JP6361396B2 - 電子制御ユニット及びこれを用いた回転電機 - Google Patents

電子制御ユニット及びこれを用いた回転電機 Download PDF

Info

Publication number
JP6361396B2
JP6361396B2 JP2014187608A JP2014187608A JP6361396B2 JP 6361396 B2 JP6361396 B2 JP 6361396B2 JP 2014187608 A JP2014187608 A JP 2014187608A JP 2014187608 A JP2014187608 A JP 2014187608A JP 6361396 B2 JP6361396 B2 JP 6361396B2
Authority
JP
Japan
Prior art keywords
heat
electronic component
electronic components
electronic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014187608A
Other languages
English (en)
Other versions
JP2016062953A (ja
Inventor
芳道 原
芳道 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014187608A priority Critical patent/JP6361396B2/ja
Publication of JP2016062953A publication Critical patent/JP2016062953A/ja
Application granted granted Critical
Publication of JP6361396B2 publication Critical patent/JP6361396B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Description

本発明は、電子制御ユニット及びこれを用いた回転電機に関する。
従来、電子部品の作動時の熱をヒートシンクにより放熱する電子制御ユニットが知られている。例えば特許文献1に記載された電子制御ユニットでは、電子部品に対して基板側とは反対側にヒートシンクが配置されており、電子部品とヒートシンクとの間に熱伝導部材が配置されている。電子部品の発する熱は、電子部品の基板実装面の反対側の面から熱伝導部材を経由してヒートシンクに伝達される。
特開2014−154745号公報
特許文献1等の従来技術では、電子部品の最高使用温度が当該電子部品の最高許容温度を超えないように、熱伝導部材による放熱効果が最大になるようにして電子部品に設けている。最高使用温度にする最高許容温度の余裕度を温度マージンという。
ところで、一般的な電子制御ユニットには、サイズ、発熱量、または、最高許容温度等の異なる複数の電子部品が搭載されている。これらの各電子部品に対して、従来技術のように放熱効果を最大にすることのみを考慮して熱伝導部材を設けた場合、電子部品間で温度マージンが異なることになる。
1つのヒートシンクを共有する複数の電子部品の温度マージンが異なる場合、電子部品間における放熱のバランスが悪くなる。例えば、温度マージンの大きい電子部品では必要以上に熱抵抗を下げて放熱されることになるため、ヒートシンクに余分に放熱される熱量によって他の電子部品からの放熱が妨げられる恐れがあり、全体的な放熱が効率良く行われない。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、複数の電子部品に対して全体的に効率の良い放熱構造を設けた電子制御ユニットを提供することにある。
本発明の電子制御ユニットは、サイズ、発熱量、及び最高許容温度の少なくとも1つが異なる複数の電子部品と、複数の電子部品が実装された基板と、基板に対向して配置されたヒートシンクと、複数の電子部品とヒートシンクとの間にそれぞれ介在し、対応する電子部品の熱をヒートシンクに伝導する複数の熱伝導部材と、を備えている。ここで、熱伝導部材は、電子部品についての最高使用温度と最高許容温度との差である温度マージンが複数の電子部品の間で等しくなるように設けられている。
詳しくは、熱伝導部材が電子部品に接触する面積を放熱面積とし、熱伝導部材を介する電子部品とヒートシンクとの間隔を放熱間隔とし、電子部品について、放熱面積が最大値であり、かつ、放熱間隔が最小値であるときの温度マージンを限界温度マージンとする。限界温度マージンが相対的に大きい電子部品に設けられる熱伝導部材の放熱面積は、限界温度マージンが相対的に小さい電子部品に設けられる熱伝導部材の放熱面積よりも、最大値に対する割合が小さくなるように設定されている。
上記構成によれば、複数の電子部品において温度マージンが等しくなることで、互いの放熱がバランス良く行われる。すなわち、一部の電子部品が必要以上に熱抵抗を下げて放熱されることがない。よって、本発明によれば、複数の電子部品に対して全体的に効率の良い放熱構造を設けた電子制御ユニットが提供される。
なお、温度マージンが「等しい」とは、厳密に数値が一致することを要せず、当業者の技術常識の範囲内での誤差を含んでもよい。
本発明の第1実施形態による回転電機を模式的に示す断面図である。 図1の駆動装置の回路構成を示す図である。 (A)は本発明の第1実施形態による電子制御ユニットを模式的に示す断面図であり、(B)は(A)のIIIB−IIIB線断面図である。 (A)は図3の電子制御ユニットを構成するための仮の構成を示す断面図であり、(B)は(A)のIVB−IVB線断面図である。 複数の電子部品の限界温度マージンを比較して示す図である。 (A)は本発明の第2実施形態による電子制御ユニットを模式的に示す断面図であり、(B)は(A)のVIB−VIB線断面図である。 (A)は本発明の第2実施形態による電子制御ユニットを模式的に示す断面図であり、(B)は(A)のVIIB−VIIB線断面図である。
以下、本発明の複数の実施形態による電子制御ユニット、及び、これを用いた回転電
機を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には
同一の符号を付し、説明を省略する。
[第1実施形態]
本発明の第1実施形態による電子制御ユニット、及び、これを用いた回転電機について、図1〜図5を参照して説明する。回転電機1は、電力を供給されることにより駆動し、例えば車両のステアリング操作をアシストするための電動パワーステアリング装置に採用される。電動パワーステアリング装置に適用された回転電機1は、操舵アシストトルクを出力し、減速ギアを介してステアリングシャフト等に伝達することができる。
(回転電機1の全体構成)
まず、回転電機1の概略構成について、図1を参照して説明する。回転電機1は、モータ2、及び、モータ2の通電を制御する電子制御ユニット3を備えている。以下適宜、モータ2の軸方向を単に「軸方向」といい、モータ2の径方向を単に「径方向」という。
モータ2は、モータケース21、ステータ22、2組の巻線組23、24、ロータ25、及び、シャフト26等を備える。
モータケース21は、ステータ22を内側に支持する筒部211と、筒部211を軸方向に挟持する第1フレームエンド212及び第2フレームエンド213とを有する。第1フレームエンド212と第2フレームエンド213とは、複数のボルト27によって締結されている。
ステータ22は、モータケース21の筒部211の内側に固定されており、2組の巻線組23、24が巻回されている。各巻線組23、24から相毎にモータ線28が延びており、第2フレームエンド213に形成されるモータ線挿通孔215を介して電子制御ユニット3側に取り出されている。
ロータ25は、例えば軟磁性体及び永久磁石等から構成され、ステータ22と同軸となるようにステータ22の径方向内側に設けられている。
シャフト26は、ロータ25の軸中心に固定されている。シャフト26の一端側は、第1フレームエンド212に形成された軸孔に軸受けされている。シャフト26の他端側は、第2フレームエンド213に形成された軸孔に軸受けされている。これにより、ロータ25は、ステータ22の内側で回転可能なように支持されている。
また、シャフト26の一端には出力端261が設けられており、他端には回転角検出用のマグネット262が保持されている。
電子制御ユニット3は、モータ2の軸方向の一方側に設けられており、モータ2と電子制御ユニット3とは一体に構成されている。
電子制御ユニット3は、後述するインバータを構成するパワーモジュールやマイコン等の電子部品を有し、各種センサからの信号に基づき、モータ2の巻線組23、24への通電を制御する。巻線組23、24の各相への通電が順次切り替えられると、ステータ22に回転磁界が生じ、ロータ25がシャフト26とともに回転する。
(回転電機1の回路構成)
次に、回転電機1の回路構成について、図2を参照して簡単に説明する。
モータ2は、例えば3相ブラシレスモータであり、上述した2組の巻線組23、24を有する。第1巻線組23は、U相コイル231、V相コイル232、及び、W相コイル233から構成されており、第2巻線組24は、U相コイル241、V相コイル242、及び、W相コイル243から構成されている。
電子制御ユニット3は、第1インバータ部31、第2インバータ部32、コンデンサ33、及び、制御部34、回転角センサ37等を備えている。
第1インバータ部31は、6つのスイッチング素子311〜316がブリッジ接続されており、第1巻線組23への通電を切り替える。第2インバータ部32は、6つのスイッチング素子321〜326がブリッジ接続されており、第2巻線組24への通電を切り替える。
コンデンサ33は、バッテリ11、第1インバータ部31及び第2インバータ部32と並列に接続される。コンデンサ33は、電荷を蓄えることで、スイッチング素子311〜316、321〜326への電力供給を補助したり、サージ電流などのノイズ成分を抑制したりする。
制御部34は、マイコン35、及び、駆動回路36を有する。
マイコン35は、図示しないトルクセンサや回転角センサ37等からの信号に基づき、第1巻線組23及び第2巻線組24への通電に係る指令値を演算する。
駆動回路36は、指令値に基づいて駆動信号を生成し、生成された駆動信号を第1インバータ部31及び第2インバータ部32に出力する。各インバータ部31、32のスイッチング素子311〜316、321〜326が駆動信号に従ってスイッチング動作することで、第1巻線組23及び第2巻線組24に指令値に応じた交流電流が通電される。これにより、モータ2が駆動される。
回転角センサ37は、磁気検出素子により構成され、シャフト26に設けられたマグネット262が回転することによる回転磁界を検出することにより、ロータ25の回転角度を検出する。
(電子制御ユニット3の詳細)
次に、電子制御ユニット3の詳細な構成について、図1及び図3に基づき説明する。
図1に示すように、電子制御ユニット3は、複数の電子部品4、5等が実装された基板6、ヒートシンク7、熱伝導部材81、82、及び、カバー9を有する。なお、本実施形態では、第2フレームエンド213がヒートシンク7を構成している。
基板6は、例えばプリント基板であり、ヒートシンク7に対向して配置されている。基板6の2つの主面のうち、ヒートシンク7に対向している面を主面61とし、その反対側の面を背面62とする。基板6の主面61には、複数の電子部品4、5が実装されており、背面62には、コンデンサ33及びマイコン35が実装されている。また、基板6には、モータ線28が半田付け等によって接続されている。
ヒートシンク7は、例えばアルミ等の熱伝導性のよい金属により形成される。ここで、基板6の主面61に対向するヒートシンク7の面を対向面71と称する。
ヒートシンク7の対向面71には、基板6側に突出している複数の基板支持部73が形成されている。基板支持部73は、基板6を支持しており、基板支持部73と基板6とは、ネジ15によって固定されている。基板6とヒートシンク7との間の隙間は、基板支持部73の突出方向の長さによって定まる。
図3は、電子部品4、5を中心に拡大して示す図である。以下、適宜、電子部品4、5の一方を第1電子部品4と称し、他方を第2電子部品5と称する。
第1電子部品4は、上述のスイッチング素子311〜316、321〜326の各々に対応する。本実施形態では、第1電子部品4は、MOSFET(金属酸化物半導体電界効果トランジスタ)等の半導体モジュールであり、スイッチング機能を有する半導体チップ41、半導体チップ41を覆っている樹脂体42、放熱板43、及び、複数の端子44を備えている。第1電子部品4の放熱板43及び端子44は、半田63によって基板6の配線65に半田付けされている。
第2電子部品5は、上述の駆動回路36に対応する。本実施形態では、第2電子部品5は、例えば集積回路部品であるASIC等の半導体モジュールであり、駆動機能を有する半導体チップ51、半導体チップ51を覆っている樹脂体52、及び、複数の端子54を備えている。第2電子部品5の端子54は、半田63によって基板6の配線65に半田付けされている。
ヒートシンク7の対向面71には、基板6側に突出している複数の突出部75、76が形成されている。突出部75は、第1電子部品4に対応する位置に形成されており、第1電子部品4近傍まで突出している。突出部76は、第2電子部品5に対応する位置に形成されており、第2電子部品5近傍まで突出している。第1電子部品4と突出部75との間には熱伝導部材81が配置され、第2電子部品5と突出部76との間には熱伝導部材82が配置されている。
熱伝導部材81、82は、例えば、所定の厚みをもつガラス繊維クロスの両面に、窒化ボロンやアルミナ等のフィラーを含むシリコーンゴムを塗布することにより形成されている。これにより、熱伝導部材81、82は、比較的高い電気的絶縁性及び熱伝導性を有している。以下、適宜、熱伝導部材81を第1熱伝導部材81と称し、熱伝導部材82を第2熱伝導部材82と称する。
回転電機1の動作時、電子部品4、5に電流が流れることにより、半導体チップ41、51が特に発熱する。半導体チップ41、51の熱は、樹脂体42、52、熱伝導部材81、82、及び、突出部75、76を経由して、ヒートシンク7の本体に伝達される。これにより、半導体チップ41、51の熱を放熱することができる。
(熱伝導部材81、82)
本実施形態では、電子部品4、5の熱を放熱する放熱構造が熱伝導部材81、82及びヒートシンク7によって構成されている。以下に、熱伝導部材81、82の構成について、図4を参照して説明する。なお、図4は、熱伝導部材81、82による放熱効果が最大である場合の仮想の構成を示すものである。また、図4では、図が煩雑になるのを避けるため、樹脂体42、52のハッチングを省略している。
熱伝導部材81、82は、第1電子部品4、第2電子部品5に接する電子部品接触面811、821、及び、ヒートシンク7の突出部75、76に接するヒートシンク接触面812、822を有し、電子部品接触面811、821とヒートシンク接触面812、822との間に間隔を有する。なお、各熱伝導部材81、82において、電子部品接触面811、821の面積は、ヒートシンク接触面812、822の面積と等しい。
ここで、熱伝導部材81、82の電子部品接触面811、821を、放熱面811、821と称し、放熱面811、821の面積をそれぞれ放熱面積S1、S2と称する。放熱面積S1、S2が最大有効面積以下である場合、その面積が大きいほど熱伝導部材81、82による放熱効果は上昇する。放熱面積S1、S2の「最大値」としての最大有効面積を、最大有効放熱面積S1max、S2maxとする。
図4に示すように、第1熱伝導部材81の最大有効放熱面積S1maxは、対応する電子部品4の半導体チップ41のヒートシンク7側の面411の面積によって定まる。同様に、第2熱伝導部材82の最大有効放熱面積S2maxは、対応する電子部品5の半導体チップ51のヒートシンク7側の面511の面積によって定まる。
例えば、軸方向に垂直な方向から見たとき、半導体チップ41、51の面411、511の端部と、放熱面811、821の端部とを結ぶ仮想線が、放熱面811、821との間に有する角度をαとするとき、角度αが約45度である場合に最大有効放熱面積S1max、S2maxが得られる。
また、熱伝導部材81、82を介する電子部品4、5とヒートシンク7との間隔を、放熱間隔D1、D2と称する。放熱間隔D1、D2の値が小さいほど、熱伝導部材81、82による放熱効果は上昇する。放熱間隔D1、D2の「最小値」を最小放熱間隔D1min、D2minとする。
図4に示すように、第1熱伝導部材81の最小放熱間隔D1minは、第1電子部品4と、対応する突出部75との絶縁性を確実に確保することができる最小の間隔である。同様に、第2熱伝導部材82の最小放熱間隔D2minは、第2電子部品5と、対応する突出部76との絶縁性を確実に確保することができる最小の間隔である。
以上により、第1熱伝導部材81の放熱面積S1が最大有効放熱面積S1maxであり、放熱間隔D1が最小放熱間隔D1minのとき、第1熱伝導部材81による放熱効果は最大になる。同様に、第2熱伝導部材82の放熱面積S2が最大有効放熱面積S2maxであり、放熱間隔D2が最小放熱間隔D2minのとき、第2熱伝導部材82による放熱効果は最大になる。
(温度マージンを等しくするための放熱構造)
一般的に、電子部品の熱を放熱する放熱構造を構成する際、電子部品の最高使用温度Tmoが最高許容温度Tmaを超えないように、温度マージンMを設定する。温度マージンMとは、最高許容温度Tmaに対する最高使用温度Tmoの余裕度であり、最高許容温度Tmaから最高使用温度Tmoを引いた値である。
なお、最高使用温度Tmoとは、電子部品の最大発熱量Pmaxによる温度上昇ΔTに、最高使用周囲温度TAmaxを加えた値である。最高許容温度Tmaとは、電子部品の破損等を防ぐために、電子部品の仕様に基づいて設定されている許容温度の上限値である。最高使用温度Tmo及び最高使用周囲温度TAmaxは、例えば測定により求めることができる。
本実施形態では、電子部品4、5の温度マージンM1、M2が等しくなるように放熱構造が構成されている。以下、電子部品4、5の温度マージンM1、M2を等しくするための熱伝導部材81、82の構成の求め方について、図3〜図5を参照して説明する。
なお、本明細書において温度マージンMが「等しい」とは、厳密に数値が一致することを要せず、当業者の技術常識の範囲内での誤差を含んでもよい。
また、以下では、熱伝導部材81、82の構成を中心に説明しているが、熱伝導部材81、82の構成は、ヒートシンク7の突出部75、76の構成に関係している。具体的には、突出部75、76の先端面751、761は、放熱面811、821と等しい面積を有する。また、突出部75の突出高さは、第1電子部品4とヒートシンク7の対向面71との間の軸方向の距離から放熱間隔D1を引いた値に等しく、突出部76の突出高さは、第2電子部品5とヒートシンク7の対向面71との間の距離から放熱間隔D2を引いた値に等しくなる。
第1電子部品4と第2電子部品5とは、サイズ、発熱量、及び最高許容温度等の少なくとも1つが互いに異なっている。また、熱伝導部材81、82の熱伝導率をλ[W/m・K]とする。
第1電子部品4の発熱量P1[W]による温度上昇ΔT1[K]は、第1熱伝導部材81の放熱面積S1[m2]及び放熱間隔D1[m]を用いて、以下の式(1)により求められる。
ΔT1=P1×(1/λ)×D1/S1 ・・・式(1)
同様に、第2電子部品5の発熱量P2[W]による温度上昇ΔT2[K]は、第2熱伝導部材82の放熱面積S2[m2]及び放熱間隔D2[m]を用いて、以下の式(2)により求められる。
ΔT2=P2×(1/λ)×D2/S2 ・・・式(2)
ここで、熱伝導部材81、82がそれぞれ最大の放熱効果を奏する場合、すなわち、放熱面積S1、S2が最大有効放熱面積S1max、S2max[m2]であり、放熱間隔D1、D2が最小放熱間隔D1min、D2min[m]である場合を仮定する(図4参照)。
この場合において、電子部品4、5が、最大発熱量P1max、P2max[W]を発生したときの最大の温度上昇をΔT10、ΔT20[K]とし、以下の式(3)、(4)により求める。
ΔT10=P1max×(1/λ)×D1min/S1max ・・・式(3)
ΔT20=P2max×(1/λ)×D2min/S2max ・・・式(4)
次に、熱伝導部材81、82がそれぞれ最大の放熱効果を奏する場合における電子部品4、5の各温度マージンM1、M2を、限界温度マージンM10、M20とし、以下の式(5)(6)により求める。
なお、以下の式(5)、(6)において、最高許容温度T1max、T2max[K]は、電子部品4、5の各仕様によって設定される値である。また、最高使用周囲温度TAmax[K]は、電子部品4、5に共通の値である。
M10=T1max−(TAmax+ΔT10) ・・・式(5)
M20=T2max−(TAmax+ΔT20) ・・・式(6)
次に、上記式(5)、(6)により求められた限界温度マージンM10、M20を比較し(図5参照)、最も小さい値を最小許容温度マージンMminに設定する。本実施形態では、限界温度マージンM10の値を最小許容温度マージンMminに設定する。
次に、電子部品4の温度マージンM1及び電子部品5の温度マージンM2が、それぞれ最小許容温度マージンMminに等しくなるように、熱伝導部材81、82の最適な構成を求める。具体的には、以下に説明する。
まず、第1電子部品4の限界温度マージンM10は、上述したように最小許容温度マージンMminに等しい。このため、第1熱伝導部材81の放熱面積S1をS1maxに設定し、放熱間隔D1をD1minに設定する。
第2電子部品5の限界温度マージンM20は、最小許容温度マージンMminより大きい。このため、第2熱伝導部材82による放熱効果が最大よりも小さくなるように第2熱伝導部材82を構成することによって、温度マージンM2を最小許容温度マージンMminに一致させる。例えば、第2熱伝導部材82について、放熱面積S2をS2maxよりも小さくするか、放熱間隔D2をD2minよりも大きくすることが考えられる。
以下では、放熱面積S2をS2maxよりも小さくする場合を説明する。
第2電子部品5の温度マージンM2を最小許容温度マージンMminに等しくした場合、図4に基づき、第2電子部品5が最大に発熱したときの温度上昇ΔT21は、以下の式(7)で表される。
ΔT21=T2max−M10−TAmax
=T2max−(T1max−(TAmax+ΔT10))−TAmax
=ΔT10−(T1max−T2max)・・・式(7)
また、第2電子部品5の温度マージンM2を最小許容温度マージンMminに等しくした場合、第2電子部品5が最大に発熱したときの温度上昇ΔT21は、式(2)に基づき、以下の式(8)で表される。
ΔT21=P2max×(1/λ)×D2min/S2
=ΔT20×S2max/S2 ・・・式(8)
上記式(7)及び(8)により、第2電子部品5が最小許容温度マージンMminを有する場合の面積S2は、以下の式(9)によって求められる。
S2=ΔT20×S2max/{ΔT10−(T1max−T2max)}
・・・式(9)
第2熱伝導部材82の放熱面積S2を、上記式(9)により求められる値に構成し、放熱間隔D2をD2minに構成する。このような構成の第2熱伝導部材82によれば、第2電子部品5の温度マージンM2は最小許容温度マージンMminに等しくなる。
図3は、以上の方法により求められた最適な構成を有しており、熱伝導部材81、82は、電子部品4、5の温度マージンM1、M2は等しくなるように設けられている。
(効果)
(1)本実施形態の電子制御ユニット3では、サイズ、発熱量、及び、最高許容温度の異なる電子部品4、5の間で温度マージンM1、M2が一致するように、熱伝導部材81、82が設けられている。これにより、電子部品4、5では、互いの放熱がバランス良く効果的に行われる。すなわち、一部の電子部品が必要以上に熱抵抗を下げて放熱されることがない。したがって、本実施形態の電子制御ユニット3では、複数の電子部品4、5に対して全体的に効率の良い放熱構造が実現される。
(2)また、本実施形態では、限界温度マージンM10が小さい電子部品4では、その放熱面積S1が最大有効放熱面積S1maxと等しい。一方、限界温度マージンM20が大きい電子部品5では、その放熱面積S2が最大有効放熱面積S2maxよりも小さい。すなわち、限界温度マージンM20が大きい電子部品5では、限界温度マージンM10が小さい電子部品4よりも、最大有効放熱面積S2maxに対する放熱面積S2の割合が小さい。このように構成することによって、第2熱伝導部材82の使用量が過剰にならず、コストが抑えられる。
(3)本実施形態では、第1電子部品4は、第1インバータ31及び第2インバータ32を構成するスイッチング素子311〜316、321〜326であり、第2電子部品5は、駆動回路36である。一般に、スイッチング素子311〜316、321〜326の発熱量は大きい一方、駆動回路36の発熱量は小さい。特に、電動パワーステアリング装置に用いられる回転電機1では、スイッチング素子311〜316、321〜326の発熱量は大きい。したがって、本実施形態は、発熱量の大きく異なる第1電子部品4及び第2電子部品5間での放熱効率をバランス良く効果的に行うことができるという点で利点を有する。
[第2実施形態]
本発明の第2実施形態による電子制御ユニット3の一部を図6に示す。
第2実施形態では、第1電子部品4が、放熱板43の他に、第2の放熱板45をさらに有している点が第1実施形態と異なっている。以下、この点について中心に説明する。
放熱板45は、例えば銅等の金属により、角部の1つが切り欠かれたような矩形の板状に形成されている。放熱板45は、放熱板43との間に半導体チップ41を挟むようにして設けられている。放熱板45は、一方の面451が半導体チップ41に当接し、他方の面452が樹脂体42から露出している。複数の端子44の一部は、放熱板45と一体に形成されている。
第2実施形態では、第1熱伝導部材81の放熱面811は、第1電子部品4の放熱板45に接触している。よって、半導体チップ41の熱は、放熱板45、熱伝導部材81、及び、突出部75を経由して、ヒートシンク7の本体に伝達される。第1電子部品4が放熱板45を有することにより、半導体チップ41の熱がより効果的に放熱される。
また、第2実施形態では、半導体チップ41の熱は樹脂体42よりも放熱板45に伝達される。このため、放熱面積S1の最大有効放熱面積S1maxは、放熱板45のヒートシンク7側に露出している面452の面積に等しい。
その他、第1熱伝導部材81の構成は、第1実施形態と同様である。第2実施形態においても、第1実施形態と同様、電子部品4、5において効率的な放熱構造を実現することができる。
[第3実施形態]
本発明の第3実施形態による電子制御ユニット3の一部を図7に示す。
第3実施形態では、電子部品4、5のみでなく、基板6の配線65に対して放熱構造を設けている点が第1実施形態と異なっている。以下、この点について中心に説明する。
図7に示すように、ヒートシンク7の対向面71には、基板6側に突出している突出部77が形成されている。突出部77は、基板6の配線65に対応する位置に形成されており、配線65の近傍まで突出している。なお、本実施形態では、特に発熱の大きい第1電子部品4とモータ線28を接続する配線65に対応して、突出部77が形成されている。
配線65と突出部77との間には熱伝導部材83が配置されている。熱伝導部材83を構成する材料等は、熱伝導部材81、82と同様である。
第3実施形態において、配線65に設けられた放熱構造である熱伝導部材83及び突出部77は、第1電子部品4の放熱を補助するものと考えることができる。例えば、第1電子部品4の半導体チップ41の熱は、第1実施形態で説明した伝達経路のみではなく、放熱板43、半田63、配線65、熱伝導部材83、及び、突出部77を経由して、ヒートシンク7の本体に伝達される。
この場合、第1電子部品4の温度上昇ΔT1を求める際、第1電子部品4の放熱が補助される分だけ温度上昇ΔT1が低くなるように、配線65等の熱伝導率や熱伝導部材83の構成等を要素に加えて計算を行うことができる。
あるいは、第3実施形態において、配線65の温度マージンMを考慮する必要性が高い場合、配線65、電子部品4、5の間において、温度マージンMを一致させるように、熱伝導部材83を構成してもよい。例えば、熱伝導部材83の最大有効放熱面積Smaxは突出部77が他の部材に干渉しない程度とし、最小放熱間隔Dminは配線65と突出部77との間が短絡しない程度にすればよい。その他、熱伝導部材83の構成の求め方は、第1実施形態と同様である。
したがって、第3実施形態では、配線65に対して放熱構造を設ける場合であっても、本発明の思想を適用することにより、効率的な放熱構造を実現することができる。
[他の実施形態]
(ア)第1実施形態において、電子部品5とヒートシンク7の突出部75との短絡防止等を優先して考慮する場合には、放熱間隔D2を最小放熱間隔D2minよりも大きくしてもよい。また、本発明はこれに限られず、放熱面積S2を最大有効放熱面積S2maxよりも小さくすることと、放熱間隔D2を最小放熱間隔D2minよりも大きくすることとを組み合せることで、最適設計することも可能である。
(イ)上記実施形態では、電子部品4はスイッチング素子であり、電子部品5はその駆動回路であるが、本発明はこれに限られず、様々な電子部品に対応することができる。例えば、温度マージンを等しくする複数の電子部品は、サイズ、発熱量、及び最高許容温度の少なくともいずれか1つが異なるものであればよい。
また、3種類以上の電子部品について温度マージンを一致させてもよい。この場合、各電子部品の温度マージンは、複数の電子部品について求められる最も小さい限界温度マージンに合わせて設定されることが好ましい。
また、3種類以上の電子部品に対して放熱構造を設ける場合、そのうち少なくとも2種類の電子部品の間で温度マージンを等しくしてもよい。
(ウ)また、本発明による電子制御ユニットは、電動パワーステアリング装置の回転電機に限られず、他の装置やシステムを制御するのに用いられても良い。
以上、本発明はこのような実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
3・・・電子制御ユニット
4・・・第1電子部品(電子部品)
5・・・第2電子部品(電子部品)
6・・・基板
7・・・ヒートシンク
81、82・・・熱伝導部材

Claims (4)

  1. サイズ、発熱量、および最高許容温度の少なくとも1つが異なる複数の電子部品(4、5)と、
    前記複数の電子部品が実装された基板(6)と、
    前記基板に対向して配置されたヒートシンク(7)と、
    前記複数の電子部品と前記ヒートシンクとの間にそれぞれ介在し、対応する前記電子部品の熱を前記ヒートシンクに伝導する複数の熱伝導部材(81、82)と、
    を備え、
    前記熱伝導部材は、前記電子部品についての最高使用温度と最高許容温度との差である温度マージン(M1、M2)が前記複数の電子部品の間で等しくなるように設けられており、
    前記熱伝導部材が前記電子部品に接触する面積を放熱面積(S1、S2)とし、
    前記熱伝導部材を介する前記電子部品と前記ヒートシンクとの間隔を放熱間隔(D1、D2)とし、
    前記電子部品について、前記放熱面積が最大値(S1max、S2max)であり、かつ、前記放熱間隔が最小値(D1min、D2min)であるときの前記温度マージンを限界温度マージン(M10、M20)とするとき、
    前記限界温度マージンが相対的に大きい前記電子部品に設けられる前記熱伝導部材の前記放熱面積は、前記限界温度マージンが相対的に小さい前記電子部品に設けられる前記熱伝導部材の前記放熱面積よりも、前記最大値に対する割合が小さくなるように設定されていることを特徴とする電子制御ユニット(3)。
  2. 前記複数の電子部品は、電力変換回路を構成する複数のスイッチング素子(311〜316、321〜326)、および、当該スイッチング素子を駆動する駆動回路(36)を含んでいることを特徴とする請求項1に記載の電子制御ユニット。
  3. サイズ、発熱量、および最高許容温度の少なくとも1つが異なり、電力変換回路を構成する複数のスイッチング素子(311〜316、321〜326)、および、当該スイッチング素子を駆動する駆動回路(36)を含んでいる複数の電子部品(4、5)と、
    前記複数の電子部品が実装された基板(6)と、
    前記基板に対向して配置されたヒートシンク(7)と、
    前記複数の電子部品と前記ヒートシンクとの間にそれぞれ介在し、対応する前記電子部品の熱を前記ヒートシンクに伝導する複数の熱伝導部材(81、82)と、
    を備え、
    前記熱伝導部材は、前記電子部品についての最高使用温度と最高許容温度との差である温度マージン(M1、M2)が前記複数の電子部品の間で等しくなるように設けられていることを特徴とする電子制御ユニット(3)。
  4. 請求項1〜3のいずれか一項に記載の電子制御ユニットと、
    前記電子制御ユニットに通電を制御されるモータ(2)と、を備える回転電機。
JP2014187608A 2014-09-16 2014-09-16 電子制御ユニット及びこれを用いた回転電機 Active JP6361396B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187608A JP6361396B2 (ja) 2014-09-16 2014-09-16 電子制御ユニット及びこれを用いた回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187608A JP6361396B2 (ja) 2014-09-16 2014-09-16 電子制御ユニット及びこれを用いた回転電機

Publications (2)

Publication Number Publication Date
JP2016062953A JP2016062953A (ja) 2016-04-25
JP6361396B2 true JP6361396B2 (ja) 2018-07-25

Family

ID=55796195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187608A Active JP6361396B2 (ja) 2014-09-16 2014-09-16 電子制御ユニット及びこれを用いた回転電機

Country Status (1)

Country Link
JP (1) JP6361396B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524023B2 (ja) * 2016-06-01 2019-06-05 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP6837257B2 (ja) * 2016-09-02 2021-03-03 日立Astemo株式会社 電動駆動装置及び電動パワーステアリング装置
JP6684190B2 (ja) * 2016-09-02 2020-04-22 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP6770863B2 (ja) * 2016-09-26 2020-10-21 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
JP7017145B2 (ja) * 2016-11-23 2022-02-08 日本電産株式会社 モータ及び電動パワーステアリング装置
JP6776923B2 (ja) * 2017-02-06 2020-10-28 株式会社デンソー 半導体装置
US10784753B2 (en) * 2017-06-01 2020-09-22 Nsk Ltd. Electric drive device and electric power steering device
JP6964718B2 (ja) * 2019-02-13 2021-11-10 三菱電機株式会社 回転電機
JP6864029B2 (ja) * 2019-04-26 2021-04-21 日立Astemo株式会社 電動駆動装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945827A (ja) * 1995-08-02 1997-02-14 Hitachi Ltd 半導体装置
JP2013016634A (ja) * 2011-07-04 2013-01-24 Toyota Motor Corp 半導体素子の冷却構造

Also Published As

Publication number Publication date
JP2016062953A (ja) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6361396B2 (ja) 電子制御ユニット及びこれを用いた回転電機
US10897219B2 (en) Drive apparatus and electric power steering apparatus using the same
JP6680053B2 (ja) 駆動装置、および、これを用いた電動パワーステアリング装置
JP6146380B2 (ja) 電子装置
JP6056827B2 (ja) 回転電機制御装置
US9338925B2 (en) Device for controlling drive of motor for electric power steering device
JP5725055B2 (ja) 電子制御ユニット
US9123693B2 (en) Mold module utilized as power unit of electric power steering apparatus and electric power steering apparatus
JP6278695B2 (ja) 電子制御ユニット、および、これを用いた電動パワーステアリング装置
JP5970668B2 (ja) 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
JP5126277B2 (ja) 電動装置
JP6366809B2 (ja) 一体型電動パワーステアリング装置
JP5039171B2 (ja) 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置
JP5160185B2 (ja) インバータ装置
JP6183314B2 (ja) 電子装置及びそれを備えた駆動装置
JPWO2017068636A1 (ja) 一体型電動パワーステアリング装置、及びその製造方法
JP5267959B2 (ja) 半導体モジュール、及び、それを用いた駆動装置
JP6207650B2 (ja) 回転電機
JP2017201867A (ja) 制御装置一体型回転電機
JP2016019401A (ja) 電力変換装置一体型電動機
JP2014049610A (ja) 回路基板
JP2014053373A (ja) 回路基板
JP2010239810A (ja) インバータ装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R151 Written notification of patent or utility model registration

Ref document number: 6361396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250