を混合したものであることを特徴とする人工浅場又は干潟。
[3] The artificial shallow field or the tidal flat of the above [1] or [2], wherein the top height of the submerged dike (A) is lower than the top height of the reinforcing soil layer (B) or Tidal flat.
[4] The artificial shallow field or the tidal flat according to any one of [1] to [3] above, wherein the gradient of the surface layer of the reinforced soil layer (B) is 1: 3 to 1: 5 Tidal flat.
[5] In the artificial shallow ground or tidal flat according to any one of [1] to [4] above, the reinforced soil constituting the reinforced soil layer (B) is a modifier that causes a hydration reaction in dredged soil and / or soil An artificial shallow field or tidal flat characterized by a mixture of

[6]上記[1]〜[5]のいずれかの人工浅場又は干潟において、補強土層(B)を構成する補強土は、水中での単位体積重量が10kN/m未満であることを特徴とする人工浅場又は干潟。
[7]上記[1]〜[6]のいずれかの人工浅場又は干潟において、補強土層(B)を構成する補強土は、浚渫土又は/及び土砂に改質材として製鋼スラグを混合したものであることを特徴とする人工浅場又は干潟。
[6] In the artificial shallow ground or tidal flat according to any one of [1] to [5] above, the reinforced soil constituting the reinforced soil layer (B) has a unit volume weight in water of less than 10 kN / m 3. Characteristic artificial shallow ground or tidal flat.
[7] In the artificial shallow ground or tidal flat according to any one of [1] to [6] above, the reinforcing soil constituting the reinforcing soil layer (B) is mixed with steelmaking slag as a modifier in dredged soil or / and earth and sand. Artificial shallow ground or tidal flat characterized by things.

本発明の人工浅場又は干潟は、潜堤Aの背後(岸側)に設けた補強土層Bが土留め機能を果たすとともに、補強土のせん断強度の効果により従来よりもすべり破壊が生じにくくなるため、従来に較べて潜堤Aの規模を小さくすることができ、これにより原地盤に作用する荷重が小さくなるため、潜堤Aを設置する地盤部分の地盤改良の規模(地盤改良幅)を従来に較べて格段に小さくすることができる。このため施工コストを従来に較べて大幅に低減できる。   In the artificial shallow ground or tidal flat of the present invention, the reinforced soil layer B provided behind the submerged dike A (shore side) performs a soil retaining function, and slip failure is less likely to occur than conventional due to the effect of the shear strength of the reinforced soil. Therefore, the scale of the submerged dike A can be made smaller than before, and the load acting on the original ground is thereby reduced. Therefore, the scale of the ground improvement (the ground improvement width) of the ground part where the submerged dike A is installed is reduced. It can be made much smaller than before. For this reason, construction cost can be reduced significantly compared with the past.

また、補強土層Bを構成する補強土は、潜堤Aの構成材(石材など)に較べて間隙が小さく、しかも所定の強度を有するものであるため、補強土層Bによって潜堤Aからの中詰材の吸出しを適切に防止することができる。さらに、岸側に向かって高くなる勾配を有する補強土層Bの表層は波浪により浸食されやすく、その上に覆砂した場合も覆砂層が浸食されやすいが、補強土層Bの表層を被覆石Dで覆うことにより、波浪による補強土層Bの浸食を抑えることができる。   Further, the reinforced soil constituting the reinforced soil layer B has a smaller gap than the constituent material of the submerged dike A (such as stone) and has a predetermined strength. It is possible to appropriately prevent the filling material from being sucked out. Furthermore, the surface layer of the reinforced soil layer B having a gradient that increases toward the shore side is easily eroded by waves, and the sand-covered layer is also easily eroded when covered with sand. By covering with D, erosion of the reinforced soil layer B due to waves can be suppressed.

また、本発明の人工浅場又は干潟は、土留め機能を果たす補強土層Bの表層が岸側に向かって高くなる勾配を有しているため、潜堤Aの天端高を変えることなく(すなわち、潜堤Aの天端高が従来の人工浅場や干潟と同等であっても)、補強土層Bの岸側に設ける中詰層Cの天端高を高くすることができ、これにより覆砂層Eの勾配を緩くすることができる。このため、従来の人工浅場や干潟と較べて、(i)干潟面積を大幅に拡大することができる、(ii)特に粗い粒度の覆砂材を用いなくても覆砂層Eの高い波浪安定性が得られる、若しくは、使用可能な覆砂材の粒径範囲が広くなり、干潟生物の生息環境が改善される、という効果が得られる。さらに、中詰層Cの天端高を高くすることができるため、長期的に中詰材(浚渫土)に沈下が生じても干潟面積の減少を抑えることができる。また、浚渫土を中詰材とする中詰層Cの天端高を高くすることができるため、従来構造に較べて浅場や干潟の造成に用いる浚渫土量を増加させることができる利点がある。   In addition, the artificial shallow ground or tidal flat of the present invention has a slope in which the surface layer of the reinforcing soil layer B that performs the soil retaining function increases toward the shore side, so that the top height of the submerged dike A is not changed ( In other words, even if the top height of the submerged levee A is equivalent to that of a conventional artificial shallow ground or tidal flat), the top height of the filling layer C provided on the shore side of the reinforced soil layer B can be increased. The gradient of the sand-capping layer E can be relaxed. Therefore, compared to conventional artificial shallow ground and tidal flats, (i) The tidal flat area can be greatly expanded. (Ii) High wave stability of the sand-covered sand layer E without using a sand-clad material with a particularly coarse particle size. Can be obtained, or the particle size range of the sand-clad material that can be used is widened, and the habitat environment of tidal flat organisms is improved. Furthermore, since the top height of the filling layer C can be increased, it is possible to suppress a decrease in the tidal flat area even if the filling material (soil) sinks in the long term. In addition, since the top height of the filling layer C using the dredged soil as the filling material can be increased, there is an advantage that the amount of dredged material used for the construction of shallow fields and tidal flats can be increased as compared with the conventional structure. .

本発明の人工浅場又は干潟の一実施形態であって、人工浅場又は干潟の縦断面を模式的に示す説明図1 is an embodiment of an artificial shallow field or tidal flat according to the present invention, and schematically illustrates a longitudinal section of the artificial shallow field or tidal flat. 図1における潜堤A及び補強土層Bなどの部分拡大図Partial enlarged view of submerged dike A and reinforced soil layer B in FIG. 本発明の人工浅場又は干潟の他の実施形態であって、人工浅場又は干潟の縦断面を模式的に示す説明図(潜堤A及び補強土層Bなどの部分拡大図)It is other embodiment of the artificial shallow field or tidal flat of this invention, Comprising: Explanatory drawing which shows the longitudinal cross-section of an artificial shallow field or a tidal flat typically (partial enlarged views, such as a submerged dike A and a reinforced soil layer B) 本発明の人工浅場又は干潟の他の実施形態であって、人工浅場又は干潟の縦断面を模式的に示す説明図Explanatory drawing which is other embodiment of the artificial shallow field or tidal flat of this invention, Comprising: The vertical section of an artificial shallow field or a tidal flat is typically shown 図4における潜堤A及び補強土層Bなどの部分拡大図Partial enlarged view of submerged dike A and reinforced soil layer B in FIG. 図4及び図5の実施形態の人工浅場又は干潟の代表例(図6(ア))と従来の人工浅場又は干潟の代表例(図6(イ))について、その構造を比較して示した説明図A representative example of the artificial shallow field or tidal flat (FIG. 6A) of the embodiment of FIG. 4 and FIG. 5 and a typical example of the conventional artificial shallow field or tidal flat (FIG. 6A) are shown by comparing the structures. Illustration 海浜勾配の汀線の浸食・堆積の条件を規定する(1)式の根拠となるグラフA graph that provides the basis for equation (1), which prescribes erosion / deposition conditions for beach slope shorelines 本発明の人工浅場又は干潟の他の実施形態であって、人工浅場又は干潟の縦断面を模式的に示す説明図(潜堤A及び補強土層Bなどの部分拡大図)It is other embodiment of the artificial shallow field or tidal flat of this invention, Comprising: Explanatory drawing which shows the longitudinal cross-section of an artificial shallow field or a tidal flat typically (partial enlarged views, such as a submerged dike A and a reinforced soil layer B) 実施例1で造成した本発明の人工浅場又は干潟を示す説明図Explanatory drawing which shows the artificial shallow ground or tidal flat of the present invention created in Example 1 実施例2で造成した本発明の人工浅場又は干潟を示す説明図Explanatory drawing which shows the artificial shallow ground or tidal flat of the present invention created in Example 2 従来の人工浅場又は干潟の縦断面を模式的に示す説明図Explanatory drawing schematically showing a longitudinal section of a conventional artificial shallow field or tidal flat

図11は、従来の人工浅場又は干潟の縦断面を模式的に示す説明図であり、サンドコンパクションパイルなどの地盤改良部Fの上に浅場又は干潟の造成水域を囲むようにして設けられる土留め用の潜堤Aと、この潜堤Aの岸側に設けられる中詰層Cと、この中詰層Cの表層上に設けられる覆砂層Eを備える。
これに対して、本発明の人工浅場又は干潟(以下、説明の便宜上、人工浅場又は干潟を「人工浅場」という)は、潜堤Aの背後(岸側)に、水中での単位体積質量が潜堤Aの構成材の水中での単位体積質量よりも小さく、且つ所定の強度を有する補強土からなる補強土層Bを設けるとともに、この補強土層Bの表層の一部又は全部に岸側に向かって高くなるような勾配を付けたこと、また、補強土層Bの表層を覆砂ではなく被覆石Dで覆うようにしたことを特徴とする。
FIG. 11 is an explanatory view schematically showing a longitudinal section of a conventional artificial shallow place or tidal flat, for earth retaining provided so as to surround the shallow water or tidal flat constructed water area on the ground improvement part F 0 such as a sand compaction pile. of comprising a Sentsutsumi a 0, and Chutsume layer C 0 provided on the shore side of the Sentsutsumi a 0, the sand layer E 0 covering provided on the surface of the Chutsume layer C 0.
On the other hand, the artificial shallow field or tidal flat of the present invention (hereinafter, for the sake of convenience, the artificial shallow field or tidal flat is referred to as “artificial shallow field”) has a unit volume mass in water behind the submerged dike A (shore side). A reinforced soil layer B made of reinforced soil having a predetermined strength smaller than the unit volume mass of the constituent material of the submerged dam A is provided, and a part or all of the surface layer of the reinforced soil layer B is on the shore side. The surface layer of the reinforced soil layer B is covered with the covering stone D instead of the covering sand.

このような本発明の構造では、補強土層Bが土留め機能を果たすとともに、補強土のせん断強度の効果により従来よりもすべり破壊が生じにくくなるため、潜堤Aの規模を従来に較べて小さくすることができ、原地盤に作用する荷重が小さくなるため、潜堤Aを設置する地盤部分の地盤改良の規模(地盤改良幅)を従来に較べて格段に小さくすることができる。
また、補強土層Bを構成する補強土は、潜堤Aの構成材(石材など)に較べて間隙が小さく、しかも所定の強度を有するものであるため、補強土層Bによって潜堤Aからの中詰材の吸出しを適切に防止することができる。さらに、岸側に向かって高くなる勾配を有する補強土層Bの表層は波浪により浸食されやすく、その上に覆砂した場合も覆砂層が浸食されやすいが、補強土層Bの表層を被覆石Dで覆うことにより、波浪による補強土層Bの浸食を抑えることができる。
In such a structure of the present invention, the reinforced soil layer B performs a soil retaining function, and due to the effect of the shear strength of the reinforced soil, slip failure is less likely to occur than in the prior art. Since the load acting on the original ground can be reduced, the scale of ground improvement of the ground portion where the submerged dike A is installed (the ground improvement width) can be significantly reduced as compared with the conventional case.
Further, the reinforced soil constituting the reinforced soil layer B has a smaller gap than the constituent material of the submerged dike A (such as stone) and has a predetermined strength. It is possible to appropriately prevent the filling material from being sucked out. Furthermore, the surface layer of the reinforced soil layer B having a gradient that increases toward the shore side is easily eroded by waves, and the sand-covered layer is also easily eroded when covered with sand. By covering with D, erosion of the reinforced soil layer B due to waves can be suppressed.

一方、図11に示すような従来の人工浅場又は干潟では、一般に土留め用の潜堤Aは、周辺を航行する船舶の安全性から天端高−2.0mまでの高さに設定されることが多い。このため中詰層Cと覆砂層Eの表層は比較的大きな勾配(通常、1:30〜1:50程度の勾配)を有しており、さきに述べたように、この勾配のために覆砂層Eの波浪安定性を確保するのが難しい。また、上記のように潜堤Aの天端高に制限があるため、中詰層Cと覆砂層Eの天端高は、その潜堤Aの天端高の制約を受け、中詰材(浚渫土)の沈下により中詰層Cと覆砂層Eの天端高さが低下すると、干潟面積が減少してしまうことになる。 On the other hand, in the conventional artificial shallow or tidal flat as shown in FIG. 11, generally latent bank A 0 for earth retaining is set from the safety of ships navigating near the height of up to crest height -2.0m Often. For this reason, the surface layer of the filling layer C 0 and the sand-capping layer E 0 has a relatively large gradient (usually a gradient of about 1:30 to 1:50). it is difficult to ensure the wave stability of the sand layer E 0 covered in. In addition, since the top height of the submerged dike A 0 is limited as described above, the top end height of the medium-filled layer C 0 and the sand-covering layer E 0 is restricted by the top end height of the submerged dike A 0 , If the top heights of the middle filling layer C 0 and the sand-capping layer E 0 are lowered due to the subsidence of the middle filling material (soil), the tidal flat area will be reduced.

これに対して、本発明の構造では、土留め機能を果たす補強土層Bの表層が岸側に向かって高くなる勾配を有しているため、潜堤Aの天端高が従来構造と同じであっても、補強土層Bの岸側に設ける中詰層Cの天端高を高くする(嵩上げする)ことができ、これにより覆砂層Eの勾配を緩くすることができる。このため、従来の人工浅場と較べて、(i)干潟面積を大幅に拡大することができる、(ii)特に粗い粒度の覆砂材を用いなくても覆砂層Eの高い波浪安定性が得られる、若しくは、使用可能な覆砂材の粒径範囲が広くなり、干潟生物の生息環境が改善される、という効果が得られる。さらに、中詰層Cの天端高を高くすることができるため、長期的に中詰材(浚渫土)に沈下が生じても、干潟面積の減少を抑えることができるとともに、従来構造に較べて人工浅場の造成に用いる浚渫土量を増加させることができる。   On the other hand, in the structure of the present invention, the top layer of the submerged dam A has the same height as that of the conventional structure because the surface layer of the reinforced soil layer B that performs the earth retaining function has a slope that increases toward the shore side. Even so, the height of the top edge of the filling layer C provided on the shore side of the reinforced soil layer B can be increased (raised), whereby the gradient of the sand-covering layer E can be relaxed. For this reason, compared with the conventional artificial shallow field, (i) The tidal flat area can be greatly expanded. (Ii) High wave stability of the sand-covered sand layer E can be obtained without using a sand-covering material having a particularly coarse particle size. In other words, the particle size range of the sand-clad material that can be used or expanded is widened, and the habitat environment of the tidal flat organisms is improved. Furthermore, since the top height of the filling layer C can be increased, even if subsidence occurs in the filling material (soil) for a long time, the decrease in the tidal flat area can be suppressed, and compared with the conventional structure. Therefore, the amount of dredged soil used for constructing artificial shallow ground can be increased.

図1及び図2は、本発明の人工浅場の一実施形態を示すものであり、図1は人工浅場の縦断面を模式的に示す説明図、図2は図1における潜堤A及び補強土層Bなどの部分拡大図である。
この実施形態は、潜堤の規模を従来に較べて小さくすることにより、原地盤に作用する荷重が特に小さくなるようにし、潜堤を設置する地盤部分の地盤改良の規模(地盤改良幅)を従来に較べて小さくできるようにしたものである。
1 and 2 show an embodiment of the artificial shallow field of the present invention. FIG. 1 is an explanatory view schematically showing a longitudinal section of the artificial shallow field, and FIG. 2 is a submerged dam A and reinforcing soil in FIG. FIG. 4 is a partially enlarged view of a layer B and the like.
In this embodiment, by reducing the scale of the submerged dike compared to the conventional one, the load acting on the original ground is made particularly small, and the scale of the ground improvement of the ground part where the submerged dike is installed (the ground improvement width) is reduced. It can be made smaller than before.

図1及び図2の人工浅場は、浅場又は干潟の造成水域を囲むようにして設けられる土留め用の潜堤Aと、この潜堤Aの岸側に、その側面1(法面)に接して設けられ、潜堤Aを補強する所定幅の補強土層Bと、この補強土層Bの岸側に設けられる、浚渫土を中詰材とする中詰層Cと、補強土層Bの表層を覆うように設置される被覆石Dと、中詰層Cの表層上に設けられる覆砂層Eを備えている。   The artificial shallow ground shown in FIG. 1 and FIG. 2 is provided on the shore side of the submerged dike A provided so as to surround the shallow water or the tidal flat, and on the shore side of the submerged dike A in contact with the side surface 1 (slope). A reinforced soil layer B having a predetermined width for reinforcing the submerged levee A, a filling layer C provided on the shore side of the reinforced soil layer B, using a clay as a filling material, and a surface layer of the reinforcing soil layer B. A covering stone D installed so as to cover and a sand covering layer E provided on the surface layer of the filling layer C are provided.

一般に、潜堤Aを支持する海底部(原地盤)には地盤改良部Fが設けられる。特に、原地盤が粘性土などの軟弱地盤の場合には原地盤の地盤改良が必須であり、この地盤改良部Fの上に潜堤Aが築造される。この地盤改良部Fは、サンドコンパクションパイル工法、置換工法、ドレーン工法、混合処理工法など、任意の工法で設けることができるが、人工浅場では、地盤内に砕石や砂などを用いた柱状体を設けることで地盤強度を増加させるサンドコンパクションパイル工法が用いられることが多い。なお、このサンドコンパクションパイル工法では、地盤改良部Fの最上部の盛上り土の上に敷砂(図示せず)が敷設され、その上に潜堤Aを築造する。   In general, a ground improvement portion F is provided on the seabed (original ground) that supports the submerged dike A. In particular, when the original ground is soft ground such as cohesive soil, ground improvement of the original ground is essential, and the submerged dam A is built on the ground improvement portion F. This ground improvement part F can be provided by any method such as sand compaction pile method, replacement method, drain method, mixed processing method, etc., but in artificial shallow ground, a columnar body using crushed stone or sand is used in the ground. A sand compaction pile method is often used to increase the ground strength. In this sand compaction pile construction method, a spread sand (not shown) is laid on the uppermost soil of the ground improvement portion F, and the submerged dam A is constructed thereon.

潜堤Aは、断面台形状の捨石式傾斜堤であり、この潜堤Aの構造自体は従来と同様であるが、本実施形態では、潜堤Aを設置する地盤部分の地盤改良の規模(地盤改良幅)を小さくするため、図11に示すような従来の潜堤Aに較べて高さが低く、幅も小さく構成されている。
潜堤Aの構成材としては、一般に天然石材が用いられるが、例えば、コンクリートブロック、鉄鋼スラグを主原料とする炭酸固化体ブロック、鉄鋼製造スラグを主原料とする水和硬化体ブロック(例えば、鉄鋼スラグ水和固化体)、塊状の鉄鋼スラグなどを用いてもよく、天然石材を含めたこれらの材料の1種以上を用いることができる。
The submerged dike A is a rubble-type sloped dike with a trapezoidal cross section, and the structure itself of this submerged dike A is the same as the conventional one. However, in this embodiment, the scale of ground improvement of the ground part where the submerged dike A is installed to reduce the ground improvement width), height compared to conventional Sentsutsumi a 0 as shown in FIG. 11 is low, and a smaller width.
As a constituent material of the submerged dike A, natural stone is generally used. For example, a concrete block, a carbonate solid body block using steel slag as a main raw material, a hydrated hardened body block using steel production slag as a main raw material (for example, Steel slag hydrated solid), bulk steel slag, etc. may be used, and one or more of these materials including natural stone materials may be used.

本実施形態における潜堤Aの幅は、図11に示す従来の潜堤Aに較べて格段に小さく、しかもすべり破壊のせん断抵抗となる補強土層Bが設けられているため、地盤改良部Fの幅は従来の地盤改良部Fに較べてかなり小さい。
潜堤Aの大きさは、設置する海域の水深や環境などによっても異なるので特に制限はないが、本実施形態のように潜堤Aのサイズを小さくする場合では、潜堤材(一般的には、20〜200kg程度の天然石材)による施工可能な潜堤断面として、高さ2〜3m程度、天端幅2m前後、法面勾配1:1.5前後となる。
The width of Sentsutsumi A in this embodiment, since the much smaller compared to the conventional Sentsutsumi A 0 shown in FIG. 11, yet is a reinforced soil layer B to be the shear resistance of the sliding destruction are provided, soil improvement unit the width of F is much smaller compared to the conventional ground improvement unit F 0.
The size of the submerged dike A varies depending on the water depth and environment of the sea area to be installed, and is not particularly limited. However, when the size of the submerged dike A is reduced as in this embodiment, the submerged dike material (generally Is a section of a submerged dike that can be constructed with a natural stone of about 20 to 200 kg), a height of about 2 to 3 m, a top width of about 2 m, and a slope of about 1: 1.5.

補強土層Bは、潜堤Aの背後(岸側)に潜堤Aと接するようにして所定幅で設けられる。
この補強土層Bは、水中での単位体積質量が潜堤Aの構成材(例えば天然石材)の水中での単位体積質量よりも小さく、且つ28日養生後の一軸圧縮強さが10kN/m以上となる補強土で構成される。また、この28日養生後の一軸圧縮強さは20kN/m以上が好ましく、50kN/m以上がより好ましい。
補強土層Bに、水中での単位体積質量が潜堤Aの構成材の水中での単位体積質量よりも小さい補強土を用いるのは、従来の潜堤A0の面積に相当する部分の質量を軽減することで、地盤に作用する荷重を少なくするためである。具体的には、補強土の水中での単位体積質量は10kN/m未満とすることが好ましい。このような単位体積質量であれば、潜堤Aの構成材(天然石材など)の水中での単位体積質量よりも小さくなり、地盤に作用する荷重を軽減できる。
The reinforcing soil layer B is provided with a predetermined width behind the submerged dike A (shore side) so as to be in contact with the submerged dike A.
This reinforced soil layer B has a unit volume mass in water smaller than a unit volume mass in water of a constituent material of the submerged dike A (for example, natural stone material), and a uniaxial compressive strength after curing for 28 days is 10 kN / m. Consists of two or more reinforced soil. Further, the uniaxial compressive strength after the 28 days curing is preferably 20 kN / m 2 or more, 50 kN / m 2 or more is more preferable.
The reinforced soil layer B is made of reinforced soil whose unit volume mass in water is smaller than the unit volume mass in water of the constituent material of the submerged levee A. The mass of the portion corresponding to the area of the conventional submerged dam A 0 is used. This is because the load acting on the ground is reduced by reducing the load. Specifically, the unit volume mass of the reinforced soil in water is preferably less than 10 kN / m 3 . With such a unit volume mass, it becomes smaller than the unit volume mass in the water of the constituent material (natural stone material etc.) of the submerged dike A, and the load which acts on the ground can be reduced.

また、28日養生後の一軸圧縮強さが10kN/m以上、好ましくは20kN/m以上、より好ましくは50kN/m以上となる補強土を用いるのは、補強土層Bに土留として必要な強度をもたせるとともに、その表層上に設けられる被覆石Dの支持力を得るためである。さらに、補強土の粘着力(一軸圧縮強さの1/2相当)によるせん断抵抗の増加が期待でき、補強土層Bが円弧すべり(すべり破壊)のせん断抵抗になる。このため円弧すべりに対して余裕分が生じ、この面からも地盤改良幅を小さくすることができる。
また、潜堤Aと浚渫土を中詰材とする中詰層Cの間に、上記のような所定の強度を有する補強土からなる補強土層Bを設けることで、中詰材(浚渫土)が潜堤Aを透過して周辺海域に流出すること、すなわち潜堤Aからの中詰材の吸出しを適切に防止することができる。
Further, 28 days uniaxial compressive strength after curing is 10 kN / m 2 or more, preferably 20 kN / m 2 or more, more preferably to use a reinforced soil to be 50 kN / m 2 or more, as earth retaining a reinforced soil layer B This is to provide the necessary strength and to obtain a supporting force for the covering stone D provided on the surface layer. Further, an increase in shear resistance can be expected due to the adhesive strength of the reinforced soil (corresponding to 1/2 of the uniaxial compressive strength), and the reinforced soil layer B becomes a shear resistance due to arc slip (slip failure). For this reason, an allowance is generated for the arc slip, and the ground improvement width can be reduced also from this surface.
Further, by providing the reinforcing soil layer B made of the reinforcing soil having the predetermined strength as described above between the submerged dike A and the filling layer C having the filling material as the filling material, ) Can permeate through the submerged dike A and flow into the surrounding sea area, that is, the suction of the filling material from the submerged dike A can be appropriately prevented.

ここで、補強土として、28日養生後の一軸圧縮強さが20kN/m以上、好ましくは50kN/m以上となるものが望ましいのは、次のような理由による。すなわち、補強土層Bの表層に設ける被覆石Dの標準的な条件として、捨石(天然石など)の水中での単位体積質量10kN/m程度、被覆石Dの厚さ0.5m程度とし、また、補強土層Bの標準的な条件として、補強土(浚渫土と製鋼スラグの混合土)の水中での単位体積質量8kN/m程度、補強土層Bの厚さ2.0〜6.0m程度とした場合、好ましい補強土の強度は、補強土の強度≧10kN/m×0.5m+8kN/m×(2.0m〜6.0m)=21〜53kN/mとなり、したがって、28日養生後の一軸圧縮強さが上記のレベルのものが好ましいことになる。 Here, as a reinforced soil, 28 days uniaxial compressive strength after curing is 20 kN / m 2 or more, the preferable is desirably made as 50 kN / m 2 or more for the following reason. That is, as a standard condition of the covering stone D provided on the surface layer of the reinforced soil layer B, a unit volume mass of rubble stone (natural stone or the like) in water of about 10 kN / m 3 and a thickness of the covering stone D are set to about 0.5 m. Further, as standard conditions for the reinforced soil layer B, the unit volume mass of the reinforced soil (mixed soil of dredged soil and steelmaking slag) in water is about 8 kN / m 3 , and the thickness of the reinforced soil layer B is 2.0 to 6 When the thickness is about 0.0 m, the strength of the reinforcing soil is preferably the strength of the reinforcing soil ≧ 10 kN / m 3 × 0.5 m + 8 kN / m 3 × (2.0 m to 6.0 m) = 21 to 53 kN / m 2 . The uniaxial compressive strength after curing for 28 days is preferably the above level.

補強土層Bを構成する補強土には、上記のような水中での単位体積質量と一軸圧縮強さを満足するものであれば、どのような材料でも利用可能であるが、水和反応により強度を発現する補強土として、浚渫土又は/及び土砂に水和反応を生じさせる改質材(水硬性を有する固化材)を混合した混合土が挙げられ、本発明ではこの混合土を補強土として好適に使用できる。
浚渫土は、事前に乾燥処理(例えば、天日乾燥など)や脱水処理(薬剤を添加して凝集させた後に脱水・減容化する方法)を施したものであってもよい。土砂は建設残土などでもよい。改質材としては、水和反応を生じさせるものであれば特に種類を問わないが、例えば、セメント、石灰、製鋼スラグなどの鉄鋼スラグ、コンクリート廃材などが挙げられ、これらの1種以上を用いることができる。
これら改質材の種類と混合量を選択することで、補強土の一軸圧縮強さを調整することができる。
As the reinforcing soil constituting the reinforcing soil layer B, any material can be used as long as it satisfies the unit volume mass and uniaxial compressive strength in water as described above. Examples of the reinforcing soil exhibiting strength include mixed soil obtained by mixing dredged soil and / or modifying material (hydraulic solidifying material) that causes a hydration reaction. In the present invention, this mixed soil is used as reinforcing soil. Can be suitably used.
The clay may be subjected to a drying process (for example, sun drying) or a dehydration process (a method of dehydrating and reducing the volume after adding a chemical to agglomerate). The earth and sand may be construction residual soil. The modifying material is not particularly limited as long as it causes a hydration reaction, and examples thereof include steel slag such as cement, lime, and steelmaking slag, and concrete waste, and one or more of these are used. be able to.
The uniaxial compressive strength of the reinforced soil can be adjusted by selecting the type and amount of the modifier.

改質材として用いる鉄鋼スラグとしては、高炉で発生する高炉徐冷スラグ(但し、この高炉徐冷スラグは水中で硫化物が溶出しないようにするため、十分にエージング処理したものが好ましい)、溶銑予備処理、転炉脱炭精錬、鋳造、電気炉精錬などの工程で発生する製鋼スラグ(脱燐スラグ・脱硫スラグ・脱珪スラグなどの溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグなど)、鉱石還元スラグなどが挙げられ、これらの2種以上を用いてもよい。また、これらのスラグ中でも特に製鋼スラグが好ましく、そのなかでも特に脱炭スラグ(転炉スラグ)、脱燐スラグが好適である。また、十分な効果を得るためには、スラグは粉粒状のものを用いることが好ましい。
また、補強土層Bを構成する補強土は、特に、浚渫土又は/及び土砂に改質材として製鋼スラグを混合したものであることが好ましい。この補強土は、浚渫土又は/及び土砂と製鋼スラグの水和反応、さらに、製鋼スラグによる吸水効果により、浚渫土単体と比べて流動性が大幅に低下するため、混合土の水中投入時において、表層bの勾配を形成しやすい。
Steel slag used as a modifier is blast furnace slow-cooled slag generated in a blast furnace (however, this blast furnace slow-cooled slag is preferably sufficiently aged to prevent elution of sulfide in water), hot metal Steelmaking slag generated in processes such as pretreatment, converter decarburization refining, casting, electric furnace refining (hot metal pretreatment slag such as dephosphorization slag, desulfurization slag, desiliconization slag, decarburization slag, casting slag, electric furnace slag Etc.), ore reduction slag, etc., and two or more of these may be used. Among these slags, steel slag is particularly preferable, and among these, decarburization slag (converter slag) and dephosphorization slag are particularly suitable. In order to obtain a sufficient effect, it is preferable to use a slag having a granular shape.
Moreover, it is preferable that especially the reinforced soil which comprises the reinforced soil layer B mixes steelmaking slag as a modifier with dredged soil or / and earth and sand. This reinforced soil has drastically lower fluidity than dredged soil due to the hydration reaction between dredged soil and / or earth and sand and steelmaking slag, and the water absorption effect of steelmaking slag. It is easy to form a gradient of the surface layer b.

補強土層Bは、その表層bの一部又は全部が岸側に向かって高くなる勾配を有している。本実施形態の補強土層Bは断面山状に構成され、海側(潜堤A側)の斜面部10と平坦状の天端12(頂部)が表層bを構成し、したがって、表層bのうち海側の領域(斜面部10)が岸側に向かって高くなる勾配を有している。一方、補強土層Bの岸側(反潜堤A側)の斜面部11は中詰層Cの下側に位置する。
なお、表層bの勾配は、図4及び図5の実施形態のように、表層bの全部に付けてもよい。
補強土層Bの表層bの勾配(角度)の大きさは任意であるが、あまり急勾配にすると斜面が安定しないため、勾配は1:3〜1:5程度が望ましい。なお、天端12を緩傾斜状にしてもよいが、その場合には覆砂層Eと同程度の勾配が適当である。
The reinforced soil layer B has a gradient in which part or all of the surface layer b increases toward the shore side. The reinforced soil layer B of the present embodiment has a mountain-shaped cross section, and the slope portion 10 on the sea side (the submerged dike A side) and the flat top 12 (the top portion) constitute the surface layer b. Of these, the sea side region (slope portion 10) has a slope that increases toward the shore side. On the other hand, the slope 11 on the shore side (anti-submarine A side) of the reinforced soil layer B is located below the filling layer C.
Note that the gradient of the surface layer b may be applied to the entire surface layer b as in the embodiment of FIGS. 4 and 5.
The magnitude of the gradient (angle) of the surface layer b of the reinforced soil layer B is arbitrary, but if the slope is too steep, the slope is not stable. Therefore, the gradient is preferably about 1: 3 to 1: 5. The top end 12 may be gently inclined, but in such a case, a gradient similar to that of the sand covering layer E is appropriate.

補強土層Bの表層bに上記のような勾配を設けることにより、補強土層Bの土留めとしての高さが確保でき、中詰層Cを嵩上げすることができる利点があるが、これについては、他の実施形態(図4及び図5)において説明する。
補強土層Bの天端12の高さは、潜堤Aの天端2よりも高い位置にある。また、補強土層Bの表層bは、潜堤Aの天端2かそれよりも低い位置で潜堤Aの側面1(法面)に接するが、本実施形態では、潜堤Aの天端2の位置で潜堤Aの側面1(法面)に接している。換言すると、補強土層Bは潜堤Aの側面1(法面)全体に接するように設けられている。
By providing the above-mentioned gradient on the surface layer b of the reinforced soil layer B, there is an advantage that the height of the reinforced soil layer B can be secured as the retaining layer, and the filling layer C can be raised. Are described in other embodiments (FIGS. 4 and 5).
The height of the top end 12 of the reinforced soil layer B is higher than the top end 2 of the submerged dike A. Further, the surface layer b of the reinforced soil layer B is in contact with the side surface 1 (slope) of the submerged dike A at the top end 2 of the submerged dike A or at a lower position. 2 is in contact with the side surface 1 (slope) of the submerged dam A. In other words, the reinforced soil layer B is provided so as to contact the entire side surface 1 (slope) of the submerged dike A.

補強土層Bの幅wB0は特に制限はないが、この幅wB0が小さすぎると潜堤Aを補強する効果が低下する恐れがあり、また、斜面部11の勾配が急になるので水中施工が難しくなる。一方、幅wB0が大きすぎると施工コストが増加するとともに、補強土層Bの容積が増加することに伴い中詰層Cの容積が相対的に減少するため、中詰材として使用する浚渫土の量が少なくなってしまう。本実施形態では、補強土層Bの幅wB0は、潜堤Aの底面の幅wの2〜7倍程度が好ましい。 The width w B0 of the reinforced soil layer B is not particularly limited, but if this width w B0 is too small, the effect of reinforcing the submerged dam A may be reduced, and the slope 11 of the slope 11 becomes steep, so Construction becomes difficult. On the other hand, if the width w B0 is too large, the construction cost increases, and the volume of the filling layer C relatively decreases as the volume of the reinforcing soil layer B increases. The amount of will decrease. In the present embodiment, the width w B0 of the reinforced soil layer B is preferably about 2 to 7 times the width w A of the bottom surface of the submerged dike A.

また、補強土層Bの表層bの幅wB1も特に制限はないが、この幅wB1が小さすぎると、勾配が急になりすぎ、施工に支障をきたす恐れがある。また、中詰材(浚渫土)の吸出し防止効果が低下する恐れがあるとともに、潜堤Aの補強効果も小さくなる。一方、幅wB1が大きすぎると補強土層Bの幅wB0も大きくなり、上記のような問題が生じてくる。このため本実施形態では、補強土層Bの表層bの幅wB1は、潜堤Aの底面の幅wの1〜3倍程度が好ましい。
なお、中詰層Cの高さにもよるが、一般的には圧密沈下量1〜2m程度であり、標準的な構造・規模の人工浅場では、斜面部10の勾配を1:3とすると、補強土層Bの表層bの幅wB1は8〜20m程度になることが多い。
Further, the width w B1 of the surface layer b of the reinforced soil layer B is not particularly limited, but if the width w B1 is too small, the gradient becomes too steep and may hinder the construction. In addition, there is a possibility that the effect of preventing the suction of the filling material (silk) will be reduced, and the reinforcing effect of the submerged dike A will be reduced. On the other hand, if the width w B1 is too large, the width w B0 of the reinforced soil layer B also becomes large, and the above-described problem arises. For this reason, in this embodiment, the width w B1 of the surface layer b of the reinforced soil layer B is preferably about 1 to 3 times the width w A of the bottom surface of the submerged dam A.
Although it depends on the height of the filling layer C, generally, the amount of consolidation settlement is about 1 to 2 m. In an artificial shallow field with a standard structure and scale, the slope of the slope 10 is 1: 3. The width w B1 of the surface layer b of the reinforced soil layer B is often about 8 to 20 m.

中詰層Cは補強土層Bの岸側に設けられるが、補強土層Bの斜面部11に対しては、これを覆うようにその上に設けられる。中詰層Cは浚渫土からなる中詰材で構成される。本発明では、施工コスト低減のために、浚渫土に固化材を混合したような中詰材は用いない。このような中詰材を用いないで人工浅場を造成することが、本発明の主旨の一つである。
覆砂層Eには、通常、天然砂が用いられるが、粒状の鉄鋼スラグなどのような他の材料を用いてもよい。
なお、中詰層Cの上の覆砂層Eにも岸側に向かって高くなる勾配が付けられており、この勾配を形成するために、中詰層C、覆砂層Eの1つ以上の敷設厚さが調整される。
The filling layer C is provided on the shore side of the reinforced soil layer B, and the slope portion 11 of the reinforced soil layer B is provided thereon so as to cover it. The filling layer C is made of filling material made of clay. In the present invention, in order to reduce the construction cost, a filling material such as a solidified material mixed with clay is not used. It is one of the gist of the present invention to create an artificial shallow field without using such a filling material.
Natural sand is usually used for the sand covering layer E, but other materials such as granular steel slag may be used.
The covering sand layer E above the filling layer C is also provided with a gradient that increases toward the shore side. To form this gradient, one or more of the filling layer C and the covering sand layer E are laid. The thickness is adjusted.

本発明の人工浅場は、中詰層Cの表層上に覆砂層Eを設ける一方で、補強土層Bの表層を覆うように被覆石Eを設置することが特徴の1つである。
補強土層Bの表層bには岸側に向かって高くなる勾配があるため、この表層b上に覆砂層を設けた場合には、特に波浪による浸食を受けやすい。このため、補強土層Bの表層bには被覆石Dを設置する。
本実施形態では、補強土層Bの表層bに連なる潜堤Aの天端2の上にも被覆石Dが設置されている。
One feature of the artificial shallow field of the present invention is that the covering stone E is provided so as to cover the surface layer of the reinforced soil layer B while the sand covering layer E is provided on the surface layer of the filling layer C.
Since the surface layer b of the reinforced soil layer B has a gradient that increases toward the shore side, when a sand covering layer is provided on the surface layer b, it is particularly susceptible to erosion due to waves. For this reason, the covering stone D is installed in the surface layer b of the reinforced soil layer B.
In this embodiment, the covering stone D is also installed on the top edge 2 of the submerged dike A connected to the surface layer b of the reinforced soil layer B.

被覆石Dとしては、潜堤Aの構成材と同様のものを用いることができる。すなわち、一般に天然石材が用いられるが、例えば、コンクリートブロック、鉄鋼スラグを主原料とする炭酸固化体ブロック、鉄鋼製造スラグを主原料とする水和硬化体ブロック(例えば、鉄鋼スラグ水和固化体)、塊状の鉄鋼スラグなどを用いてもよく、天然石材を含めたこれらの材料の1種以上を用いることができる。被覆石Dのサイズ(粒径)は、2〜100mm程度が好ましい。   As the covering stone D, the same thing as the constituent material of the submerged dike A can be used. That is, natural stone is generally used. For example, a concrete block, a carbonate solid block made of steel slag as a main raw material, and a hydrated hardened body block made of steel production slag as a main raw material (for example, steel slag hydrate solidified body). Bulk steel slag may be used, and one or more of these materials including natural stone materials can be used. The size (particle size) of the covering stone D is preferably about 2 to 100 mm.

図1及び図2の実施形態では、補強土層Bの表層bの全体を覆うように被覆石Dを設置しているが、被覆石Dは補強土層Bの表層bのうちの海側の領域のみを覆うように設置してもよい。この場合には、補強土層Bの表層bの残部領域上には覆砂層Eが設けられる。
図3は、そのような構造の人工浅場の一実施形態を示すもので、人工浅場の縦断面を模式的に示す説明図(潜堤A及び補強土層Bなどの部分拡大図)である。
この実施形態では、補強土層Bの表層bのうち勾配を有する海側の領域にのみ被覆石Dを設置し、補強土層Bの表層bの残部領域である天端12上には覆砂層Eが設けられている。
その他の構成や機能、作用効果は図1及び図2の実施形態と同様であるので、構成について同一の符号を付し、それらの詳細な説明は省略する。
In the embodiment of FIGS. 1 and 2, the covering stone D is installed so as to cover the entire surface layer b of the reinforced soil layer B, but the covering stone D is on the sea side of the surface layer b of the reinforced soil layer B. You may install so that only an area | region may be covered. In this case, the sand covering layer E is provided on the remaining area of the surface layer b of the reinforced soil layer B.
FIG. 3 shows an embodiment of the artificial shallow field having such a structure, and is an explanatory diagram (partially enlarged view of the submerged dam A and the reinforcing soil layer B) schematically showing a longitudinal section of the artificial shallow field.
In this embodiment, the covering stone D is installed only in the sea-side area having a gradient in the surface layer b of the reinforced soil layer B, and the sand covering layer is formed on the top end 12 that is the remaining area of the surface layer b of the reinforced soil layer B. E is provided.
Since other configurations, functions, and effects are the same as those of the embodiment of FIGS. 1 and 2, the same reference numerals are given to the configurations, and detailed descriptions thereof are omitted.

図4及び図5は、本発明の人工浅場の他の実施形態を示すものであり、図4は人工浅場の縦断面を模式的に示す説明図、図5は図4における潜堤A及び補強土層Bなどの部分拡大図である。
この実施形態は、潜堤Aの規模(天端高など)は従来構造とほぼ同等とし、補強土層Bの岸側に設ける中詰層Cの天端高を高く(嵩上げ)できるように、補強土層Bの天端を高くしたものである。さきに述べたように、この構造では、中詰層Cの天端高を高くすることにより覆砂層Eの勾配が緩くなるため、(i)干潟面積を大幅に拡大できる、(ii)特に粗い粒度の覆砂材を用いなくても覆砂層Eの高い波浪安定性が得られる、若しくは、使用可能な覆砂材の粒径範囲が広くなり、干潟生物の生息環境が改善される、という効果が得られる。さらに、中詰層Cの天端高を高くすることができるため、長期的に中詰材(浚渫土)に沈下が生じても干潟面積の減少を抑えることができるとともに、従来構造に較べて人工浅場の造成に用いる浚渫土量を増加させることができる。
潜堤Aの大きさは、設置する海域の水深や環境などによっても異なるので特に制限はないが、通常、高さ2.0〜6.0m程度、天端幅2m前後、法面勾配1:1.5前後であり、天端高は最低水面下−2.0m前後である。
4 and 5 show another embodiment of the artificial shallow field of the present invention. FIG. 4 is an explanatory view schematically showing a longitudinal section of the artificial shallow field, and FIG. 5 is a submerged dam A and reinforcement in FIG. It is a partial enlarged view of soil layer B or the like.
In this embodiment, the scale of the submerged dike A (top height, etc.) is substantially the same as the conventional structure, and the top height of the filling layer C provided on the shore side of the reinforced soil layer B can be increased (lifted). The top of the reinforced soil layer B is raised. As described above, in this structure, the slope of the sand-covering layer E becomes gentler by increasing the top height of the filling layer C, so that (i) the tidal flat area can be greatly expanded, (ii) particularly rough The effect that high wave stability of the sand-covering layer E can be obtained without using a sand-covering material of a particle size, or the particle size range of the sand-covering material that can be used is widened and the habitat environment of tidal flats is improved. Is obtained. Furthermore, since the top height of the filling layer C can be increased, it is possible to suppress a decrease in the tidal flat area even if the filling material (soil) sinks in the long term, and compared with the conventional structure. It is possible to increase the amount of dredged soil used to create artificial shallow fields.
The size of the submerged levee A varies depending on the water depth and environment of the sea area to be installed, and is not particularly limited. However, the height is generally about 2.0 to 6.0 m, the top width is about 2 m, and the slope is 1: It is around 1.5, and the top height is around -2.0 m below the lowest water surface.

補強土層Bは、図1及び図2の実施形態と同様に、潜堤Aの背後(岸側)に潜堤Aの岸側の側面1と接するようにして所定幅で設けられる。補強土層Bの表層bは、その全体が岸側に向かって高くなる勾配を有している。
本実施形態の補強土層Bは上面が断面山状に構成され、海側(潜堤A側)の斜面部10の上面が表層bを構成し、岸側(反潜堤A側)の斜面部11が中詰層Cの下側に位置する。断面山状の頂部が補強土層Bの天端12である。
As in the embodiment of FIGS. 1 and 2, the reinforcing soil layer B is provided with a predetermined width behind the submerged dike A (shore side) so as to contact the side surface 1 of the submerged dike A on the shore side. The surface layer b of the reinforced soil layer B has a gradient that increases as a whole toward the shore side.
The upper surface of the reinforced soil layer B of the present embodiment has a mountain-shaped cross section, the upper surface of the slope portion 10 on the sea side (submarine A side) constitutes the surface layer b, and the slope portion on the shore side (anti-submarine A side) 11 is located below the filling layer C. The top of the mountain-shaped cross section is the top end 12 of the reinforced soil layer B.

補強土層Bの表層bに上記のような勾配を設けることにより、補強土層Bの土留めとしての高さが確保でき、中詰層Cを嵩上げすることができる。補強土層Bの天端12の高さは任意であるが、中詰材(浚渫土)の圧密沈下量に相当する高さを嵩上げできるように設定するのが好ましく、少なくとも潜堤Aの天端2よりも高い位置にあることが好ましい。
本実施形態の補強土層Bの表層bは、潜堤Aの天端2よりも低い位置で潜堤Aの側面1(法面)に接しているが、図1及び図2の実施形態のように、潜堤Aの天端2の位置で潜堤Aの側面1(法面)に接するようにしてもよい。表層bの勾配(角度)の大きさは任意であるが、あまり急勾配とすると斜面が安定しないため、勾配は1:3〜1:5程度が望ましい。
By providing the above-described gradient on the surface layer b of the reinforced soil layer B, the height of the reinforced soil layer B as a retaining ring can be secured, and the filling layer C can be raised. The height of the top end 12 of the reinforced soil layer B is arbitrary, but it is preferable to set the height corresponding to the consolidation settlement amount of the filling material (koji) so that at least the top of the submerged levee A can be raised. It is preferable that the position is higher than the end 2.
The surface layer b of the reinforced soil layer B of this embodiment is in contact with the side surface 1 (slope) of the submerged dike A at a position lower than the top end 2 of the submerged dike A, but in the embodiment of FIGS. In this way, the side surface 1 (slope) of the submerged dike A may be in contact with the top end 2 of the submerged dike A. The magnitude of the gradient (angle) of the surface layer b is arbitrary, but if the slope is too steep, the slope is not stable. Therefore, the gradient is preferably about 1: 3 to 1: 5.

補強土層Bの幅wB0は特に制限はないが、この幅wB0が小さすぎると潜堤Aを補強する効果が低下する恐れがあり、また、斜面部11の勾配が急になるので水中施工が難しくなる。一方、幅wB0が大きすぎると施工コストが増加するとともに、補強土層Bの容積が増加することに伴い中詰層Cの容積が相対的に減少するため、中詰材として使用する浚渫土の量が少なくなってしまう。このため本実施形態では、補強土層Bの幅wB0は、潜堤Aの底面の幅wの1〜4倍程度が好ましい。 The width w B0 of the reinforced soil layer B is not particularly limited, but if this width w B0 is too small, the effect of reinforcing the submerged dam A may be reduced, and the slope 11 of the slope 11 becomes steep, so Construction becomes difficult. On the other hand, if the width w B0 is too large, the construction cost increases, and the volume of the filling layer C relatively decreases as the volume of the reinforcing soil layer B increases. The amount of will decrease. For this reason, in this embodiment, the width w B0 of the reinforced soil layer B is preferably about 1 to 4 times the width w A of the bottom surface of the submerged dike A.

また、補強土層Bの表層bの幅wB1も特に制限はないが、この幅wB1が小さすぎると、勾配が急になりすぎ、施工に支障をきたす恐れがある。また、中詰材(浚渫土)の吸出し防止効果が低下する恐れがあるとともに、潜堤Aの補強効果も小さくなる。一方、幅wB1が大きすぎると補強土層Bの幅wB0も大きくなり、上記のような問題が生じてくる。このため補強土層Bの表層bの幅wB1は、潜堤Aの底面の幅wの0.1〜1倍程度が好ましい。
なお、中詰層Cの高さにもよるが、一般的には圧密沈下量1〜2m程度であり、標準的な構造・規模の人工浅場では、斜面部10の勾配を1:3とすると、補強土層Bの表層bの幅wB1は3〜6m程度になることが多い。
Further, the width w B1 of the surface layer b of the reinforced soil layer B is not particularly limited, but if the width w B1 is too small, the gradient becomes too steep and may hinder the construction. In addition, there is a possibility that the effect of preventing the suction of the filling material (silk) will be reduced, and the reinforcing effect of the submerged dike A will be reduced. On the other hand, if the width w B1 is too large, the width w B0 of the reinforced soil layer B also becomes large, and the above-described problem arises. For this reason, the width w B1 of the surface layer b of the reinforced soil layer B is preferably about 0.1 to 1 times the width w A of the bottom surface of the submerged dike A.
Although it depends on the height of the filling layer C, generally, the amount of consolidation settlement is about 1 to 2 m. In an artificial shallow field with a standard structure and scale, the slope of the slope 10 is 1: 3. The width w B1 of the surface layer b of the reinforced soil layer B is often about 3 to 6 m.

本実施形態でも、補強土層Bの表層b全体を覆うように被覆石Dが設置されている。さきに述べたように、補強土層Bの表層bには岸側に向かって高くなる勾配があるため、この表層b上に覆砂層を設けた場合には、特に波浪による浸食を受けやすい。このため、補強土層Bの表層bには被覆石Dを設置する。なお、被覆石Dは補強土層Bの表層bのうちの海側の領域のみを覆うように設置してもよい。この場合には、補強土層Bの表層bの残部領域上には覆砂層Eが設けられる。
その他の構成や機能、作用効果は図1及び図2の実施形態と同様であるので、構成について同一の符号を付し、それらの詳細な説明は省略する。
Also in this embodiment, the covering stone D is installed so that the whole surface layer b of the reinforced soil layer B may be covered. As described above, since the surface layer b of the reinforced soil layer B has a slope that increases toward the shore side, when a sand-covering layer is provided on the surface layer b, it is particularly susceptible to erosion due to waves. For this reason, the covering stone D is installed in the surface layer b of the reinforced soil layer B. In addition, you may install the covering stone D so that only the area | region of the sea side of the surface layer b of the reinforced soil layer B may be covered. In this case, the sand covering layer E is provided on the remaining area of the surface layer b of the reinforced soil layer B.
Since other configurations, functions, and effects are the same as those of the embodiment of FIGS. 1 and 2, the same reference numerals are given to the configurations, and detailed descriptions thereof are omitted.

本実施形態の人工浅場は、従来の人工浅場と較べて、潜堤Aが同じ天端高であっても中詰層Cの天端高を高くすることができ、これにより覆砂層Eの勾配が緩くなる。このため、従来の人工浅場と較べて、
(i)干潟面積を大幅に拡大することができる。
(ii)特に粗い粒度の覆砂材を用いなくても覆砂層Eの高い波浪安定性が得られる。若しくは、使用可能な覆砂材の粒径範囲が広くなり、干潟生物の生息環境が改善される。
という有利な効果が得られる。
本実施形態のような人工浅場において、覆砂層Eの勾配に特別な制限はないが、上記の理由から、1:50未満の緩い勾配、例えば1:70〜1:130程度の緩い勾配とすることが可能である。
Compared with the conventional artificial shallow field, the artificial shallow field of the present embodiment can increase the ceiling height of the filling layer C even if the submerged dike A has the same ceiling height. Becomes loose. For this reason, compared to the conventional artificial shallow field,
(I) The tidal flat area can be greatly expanded.
(Ii) High wave stability of the sand-covering sand layer E can be obtained without using a sand-covering material having a particularly coarse particle size. Or, the particle size range of the sand-capping material that can be used is widened, and the habitat environment for tidal flats is improved.
The advantageous effect is obtained.
In the artificial shallow field as in this embodiment, there is no particular limitation on the slope of the sand-covering layer E, but for the above reasons, a gentle slope of less than 1:50, for example, a gentle slope of about 1:70 to 1: 130. It is possible.

図6は、本実施形態の人工浅場の代表例(図6(ア))と従来の人工浅場の代表例(図6(イ))について、その構造を比較して示したもの(模式的な縦断面図)である。図6(ア)に示す本実施形態の人工浅場(以下、説明の便宜上「本発明構造」という)は、潜堤Aの天端高が図6(イ)に示す従来の人工浅場(以下、説明の便宜上「従来構造」という)と同じであるが、従来構造に較べて中詰層Cの天端高は相当程度高く、その分、覆砂層Eの勾配が緩くなっている。以下、この図6に基づいて上記(i)、(ii)の効果を具体的に説明する。   FIG. 6 shows a comparison of the structure of a typical example of an artificial shallow field (FIG. 6A) of this embodiment and a typical example of a conventional artificial shallow field (FIG. 6A) (schematic). FIG. The artificial shallow field of the present embodiment shown in FIG. 6A (hereinafter referred to as “the structure of the present invention” for convenience of explanation) is a conventional artificial shallow field (hereinafter referred to as “the structure of the present invention”) shown in FIG. For convenience of explanation, it is the same as “conventional structure”). However, the top height of the filling layer C is considerably higher than that of the conventional structure, and the gradient of the sand covering layer E is correspondingly gentle. Hereinafter, the effects (i) and (ii) will be specifically described with reference to FIG.

(i)干潟面積の拡大
干潟面積とは、潮汐による海水面の上下変動により、陸地と海面下になることを繰り返す地形の面積のことであり、当然、人工浅場は干潟面積ができるだけ広くなるように造成されることが好ましい。図6に示されるように、本発明構造は、従来構造と較べて覆砂層Eの勾配が緩くなり、この例では、従来構造における覆砂層Eの勾配が1:40であるのに対して、本発明構造における覆砂層Eの勾配は1:110になっている。このため、造成された人工浅場(但し、常時陸地となる造成部分は除く)の沖合方向への造成幅140mに対する干潟面積の幅(沖合方向への幅)は、従来構造では40mであるのに対して、本発明構造では110mであり、従来構造の3倍近い干潟面積となっている。
一般に、本発明構造では、造成された人工浅場(但し、常時陸地となる造成部分は除く)の面積の50〜80%程度を干潟面積とすることができ、このため従来構造の2〜3倍程度の干潟面積を確保することができる。
(I) Expansion of the tidal flat area The tidal flat area is the area of the topography that repeats the land surface and under the sea surface due to the vertical fluctuation of the sea surface due to tides. It is preferable to be formed. As shown in FIG. 6, in the structure of the present invention, the slope of the sand-covering layer E is gentler than that of the conventional structure. In this example, the slope of the sand-covering layer E 0 in the conventional structure is 1:40. The gradient of the sand-capping layer E in the structure of the present invention is 1: 110. For this reason, the width of the tidal flat area (the width in the offshore direction) with respect to the offshore width of 140 m in the offshore direction of the constructed artificial shallow ground (excluding the formation part that always becomes land) is 40 m in the conventional structure. On the other hand, the structure of the present invention is 110 m, and the tidal flat area is nearly three times that of the conventional structure.
In general, in the structure of the present invention, about 50 to 80% of the area of the constructed artificial shallow ground (except for the construction part that is always land) can be set as a tidal flat area, which is 2 to 3 times that of the conventional structure. A certain level of tidal flat area can be secured.

(ii)覆砂層の波浪安定性の向上など
本発明構造では、覆砂層Eの勾配が緩くなることで、従来構造と較べて覆砂層Eの波浪安定性が向上し、より高い波浪に対しても覆砂層Eの浸食が抑えられる。一方、波浪安定性を従来の人工浅場と同程度にした場合には、より粒径の小さい覆砂材を使用でき、使用可能な覆砂材の粒径範囲が広くなるため、干潟生物の生息環境が改善され、多様な生物種が生息可能となる。
海浜勾配の汀線の浸食・堆積の条件は、下記(1)式のC値で推定することができ、C値>18では浸食傾向、C値<9では堆積傾向を示す。下記(1)式は、図7(海の自然再生ワーキンググループ、海の自然再生ハンドブック−その計画・技術・実践−、第2巻 干潟編、株式会社ぎょうせい、平成15年11月10日、77頁「図-4.19」)を根拠とする。
(Ii) Improvement of wave stability of sand-covered layer In the structure of the present invention, the slope of sand-covered layer E becomes gentler, so that the wave stability of sand-covered layer E is improved compared to the conventional structure, and higher wave In addition, erosion of the sand covering layer E is suppressed. On the other hand, when the wave stability is set to the same level as that of conventional artificial shallow ground, sand-covering materials with smaller particle sizes can be used, and the usable particle size range of sand-covering materials is widened. The environment will be improved and various species will be able to inhabit.
The erosion / deposition conditions of the beach slope shoreline can be estimated by the C value of the following equation (1), where C value> 18 indicates an erosion tendency, and C value <9 indicates a deposition tendency. The following equation (1) is shown in Fig. 7 (Sea Nature Restoration Working Group, Sea Nature Restoration Handbook-Planning, Technology, and Practice-Volume 2, Tidal Flats, Gyosei Corporation, November 10, 2003, 77. Page "Figure-4.19").

Figure 0006361889
Figure 0006361889

本発明構造と従来構造について、覆砂層の浸食を生じない限界波高(波の高さH)、覆砂層の勾配、必要とされる覆砂材の粒径の関係を表1に示す。これによれば、必要とされる覆砂材の粒径が同じである場合、本発明構造の限界波高は従来構造よりも大きくなり、波浪安定性が向上する。一方、限界波高が同じである場合には、本発明構造では従来構造に較べてより粒径が小さい覆砂材が使用でき、従来構造よりも覆砂材の粒径範囲が広がることから、干潟生物の生息環境が改善され、多様な生物種が生息可能となる。 Table 1 shows the relationship between the critical wave height (wave height H 0 ) that does not cause erosion of the sand-covering layer, the slope of the sand-covering layer, and the required particle size of the sand-covering material for the structure of the present invention and the conventional structure. According to this, when the required particle size of the sand covering material is the same, the critical wave height of the structure of the present invention is larger than that of the conventional structure, and the wave stability is improved. On the other hand, when the critical wave height is the same, the structure of the present invention can use a sand covering material having a smaller particle size than the conventional structure, and the particle size range of the sand covering material is wider than the conventional structure. The habitat of living organisms will be improved and various species will be able to inhabit.

Figure 0006361889
Figure 0006361889

本発明の人工浅場は、(i)図1及び図2の実施形態のように潜堤Aの規模を小さくして原地盤に作用する荷重が低減させることで、潜堤Aを設置する地盤部分の地盤改良の規模(地盤改良幅)を小さくすること、(ii)図4及び図5の実施形態のように補強土層Bの天端を高くすることで中詰層Cの天端高を高くし、覆砂層Eの勾配を緩くすることにより干潟面積の拡大、覆砂層Eの波浪安定性の向上などを図ること、という2つの要求を満たすような構造とすることもできる。   The artificial shallow field of the present invention is (i) a ground portion where the submerged dike A is installed by reducing the load acting on the original ground by reducing the scale of the submerged dike A as in the embodiment of FIGS. (Ii) The height of the top of the reinforced soil layer B is increased by increasing the top of the reinforced soil layer B as in the embodiment of FIGS. 4 and 5. A structure that satisfies the two requirements of increasing the tidal flat area and improving the wave stability of the sand-covering layer E by increasing the slope and reducing the slope of the sand-covering layer E can also be achieved.

図8は、そのような構造の人工浅場の一実施形態を示すもので、人工浅場の縦断面を模式的に示す説明図(潜堤A及び補強土層Bなどの部分拡大図)である。
この実施形態では、図1及び図2の実施形態と同様に、潜堤Aの規模を小さくして地盤改良部Fの規模(地盤改良幅)を小さくする一方で、図4及び図5の実施形態と同様に、補強土層Bの天端を高くすることで中詰層Cの天端高を高くしている。
なお、その他の構成や機能、作用効果は図1及び図2の実施形態と同様であるので、構成について同一の符号を付し、それらの詳細な説明は省略する。
FIG. 8 shows an embodiment of the artificial shallow field having such a structure, and is an explanatory view (partially enlarged view of the submerged dam A and the reinforced soil layer B) schematically showing a longitudinal section of the artificial shallow field.
In this embodiment, as in the embodiment of FIGS. 1 and 2, the scale of the submerged dike A is reduced to reduce the scale of the ground improvement portion F (the ground improvement width), while the implementation of FIGS. 4 and 5 is performed. Similarly to the form, the top end height of the filling layer C is increased by increasing the top end of the reinforcing soil layer B.
Since other configurations, functions, and effects are the same as those of the embodiment of FIGS. 1 and 2, the same reference numerals are given to the configurations, and detailed descriptions thereof are omitted.

本発明の人工浅場を造成する方法としては、潜堤の設置場所(海底部)が軟弱地盤である場合には地盤改良して地盤改良部Fを設けた上で、潜堤Aを築造する。次いで、この潜堤Aの背後(岸側)に補強土を投入して補強土層Bを設ける。その際、補強土層Bの表層bに所定の勾配を形成する。次いで、補強土層Bの表層b(表層bの全部又は海側の領域)を覆うように被覆石Dを設置する。その後、補強土層Bの岸側に中詰材である浚渫土を投入して中詰層Cを設け、最後に中詰層Cの表層上(補強土層Bの表層bのうちの海側の領域にのみ被覆石Dを設置した場合には、さらに補強土層Bの表層bの残部領域上)に覆砂層Eを設ける。   As a method for constructing the artificial shallow ground of the present invention, when the submarine installation place (the sea bottom) is a soft ground, the subsidence A is constructed after improving the ground and providing the ground improvement portion F. Next, the reinforced soil layer B is provided by introducing the reinforced soil behind the dike A (shore side). At that time, a predetermined gradient is formed on the surface layer b of the reinforced soil layer B. Subsequently, the covering stone D is installed so that the surface layer b (the whole surface layer b or the area | region of the sea side) of the reinforced soil layer B may be covered. After that, dredged clay, which is a filling material, is put on the shore side of the reinforcing soil layer B to provide a filling layer C. In the case where the covering stone D is installed only in this area, the sand covering layer E is further provided on the remaining area of the surface layer b of the reinforced soil layer B).

[実施例1]
原地盤が軟弱であり、地盤改良が必要な水深10mの海域に図9に示す構造の人工浅場(又は干潟)を造成した。
地盤改良部Fは、サンドコンパクションパイル工法(SCP工法)で施工し、改良率25%、改良杭の長さ12m、幅(地盤改良幅)21mとした。また、SCP工法による盛上り土の高さ1.0m、敷砂の高さ1.0mとした。
土留用の潜堤Aは、水中での単位体積質量が10kN/mの天然石材を用いた捨石式傾斜堤とし、高さ3.0m、底部幅11m、天端幅2.0m、天端高−5.0m、法勾配1:1.5とした。
[Example 1]
An artificial shallow ground (or tidal flat) with the structure shown in FIG. 9 was created in a sea area with a water depth of 10 m where the ground is soft and needs to be improved.
The ground improvement part F was constructed by a sand compaction pile method (SCP method), with an improvement rate of 25%, a length of improved pile of 12 m, and a width (ground improvement width) of 21 m. Moreover, the height of the embankment by the SCP method was 1.0 m, and the height of the sand was 1.0 m.
The submerged dike A for earth retaining is a rubble-type sloped dike using natural stone with a unit volume mass in water of 10 kN / m 3 , height 3.0 m, bottom width 11 m, top edge width 2.0 m, top edge The height was -5.0 m and the method gradient was 1: 1.5.

補強土層Bの表層bは、潜堤天端の位置より岸側(陸上側)に向かって高くなるように勾配を設けた幅9.0mの斜面部10と、この斜面部10に連なる幅2.0mの天端12(平坦部)からなり、斜面部10は勾配1:3とした。また、天端12(平坦部)から岸側(陸上側)に向かって低くなるように、勾配1:3の斜面部11を海底面まで設けた。
補強土層Bを構成する補強土としては、浚渫土80体積%と製鋼スラグ20体積%の混合土を用いた。室内配合試験の結果、この混合土は、水中での単位体積質量が6.2kN/m、28日養生後の一軸圧縮強が160kN/mであった。
補強土層Bの表層b全体を、被覆厚さ約1.0m、単位体積質量10kN/mの被覆石D(天然石材、粒径2〜100mm)で覆った。
The surface layer b of the reinforced soil layer B has a slope portion 10 with a width of 9.0 m provided with a slope so as to be higher toward the shore side (land side) than the position of the top of the submerged dike, and a width continuous with the slope portion 10. It consists of a 2.0 m top end 12 (flat part), and the slope part 10 has a gradient 1: 3. Moreover, the slope part 11 of the gradient 1: 3 was provided to the sea bottom so that it might become low toward the shore side (land side) from the top 12 (flat part).
As the reinforced soil constituting the reinforced soil layer B, a mixed soil of 80% by volume of clay and 20% by volume of steelmaking slag was used. As a result of the indoor blending test, this mixed soil had a unit volume mass in water of 6.2 kN / m 3 and a uniaxial compressive strength after curing for 28 days of 160 kN / m 2 .
The entire surface layer b of the reinforced soil layer B was covered with a covering stone D (natural stone material, particle size 2 to 100 mm) having a covering thickness of about 1.0 m and a unit volume mass of 10 kN / m 3 .

補強土層Bの岸側(陸上側)に、浚渫土(水中での単位体積重量4.5kN/m、粘着力1.5kN/m)を中詰材とする中詰層Cを設けた。さらに、中詰層Cの表層の上に天然砂による覆砂層Eを設けた。覆砂層Eの厚さは0.5m、勾配1:80とした。
以上のように、本実施例の人工浅場(又は干潟)では、従来構造では潜堤の一部が設けられていた部分に、水中単位体積質量が潜堤構成材の水中単位体積質量よりも小さく、且つ所定の強度を有する補強土を設けた構造としたことにより、原地盤に作用する荷重が小さくなり、且つ補強土のせん断抵抗によって従来よりもすべり破壊が生じにくくなるため、従来構造に較べて地盤改良幅を大幅に縮小する(従来構造の0.7倍程度)ことができた。
On the shore side (land side) of the reinforced soil layer B, a padding layer C using dredged soil (unit volume weight in water: 4.5 kN / m 3 , adhesive strength: 1.5 kN / m 2 ) is provided. It was. Further, a sand-covering layer E made of natural sand was provided on the surface layer of the filling layer C. The thickness of the sand covering layer E was 0.5 m, and the gradient was 1:80.
As described above, in the artificial shallow field (or tidal flat) of this embodiment, the unit volume mass in water is smaller than the unit volume mass in water in the submerged dike component material in the portion where the submerged bank was provided in the conventional structure. In addition, the structure provided with the reinforced soil having a predetermined strength reduces the load acting on the original ground, and the shear resistance of the reinforced soil makes it less prone to slip failure than the conventional structure. As a result, the ground improvement width could be greatly reduced (about 0.7 times that of the conventional structure).

[実施例2]
原地盤が軟弱であり、地盤改良が必要な水深8mの海域に図10に示す構造の人工浅場(又は干潟)を造成した。
地盤改良部Fは、サンドコンパクションパイル工法(SCP工法)で施工し、改良率25%、改良杭の長さ10m、幅(地盤改良幅)38mとした。また、SCP工法による盛上り土(図示せず)の高さ1.0m、敷砂(図示せず)の高さ1.0mとした。
土留用の潜堤Aは、水中での単位体積質量が10kN/mの天然石材を用いた捨石式傾斜堤とし、高さ6.0m、底部幅20m、天端幅2.0m、天端高−2.0m、法勾配1:1.5とした。
補強土層Bは、潜堤法面部−3.0mの位置より、岸側(陸上側)に向かって高くなるように、勾配1:3、幅7.0mの斜面部10(その上面が表層b)を設け、斜面の最上部(補強土層Bの天端12)の標高−0.7mより、岸側(陸上側)に向かって低くなるように、勾配1:3の斜面部11を海底面まで設けた。
[Example 2]
An artificial shallow ground (or tidal flat) having the structure shown in FIG. 10 was created in a sea area with a water depth of 8 m where the ground is soft and needs to be improved.
The ground improvement part F was constructed by a sand compaction pile method (SCP method), with an improvement rate of 25%, a length of improved pile of 10 m, and a width (ground improvement width) of 38 m. Moreover, the height of the embankment soil (not shown) by the SCP method was set to 1.0 m, and the height of the covering sand (not shown) was set to 1.0 m.
The submerged dike A for earth retaining is a rubble-type sloped dike using natural stone with a unit volume mass in water of 10 kN / m 3 , height 6.0 m, bottom width 20 m, top edge width 2.0 m, top edge The height was -2.0 m and the method gradient was 1: 1.5.
The reinforced soil layer B has a slope portion 10 having a slope of 1: 3 and a width of 7.0 m (the upper surface is a surface layer) so as to be higher toward the shore side (land side) from the position of the submerged dike slope portion -3.0 m. b) is provided, and the slope portion 11 having a slope of 1: 3 is arranged so that it is lower toward the shore side (land side) than the altitude of −0.7 m at the top of the slope (the top end 12 of the reinforced soil layer B). It was set up to the sea bottom.

補強土層Bを構成する補強土としては、浚渫土70体積%と製鋼スラグ30体積%の混合土を用いた。室内配合試験の結果、この混合土は、水中での単位体積質量が8.2kN/m、28日養生後の一軸圧縮強さが190kN/mであった。
補強土層Bの表層b全体を、被覆厚さ約1.0m、単位体積質量10kN/mの被覆石D(天然石材、粒径2〜100mm)で覆った。
補強土層Bの岸側(陸上側)に、浚渫土(水中での単位体積重量4.5kN/m、粘着力1.5kN/m)を中詰材とする中詰層Cを設けた。さらに、中詰層Cの表層の上に天然砂による覆砂層Eを設けた。覆砂層Eの厚さは0.5mとした。
As the reinforced soil constituting the reinforced soil layer B, a mixed soil of 70% by volume of dredged soil and 30% by volume of steelmaking slag was used. As a result of the indoor blending test, this mixed soil had a unit volume mass in water of 8.2 kN / m 3 and a uniaxial compressive strength after curing on the 28th of 190 kN / m 2 .
The entire surface layer b of the reinforced soil layer B was covered with a covering stone D (natural stone material, particle size 2 to 100 mm) having a covering thickness of about 1.0 m and a unit volume mass of 10 kN / m 3 .
On the shore side (land side) of the reinforced soil layer B, a padding layer C using dredged soil (unit volume weight in water: 4.5 kN / m 3 , adhesive strength: 1.5 kN / m 2 ) is provided. It was. Further, a sand-covering layer E made of natural sand was provided on the surface layer of the filling layer C. The thickness of the sand covering layer E was 0.5 m.

このような構成とすることで、覆砂層Eの勾配を1:100とし、造成された人工浅場(但し、常時陸地となる造成部分は除く)の面積の約70%を干潟面積とすることができた。また、従来構造(浚渫土の勾配1/30の場合、標高−2.8m)と比較して、中詰層Cを高さ約2.0m分だけ嵩上げすることができるため、長期的に高さ2.0m分の圧密沈下が発生しても、干潟面積の減少を抑えることができる。また、中詰層Cの天端高を高くすることができるので、従来構造と比較して、浅場造成に用いる浚渫土を増量できる。さらに、補強土層Bにより潜堤Aからの中詰材(浚渫土)の吸出しも適切に防止することができる。   By adopting such a configuration, the slope of the sand-capping layer E is set to 1: 100, and about 70% of the area of the constructed artificial shallow field (excluding the part that is always land) is set as a tidal flat area. did it. In addition, compared to the conventional structure (elevation -2.8 m when the gradient of the clay is 1/30), the filling layer C can be raised by a height of about 2.0 m, so that it is high in the long term. Even if a consolidation settlement of 2.0m occurs, the decrease in tidal flat area can be suppressed. Moreover, since the top end height of the filling layer C can be increased, the amount of clay used for shallow field construction can be increased as compared with the conventional structure. Furthermore, the reinforced soil layer B can appropriately prevent the suction of the filling material (soil) from the submerged levee A.

A 潜堤
B 補強土層
C 中詰層
D 被覆石
E 覆砂層
F 地盤改良部
b 表層
1 側面(法面)
2 天端
10,11 斜面部
12 天端
A Submerged dike B Reinforced soil layer C Filled layer D Cover stone E Sand-clad layer F Ground improvement part b Surface 1 Side (Slope)
2 Top edge 10,11 Slope 12 Top edge

Claims (7)

浅場又は干潟の造成水域を囲むようにして設けられる土留め用の潜堤(A)と、該潜堤(A)の岸側に、その側面(但し、側面が法面である場合を含む。)に接して設けられ、潜堤(A)を補強する所定幅の補強土層(B)と、該補強土層(B)の岸側に設けられる、浚渫土を中詰材とする中詰層(C)と、補強土層(B)の表層を覆うように設置される被覆石(D)と、中詰層(C)の表層上に設けられる覆砂層(E)を備える人工浅場又は干潟であって、
補強土層(B)は、水中での単位体積質量が潜堤(A)の構成材の水中での単位体積質量よりも小さく、且つ28日養生後の一軸圧縮強さが10kN/m以上となる補強土で構成されるとともに、補強土層(B)の表層の一部又は全部が岸側に向かって高くなる勾配を有することを特徴とする人工浅場又は干潟。
A dike for earth retaining (A) provided so as to surround a shallow water or a tidal flat, and on the shore side of the submerged dike (A), on its side surface (including the case where the side surface is a slope). A reinforced soil layer (B) having a predetermined width for reinforcing the submerged levee (A), and a padded layer using dredged soil as a padding material (B) provided on the shore side of the reinforced soil layer (B) C), a cover stone (D) installed so as to cover the surface of the reinforced soil layer (B), and an artificial shallow ground or tidal flat with a sand cover layer (E) provided on the surface of the middle layer (C) There,
The reinforced soil layer (B) has a unit volume mass in water smaller than the unit volume mass in water of the constituent material of the submerged dike (A), and the uniaxial compressive strength after curing for 28 days is 10 kN / m 2 or more. An artificial shallow field or tidal flat characterized in that the surface layer of the reinforced soil layer (B) has a gradient that increases toward the shore side.
浅場又は干潟の造成水域を囲むようにして設けられる土留め用の潜堤(A)と、該潜堤(A)の岸側に、その側面(但し、側面が法面である場合を含む。)に接して設けられ、潜堤(A)を補強する所定幅の補強土層(B)と、該補強土層(B)の岸側に設けられる、浚渫土を中詰材とする中詰層(C)と、補強土層(B)の表層のうちの海側の領域を覆うように設置される被覆石(D)と、中詰層(C)の表層上及び補強土層(B)の表層の残部領域上に設けられる覆砂層(E)を備える人工浅場又は干潟であって、
補強土層(B)は、水中での単位体積質量が潜堤(A)の構成材の水中での単位体積質量よりも小さく、且つ28日養生後の一軸圧縮強さが10kN/m以上となる補強土で構成されるとともに、補強土層(B)の表層の一部又は全部が岸側に向かって高くなる勾配を有することを特徴とする人工浅場又は干潟。
A dike for earth retaining (A) provided so as to surround a shallow water or a tidal flat, and on the shore side of the submerged dike (A), on its side surface (including the case where the side surface is a slope). A reinforced soil layer (B) having a predetermined width for reinforcing the submerged levee (A), and a padded layer using dredged soil as a padding material (B) provided on the shore side of the reinforced soil layer (B) C), the covering stone (D) installed to cover the sea side area of the surface layer of the reinforced soil layer (B), the surface layer of the padded layer (C) and the reinforced soil layer (B) An artificial shallow field or tidal flat with a sand-covering layer (E) provided on the remaining area of the surface layer,
The reinforced soil layer (B) has a unit volume mass in water smaller than the unit volume mass in water of the constituent material of the submerged dike (A), and the uniaxial compressive strength after curing for 28 days is 10 kN / m 2 or more. An artificial shallow field or tidal flat characterized in that the surface layer of the reinforced soil layer (B) has a gradient that increases toward the shore side.
潜堤(A)の天端高さが補強土層(B)の天端高さよりも低いことを特徴とする請求項1又は2に記載の人工浅場又は干潟。   The artificial shallow ground or tidal flat according to claim 1 or 2, wherein the top edge height of the submerged dike (A) is lower than the top edge height of the reinforced soil layer (B). 補強土層(B)の表層の前記勾配が1:3〜1:5であることを特徴とする請求項1〜3のいずれかに記載の人工浅場又は干潟。   The artificial shallow ground or tidal flat according to any one of claims 1 to 3, wherein the gradient of the surface layer of the reinforced soil layer (B) is 1: 3 to 1: 5. 補強土層(B)を構成する補強土は、浚渫土又は/及び土砂に水和反応を生じさせる改質材を混合したものであることを特徴とする請求項1〜4のいずれかに記載の人工浅場又は干潟。   The reinforced soil constituting the reinforced soil layer (B) is a mixture of a modifying material that causes a hydration reaction in dredged soil or / and earth and sand. Artificial shallows or tidal flats. 補強土層(B)を構成する補強土は、水中での単位体積重量が10kN/m未満であることを特徴とする請求項1〜5のいずれかに記載の人工浅場又は干潟。 The artificial shallow ground or tidal flat according to any one of claims 1 to 5, wherein the reinforced soil constituting the reinforced soil layer (B) has a unit volume weight in water of less than 10 kN / m 3 . 補強土層(B)を構成する補強土は、浚渫土又は/及び土砂に改質材として製鋼スラグを混合したものであることを特徴とする請求項1〜6のいずれかに記載の人工浅場又は干潟。
The artificial shallow field according to any one of claims 1 to 6, wherein the reinforcing soil constituting the reinforcing soil layer (B) is a mixture of steelmaking slag as a modifier with dredged soil or / and earth and sand. Or a tidal flat.
JP2016021485A 2016-02-08 2016-02-08 Artificial shallow or tidal flat Active JP6361889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021485A JP6361889B2 (en) 2016-02-08 2016-02-08 Artificial shallow or tidal flat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021485A JP6361889B2 (en) 2016-02-08 2016-02-08 Artificial shallow or tidal flat

Publications (2)

Publication Number Publication Date
JP2017141543A JP2017141543A (en) 2017-08-17
JP6361889B2 true JP6361889B2 (en) 2018-07-25

Family

ID=59628963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021485A Active JP6361889B2 (en) 2016-02-08 2016-02-08 Artificial shallow or tidal flat

Country Status (1)

Country Link
JP (1) JP6361889B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651672B (en) * 2022-04-27 2022-12-09 天津大学 Muddy coast ecological restoration and disaster reduction space system
CN115059014B (en) * 2022-06-10 2023-07-25 中国电建集团昆明勘测设计研究院有限公司 Intertidal zone structure suitable for muddy coastal zone and arrangement method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888209A (en) * 1973-11-14 1975-06-10 Edmund R Boots Artificial reef
JP2802815B2 (en) * 1990-05-29 1998-09-24 不動建設株式会社 Embankment structure
JPH04277207A (en) * 1991-03-05 1992-10-02 Nippon Samikon Kk Protective structure
JPH1121903A (en) * 1997-07-02 1999-01-26 Geo Syst:Kk Reinforced-soil structure
JP4302861B2 (en) * 2000-08-09 2009-07-29 株式会社間組 Construction method of cast-in-place concrete pile
JP3506680B2 (en) * 2001-07-11 2004-03-15 独立行政法人農業工学研究所 Reinforcement method of earth structure dam body
JP3785505B2 (en) * 2001-07-27 2006-06-14 東洋建設株式会社 Multipurpose artificial leaf
JP4357895B2 (en) * 2003-07-30 2009-11-04 五洋建設株式会社 Earth retaining for artificial tidal flats
JP4736444B2 (en) * 2004-01-28 2011-07-27 Jfeスチール株式会社 Construction method of shallow ground
JP5400680B2 (en) * 2010-03-29 2014-01-29 Jfeスチール株式会社 Artificial shallow or tidal flat
JP5790597B2 (en) * 2012-07-03 2015-10-07 新日鐵住金株式会社 Method for predicting strength of modified soil and method for producing modified soil using the same
JP5954351B2 (en) * 2013-08-30 2016-07-20 Jfeスチール株式会社 Artificial shallow ground or tidal flat and its repair method
JP6213749B2 (en) * 2015-03-30 2017-10-18 Jfeスチール株式会社 Artificial shallow or tidal flat

Also Published As

Publication number Publication date
JP2017141543A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
CN113277816A (en) Solidified soil, underwater structure foundation protection structure and construction method
CN212956378U (en) Intertidal zone ecological revetment structure
JP2014025315A (en) Banking construction method
JP5400680B2 (en) Artificial shallow or tidal flat
JP6361889B2 (en) Artificial shallow or tidal flat
JP6213749B2 (en) Artificial shallow or tidal flat
CN211898504U (en) Offshore wind power single pile-friction cone composite foundation
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
CN107761668A (en) A kind of strand Bin Ku makes ground type bank protection structure and its construction process
JP6376254B2 (en) Artificial shallow or tidal flat
JP6327215B2 (en) Gravity breakwater
CN113338315B (en) Earth-rock cofferdam structure of silt soft soil foundation and construction method thereof
Pashazadeh et al. Estimating an appropriate plastic concrete mixing design for cutoff walls to control leakage under the earth dam
JP2008045341A (en) Construction method of banking on soft ground and banking structure therefor
CN111197300B (en) Earth-rock cofferdam back slope type seepage-proofing dam and reverse construction method
CN208563267U (en) A kind of earth and rockfill dam pressure slope body discharge structure
CN207567719U (en) The dykes and dams that a kind of gangue dead meal fills
JP6834451B2 (en) Wall structure for seawall
JP6296017B2 (en) Gravity breakwater
CN207714267U (en) The protective slope structure of protection against erosion
CN201411658Y (en) Sand cushion sand-blocking reclamation dam
CN218521709U (en) Riprap slope type wharf island wall structure
JP7145910B2 (en) Method for manufacturing artificial stone, method for conveying artificial stone, and artificial stone
CN216041253U (en) Soft soil foundation earth-rock cofferdam structure of silt matter
CN101608457A (en) The method of processing wharf foundation by geotextile granular material pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6361889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250