JP6359519B2 - Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method - Google Patents

Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method Download PDF

Info

Publication number
JP6359519B2
JP6359519B2 JP2015505598A JP2015505598A JP6359519B2 JP 6359519 B2 JP6359519 B2 JP 6359519B2 JP 2015505598 A JP2015505598 A JP 2015505598A JP 2015505598 A JP2015505598 A JP 2015505598A JP 6359519 B2 JP6359519 B2 JP 6359519B2
Authority
JP
Japan
Prior art keywords
manufacturing
metal
silicon substrate
transfer member
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015505598A
Other languages
Japanese (ja)
Other versions
JPWO2014142304A1 (en
Inventor
小林 光
光 小林
健太郎 今村
健太郎 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2014142304A1 publication Critical patent/JPWO2014142304A1/en
Application granted granted Critical
Publication of JP6359519B2 publication Critical patent/JP6359519B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Description

本発明は、シリコン基板の表面に微細なナノクリスタル構造層を形成することに係る、シリコン基板の表面処理方法、半導体装置の製造方法、半導体の製造装置、転写用部材およびその製造方法、太陽電池および太陽電池の製造方法に関するものである。   The present invention relates to a silicon substrate surface treatment method, a semiconductor device manufacturing method, a semiconductor manufacturing device, a transfer member and a manufacturing method thereof, and a solar cell, which are related to forming a fine nanocrystal structure layer on the surface of a silicon substrate. And a method for manufacturing a solar cell.

従来、シリコン基板(Siウェハ)に対して、白金等の触媒金属の微細粒子が共存するフッ化水素酸・過酸化水素水(HF・H)混合溶液に作用させると、Siウェハの表面に、上記触媒金属の存在によって、開孔及びその開孔周辺での微細な多孔質層が形成されること、そして、この技術を太陽電池の受光面に適用することにより、光反射率を低減させて、太陽電池の変換効率を向上させることの可能なことが知られている(特許文献1)。Conventionally, when a silicon substrate (Si wafer) is allowed to act on a mixed solution of hydrofluoric acid / hydrogen peroxide (HF / H 2 O 2 ) in which fine particles of catalyst metal such as platinum coexist, Due to the presence of the catalytic metal on the surface, an opening and a fine porous layer around the opening are formed, and by applying this technique to the light receiving surface of the solar cell, the light reflectance is reduced. It is known that the conversion efficiency of a solar cell can be improved by reducing it (Patent Document 1).

しかし、一方で、上述の従来技術では、その処理後に、上記溶液中の白金等の触媒金属がSiウェハの表面に付着・残存したままで、これが、例えば半導体表面のキャリア特性を低下させる要因となることが懸念され、太陽電池の性能向上には、かかる要因の影響を除くことを含め、解決すべき課題がある。   However, on the other hand, in the above-described conventional technology, after the treatment, the catalyst metal such as platinum in the solution remains attached to the surface of the Si wafer, which is a factor that deteriorates the carrier characteristics of the semiconductor surface, for example. There is a problem to be solved, including removing the influence of such factors, in improving the performance of solar cells.

本願の発明者は、先に、白金メッシュ等をローラーに装着して用いて、シリコン基板を酸化しかつ溶解し得る、例えば上述のフッ化水素酸・過酸化水素水(HF・H)混合溶液等の処理溶液中で、上記白金メッシュ等を処理対象のシリコン基板に対向配置して接触又は近接させたとき、同白金メッシュ等が、その表面形状を処理対象のシリコン基板表面の広い面積において、酸化と溶解との反応における触媒作用をなして、短時間に、そのシリコン基板表面を微細なナノクリスタル構造層に作り替える、転写用部材となること、すなわち、同白金メッシュ等を転写用部材として利用する技術(以下、この種の技術を化学的構造転写法と称する)を提示し、それにより、シリコン基板を低反射光特性の表面になして、高い光電変換性能の太陽電池を製造することを提案している(特許文献2)。
また、本願の発明者は、転写用部材の形状として、メッシュに限らず、貫通孔及び/又は非貫通孔が形成された触媒材、アイランド状の触媒材あるいは平板状の触媒材を用い得ること、さらに、上述の処理溶液中に1%以下の銀イオンなど少量の金属イオンが含まれていてもよいことを提示した(特許文献3)。
The inventor of the present application can first oxidize and dissolve the silicon substrate using a platinum mesh or the like mounted on a roller, for example, the above-described hydrofluoric acid / hydrogen peroxide solution (HF / H 2 O 2). ) When the platinum mesh or the like is placed in contact with or in close proximity to the silicon substrate to be processed in a processing solution such as a mixed solution, the surface shape of the platinum mesh or the like is wide on the surface of the silicon substrate to be processed. In the area, it becomes a transfer member that catalyzes the reaction between oxidation and dissolution, and in a short time, the surface of the silicon substrate is changed to a fine nanocrystal structure layer. Presenting a technology to be used as a member (hereinafter, this type of technology is referred to as a chemical structure transfer method), thereby making a silicon substrate a surface with low reflected light characteristics and high photoelectric conversion performance Has been proposed (Patent Literature 2).
Further, the inventor of the present application is not limited to the mesh as the shape of the transfer member, but may use a catalyst material in which a through hole and / or a non-through hole is formed, an island-shaped catalyst material, or a flat plate-shaped catalyst material. Furthermore, it has been suggested that a small amount of metal ions such as 1% or less of silver ions may be contained in the above-described treatment solution (Patent Document 3).

かかる化学的構造転写法を用いる場合においても、極低反射率を持ったシリコン基板表面を、迅速、確実に形成すること、並びにそのシリコン基板表面部におけるキャリア特性を安定に維持すること、また、それらを実現するための方策、手法として、上述の転写用部材の形状、構造、製作手法等には、更なる創意工夫が求められる。   Even when such a chemical structure transfer method is used, it is possible to quickly and surely form a silicon substrate surface having an extremely low reflectance, and to stably maintain carrier characteristics in the silicon substrate surface portion. As measures and methods for realizing them, further ingenuity is required for the shape, structure, manufacturing method and the like of the above-mentioned transfer member.

特開2005−183505号公報JP 2005-183505 A 国際特許公開:WO2011/099594International Patent Publication: WO2011 / 099594 国際特許公開:WO2013/024746International Patent Publication: WO2013 / 024746

本発明の目的は、上述の従来例のような転写用部材の機能を一層高めることで、迅速に、シリコン表面を極薄、微細なナノクリスタル構造層に形成するための、シリコン基板の表面処理方法及び半導体装置の製造方法、並びに太陽電池およびその製造方法を提供すること、さらには、その微細なナノクリスタル構造層形成に利用する転写用部材並びにナノクリスタル構造層を有するシリコン基板自体を実現することにある。   The object of the present invention is to further improve the function of a transfer member as in the above-described conventional example, thereby quickly forming a silicon surface into a very thin and fine nanocrystal structure layer. The present invention provides a method, a method for manufacturing a semiconductor device, a solar cell, and a method for manufacturing the solar cell, and further realizes a transfer member used for forming the fine nanocrystal structure layer and the silicon substrate itself having the nanocrystal structure layer. There is.

本発明の要旨は、化学的構造転写法において利用する触媒機能を有する第1の金属による転写用部材の表面に、微量の触媒機能を有する第2の金属を担持させて用いること、または上記転写用部材を、微量の第2の金属を含む混合水溶液中でシリコン基板に接触させて用いることにある。   The gist of the present invention is that the surface of the transfer member made of the first metal having a catalytic function used in the chemical structure transfer method is used by supporting a small amount of the second metal having the catalytic function, or the transfer described above. The member for use is in contact with the silicon substrate in a mixed aqueous solution containing a trace amount of the second metal.

詳細には、化学的構造転写法において、例えば、第1の金属による転写用部材に微量の第2の金属を担持させて、シリコンを酸化しかつ溶解し得る処理溶液中で、シリコン基板の表面に接触乃至接近させることにより、または、上記第1の金属による転写用部材の表面を、シリコンを酸化しかつ溶解し得る処理溶液中に微量の第2の金属を含ませて、シリコン基板の表面に接触乃至接近させることにより、同シリコン基板の最表部に極薄、微細なナノクリスタル構造層を形成する、シリコン基板の表面処理方法及び半導体装置の製造方法である。   Specifically, in the chemical structure transfer method, for example, the surface of the silicon substrate is treated in a treatment solution that can oxidize and dissolve silicon by supporting a small amount of the second metal on the first metal transfer member. A surface of the silicon substrate by bringing a trace amount of the second metal into the treatment solution capable of oxidizing and dissolving the surface of the transfer member made of the first metal by contacting or approaching the surface. A surface treatment method for a silicon substrate and a method for manufacturing a semiconductor device, in which an ultrathin and fine nanocrystal structure layer is formed on the outermost surface of the silicon substrate by contacting or approaching the substrate.

本発明では、触媒機能を有する第1の金属による転写用部材の表面に微量の触媒機能を有する第2の金属を担持して存在させるか、あるいは、シリコンを酸化しかつ溶解し得る処理溶液中に第2の金属を溶解して存在させることにより、上記触媒機能を有する第1の金属による転写用部材を、上記シリコンを酸化しかつ溶解し得る処理溶液中で、シリコン基板の表面に接触ないし接近させて、上記シリコン基板の表面に極薄、微細なナノクリスタル構造層をシリコン基板全面に一様に形成することに特徴がある。   In the present invention, a transfer metal member having a catalytic function is supported on the surface of the transfer member by a small amount of the second metal having a catalytic function, or in a processing solution capable of oxidizing and dissolving silicon. When the second metal is dissolved and present in the substrate, the transfer member made of the first metal having the catalytic function is brought into contact with the surface of the silicon substrate in a treatment solution capable of oxidizing and dissolving the silicon. It is characterized in that an ultrathin and fine nanocrystal structure layer is uniformly formed on the entire surface of the silicon substrate.

本発明で、上記第1の金属は、白金(Pt)、銀(Ag)、パラジウム(Pd)、金(Au)、ロジウム(Rh)およびこれらを含む他の金属との合金の群から選ばれる。また上記第2の金属は、銀(Ag)のほか、Ni、Fe、Cu、Pdの群から選ばれる。   In the present invention, the first metal is selected from the group of platinum (Pt), silver (Ag), palladium (Pd), gold (Au), rhodium (Rh) and alloys with other metals containing these. . The second metal is selected from the group of Ni, Fe, Cu, and Pd in addition to silver (Ag).

本発明では、第1例として、上記第1の金属でなる転写用部材に、上記第2の金属を溶解させて調製した溶液に浸漬して引揚げて、同転写用部材の面に微量の上記第2の金属を担持させて、この転写用部材を所定のローラーに装着して用いて、シリコンを酸化しかつ溶解し得る、所定の処理溶液中で、シリコン基板に接触乃至近接させながらローラーごと回転移動させることにより、上記シリコン基板の表面に微細なナノクリスタル構造層を形成する過程を備える。   In the present invention, as a first example, the transfer member made of the first metal is dipped in a solution prepared by dissolving the second metal and pulled up, and a small amount of trace is formed on the surface of the transfer member. A roller that supports the second metal and attaches the transfer member to a predetermined roller and uses it to oxidize and dissolve silicon while contacting or approaching the silicon substrate in a predetermined processing solution. And a process of forming a fine nanocrystal structure layer on the surface of the silicon substrate.

また、本発明では、第2例として、上述のシリコンを酸化しかつ溶解し得る所定の処理溶液に上記第2の金属を微量溶解させて用い、その溶液中に、上記の転写用部材を、所定のシリコン基板に接触乃至接近させることにより、上記シリコン基板の表面に極薄、微細なナノクリスタル構造層を形成する過程を備えることを含む。   Further, in the present invention, as a second example, the above-mentioned transfer member is used by dissolving a small amount of the above-mentioned second metal in a predetermined processing solution capable of oxidizing and dissolving the above-described silicon. A step of forming an ultrathin and fine nanocrystal structure layer on the surface of the silicon substrate by contacting or approaching a predetermined silicon substrate.

なお、上述のシリコンを酸化しかつ溶解し得る処理溶液は、例えば、50wt%濃度のフッ化水素酸(HF)水と30wt%濃度の過酸化水素水(H)とを適宜な体積比で混合したフッ化水素酸・過酸化水素水の混合溶液が用いられる。The above-mentioned treatment solution capable of oxidizing and dissolving silicon includes, for example, an appropriate volume of 50 wt% hydrofluoric acid (HF) water and 30 wt% hydrogen peroxide (H 2 O 2 ). A mixed solution of hydrofluoric acid and hydrogen peroxide water mixed in a ratio is used.

本発明では、上記第1例の実施事例として、例えば、50wt%濃度のフッ化水素酸(HF)水と30wt%濃度の過酸化水素水(H)とを体積比1:1で混合したフッ化水素酸・過酸化水素水の混合溶液に銀(Ag)を100ppm程度溶解させて調製し、これに短時間浸漬して引揚げ、さらに所定の熱処理を行うことで、少量の銀を担持した転写用部材を形成する過程も含まれ、さらに、この転写用部材を所定のローラーに装着して所定のシリコン基板に接触乃至接近させながら、ローラーを回転して移動させることにより、上記シリコン基板の表面に微細なナノクリスタル構造層を形成する過程を備えることも含まれる。In the present invention, as an implementation example of the first example, for example, 50 wt% concentration of hydrofluoric acid (HF) water and 30 wt% concentration of hydrogen peroxide water (H 2 O 2 ) are used at a volume ratio of 1: 1. A small amount of silver is prepared by dissolving about 100 ppm of silver (Ag) in a mixed solution of hydrofluoric acid and hydrogen peroxide, and then immersing it in it for a short period of time. Forming a transfer member carrying the transfer member, and by rotating the roller while moving the roller member while contacting or approaching the predetermined silicon substrate while mounting the transfer member on the predetermined roller, It also includes providing a process of forming a fine nanocrystal structure layer on the surface of the silicon substrate.

転写用部材への微量の第2の金属を担持させるに際しては、上述の銀(Ag)を溶解させた、フッ化水素酸・過酸化水素水の混合溶液を用いる場合に限らず、それとは別の溶液に所定適量の第2の金属が溶解されているものに、前記第1の金属でなる転写用部材を浸漬して引揚げることで、この転写用部材に第2の金属を微量担持して利用することも可能である。   When a small amount of the second metal is supported on the transfer member, it is not limited to using a mixed solution of hydrofluoric acid and hydrogen peroxide water in which the above silver (Ag) is dissolved. The transfer member made of the first metal is dipped into a solution in which a predetermined appropriate amount of the second metal is dissolved in the solution, and lifted, so that a small amount of the second metal is supported on the transfer member. Can also be used.

本発明は、シリコン基板として、単結晶シリコン、多結晶シリコン、非結晶性シリコン、疑似単結晶シリコンおよびシリコン化合物半導体(シリコンカーバイト、シリコンゲルマニウム等を含む)から選ばれるシリコン基材を選択的に使用することができる。   In the present invention, a silicon substrate selected from single crystal silicon, polycrystalline silicon, amorphous silicon, pseudo single crystal silicon, and silicon compound semiconductor (including silicon carbide, silicon germanium, etc.) is selectively used as the silicon substrate. Can be used.

本発明の上述第1の実施亊例によると、化学的構造転写法において、微量の触媒機能を有する第2の金属類の担持された転写用部材を実現して、これを用いて、シリコンを酸化しかつ溶解し得る処理溶液内で所定のシリコン基板に接触乃至接近させることにより、そのシリコン基板表面には、シリコンナノクリスタル構造層が、その形成速度をいっそう高めて、形成されて、極低反射率のシリコン表面を形成し得る。形成された一様な極薄、微細なナノクリスタル構造層の光学反射特性は平均値で5%以下の低反射率特性が得られ、これを用いて製造した太陽電池では、変換効率を一段と向上させることできる。   According to the first embodiment of the present invention, in the chemical structure transfer method, a transfer member loaded with a second metal having a trace amount of catalytic function is realized, and this is used to form silicon. By contacting or approaching a predetermined silicon substrate in an oxidizing and dissolving processing solution, a silicon nanocrystal structure layer is formed on the surface of the silicon substrate at a further increased rate of formation. A reflective silicon surface may be formed. The formed ultra-thin and fine nanocrystal structure layer has a low optical reflectance characteristic with an average value of 5% or less, and solar cells manufactured using it have a much higher conversion efficiency. Can be made.

本発明の実施形態による単結晶シリコン基板表面のSEM(写真)図である。It is a SEM (photograph) figure of a single crystal silicon substrate surface by an embodiment of the present invention. 本発明の実施例による単結晶シリコン基板断面のSEM(写真)図である。It is a SEM (photograph) figure of a single crystal silicon substrate section by an example of the present invention. 本発明の実施例による単結晶シリコン基板表面のSEM(写真)図である。It is a SEM (photograph) figure of a single crystal silicon substrate surface by an example of the present invention. 本発明の実施例による単結晶シリコン基板表面のSEM(写真)図である。It is a SEM (photograph) figure of a single crystal silicon substrate surface by an example of the present invention. 本発明の実施例による単結晶シリコン基板表面のSEM(写真)図である。It is a SEM (photograph) figure of a single crystal silicon substrate surface by an example of the present invention. 本発明の実施例による単結晶シリコン基板断面のTEM(写真)図である。It is a TEM (photograph) view of a cross section of a single crystal silicon substrate according to an embodiment of the present invention. 本発明の実施例による単結晶シリコン基板断面のTEM(写真)図である。It is a TEM (photograph) view of a cross section of a single crystal silicon substrate according to an embodiment of the present invention. 本発明の実施例による単結晶シリコン基板断面の拡大TEM(写真)図である。FIG. 4 is an enlarged TEM (photo) view of a cross section of a single crystal silicon substrate according to an embodiment of the present invention. 本発明の実施例によるナノクリスタル構造層を有するシリコン基板表面の反射率特性図である。It is a reflectance characteristic view of a silicon substrate surface having a nanocrystal structure layer according to an embodiment of the present invention. 本発明の実施例による多結晶シリコン基板の表面のSEM(写真)図である。It is a SEM (photograph) figure of the surface of the polycrystalline silicon substrate by the example of the present invention. 本発明の実施例による多結晶シリコン基板の断面TEM(写真)図である。It is a cross-sectional TEM (photograph) view of a polycrystalline silicon substrate according to an embodiment of the present invention. 本発明の実施例による多結晶シリコン基板表面の反射率特性図である。It is a reflectance characteristic figure of the polycrystalline silicon substrate surface by the Example of this invention. 本発明の他の実施例による多結晶シリコン基板の表面のSEM(写真)図である。It is a SEM (photograph) figure of the surface of the polycrystalline silicon substrate by other examples of the present invention. 本発明の他の実施例による多結晶シリコン基板の断面TEM(写真)図である。It is a cross-sectional TEM (photograph) view of a polycrystalline silicon substrate according to another embodiment of the present invention. 本発明の実施例3によるナノクリスタル構造層を有するシリコン基板表面の反射率特性図である。It is a reflectance characteristic figure of the silicon substrate surface which has the nanocrystal structure layer by Example 3 of this invention. 本発明の実施例4によるナノクリスタル構造層を有するシリコン基板表面の反射率特性図である。It is a reflectance characteristic figure of the silicon substrate surface which has the nanocrystal structure layer by Example 4 of this invention. 本実施例により得られたpn接合型単結晶シリコン太陽電池の特性図である。It is a characteristic view of the pn junction type single crystal silicon solar cell obtained by the present Example.

1 P型シリコン基板
2 ナノクリスタル構造層
3 アルミニウム蒸着層
11 多結晶シリコン基板
12 ナノクリスタル構造層
13 アルミニウム蒸着層
DESCRIPTION OF SYMBOLS 1 P-type silicon substrate 2 Nanocrystal structure layer 3 Aluminum vapor deposition layer 11 Polycrystalline silicon substrate 12 Nanocrystal structure layer 13 Aluminum vapor deposition layer

[実施例1]
つぎに、本発明を、実施の形態である各実施例により、図面を参照して詳細に述べる。
[Example 1]
Next, the present invention will be described in detail with reference to the drawings by examples of embodiments.

フッ素樹脂のトレーに50wt%濃度のフッ化水素酸(HF)と30wt%濃度の過酸化水素水(H)とを体積比1:1で混合したフッ化水素酸と過酸化水素水との混合溶液200mlを用いて、銀の粒子を100ppm溶解させて調製した。その溶液に200メッシュの白金メッシュを室温で10秒間浸漬した後、このメッシュを取り出し、流水で2分間洗浄し、同白金メッシュ体に微量の銀を担持させる。Hydrofluoric acid and hydrogen peroxide solution in which 50 wt% concentration of hydrofluoric acid (HF) and 30 wt% concentration of hydrogen peroxide (H 2 O 2 ) are mixed at a volume ratio of 1: 1 in a fluororesin tray. The silver particles were prepared by dissolving 100 ppm using 200 ml of the mixed solution. A 200-mesh platinum mesh is immersed in the solution at room temperature for 10 seconds, and then the mesh is taken out and washed with running water for 2 minutes to allow a trace amount of silver to be supported on the platinum mesh body.

化学的構造転写法において、微量の銀を担持した上記白金メッシュを用いて、50wt%濃度のフッ化水素酸(HF)と30wt%濃度の過酸化水素水(H)とを体積比でフッ化水素酸(HF)水:過酸化水素水(H)=1:3,1:1,3:1,5:1,10:1のそれぞれに混合したフッ化水素酸水と過酸化水素水との混合溶液500mlのフッ素樹脂容器内において、p型で面方位(100)の片面ミラー面、比抵抗:1〜20Ωcmの5cm角に切断した単結晶シリコン基板を、その銀担持白金メッシュを、所定のローラー面に装着して、室温で約30秒間のローラーによる数度の回転処理で接触させ、流水洗浄し、窒素ブロー処理後、図1〜図5の各SEM(写真)図に見られるように、いずれの場合にも上記シリコン基板面にシリコンナノクリスタル層の形成されていることが確認できた。In the chemical structure transfer method, a volume ratio of 50 wt% concentration of hydrofluoric acid (HF) and 30 wt% concentration of hydrogen peroxide (H 2 O 2 ) using the platinum mesh supporting a small amount of silver. Hydrofluoric acid (HF) water: hydrogen peroxide water (H 2 O 2 ) = 1: 3, 1: 1, 3: 1, 5: 1, 10: 1 mixed with hydrofluoric acid water In a fluororesin container of 500 ml of a mixed solution of hydrogen peroxide and water, a single-crystal silicon substrate cut into a 5 cm square of p-type, single-sided mirror surface with a plane orientation (100), specific resistance: 1 to 20 Ωcm, A supported platinum mesh is mounted on a predetermined roller surface, brought into contact with the roller by rotating it several times with a roller at room temperature for about 30 seconds, washed with running water, treated with nitrogen blow, and then each SEM shown in FIGS. ) As shown in the figure, the above It was confirmed that a silicon nanocrystal layer was formed on the recon substrate surface.

図6及び図7は、本実施例により得られた事例2つ(体積比でフッ化水素酸:過酸化水素水=3:1、及び同10:1のそれぞれに混合したフッ化水素酸と過酸化水素水との混合溶液を使用した場合)の単結晶シリコン基板の表面近傍の断面TEM(透過電子顕微鏡)の各写真図であり、図6及び図7で見ると、シリコン基板1の表面には約100nmのシリコンナノクリスタル構造層2が形成されていることが分かる。   6 and 7 show two examples obtained by this example (hydrofluoric acid mixed in a volume ratio of hydrofluoric acid: hydrogen peroxide = 3: 1 and 10: 1, respectively) FIG. 6 is a photographic view of a cross-sectional TEM (transmission electron microscope) in the vicinity of the surface of a single crystal silicon substrate (when a mixed solution with hydrogen peroxide water is used). It can be seen that a silicon nanocrystal structure layer 2 of about 100 nm is formed.

なお、図6及び図7でアルミニウム蒸着層3は、TEM(透過電子顕微鏡)観察に際して、上記シリコンナノクリスタル構造層2の表面界域を明示するために設けたものであり、完成の装置にそのまま存在させるものではない。   In FIGS. 6 and 7, the aluminum vapor deposition layer 3 is provided to clearly indicate the surface boundary area of the silicon nanocrystal structure layer 2 when observed with a TEM (transmission electron microscope), and is used as it is in a completed apparatus. It does not exist.

図8は、シリコンナノクリスタル構造層2の領域の断面を主体的に示す部分拡大のTEM(写真)図であり、これによって、シリコンナノクリスタル構造層2の内部には、同図中の矢印先端にみられる通りの、約2〜8nmの粒径で、単結晶シリコン基板1の領域にみられるものと同様に結晶構造が揃って観察される。すなわち、単結晶シリコン基板1に対して、上記フッ化水素酸と過酸化水素水との混合溶液を使用して化学的構造転写法を適用した場合、シリコンナノクリスタル構造層2内に微細な粒径の結晶構造が揃って存在する態様が明らかであり、これにより、このシリコンナノクリスタル構造層2のなかの、まさしくナノクリスタル構造の微細な粒径結晶が存在することを確認できる。   FIG. 8 is a partially enlarged TEM (photograph) diagram mainly showing a cross section of the region of the silicon nanocrystal structure layer 2, whereby the tip of the arrow in FIG. As can be seen, the crystal structure is observed with a grain size of about 2 to 8 nm as in the region of the single crystal silicon substrate 1. That is, when the chemical structure transfer method is applied to the single crystal silicon substrate 1 using the mixed solution of hydrofluoric acid and hydrogen peroxide, fine particles are formed in the silicon nanocrystal structure layer 2. It is clear that the crystal structures having the same diameter are present, and thus, it can be confirmed that the fine crystal grains having the nanocrystal structure are present in the silicon nanocrystal structure layer 2.

上記ナノクリスタル構造層を形成して、株式会社コベルコ科研製のライフタイム測定装置LTA―1510を用いて、少数キャリアの1/eライフタイムを測定したところ、その値が、上記ナノクリスタル構造層形成直後には10μsであり、引続き900℃,10分の熱酸化を行ったところ、15μsへ、さらに、450℃,5%水素/95%窒素中のアニール処理45分で174μs以上へと、大きく改善されることが分かった。また、同様の試料で、上記熱酸化に代えて、濃度70wt%の硝酸中で、70℃,10分の硝酸処理を行うと、ライフタイムは、硝酸処理前の9μsから、処理後に10μsへ、さらに、450℃,5%水素/95%窒素中のアニール処理で17μsへと、ほぼ2倍の改善が見られた。When the nanocrystal structure layer was formed and the 1 / e 2 lifetime of minority carriers was measured using a lifetime measuring device LTA-1510 manufactured by Kobelco Research Institute, Inc., the value was determined as the nanocrystal structure layer. Immediately after the formation, it was 10 μs, and when thermal oxidation was subsequently performed at 900 ° C. for 10 minutes, it was greatly increased to 15 μs and further to 174 μs or more in 45 minutes at 450 ° C., annealing in 5% hydrogen / 95% nitrogen. It turns out that it improves. In addition, when a nitric acid treatment is performed at 70 ° C. for 10 minutes in nitric acid having a concentration of 70 wt% instead of the thermal oxidation with the same sample, the lifetime is changed from 9 μs before nitric acid treatment to 10 μs after the treatment. Furthermore, the annealing treatment at 450 ° C., 5% hydrogen / 95% nitrogen showed an almost double improvement to 17 μs.

これらの透過電子顕微鏡(TEM)の写真図からは、シリコンナノクリスタル構造層の表面及び層内に微細な細孔や金属微粒子の存在は認められない。シリコンナノクリスタル構造層の厚みは約100nmであるが、かかる厚みは処理時間を制御することにより、30nmから500nm程度が可能である。   From these transmission electron microscope (TEM) photographs, the presence of fine pores and fine metal particles in the surface of the silicon nanocrystal structure layer and in the layer are not recognized. The thickness of the silicon nanocrystal structure layer is about 100 nm, and the thickness can be about 30 nm to 500 nm by controlling the processing time.

加えて、本実施例で得られたシリコンナノクリスタル構造層は、365nmの紫外光照射で概ね600nm〜800nm波長のオレンジ色発光が観察されることから、バンドギャップが、通常のシリコンの場合の1.1eVより大きい、約2eVから約1.5eVに拡大していることを確認することができた。上記オレンジ色の発光は、TEMで見られた数nm程度の粒径の微細結晶構造からの発光と考えられる。   In addition, since the silicon nanocrystal structure layer obtained in this example exhibits orange emission of about 600 nm to 800 nm wavelength when irradiated with ultraviolet light at 365 nm, the band gap is 1 in the case of normal silicon. It was confirmed that the magnification was increased from about 2 eV to about 1.5 eV, which is larger than .1 eV. The orange light emission is considered to be light emission from a fine crystal structure having a particle size of about several nanometers as seen by TEM.

また、銀を担持させて、流水洗浄したが、流水洗浄後に数百度の加熱処理を行い、
銀粒子と白金メッシュの付着強度を上げることも有効である。
Also, silver was supported and washed with running water, but after washing with running water, heat treatment was performed at several hundred degrees,
It is also effective to increase the adhesion strength between silver particles and platinum mesh.

なお、上記白金メッシュには、白金と銀との合金あるいはニッケル(Ni)−白金−銀の合金のメッシュを用いることによっても、シリコン表面に所望のナノクリスタル構造層を形成することができる。   In addition, a desired nanocrystal structure layer can be formed on the silicon surface by using an alloy of platinum and silver or a nickel (Ni) -platinum-silver alloy mesh for the platinum mesh.

さらに、転写用部材の母体には、白金と白金以外の触媒機能を有する他金属との合金、同触媒機能を有する金属と溶液に不溶の別金属との合金、同触媒機能を有する金属を含む不織布等の合成体を用いることができる。いずれの場合も、母体の転写用部材の表面部には微量かつ適度の銀を担持し得るものが利用可能である。   Furthermore, the base material of the transfer member includes platinum and an alloy of another metal having a catalytic function other than platinum, an alloy of the metal having the catalytic function and another metal insoluble in a solution, and a metal having the catalytic function. A synthetic material such as a nonwoven fabric can be used. In any case, the surface portion of the base transfer member can use a trace amount of moderate silver.

図9は、本実施例による光波長域300〜800nmでの表面反射率特性を示し、反射特性では表面反射率が5%以下の低反射率特性である。これは、表面のナノクリスタル構造層の存在により、通常のシリコン基板にくらべて、表面反射率が顕著に低減されていることを示している。
[実施例2]
FIG. 9 shows the surface reflectance characteristics in the light wavelength region of 300 to 800 nm according to the present embodiment, which is a low reflectance characteristic with a surface reflectance of 5% or less. This indicates that the surface reflectance is remarkably reduced as compared with a normal silicon substrate due to the presence of the nanocrystal structure layer on the surface.
[Example 2]

つぎに、本発明を、実施の形態である多結晶シリコン基板の表面処理過程により、図面を参照して詳細に述べる。   Next, the present invention will be described in detail with reference to the drawings by the surface treatment process of the polycrystalline silicon substrate according to the embodiment.

400メッシュの白金の構造体を転写用部材として、この転写用部材を過酸化水素(H)水とフッ化水素(HF)酸との混合水溶液中で多結晶シリコン基板に接触させて、その多結晶シリコン基板表面にシリコンナノクリスタル構造層を形成した。詳細には、上記多結晶シリコン基板として、p型のアズスライス,比抵抗1〜20Ωcm,基板の大きさ5cm×5cm(5cm角),厚さ約200μmを、予め、表面のアルカリエッチ(KOH:21wt%水溶液の500ml中,フッ素樹脂容器内で実施)で80℃10分間の処理後、水洗2分を2回、窒素(N)ブロー乾燥した。次に、50wt%濃度のフッ化水素(HF)酸と30wt%濃度の過酸化水素(H)水とを体積比3:1で混合して銀イオンを1ppm程度含ませた、フッ化水素(HF)酸と過酸化水素(H)水との混合水溶液内(フッ素樹脂のトレー内の200mlを使用)で、上記転写用部材を所定のローラーに装着して、上記多結晶シリコン基板の主表面に約10秒間接触させる。その後、流水洗浄及び窒素(N)ブロー乾燥を行った。A 400 mesh platinum structure is used as a transfer member, and the transfer member is brought into contact with a polycrystalline silicon substrate in a mixed aqueous solution of hydrogen peroxide (H 2 O 2 ) water and hydrogen fluoride (HF) acid. A silicon nanocrystal structure layer was formed on the surface of the polycrystalline silicon substrate. Specifically, as the polycrystalline silicon substrate, a p-type as-slice, a specific resistance of 1 to 20 Ωcm, a substrate size of 5 cm × 5 cm (5 cm square), and a thickness of about 200 μm are preliminarily formed on the surface by alkaline etching (KOH: After carrying out treatment at 80 ° C. for 10 minutes in 500 ml of a 21 wt% aqueous solution in a fluororesin container, it was blown dry with nitrogen (N 2 ) twice for 2 minutes with water. Next, 50 wt% concentration of hydrofluoric acid (HF) acid and 30 wt% concentration of hydrogen peroxide (H 2 O 2 ) water were mixed at a volume ratio of 3: 1 to contain about 1 ppm of silver ions. In a mixed aqueous solution of hydrofluoric acid (HF) acid and hydrogen peroxide (H 2 O 2 ) water (using 200 ml in a fluororesin tray), the transfer member is mounted on a predetermined roller, and The main surface of the crystalline silicon substrate is contacted for about 10 seconds. Then, running water washing and nitrogen (N 2 ) blow drying were performed.

上述の処理の結果、図10のSEM写真図から、その多結晶シリコン基板の表面は数十nm以下の微細な粒子状結晶構造群からなっていることが観察された。   As a result of the above processing, it was observed from the SEM photograph of FIG. 10 that the surface of the polycrystalline silicon substrate was composed of a group of fine particulate crystal structures of several tens of nm or less.

図11は断面の透過電子顕微鏡写真(TEM像)であり、多結晶シリコン基板11上の形成されたシリコンナノクリスタル構造層12と、これにアルミニウム蒸着層13を設けた断面を表している。図11の透過電子顕微鏡(TEM)写真で示されるように、シリコンナノクリスタル構造層12の厚さは約100nm以上であることが分かる。また、シリコンナノクリスタル構造層12内には、単結晶と同様に、数nm程度の微細な結晶構造が見られた。   FIG. 11 is a transmission electron micrograph (TEM image) of the cross section, showing a cross section in which the silicon nanocrystal structure layer 12 formed on the polycrystalline silicon substrate 11 and the aluminum vapor deposition layer 13 are provided thereon. As shown in the transmission electron microscope (TEM) photograph of FIG. 11, it can be seen that the thickness of the silicon nanocrystal structure layer 12 is about 100 nm or more. In addition, a fine crystal structure of about several nm was observed in the silicon nanocrystal structure layer 12 as in the case of the single crystal.

本実施例で得られたシリコンナノクリスタル構造層は、紫外光照射(例えば、UVブラックライトによる照射)で単結晶シリコンの場合と同様に、概ね600nm〜800nm波長のオレンジ色発光が観察された。   The silicon nanocrystal structure layer obtained in this example was observed to emit orange light having a wavelength of approximately 600 nm to 800 nm, as in the case of single crystal silicon, when irradiated with ultraviolet light (for example, irradiation with UV black light).

図12では、シリコン基板表面の反射率を比較して表しており、図中の特性曲線(a)は本実施例の化学的構造転写法を実施する以前の多結晶シリコン基板の反射率特性、図中の特性曲線(b)は本実施例後の化学的構造転写法による多結晶シリコン基板の反射率、さらに図中の特性曲線(c)は、比較例として、面方位(100)単結晶シリコンに異方性アルカリエッチングを行って得たマットテキスチャー面の反射率を示した。   In FIG. 12, the reflectance of the silicon substrate surface is compared and represented, and the characteristic curve (a) in the figure shows the reflectance characteristics of the polycrystalline silicon substrate before the chemical structure transfer method of this embodiment, The characteristic curve (b) in the figure is the reflectivity of the polycrystalline silicon substrate by the chemical structure transfer method after this example, and the characteristic curve (c) in the figure is a plane orientation (100) single crystal as a comparative example. The reflectance of the mat texture surface obtained by performing anisotropic alkali etching on silicon is shown.

本実施例によると、図12中の特性(b)に示される通り、フッ化水素酸と過酸化水素水との混合水溶液に微量の銀が含まれた溶液内で所定の白金ローラーに装着した上記転写用部材を多結晶シリコン基板に接触させて、その多結晶シリコン基板表面にシリコンナノクリスタル構造層を形成した場合には、同多結晶シリコン基板の反射率特性が、波長300−800nmの光波長域において、平均値で3%以下と、顕著な低レベルになっており、シリコンナノクリスタル構造層の生成により、この光波長領域における光吸収率を向上させて、太陽電池の変換効率向上に寄与できる。   According to the present embodiment, as shown in the characteristic (b) in FIG. 12, a predetermined platinum roller was mounted in a solution containing a trace amount of silver in a mixed aqueous solution of hydrofluoric acid and hydrogen peroxide. When the transfer member is brought into contact with a polycrystalline silicon substrate and a silicon nanocrystal structure layer is formed on the surface of the polycrystalline silicon substrate, the polycrystalline silicon substrate has a reflectance characteristic of light having a wavelength of 300 to 800 nm. In the wavelength region, the average value is not more than 3%, which is a remarkably low level. By generating a silicon nanocrystal structure layer, the light absorption rate in this light wavelength region is improved and the conversion efficiency of the solar cell is improved. Can contribute.

加えて、少数キャリアのライフタイム測定で、そのライフタイムは、シリコンナノクリスタル構造層の形成後には約5μs(10−6秒)であることがわかり、形成前の約1μsであったことと比較して、約5倍に増大していることが認められた。In addition, minority carrier lifetime measurements show that the lifetime is about 5 μs (10 −6 seconds) after the formation of the silicon nanocrystal structure layer, compared to about 1 μs before formation. Thus, it was observed that the increase was about 5 times.

更に、転写用部材には、前記実施例1で述べたような、銀を担持させた白金メッシュを用いても良い。
[実施例3]
Furthermore, a platinum mesh carrying silver as described in the first embodiment may be used for the transfer member.
[Example 3]

つぎに、本発明の他の実施の形態を実施例により、詳細に述べる。   Next, another embodiment of the present invention will be described in detail by way of examples.

まず、50wt%濃度のフッ化水素酸(HF)と30wt%濃度の過酸化水素水(H)とを体積比でフッ化水素酸(HF)水 : 過酸化水素水(H)=1:1に混合したフッ化水素酸水と過酸化水素水との混合溶液内に、銀の粒子を1ppm溶解させて処理用溶液を調製した。First, hydrofluoric acid (HF) water: hydrogen peroxide water (H 2 O) in a volume ratio of 50 wt% hydrofluoric acid (HF) and 30 wt% hydrogen peroxide water (H 2 O 2 ). 2 ) = 1 ppm of silver particles was dissolved in a mixed solution of hydrofluoric acid water and hydrogen peroxide water mixed at 1: 1 to prepare a treatment solution.

つぎに、厚さ約20ミクロン(μm)の白金箔を所定のローラーに卷きつけてなる白金の構造体を化学的構造転写法における転写用部材として用い、この転写用部材を、フッ素樹脂容器(容量約500mlのトレー)内の、上記銀の粒子を1ppm溶解させた処理用溶液200ml中おいて、p型で面方位(100)の片面ミラー面、比抵抗:1〜20Ωcmの5cm角に切断した単結晶シリコン基板面に対して、室温で、ローラーを回しながらの移動処理を6回反復して接触させた。その間の所要時間は約30秒であった。   Next, a platinum structure in which a platinum foil having a thickness of about 20 microns (μm) is wound on a predetermined roller is used as a transfer member in the chemical structure transfer method, and this transfer member is used as a fluororesin container ( In a 200 ml treatment solution in which 1 ppm of the above silver particles is dissolved in a tray having a capacity of about 500 ml, the p-type single-sided mirror surface with a plane orientation (100) is cut into a 5 cm square with a specific resistance of 1 to 20 Ωcm. The moving process while rotating the roller was brought into contact with the single crystal silicon substrate surface 6 times at room temperature. The time required during that time was about 30 seconds.

その後、上記単結晶シリコン基板面を流水洗浄し、次いで窒素ブロー処理した後に上記単結晶シリコン基板面を観察したSEM図(写真)を図13に示す。これは、上述の実施例2で得られた結果、すなわち、図5のSEM(写真)図とほとんど同様である。   Thereafter, an SEM view (photograph) of the surface of the single crystal silicon substrate observed after the surface of the single crystal silicon substrate was washed with running water and then blown with nitrogen is shown in FIG. This is almost the same as the result obtained in Example 2 described above, that is, the SEM (photograph) diagram of FIG.

また、図14は断面の透過電子顕微鏡写真(TEM像)であり、本実施例の場合も、実施例2で述べた図7の透過電子顕微鏡写真(TEM図)と同様に、シリコンナノクリスタル構造層の厚さは約100nm以上であることが分かる。   FIG. 14 is a cross-sectional transmission electron micrograph (TEM image). In the case of this example as well, as in the transmission electron micrograph (TEM diagram) of FIG. It can be seen that the thickness of the layer is about 100 nm or more.

本実施例では、単結晶シリコン基板を用いたが、多結晶シリコン基板を用いた場合にも、そのシリコン基板の表面にナノクリスタル層を形成することが可能である。   In this embodiment, a single crystal silicon substrate is used. However, even when a polycrystalline silicon substrate is used, a nanocrystal layer can be formed on the surface of the silicon substrate.

なお、本実施例でのローラーへの印加圧力は、ローラーの自重のみで付加圧を与えていないが、経験的に適宜設定したものであり、同ローラーの移動速度並びに移動処理反復回数等と兼ね合わせて、対象のシリコン基板や対応装置の大きさ、温度等の環境に応じて、最適条件に設定し得ることは当然である。   In addition, although the applied pressure to the roller in this example does not give an additional pressure only by its own weight, it is appropriately set empirically, and also serves as the moving speed of the roller and the number of repetitions of moving processing, etc. In addition, it is a matter of course that optimum conditions can be set according to the environment such as the size and temperature of the target silicon substrate and corresponding device.

処理用溶液の調製にあたり、本実施例の50wt%濃度のフッ化水素(HF)酸と30wt%濃度の過酸化水素(H)水とを体積比でフッ化水素酸(HF)水 : 過酸化水素水(H)=1:1に混合したフッ化水素酸と過酸化水素水との混合溶液以外に、前述の実施例1の場合のように、50wt%濃度のフッ化水素(HF)酸と30wt%濃度の過酸化水素(H)水とを体積比でフッ化水素酸(HF)水 : 過酸化水素(H)水=1:3,3:1,5:1,10:1のそれぞれに混合したフッ化水素酸と過酸化水素水との混合溶液のいずれかを用いること、或いはフッ化水素酸と過酸化水素水との混合比を適宜変えて利用することも可能である。In preparing the treatment solution, hydrofluoric acid (HF) water in a volume ratio of 50 wt% concentration of hydrofluoric acid (HF) acid and 30 wt% concentration of hydrogen peroxide (H 2 O 2 ) water of this example was used. In addition to the mixed solution of hydrofluoric acid and hydrogen peroxide mixed in a hydrogen peroxide solution (H 2 O 2 ) = 1: 1, as in the case of Example 1 described above, a 50 wt% concentration of fluorine Hydrofluoric acid (HF) acid and 30 wt% hydrogen peroxide (H 2 O 2 ) water in a volume ratio of hydrofluoric acid (HF) water: hydrogen peroxide (H 2 O 2 ) water = 1: 3 Use one of the mixed solutions of hydrofluoric acid and hydrogen peroxide mixed in 3: 1, 5: 1, and 10: 1, respectively, or the mixing ratio of hydrofluoric acid and hydrogen peroxide It is also possible to change and use as appropriate.

図15は、本実施例によるナノクリスタル層を有するシリコン基板の光波長域300〜800nmでの表面反射率特性を示し、反射特性では表面反射率が概ね3%以下の低反射率特性である。これは、前述の実施例1の場合と対比しても、一層安定な低反射特性であり、転写用部材が白金箔であること、及び銀を1ppm溶解させた処理用溶液を用いたことによる作用で、表面の全域にナノクリスタル構造層が形成されたことによるものである。   FIG. 15 shows the surface reflectance characteristics in the light wavelength region of 300 to 800 nm of the silicon substrate having the nanocrystal layer according to the present embodiment, and the reflectance characteristics are low reflectance characteristics where the surface reflectance is approximately 3% or less. This is due to the fact that the low reflection characteristic is more stable even when compared with the case of Example 1 described above, the transfer member is a platinum foil, and the use of a processing solution in which 1 ppm of silver is dissolved. This is because the nanocrystal structure layer is formed over the entire surface by the action.

なお、上記白金箔には、白金と銀との合金あるいはニッケル(Ni)−白金−銀の合金箔、あるいは白金と金属等との混合乃至積層構造体からなるものを用いることによっても、シリコン表面に所望のナノクリスタル構造層を形成することができる。   Note that the platinum surface can be obtained by using an alloy of platinum and silver, an alloy foil of nickel (Ni) -platinum-silver, or a mixed or laminated structure of platinum and metal. In addition, a desired nanocrystal structure layer can be formed.

さらに、転写用部材の母体には、触媒機能を有する白金以外の金属との合金、同触媒機能を有する金属と溶液に不溶の金属との合金、耐薬品性を有する薄膜の樹脂や不織布等の合成体を用いることもできる。そして、上記転写用部材は、ローラーに巻きつけての加圧や薬液中での移動による耐薬品性などの耐用性の面から、白金部分が少なくとも1μm以上であり、白金以外の構造も含めて、全体の厚みが10〜50μmであれば十分に利用可能である。
[実施例4]
Furthermore, the base material of the transfer member includes an alloy of a metal other than platinum having a catalytic function, an alloy of a metal having the catalytic function and an insoluble metal in a solution, a thin film resin or nonwoven fabric having chemical resistance, etc. A composite can also be used. The transfer member has a platinum portion of at least 1 μm or more from the viewpoint of durability such as chemical resistance due to pressure applied around a roller or movement in a chemical solution, and includes structures other than platinum. If the total thickness is 10 to 50 μm, it can be used sufficiently.
[Example 4]

つぎに、本発明の他の実施例として、太陽電池及びその製造方法について詳細を述べる。
まず、p型単結晶シリコン基板(pSi(100)、厚さ725μm、比抵抗7〜11Ωcm、面積5×5cmを5枚単位で処理)を用い、フッ素樹脂製の容器内で、同基板を100mlの濃度5wt%のフッ化水素(HF)酸中、室温で、2分間の洗浄処理を行った。
Next, as another embodiment of the present invention, a solar cell and a method for manufacturing the solar cell will be described in detail.
First, using a p-type single crystal silicon substrate (p - Si (100), thickness 725 μm, specific resistance 7 to 11 Ωcm, area 5 × 5 cm 2 processed in units of 5 sheets), the same The substrate was washed in 100 ml of 5 wt% concentration of hydrofluoric acid (HF) acid at room temperature for 2 minutes.

つづいて、塩化ビニール製の容器内で、濃度50wt%のフッ化水素(HF)水100mlと濃度30wt%の過酸化水素(H)水溶液100mlとの混合液を1容器中に準備し、これに銀(Ag)の溶解した薬液(上記同様のフッ化水素(HF)水と過酸化水素(H)水との1:1混合比の溶液)を、銀(Ag)量が1ppmとなるように注入して処理液を調製し、この処理液中で、ローラーに厚さ約20μmの白金箔を巻きつけた状態で、その白金箔を上記シリコン基板表面に接触させる。上記ローラー及び白金箔の接触操作は、ローラーの自重のほかには外部加重はなしで、上記シリコン基板の表面を、白金箔面の移動速度1cm/sで、約30秒間に6回(往復3度)程度接触させるように反復移動させた。なお、上記薬液中のフッ酸(HF)の代りに、フッ化アンモニウム溶液あるいはその混合物を用いてもよい。また、銀(Ag)添加に際しては、銀粒子のほか、塩化銀或いは硝酸銀等、或いはその他の化合物乃至は銀の錯体又は銀錯体イオンでもよく、銀添加量も0.1〜50ppmの範囲で選択できる。Next, a mixture of 100 ml of 50 wt% hydrogen fluoride (HF) water and 100 ml of 30 wt% hydrogen peroxide (H 2 O 2 ) aqueous solution was prepared in one container in a vinyl chloride container. Then, a chemical solution in which silver (Ag) is dissolved (a solution having the same mixing ratio of hydrogen fluoride (HF) water and hydrogen peroxide (H 2 O 2 ) as in the above) is added to silver (Ag). A treatment liquid is prepared by injecting to a concentration of 1 ppm. In this treatment liquid, a platinum foil having a thickness of about 20 μm is wound around a roller, and the platinum foil is brought into contact with the surface of the silicon substrate. The contact operation between the roller and the platinum foil is 6 times in about 30 seconds (3 degrees reciprocation) on the surface of the silicon substrate at a moving speed of 1 cm / s on the surface of the platinum foil without any external load in addition to the weight of the roller. ) It was moved repeatedly so as to make contact. Instead of hydrofluoric acid (HF) in the chemical solution, an ammonium fluoride solution or a mixture thereof may be used. When silver (Ag) is added, in addition to silver particles, silver chloride, silver nitrate, etc., or other compounds or silver complexes or silver complex ions may be used, and the silver addition amount is selected within the range of 0.1 to 50 ppm. it can.

この操作過程によって、上記処理液中では白金及び銀による触媒作用で、シリコン基板表面の結晶層が微細構造化する、いわゆる化学的構造転写(Surface Structure Chemical Transfer、以下、SSCTと略記)呼ばれる化学的反応が生じ、同シリコン基板の表面領域では約200nmの深さでシリコンナノクリスタル構造層が形成されることが見出された。   Through this operation process, the crystal layer on the surface of the silicon substrate is microstructured by the catalytic action of platinum and silver in the above treatment liquid, so-called chemical structure transfer (hereinafter abbreviated as SSCT). It was found that a reaction occurred and a silicon nanocrystal structure layer was formed at a depth of about 200 nm in the surface region of the silicon substrate.

次に、上記シリコン基板のナノクリスタル構造層表面を、フッ素樹脂容器内で、100mlの濃度70wt%の硝酸(HNO)水溶液中、室温で10分間処理して、上記ナノクリスタル構造層内に残留した銀を溶解し、さらに濃度5wt%のフッ化水素(HF)酸で2分間処理後、水洗処理を行った。Next, the surface of the nanocrystal structure layer of the silicon substrate is treated in a 100 ml concentration of 70 wt% nitric acid (HNO 3 ) aqueous solution at room temperature for 10 minutes in a fluororesin container, and remains in the nanocrystal structure layer. The obtained silver was dissolved, and further treated with hydrogen fluoride (HF) acid having a concentration of 5 wt% for 2 minutes, and then washed with water.

その後は、上記面積5×5cm(5cm角)のp型単結晶シリコン基板を、その各端をダイヤモンドペンカッターで更に切断して、中央部の面積2.5×2、5cmの領域を取り出し、そのp型単結晶シリコン基板を、フッ素樹脂容器内で100mlの濃度70wt%の硝酸(HNO)溶液中、室温で10分間処理して引揚げ、さらに上記ナノクリスタル構造層表面にP含有の有機ケイ酸からなる被膜形成用コート剤(溶液)を滴下、スピンコート(3000rpm,30分)後、空気中150℃の乾燥処理で、リンケイ酸被膜を形成した。Thereafter, the p-type single crystal silicon substrate having an area of 5 × 5 cm 2 (5 cm square) is further cut at each end with a diamond pen cutter to obtain a region having an area of 2.5 × 2 , 5 cm 2 at the center. The p-type single crystal silicon substrate was taken out and treated for 10 minutes at room temperature in a 100 ml nitric acid (HNO 3 ) solution with a concentration of 70 wt% in a fluororesin container. Further, P 2 was deposited on the surface of the nanocrystal structure layer. A coating agent (solution) for forming a film composed of O 5 -containing organic silicic acid was dropped, spin-coated (3000 rpm, 30 minutes), and then a phosphosilicate film was formed by drying at 150 ° C. in air.

他方、同p型単結晶シリコン基板の裏面側には、別の同形の単結晶シリコン基板表面にB含有の有機ケイ酸からなる被膜形成用コート剤(溶液)を滴下、スピンコート(3000rpm,30分)後、空気中150℃の乾燥処理でホウ素ケイ酸被膜を形成して、そのホウ素ケイ酸被膜面を重ねて接触(貼り合せ)して配置した。On the other hand, on the back side of the same p-type single crystal silicon substrate, a coating agent (solution) for forming a film made of organic silicic acid containing B 2 O 3 is dropped on the surface of another single crystal silicon substrate having the same shape, and spin coating ( (3000 rpm, 30 minutes), a boron silicate coating film was formed by a drying process at 150 ° C. in air, and the boron silicate coating surface was stacked and contacted (bonded).

そして、上述の2枚のシリコン基板を横置きに重ねて接触(貼り合せ)して配置した状態で、一旦、両者の単結晶シリコン基板を酸素中、600℃、30分間の積層処理でそれぞれの被膜のガラス化(PSG,BSG)処理を行った後、さらに、(窒素(N)中、970℃で15分間の同時拡散処理を行って、表面側にn型領域及び裏面側にp領域を形成した。
なお、この一連の処理過程では、上述の2枚のシリコン基板が互いに付着することはなく、簡単に剥がして外すことができる。
Then, in a state where the above-described two silicon substrates are placed horizontally in contact with each other (bonded), both single-crystal silicon substrates are temporarily laminated in oxygen at 600 ° C. for 30 minutes. After the vitrification (PSG, BSG) treatment of the coating, it was further subjected to simultaneous diffusion treatment at 970 ° C. for 15 minutes in (nitrogen (N 2 ), and the n + type region on the front side and the p side on the back side A + region was formed.
In this series of processing steps, the two silicon substrates described above do not adhere to each other, and can be easily removed by peeling.

次に、表面側にn型領域及び裏面側にp領域の形成された、上記p型単結晶シリコン基板は、その各端面にp及びn層が回り込んで拡散されているので、その部分をダイヤモンドやすりで削り取った。Next, in the p-type single crystal silicon substrate in which the n + type region is formed on the front surface side and the p + region is formed on the back surface side, the p + and n + layers wrap around the respective end surfaces and are diffused. The part was shaved off with a diamond file.

最後に、フッ素樹脂製の容器内で、同基板を100mlの濃度5wt%のフッ化水素(HF)酸中、室温で、2分間の洗浄処理を行った後に、表面側のn型領域に厚さ1μmの銀(Ag)層の標準的ストライプ型表面電極をパターン蒸着により設け、他方の裏面側のp型領域には厚さ1μmのアルミニウム(Al)層の裏面(全域)電極を蒸着により設けた後、窒素中200℃で45分間のアニール処理を行って、pn接合型太陽電池を作製した。Finally, the substrate was washed in 100 ml of 5 wt% hydrofluoric acid (HF) acid at room temperature for 2 minutes in a fluororesin container, and then the n + type region on the surface side was formed. A standard stripe-type surface electrode with a silver (Ag) layer having a thickness of 1 μm is provided by pattern deposition, and a back surface (entire area) electrode of an aluminum (Al) layer with a thickness of 1 μm is deposited on the p + type region on the other back side. After that, annealing treatment was performed in nitrogen at 200 ° C. for 45 minutes to produce a pn junction solar cell.

図16は本実施例によるナノクリスタル構造層を有するシリコン基板の上記表面側のn型領域前の光波長域300〜800nmで約2%以下の表面反射率特性図であり、先述の実施例3で述べた図15の場合と比べると、シリコン基板の比抵抗の違いによる多少の差異がみられるものの、極低反射率特性が安定して得られていることが分かった。FIG. 16 is a surface reflectance characteristic diagram of about 2% or less in the light wavelength region 300 to 800 nm before the n + type region on the surface side of the silicon substrate having the nanocrystal structure layer according to this example. Compared with the case of FIG. 15 described in FIG. 3, it was found that the ultra-low reflectance characteristic was stably obtained although there was some difference due to the difference in specific resistance of the silicon substrate.

図17は、本実施例により得られたpn接合型太陽電池のAM1.5の光照射で得られた電流密度(mA/cm)―電圧特性図であり、図中、実線の特性が本実施例のシリコンナノクリスタル層表面構造を有するもの、図中、点線の特性が同表面構造の形成を行わなかったものである。図17の特性図から、本実施例の太陽電池では、光電流密度は40.3mA/cm、Vocは589mV、変換効率は17.6%と、それぞれ高性能が得られた。因みに、図17の特性図中の点線の特性に示したように、表面構造の形成を行わなかったものでは、光電流密度が28.0mA/cm、Vocが582mV、変換効率が12.5%であり、これに比較して、本実施例により得られたpn接合型太陽電池の場合は、実線の特性に見られるように、光電流密度大きく増加しており、変換効率の増大も顕著であることが明白であった。FIG. 17 is a current density (mA / cm 2 ) -voltage characteristic diagram obtained by light irradiation of AM1.5 of the pn junction solar cell obtained in this example. The silicon nanocrystal layer surface structure of the example, the dotted line in the figure is the same surface structure was not formed. From the characteristic diagram of FIG. 17, in the solar cell of this example, high performance was obtained with a photocurrent density of 40.3 mA / cm 2 , Voc of 589 mV, and conversion efficiency of 17.6%. Incidentally, as shown in the characteristic of the dotted line in the characteristic diagram of FIG. 17, when the surface structure is not formed, the photocurrent density is 28.0 mA / cm 2 , Voc is 582 mV, and the conversion efficiency is 12.5. In comparison with this, in the case of the pn junction type solar cell obtained in this example, the photocurrent density is greatly increased as seen from the characteristics of the solid line, and the increase in conversion efficiency is also remarkable. It was clear that

この特性は、表面に反射防止膜をそなえていないこと、表面のパッシベーション処理や、バックサーフェースフィールド(BSF)の形成及び最適化も行っていないときの事例であり、それらを適切に施すことで、最終製品化においては、太陽電池の変換効率をさらに高め得ることが十分に期待できる。   This characteristic is an example when the surface is not provided with an anti-reflective coating, the surface is not passivated, and the back surface field (BSF) is not formed and optimized. In the final product, it can be sufficiently expected that the conversion efficiency of the solar cell can be further increased.

本実施例では、p型シリコン基板を用いたが、n型基板を用いて同様に太陽電池を作製することも可能である。   In this example, a p-type silicon substrate was used, but a solar cell can be similarly manufactured using an n-type substrate.

本発明は、シリコン基板の表面に対して、シリコンを酸化しかつ溶解し得る処理溶液、例えばフッ酸および過酸化水素水の混合の処理溶液中で転写用部材の表面で触媒金属を作用させて、または触媒機能を有する第1の金属による転写用部材を、シリコンを酸化しかつ溶解し得る処理溶液中に微量の触媒機能を有する第2の金属を含ませた、処理溶液中でシリコン基板上に接触ないし接近させることにより、上記シリコン基板の表面にナノクリスタル構造層を形成する過程を持つ、すべての半導体装置の製造方法に利用することができるシリコン基板の表面処理溶液剤を利用すること、並びに、少なくともpn接合を有する太陽電池、光電変換作用を利用する半導体デバイスで、表面反射率の低減を図り、併せて、そのデバイスの高性能化を得るように、広範囲の半導体機能デバイスおよびその製造方法への利用、応用が可能である。   According to the present invention, a catalytic metal is allowed to act on the surface of a transfer member in a processing solution capable of oxidizing and dissolving silicon, for example, a mixed processing solution of hydrofluoric acid and hydrogen peroxide solution. Or a transfer member made of a first metal having a catalytic function on a silicon substrate in a processing solution containing a trace amount of a second metal having a catalytic function in a processing solution capable of oxidizing and dissolving silicon. Using a silicon substrate surface treatment solution that can be used in any method of manufacturing a semiconductor device, having a process of forming a nanocrystal structure layer on the surface of the silicon substrate by contacting or approaching the substrate. In addition, at least solar cells that have a pn junction and semiconductor devices that use photoelectric conversion, reduce surface reflectance, and improve the performance of the devices. In so that the use of the wide range of semiconductor functional device and a manufacturing method thereof, and applications are possible.

Claims (11)

触媒機能を有する第1の金属の母体に、触媒機能を有する第2の金属を担持させた、
ナノクリスタル構造層形成用転写用部材。
To the mother of the first metallic having a catalytic function, it was supported a second metal having a catalytic function,
Transfer member for nanocrystal structure layer formation .
前記第1の金属が、白金、白金と銀との合金、又はニッケル(Ni)と白金と銀との合金、であり、The first metal is platinum, an alloy of platinum and silver, or an alloy of nickel (Ni), platinum and silver,
前記第2の金属が、銀である、The second metal is silver;
請求項1に記載の転写用部材。The transfer member according to claim 1.
触媒機能を有する第1の金属の母体を、触媒機能を有する第2の金属を溶解させた溶液に浸漬して引揚げることにより、転写用部材の母体に前記第2の金属を担持させる工程を含む
ナノクリスタル構造層形成用転写用部材の製造方法。
The maternal first metallic having a catalytic function, the repatriation isosamples immersed in a solution prepared by dissolving a second metal having a catalytic function, carrying said second metal to the mother of the rolling Utsushiyo member Including the step of
A method for producing a transfer member for forming a nanocrystal structure layer .
前記第1の金属が、白金、白金と銀との合金、又はニッケル(Ni)と白金と銀との合金、であり、The first metal is platinum, an alloy of platinum and silver, or an alloy of nickel (Ni), platinum and silver,
前記第2の金属が、銀である、The second metal is silver;
請求項3に記載の転写用部材の製造方法。A method for manufacturing the transfer member according to claim 3.
触媒機能を有する第1の金属の母体に、触媒機能を有する第2の金属を担持させた転写用部材を用いて、シリコンを酸化しかつ溶解し得る処理溶液中で前記シリコンの表面に接触又は近接させることにより、前記シリコンの表面部にナノクリスタル構造層を形成する工程を含む、
半導体装置の製造方法。
To the mother of the first metallic having a catalytic function, with the second transfer member which metal is supported with having a catalytic function, to oxidize the silicon and the processing solution capable of dissolving the surface of the silicon down by contact with or in proximity, comprising forming a nanocrystal structure layer on the surface portion of the silicon down,
A method for manufacturing a semiconductor device.
前記第1の金属が、白金、白金と銀との合金、又はニッケル(Ni)と白金と銀との合金、であり、The first metal is platinum, an alloy of platinum and silver, or an alloy of nickel (Ni), platinum and silver,
前記第2の金属が、銀である、The second metal is silver;
請求項5に記載の半導体装置の製造方法。A method for manufacturing a semiconductor device according to claim 5.
前記ナノクリスタル構造層が2nm〜8nmのサイズの結晶粒子を含む
請求項5又は請求項6に記載の半導体装置の製造方法。
The nanocrystal structure layer includes crystal particles having a size of 2 nm to 8 nm;
A method for manufacturing a semiconductor device according to claim 5.
触媒機能を有する第1の金属の母体に、触媒機能を有する第2の金属を担持させた転写用部材を用いて、シリコンを酸化しかつ溶解し得る処理溶液中で、前記シリコンの表面に接触又は近接させることにより、前記シリコンの表面部にナノクリスタル構造層を形成する工程を含む、
太陽電池の製造方法。
To the mother of the first metallic having a catalytic function, with the second transfer member which metal is supported with having a catalytic function, to oxidize the silicon and the processing solution capable of dissolving, a surface of the silicon down by contacting with or close to, comprising the step of forming a nanocrystal structure layer on the surface portion of the silicon down,
A method for manufacturing a solar cell.
前記ナノクリスタル構造層が2nm〜8nmのサイズの結晶粒子を含む、
請求項8に記載の太陽電池の製造方法。
The nanocrystal structure layer includes crystal particles having a size of 2 nm to 8 nm ;
The manufacturing method of the solar cell of Claim 8.
前記ナノクリスタル構造層の厚さが30nm〜500nmである、
請求項8又は請求項9に記載の太陽電池の製造方法。
The nanocrystal structure layer has a thickness of 30 nm to 500 nm .
The manufacturing method of the solar cell of Claim 8 or Claim 9.
シリコンを酸化しかつ溶解し得る処理溶液を収める容器と、
触媒機能を有する第1の金属の母体の表面に触媒機能を有する第2の金属を担持させた転写用部材と、
前記容器内の前記シリコンの表面に前記転写用部材を接触又は接近させて前記シリコンの表面部にナノクリスタル構造層を形成する接触又は接近機構と、を備える、
半導体の製造装置。
A container for containing a treatment solution capable of oxidizing and dissolving silicon;
A transfer member having supported thereon a second metal having a catalytic function in the first metallic surface of the base having a catalytic function,
And a contact or approximation mechanism forms a nanocrystal structure layer on the surface portion of the silicon the silicon down of the transfer member in contact with or approximated allowed on the surface of the container,
Semiconductor manufacturing equipment.
JP2015505598A 2013-03-15 2014-03-14 Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method Expired - Fee Related JP6359519B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2013052641 2013-03-15
JP2013052641 2013-03-15
JP2013150280 2013-07-19
JP2013150280 2013-07-19
JP2013188124 2013-09-11
JP2013188124 2013-09-11
PCT/JP2014/056888 WO2014142304A1 (en) 2013-03-15 2014-03-14 Surface treatment method for silicon substrate, production method for semiconductor device, production device for semiconductors, transfer member and production method therefor, and solar cell and solar cell production method

Publications (2)

Publication Number Publication Date
JPWO2014142304A1 JPWO2014142304A1 (en) 2017-02-16
JP6359519B2 true JP6359519B2 (en) 2018-07-18

Family

ID=51536952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015505598A Expired - Fee Related JP6359519B2 (en) 2013-03-15 2014-03-14 Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method

Country Status (3)

Country Link
JP (1) JP6359519B2 (en)
TW (1) TW201501193A (en)
WO (1) WO2014142304A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925867B2 (en) * 2003-12-17 2007-06-06 関西ティー・エル・オー株式会社 Method for manufacturing a silicon substrate with a porous layer
US7776228B2 (en) * 2006-04-11 2010-08-17 Ebara Corporation Catalyst-aided chemical processing method
WO2011099216A1 (en) * 2010-02-15 2011-08-18 Kobayashi Hikaru Semiconductor device manufacturing method, semiconductor device, and transfer member
US8193095B2 (en) * 2010-05-28 2012-06-05 National Taiwan University Method for forming silicon trench
JP2013041864A (en) * 2011-08-11 2013-02-28 Hikari Kobayashi Solar battery, method of manufacturing semiconductor device, and transcription mold
JP6120172B2 (en) * 2011-08-12 2017-04-26 小林 光 Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, semiconductor device manufacturing program, semiconductor processing agent, and transfer member

Also Published As

Publication number Publication date
TW201501193A (en) 2015-01-01
WO2014142304A1 (en) 2014-09-18
JPWO2014142304A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
Huo et al. Metal‐assisted chemical etching of silicon in oxidizing HF solutions: origin, mechanism, development, and black silicon solar cell application
JP4610669B2 (en) Manufacturing method of solar cell
TWI505348B (en) And a method of forming a microporous structure or a groove structure on the surface of the silicon substrate
JP5284458B2 (en) Anti-reflective etching of silicon surfaces catalyzed with ionic metal solutions
TWI358087B (en) Method for producing silicon substrate for solar c
CN102157608A (en) Method for reducing surface light reflectivity of silicon chip
CN102157621B (en) Square silicon nanometer hole and preparation method thereof
Li et al. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching
US20130025663A1 (en) Inverted pyramid texture formation on single-crystalline silicon
JP2014512673A (en) Efficient black silicon photovoltaic device with improved blue sensitivity
CN103066160B (en) A kind of method of solar cell silicon wafer Surface Creation porous silicon
Singh et al. Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate
TWI489646B (en) Method for manufacturing solar cells
CN105967139A (en) Method for etching holes on silicon substrate, silicon substrate with holes and semiconductor device
JP2013093537A5 (en)
Wang et al. Texturization of diamond-wire-sawn multicrystalline silicon wafer using Cu, Ag, or Ag/Cu as a metal catalyst
JP2010245568A (en) Method of manufacturing solar cell
JP6359519B2 (en) Silicon substrate surface treatment method, semiconductor device manufacturing method, semiconductor manufacturing device, transfer member and manufacturing method thereof, solar cell, and solar cell manufacturing method
JP2016131232A (en) Semiconductor substrate, semiconductor device manufacturing method, semiconductor device manufacturing apparatus, solar cell, solar cell manufacturing method and solar cell manufacturing apparatus
CN102856434A (en) Preparation method for square silicon nano-porous array
WO2012102280A1 (en) Solar cell wafer and method for manufacturing same
Lévy-Clément Porous silicon formation by metal nanoparticle-assisted etching
Pu et al. High-efficiency passivated emitter and rear cells with nano honeycomb structure
Hsueh et al. Application of silicon nanostructure arrays for 6-inch mono and multi-crystalline solar cell
JP5724718B2 (en) Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180620

R150 Certificate of patent or registration of utility model

Ref document number: 6359519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees