JP3925867B2 - Method for manufacturing a silicon substrate with a porous layer - Google Patents

Method for manufacturing a silicon substrate with a porous layer Download PDF

Info

Publication number
JP3925867B2
JP3925867B2 JP2003419064A JP2003419064A JP3925867B2 JP 3925867 B2 JP3925867 B2 JP 3925867B2 JP 2003419064 A JP2003419064 A JP 2003419064A JP 2003419064 A JP2003419064 A JP 2003419064A JP 3925867 B2 JP3925867 B2 JP 3925867B2
Authority
JP
Japan
Prior art keywords
substrate
silicon substrate
porous layer
aqueous solution
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003419064A
Other languages
Japanese (ja)
Other versions
JP2005183505A (en
Inventor
道雄 松村
和也 辻埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2003419064A priority Critical patent/JP3925867B2/en
Priority to PCT/JP2004/018354 priority patent/WO2005059985A1/en
Publication of JP2005183505A publication Critical patent/JP2005183505A/en
Application granted granted Critical
Publication of JP3925867B2 publication Critical patent/JP3925867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は、多孔質層付きシリコン基板を製造する方法に属し、特にテクスチャー構造の必要な太陽電池用シリコン基板を効率よく形成する方法に関する。   The present invention belongs to a method for producing a silicon substrate with a porous layer, and particularly relates to a method for efficiently forming a silicon substrate for a solar cell that requires a texture structure.

太陽電池においてセルとなるシリコン基板に太陽光が達した場合、基板内部に進入する光と基板表面で反射する光とに分かれる。このうち内部に進入する光のみが光起電力効果に寄与する。
そこで従来、結晶系太陽電池においては、基板の表面をアルカリにより選択エッチングして多数のピラミッドが連なった所謂テクスチャー形状とすることにより、エネルギー変換効率の向上が図られていた。これは、基板表面が平坦である場合と異なり、一旦はピラミッドの斜面で反射した光であっても隣のピラミッドの斜面が受光してそこでの屈折により入射させるという光閉じ込め効果を利用したものである。
When sunlight reaches a silicon substrate that is a cell in a solar battery, light is divided into light that enters the substrate and light that is reflected from the substrate surface. Of these, only light entering the interior contributes to the photovoltaic effect.
Thus, conventionally, in a crystalline solar cell, energy conversion efficiency has been improved by forming a so-called textured shape in which a large number of pyramids are connected by selectively etching the surface of a substrate with alkali. Unlike the case where the substrate surface is flat, even if the light is once reflected by the pyramid slope, it utilizes the light confinement effect that the adjacent pyramid slope receives light and enters it by refraction. is there.

上記のテクスチャー形状を多結晶シリコン基板、非晶質シリコン基板などのように単結晶でないシリコン基板に形成する方法として、機械加工法(特許文献1)および反応性イオンエッチング法(特許文献2)が知られている。また、多孔質シリコンをテクスチャー構造として利用するという技術も提案されている。多孔質シリコンをシリコン基板に作製する方法として、電気化学反応法(特許文献4)、化学エッチング法(特許文献3及び5)などが知られている。電気化学反応法とは、フッ化水素酸水溶液にシリコン基板を浸し、シリコン基板を電極として電気化学反応を起こさせるものである。これにより電極となったシリコン基板の表面のシリコンが溶出して多孔質層が形成される。化学エッチング法とは、硝酸、クロム酸、金属レドックス対等の酸化剤を含むフッ化水素酸水溶液にシリコン基板を浸すことにより、多孔質層を形成する方法である。更にまた近年、金属イオンによる酸化作用を利用した方法(非特許文献1及び2)も提案されている。   As a method of forming the texture shape on a silicon substrate that is not a single crystal such as a polycrystalline silicon substrate or an amorphous silicon substrate, a machining method (Patent Document 1) and a reactive ion etching method (Patent Document 2) are available. Are known. A technique of using porous silicon as a texture structure has also been proposed. As a method for producing porous silicon on a silicon substrate, an electrochemical reaction method (Patent Document 4), a chemical etching method (Patent Documents 3 and 5), and the like are known. In the electrochemical reaction method, a silicon substrate is immersed in an aqueous hydrofluoric acid solution, and an electrochemical reaction is caused using the silicon substrate as an electrode. As a result, silicon on the surface of the silicon substrate serving as an electrode is eluted to form a porous layer. The chemical etching method is a method of forming a porous layer by immersing a silicon substrate in an aqueous hydrofluoric acid solution containing an oxidizing agent such as nitric acid, chromic acid, or a metal redox pair. Furthermore, in recent years, methods using an oxidation action by metal ions (Non-Patent Documents 1 and 2) have also been proposed.

特開平9−148603号公報JP-A-9-148603 特開平9−102625号公報JP-A-9-102625 特開平9−167850号公報JP-A-9-167850 特開平7‐230983号公報Japanese Patent Laid-Open No. 7-230983 米国特許5421958号公報US Pat. No. 5,421,958 K. Peng et al., Adv. Funct. Mater. 13 (2003) 127K. Peng et al., Adv. Funct. Mater. 13 (2003) 127 P. Gorostiza et al., J. Electroanal. Chem. 469 (1999) 48P. Gorostiza et al., J. Electroanal. Chem. 469 (1999) 48 第50回応用物理学関係連合講演会講演予稿集、28a−ZC−5Proceedings of the 50th Joint Conference on Applied Physics, 28a-ZC-5 3rd World Conference on Photovoltaic Energy Convension, Abstracts for the Technical Program, 4LN-D-083rd World Conference on Photovoltaic Energy Convension, Abstracts for the Technical Program, 4LN-D-08

しかし、機械加工法では1枚ずつ切削する必要上、所望の多数の溝を形成するには時間がかかりすぎてコスト高となる。反応性イオンエッチング法は、エッチング室に導入される上記のSF6、CF4、Cl2などのガスが腐食性であることから、これらに対して耐える材料で装置を構成しなければならないうえ、一度の処理枚数が少量であるから、結局コスト高となる。多孔質シリコンを利用する方法のうち、電気化学反応法は、電流発生装置の必要があり、コストが高い。化学エッチング法や金属イオンによる酸化作用を利用した方法では、硝酸、クロム酸、金属レドックス対や金属イオンを多量に消費するので、コストが高い。
それ故、この発明の課題は、多孔質層付きのシリコン基板を安価に且つ環境に悪影響を及ぼすことなく製造する方法を提供することにある。
However, in the machining method, it is necessary to cut one sheet at a time, and it takes too much time to form a desired number of grooves, resulting in high costs. In the reactive ion etching method, the gas such as SF 6 , CF 4 , and Cl 2 introduced into the etching chamber is corrosive. Since the number of sheets processed at one time is small, the cost is high. Among the methods using porous silicon, the electrochemical reaction method requires a current generator and is expensive. The chemical etching method and the method using the oxidation action by metal ions are expensive because they consume a large amount of nitric acid, chromic acid, metal redox couples and metal ions.
Therefore, an object of the present invention is to provide a method for producing a silicon substrate with a porous layer at low cost and without adversely affecting the environment.

その課題を解決するために、この発明の多孔質層付きシリコン基板の製造方法は、
金属イオンを含有する、酸化剤とフッ化水素酸の混合水溶液に、シリコン基板を浸すことにより、基板の表面に多孔質シリコン層を形成することを特徴とする。
金属イオンとしては、銀、銅、ニッケル、白金、パラジウム及び金のうちから選ばれる1種以上のイオンが挙げられる。この発明の方法によれば、金属イオンを含む液中で金属がシリコン基板表面に析出し、その金属が過酸化水素等の酸化剤の還元触媒として働き、酸化剤がシリコン基板から速やかに電子を受け取る。それによって、基板内に正孔が残る。この正孔が基板材料の酸化及び液中への溶解を促進する。その結果、基板の表面が、直径数nm程度の多数の小さな孔からなる多孔質層とその下に位置する直径数百nm程度の多数の大きな孔からなる多孔質層との二重層となる。
In order to solve the problem, a method for producing a silicon substrate with a porous layer of the present invention includes
A porous silicon layer is formed on the surface of the substrate by immersing the silicon substrate in a mixed aqueous solution of an oxidizing agent and hydrofluoric acid containing metal ions.
Examples of the metal ion include one or more ions selected from silver, copper, nickel, platinum, palladium, and gold. According to the method of the present invention, a metal is deposited on the surface of a silicon substrate in a liquid containing metal ions, the metal acts as a reduction catalyst for an oxidizing agent such as hydrogen peroxide, and the oxidizing agent promptly emits electrons from the silicon substrate. receive. Thereby, holes remain in the substrate. This hole promotes the oxidation and dissolution of the substrate material in the liquid. As a result, the surface of the substrate is a double layer of a porous layer composed of a large number of small holes with a diameter of about several nanometers and a porous layer composed of a large number of large holes with a diameter of about several hundreds of nm located thereunder.

この発明の方法によれば、金属イオンは析出して触媒として機能するだけであるので、少量で足りる。しかも、同じ溶液中に多数の基板を一度に浸すことが可能であるから、量産性に富むし、高価な装置や手間がかからない。従って、安価に多孔質層を形成することができる。また、反応は緩やかに進行するので、多孔質層の厚さを制御しやすい。更に、酸化剤として過酸化水素、酸素あるいはオゾンを用いれば、それらの還元反応による副生物は水だけである(H2O2 + 2H+ + 2e → 2H2O、O2+ 4H+ + 4e → 2H2O、O3+ 2H+ + 2e → H2O+O2)ので、環境を汚染しない。 According to the method of the present invention, metal ions are merely precipitated and function as a catalyst, so that a small amount is sufficient. Moreover, since it is possible to immerse a large number of substrates in the same solution at the same time, the mass productivity is high, and expensive equipment and labor are not required. Therefore, the porous layer can be formed at a low cost. Further, since the reaction proceeds slowly, it is easy to control the thickness of the porous layer. Furthermore, by using hydrogen peroxide, oxygen or ozone as an oxidizing agent, by-products due to their reduction reaction is only water (H 2 O 2 + 2H + + 2e → 2H 2 O, O 2 + 4H + + 4e → 2H 2 O, O 3 + 2H + + 2e → H 2 O + O 2 ), so it does not pollute the environment.

上記の二重層を有する基板は、ガスセンサ、バイオセンサ、低誘電率膜、発光素子または電子放出素子として用いることができる。また、上方の多孔質層を反射防止膜として太陽電池に利用することもできるし、その上方の多孔質層をアルカリ水溶液で溶かすと、直径数百nm程度の多数の凹凸からなるテクスチャー面となり、いずれにしても太陽電池用基板に適する。   The substrate having the above double layer can be used as a gas sensor, a biosensor, a low dielectric constant film, a light emitting element, or an electron emitting element. Further, the upper porous layer can be used for a solar cell as an antireflection film, and when the upper porous layer is dissolved with an alkaline aqueous solution, it becomes a textured surface consisting of a large number of irregularities with a diameter of about several hundred nm, Anyway, it is suitable for a substrate for a solar cell.

ホウ素ドープされたp型多結晶シリコン基板であって、平均厚さ350μmに薄切りされたものを準備した。薄切り時に刃物により損傷を受けた層は、80℃の6%NaOH水溶液に10分間浸すことにより除去した。比抵抗は0.5〜2Ωcmであった。この基板をアセトン中で5分間超音波洗浄した後、純水で洗浄した。次に、10-4Mの過塩素酸銀AgClO4を含有する、10%フッ化水素酸と30%過酸化水素との10対1混合水溶液に基板を10分間浸した。得られた基板の表面を走査型電子顕微鏡で観察した結果を図1に示す。 A boron-doped p-type polycrystalline silicon substrate was prepared which was sliced to an average thickness of 350 μm. The layer damaged by the blade during slicing was removed by immersing in a 6% NaOH aqueous solution at 80 ° C. for 10 minutes. The specific resistance was 0.5-2 Ωcm. The substrate was ultrasonically cleaned in acetone for 5 minutes and then washed with pure water. Next, the substrate was immersed for 10 minutes in a 10: 1 mixed aqueous solution of 10% hydrofluoric acid and 30% hydrogen peroxide containing 10 −4 M silver perchlorate AgClO 4 . The result of having observed the surface of the obtained board | substrate with the scanning electron microscope is shown in FIG.

図1に見られるように、基板の表面には直径数nm程度の多数の小さな孔からなる多孔質層が形成されていた。得られた基板について、紫外可視分光光度計(UV-2450)と反射スペクトル測定用の積分球を用いて300nmから800nmの波長における反射率を測定した。対照として上記混合水溶液に浸していない基板についても同様に測定した。測定結果を図2に示す。図中、実線がこの実施例、破線が対照である。図2に見られるように、多孔質層を形成することにより、形成する前よりも反射率が著しく低下した。   As can be seen in FIG. 1, a porous layer composed of a large number of small holes having a diameter of about several nanometers was formed on the surface of the substrate. About the obtained board | substrate, the reflectance in the wavelength of 300 nm to 800 nm was measured using the ultraviolet-visible spectrophotometer (UV-2450) and the integrating sphere for reflection spectrum measurement. As a control, the same measurement was performed on a substrate not immersed in the above mixed aqueous solution. The measurement results are shown in FIG. In the figure, the solid line is the embodiment, and the broken line is the control. As can be seen in FIG. 2, the reflectance was significantly reduced by forming the porous layer than before the formation.

実施例1で得られた基板を更に純水で洗浄し、1%NaOH水溶液に10分間浸すことにより、上方の多孔質層を除去した。次に、再び純水で洗浄後、30%硝酸に30分間浸すことにより表面に残留している銀を取り除いた。こうして得られた基板の表面を走査型電子顕微鏡で観察した結果を図3に示す。   The substrate obtained in Example 1 was further washed with pure water and immersed in a 1% aqueous NaOH solution for 10 minutes to remove the upper porous layer. Next, after washing with pure water again, the silver remaining on the surface was removed by immersing in 30% nitric acid for 30 minutes. The result of observing the surface of the substrate thus obtained with a scanning electron microscope is shown in FIG.

図3に見られるように、基板の表面には直径500nm〜1μm程度の多数の孔からなる多孔質層が形成されていた。この基板についても実施例1と同様に反射率を測定した。測定結果を図4に示す。比較のために、上記混合水溶液に10分間浸すことに代えて、イソプロピルアルコールを0.8 mol/L 含有する、80℃の6%NaOH水溶液に10分間浸した(アルカリエッチング法)以外は、実施例1と同一条件で処理した基板についても反射率を測定した。図中、実線がこの実施例、破線が実施例1で記載した対照、細実線が上記比較例である。図3及び図4に見られるように、上方の多孔質層を除去して下方の多孔質層を露出させることにより、表面にテクスチャー構造が形成されるとともに、アルカリエッチング法による比較例のテクスチャー構造よりも反射率が低下した。   As seen in FIG. 3, a porous layer composed of a large number of pores having a diameter of about 500 nm to 1 μm was formed on the surface of the substrate. The reflectance was also measured for this substrate in the same manner as in Example 1. The measurement results are shown in FIG. For comparison, Example 1 was used except that it was immersed in a 6% NaOH aqueous solution at 80 ° C. containing 0.8 mol / L of isopropyl alcohol for 10 minutes instead of being immersed in the above mixed aqueous solution for 10 minutes (alkali etching method). The reflectance was also measured for the substrate treated under the same conditions as in Example 1. In the figure, the solid line is this example, the broken line is the control described in Example 1, and the thin solid line is the comparative example. As shown in FIGS. 3 and 4, the upper porous layer is removed to expose the lower porous layer, whereby a texture structure is formed on the surface and a texture structure of a comparative example by an alkali etching method is formed. The reflectivity was lower than.

この発明によれば、シリコン基板表面に多孔質層を量産性に適した方法で安価に形成することができるので、各種センサや太陽電池の普及に有益である。   According to the present invention, the porous layer can be formed on the surface of the silicon substrate at a low cost by a method suitable for mass productivity, which is useful for the spread of various sensors and solar cells.

実施例1の多孔質層付きシリコン基板の表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of a silicon substrate with a porous layer of Example 1. FIG. 実施例1の基板と対照の基板について反射率を測定した結果を示すグラフである。It is a graph which shows the result of having measured the reflectance about the board | substrate of Example 1, and the control | contrast board | substrate. 実施例2の多孔質層付きシリコン基板の表面の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of the surface of a silicon substrate with a porous layer in Example 2. FIG. 実施例2の基板と対照の基板と比較例の基板について反射率を測定した結果を示すグラフである。It is a graph which shows the result of having measured the reflectance about the board | substrate of Example 2, the board | substrate of a comparison, and the board | substrate of a comparative example.

Claims (3)

銀、銅、ニッケル、白金、パラジウム及び金のうちから選ばれる1種以上の金属イオンを含有する、酸化剤とフッ化水素酸の混合水溶液に、シリコン基板を浸すことにより、基板の表面に多孔質シリコン層を形成することを特徴とする多孔質層付きシリコン基板の製造方法。 By dipping a silicon substrate in a mixed aqueous solution of an oxidizing agent and hydrofluoric acid containing one or more metal ions selected from silver, copper, nickel, platinum, palladium and gold , the surface of the substrate becomes porous. A method for producing a silicon substrate with a porous layer, comprising forming a porous silicon layer. 前記酸化剤が、過酸化水素、酸素及びオゾンのうちから選ばれる1種以上である請求項1に記載の方法。   The method according to claim 1, wherein the oxidizing agent is one or more selected from hydrogen peroxide, oxygen, and ozone. 前記シリコン基板を前記混合水溶液に浸した後、アルカリ水溶液に浸す請求項1に記載の方法。   The method according to claim 1, wherein the silicon substrate is immersed in the mixed aqueous solution and then immersed in an alkaline aqueous solution.
JP2003419064A 2003-12-17 2003-12-17 Method for manufacturing a silicon substrate with a porous layer Expired - Fee Related JP3925867B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003419064A JP3925867B2 (en) 2003-12-17 2003-12-17 Method for manufacturing a silicon substrate with a porous layer
PCT/JP2004/018354 WO2005059985A1 (en) 2003-12-17 2004-12-09 Process for producing silicon substrate with porous layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419064A JP3925867B2 (en) 2003-12-17 2003-12-17 Method for manufacturing a silicon substrate with a porous layer

Publications (2)

Publication Number Publication Date
JP2005183505A JP2005183505A (en) 2005-07-07
JP3925867B2 true JP3925867B2 (en) 2007-06-06

Family

ID=34697162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419064A Expired - Fee Related JP3925867B2 (en) 2003-12-17 2003-12-17 Method for manufacturing a silicon substrate with a porous layer

Country Status (2)

Country Link
JP (1) JP3925867B2 (en)
WO (1) WO2005059985A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054076A1 (en) 2007-10-24 2009-04-30 Mitsubishi Electric Corporation Process for manufacturing solar cell
WO2012150669A1 (en) 2011-05-02 2012-11-08 三菱電機株式会社 Method for cleaning silicon substrate, and method for producing solar cell

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090038682A1 (en) * 2004-05-28 2009-02-12 Yuji Komatsu Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
TW200620451A (en) * 2004-11-09 2006-06-16 Univ Osaka Method for forming hole in crystal substrate, and crystal substrate having hole formed by the method
TWI267897B (en) * 2005-11-10 2006-12-01 Tatung Co Substrate with anti-reflection layer and its manufacturing method
GB0601318D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
CN100467670C (en) * 2006-03-21 2009-03-11 无锡尚德太阳能电力有限公司 Acid corrosion solution for preparing multicrystal silicon pile surface and its using method
US20090236317A1 (en) * 2008-03-21 2009-09-24 Midwest Research Institute Anti-reflection etching of silicon surfaces catalyzed with ionic metal solutions
US8729798B2 (en) 2008-03-21 2014-05-20 Alliance For Sustainable Energy, Llc Anti-reflective nanoporous silicon for efficient hydrogen production
US8815104B2 (en) 2008-03-21 2014-08-26 Alliance For Sustainable Energy, Llc Copper-assisted, anti-reflection etching of silicon surfaces
CA2815754A1 (en) 2009-11-11 2011-05-19 Alliance For Sustainable Energy, Llc Wet-chemical systems and methods for producing black silicon substrates
WO2011099216A1 (en) * 2010-02-15 2011-08-18 Kobayashi Hikaru Semiconductor device manufacturing method, semiconductor device, and transfer member
US8828765B2 (en) 2010-06-09 2014-09-09 Alliance For Sustainable Energy, Llc Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
WO2012121706A1 (en) * 2011-03-08 2012-09-13 Alliance For Sustainable Energy, Llc Efficient black silicon photovoltaic devices with enhanced blue response
JP5880055B2 (en) * 2012-01-12 2016-03-08 株式会社Sumco Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
JP5724614B2 (en) * 2011-05-17 2015-05-27 株式会社Sumco Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
JP5724718B2 (en) * 2011-07-25 2015-05-27 株式会社Sumco Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
DE112012002092T5 (en) * 2011-05-17 2014-07-10 Sumco Corporation Process for the production of wafers for solar cells, process for the production of solar cells and process for the production of solar cell modules
CN103858219A (en) * 2011-08-12 2014-06-11 小林光 Method for manufacturing semiconductor device, device for manufacturing semiconductor device, semiconductor device, program for manufacturing semiconductor device, treatment agent for semiconductor, and transfer member
JP5917082B2 (en) 2011-10-20 2016-05-11 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion device
JP2013131723A (en) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp Semiconductor substrate reforming method
CN103390688A (en) * 2012-05-11 2013-11-13 华中科技大学 Preparation method of solar cell surface coating structure
JP2014165354A (en) * 2013-02-26 2014-09-08 Panasonic Corp Porous silicon manufacturing method
TW201501193A (en) * 2013-03-15 2015-01-01 Hikaru Kobayashi Surface treatment method of silicon substrate, manufacturing method of semiconductor device, semiconductor manufacturing device, transfer element and manufacturing method of the same, and solar cell and manufacturing method of the same
CN103219428B (en) * 2013-04-12 2015-08-19 苏州大学 Suede structure of a kind of crystal silicon solar energy battery and preparation method thereof
CN104993019A (en) * 2015-07-09 2015-10-21 苏州阿特斯阳光电力科技有限公司 Preparation method of localized back contact solar cell
RU2703909C2 (en) * 2017-09-01 2019-10-23 Акционерное общество "Ордена Трудового Красного Знамени Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (АО "НИФХИ им. Л.Я. Карпова") Method of forming layer of porous silicon on crystalline substrate
CN108054237B (en) * 2017-12-06 2019-11-12 中节能太阳能科技(镇江)有限公司 A kind of black silicon chain-type texture-etching equipment of wet process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214150B2 (en) * 1972-12-29 1977-04-19
JPS61163286A (en) * 1985-01-14 1986-07-23 Mitsubishi Heavy Ind Ltd Forming method of sliding surface having oil retaining properties
JPH05109888A (en) * 1991-10-14 1993-04-30 Yokogawa Electric Corp Manufacture of soi substrate
JPH05267270A (en) * 1992-03-18 1993-10-15 Takashi Katoda Manufacture of porous semiconductor and porous semiconductor substrate
JP3337735B2 (en) * 1993-01-18 2002-10-21 キヤノン株式会社 Semiconductor substrate manufacturing method
JPH1154478A (en) * 1997-06-05 1999-02-26 Tokai Rika Co Ltd Anodization method for silicon board and manufacture of surface acceleration sensor
JP2002252202A (en) * 2001-02-27 2002-09-06 Takashi Matsuura Method for forming minute structure on surface of semiconductor substrate and semiconductor substrate having minute structure made by this method and device using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054076A1 (en) 2007-10-24 2009-04-30 Mitsubishi Electric Corporation Process for manufacturing solar cell
US8119438B2 (en) 2007-10-24 2012-02-21 Mitsubishi Electric Corporation Method of manufacturing solar cell
WO2012150669A1 (en) 2011-05-02 2012-11-08 三菱電機株式会社 Method for cleaning silicon substrate, and method for producing solar cell
US8865509B2 (en) 2011-05-02 2014-10-21 Mitsubishi Electric Corporation Cleaning method of silicon substrate and manufacturing method of solar battery

Also Published As

Publication number Publication date
JP2005183505A (en) 2005-07-07
WO2005059985A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP3925867B2 (en) Method for manufacturing a silicon substrate with a porous layer
JP4049329B2 (en) Method for producing polycrystalline silicon substrate for solar cell
CN102443801B (en) Method for forming micropore structure or groove structure on surface of silicon crystal substrate
KR101962469B1 (en) A method for producing a textured structure of a crystalline silicon solar cell
JP4146524B2 (en) Method for organizing P-type polycrystalline silicon surface
CN102102227B (en) Preparation method of hydrophobic light trapping structure on silicon surface
CN101673785B (en) Method for preparing reflection reduction film with surface embedded type porous silicon structure of silicon base solar battery
WO2012157179A1 (en) Method for manufacturing wafer for solar cell, method for manufacturing solar cell, and method for manufacturing solar cell module
JPWO2009054076A1 (en) Manufacturing method of solar cell
TW201121085A (en) Method of fabricating solar cell
CN102330142B (en) Preparation method of nano porous antireflection structure on silicon surface
CN106098840A (en) A kind of black silicon preparation method of wet method
KR101442461B1 (en) Method for manufacturing solar cell
TW201330294A (en) Electrical contacts to nanostructured areas
CN103979485A (en) Preparation method of micro nano porous silicon material
Lingaraja et al. Experimental Investigation of Influence of Electrolytic Solution in Porous Silicon Formation for Solar Energy Conversion
CN114792740A (en) Preparation method of semiconductor substrate layer and preparation method of solar cell
JP5724718B2 (en) Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
CN105845785B (en) A kind of method for preparing crystal silicon nanostructured anti-reflection layer
JP2005142457A (en) Method for manufacturing solar cell
CN216107248U (en) Photoelectrode and Pt-based nano alloy catalyst
TW201222653A (en) Method of forming micro-pore structure or recess structure on silicon chip substrate surface
JP5724614B2 (en) Method for producing solar cell wafer, method for producing solar cell, and method for producing solar cell module
TWI792400B (en) Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer
LIU et al. Insight into macroscopic metal-assisted chemical etching for silicon nanowires

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Ref document number: 3925867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees