JP6358902B2 - Method for producing exhaust gas purification catalyst - Google Patents

Method for producing exhaust gas purification catalyst Download PDF

Info

Publication number
JP6358902B2
JP6358902B2 JP2014177934A JP2014177934A JP6358902B2 JP 6358902 B2 JP6358902 B2 JP 6358902B2 JP 2014177934 A JP2014177934 A JP 2014177934A JP 2014177934 A JP2014177934 A JP 2014177934A JP 6358902 B2 JP6358902 B2 JP 6358902B2
Authority
JP
Japan
Prior art keywords
fine particles
exhaust gas
tin
particles
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014177934A
Other languages
Japanese (ja)
Other versions
JP2016049520A (en
Inventor
正人 大澤
正人 大澤
林 義明
義明 林
林 茂雄
茂雄 林
夏樹 橋本
夏樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014177934A priority Critical patent/JP6358902B2/en
Publication of JP2016049520A publication Critical patent/JP2016049520A/en
Application granted granted Critical
Publication of JP6358902B2 publication Critical patent/JP6358902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、排ガス浄化用触媒の製造方法に関し、より詳しくは、排ガス中に含まれる煤を主成分とする炭素系の粒子状物質(PM)を浄化するものに関する。   The present invention relates to a method for producing an exhaust gas purifying catalyst, and more particularly to a method for purifying a carbon-based particulate matter (PM) mainly composed of soot contained in exhaust gas.

ディーゼルエンジンからの排ガスには、煤を主成分とする炭素系の粒子状物質(以下「PM」という)が含まれており、このPMは大気中に放出されると容易に飛散して人体に悪影響を及ぼす。このため、ディーゼル車にはPMを捕集するフィルター(DPF:Diesel Particulate Filter)が搭載され、大気中に放出される前にPMを捕集しているが、PMの捕集量が増加するとフィルターの目詰まりが生じる。この目詰まりの解消法として、電気ヒータやバーナや排気系に燃料を噴射して燃焼させ、その燃焼熱を利用してフィルターを昇温し、捕集したPMを燃焼させる方法が用いられているが、燃費の悪化や装置構造の複雑化を招来するという問題があった。   The exhaust gas from a diesel engine contains carbon-based particulate matter (hereinafter referred to as “PM”) containing soot as a main component, and this PM is easily scattered when released into the atmosphere. Adversely affect. For this reason, diesel vehicles are equipped with a filter (DPF: Diesel Particulate Filter) that collects PM before PM is released into the atmosphere, but when the amount of collected PM increases, the filter Clogging occurs. As a method for eliminating this clogging, a method is used in which fuel is injected into an electric heater, burner, or exhaust system and burned, the temperature of the filter is raised using the combustion heat, and the collected PM is burned. However, there has been a problem that the fuel consumption is deteriorated and the structure of the apparatus is complicated.

このため、フィルターに排ガス浄化用触媒を配置し、300℃程度の低温でPMを燃焼してDPFを再生する方法が、例えば非特許文献1で知られている。この排ガス浄化用触媒は、金属酸化物担体粒子に銀粒子を担持させることによって作製される。   For this reason, for example, Non-Patent Document 1 discloses a method in which an exhaust gas purifying catalyst is disposed on a filter and PM is burned at a low temperature of about 300 ° C. to regenerate DPF. This exhaust gas-purifying catalyst is produced by supporting silver particles on metal oxide support particles.

しなしながら、フィルターは、ディーゼル車に搭載して使用されるときに1000℃程度まで昇温することがあり、上記従来例の排ガス浄化用触媒は、1000℃程度に加熱されたときに失活するという問題があった。   However, the filter may be heated to about 1000 ° C. when used in a diesel vehicle, and the exhaust gas purifying catalyst of the conventional example is deactivated when heated to about 1000 ° C. There was a problem to do.

K.Shimizu、他5名、「Carbon oxidation with Ag/ceria prepared by self−dispersion of Ag powder into nano−particles」、Catalysis Today 175、2011年、p.93−99K. Shimizu, et al., "Carbon oxidation with Ag / ceria prepared by self-dispersion of Ag powder into nano-particles," Catalyst Today 175, 2017. 93-99

本発明は、以上の点に鑑み、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない排ガス浄化用触媒が得られる排ガス浄化用触媒の製造方法を提供することをその課題とするものである。   In view of the above, the present invention provides a method for producing an exhaust gas purifying catalyst that can burn PM at a low temperature and that provides an exhaust gas purifying catalyst that does not deactivate even when heated to about 1000 ° C. This is the issue.

上記課題を解決するために、酸化スズ担体粒子を作製し、作製した酸化スズ担体粒子に金属微粒子を担持させて排ガス浄化用触媒を得る本発明の排ガス浄化用触媒の製造方法は、酸化スズ担体粒子が、スズ微粒子及び酸化スズ微粒子の少なくとも一方を含む前駆体液に炭素微粒子を混合してスラリーを調製し、調製したスラリーを乾燥し、乾燥したものを焼成して前記炭素微粒子を除去することにより作製されることを特徴とする。   In order to solve the above-mentioned problems, a method for producing an exhaust gas purification catalyst of the present invention, in which a tin oxide carrier particle is produced and metal fine particles are supported on the produced tin oxide carrier particle to obtain an exhaust gas purification catalyst, By mixing carbon fine particles with a precursor liquid containing at least one of tin fine particles and tin oxide fine particles to prepare a slurry, drying the prepared slurry, firing the dried slurry, and removing the carbon fine particles It is manufactured.

本発明によれば、スズ微粒子を含む前駆体を用いる場合を例に説明すると、酸化スズ担体粒子を作製する際、前駆体液に鋳型としての炭素微粒子を混合するため、この混合により調整されたスラリーを乾燥すると、スズ微粒子の間に炭素微粒子が介在するものが得られる。そして、この乾燥により得られたものを焼成すると、スズ微粒子が酸化されて酸化スズ粒子となると共に、炭素微粒子が燃焼して除去され、この炭素微粒子が除去された部分が空孔となる。このため、焼成後に得られた酸化スズ担体粒子は、多孔質で広い表面積を有するものとなり、しかも、金属微粒子を担持させるための有効なサイトである酸素欠損を有するものとなる。この酸化スズ担体粒子にAg等の金属微粒子を担持すれば、従来例よりも多量の金属微粒子が分散した状態で担持される。このようにして作製された排ガス浄化用触媒は、300℃程度の低温でもPMを燃焼させることができ、1000℃程度に加熱されても失活しないことが確認された。   According to the present invention, the case of using a precursor containing tin fine particles will be described as an example. When producing tin oxide carrier particles, carbon fine particles as a template are mixed with the precursor liquid. Is dried, carbon fine particles are interposed between the tin fine particles. When the product obtained by this drying is fired, the tin fine particles are oxidized to become tin oxide particles, and the carbon fine particles are burned and removed, and the portions where the carbon fine particles are removed become pores. For this reason, the tin oxide carrier particles obtained after firing are porous and have a large surface area, and also have oxygen vacancies which are effective sites for supporting metal fine particles. If fine metal particles such as Ag are supported on the tin oxide carrier particles, a larger amount of fine metal particles than the conventional example is supported in a dispersed state. It was confirmed that the exhaust gas purifying catalyst thus produced can burn PM even at a low temperature of about 300 ° C. and does not deactivate even when heated to about 1000 ° C.

本発明において、前記スラリー中に含まれる炭素微粒子の重量をスズの重量の30%以上に設定することが好ましい。炭素微粒子の重量がこれより少ないと、酸化スズ担体粒子が多孔質で酸素欠損を有するものとならない場合がある。
本発明において、前記前駆体液として、金属スズ微粒子を溶媒に分散させた金属スズ微粒子分散液を用いることが好ましい。
In the present invention, it is preferable to set the weight of the carbon fine particles contained in the slurry to 30% or more of the weight of tin. If the weight of the carbon fine particles is less than this, the tin oxide carrier particles may not be porous and have oxygen vacancies.
In the present invention, it is preferable to use a metal tin fine particle dispersion in which metal tin fine particles are dispersed in a solvent as the precursor liquid.

本発明の実施形態排ガス浄化用触媒の製造方法を説明する模式図。The schematic diagram explaining the manufacturing method of the catalyst for exhaust gas purification of embodiment of this invention. 本発明の実施例1で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in Example 1 of this invention. 本発明の実施例2で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in Example 2 of this invention. 本発明の実施例3で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in Example 3 of this invention. 本発明の実施例4で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in Example 4 of this invention. 本発明の比較例1で得た排ガス浄化用触媒の性能を示すグラフ。The graph which shows the performance of the catalyst for exhaust gas purification obtained in the comparative example 1 of this invention.

以下、図面を参照して、本発明の実施形態の排ガス浄化用触媒の製造方法について説明する。   Hereinafter, a method for producing an exhaust gas purifying catalyst according to an embodiment of the present invention will be described with reference to the drawings.

先ず、図1を参照して、スズ微粒子又は酸化スズ微粒子を含む前駆体液に炭素微粒子を混合し、攪拌してスラリーを調整する。前駆体液としては、分散剤で被覆されたスズ微粒子や酸化スズ微粒子を溶媒に分散させてなる金属スズ微粒子分散液や酸化スズ微粒子分散液(コロイド溶液)を用いることができる。ここで、スラリー中に含まれる炭素微粒子の重量をスズの重量の30%以上に設定することが好ましい。炭素微粒子の重量がこれより少ないと、後述する酸化スズ担体粒子が多孔質で酸素欠損を有するものとならない場合がある。炭素微粒子としては、そのBET比表面積が100m/g以上のものを用いることが好ましく、300m/g以上のものを用いることがより好ましい。BET比表面積が100m/g未満であると、鋳型としての効果が不十分となる場合がある。また、攪拌する際、超音波処理を施すことが好ましい。 First, referring to FIG. 1, carbon fine particles are mixed in a precursor liquid containing tin fine particles or tin oxide fine particles, and stirred to prepare a slurry. As the precursor liquid, a metal tin fine particle dispersion or a tin oxide fine particle dispersion (colloidal solution) obtained by dispersing tin fine particles or tin oxide fine particles coated with a dispersant in a solvent can be used. Here, it is preferable to set the weight of the carbon fine particles contained in the slurry to 30% or more of the weight of tin. If the weight of the carbon fine particles is less than this, the tin oxide carrier particles described later may not be porous and oxygen deficient. As the carbon fine particles, those having a BET specific surface area of 100 m 2 / g or more are preferably used, and those having a BET specific surface area of 300 m 2 / g or more are more preferably used. If the BET specific surface area is less than 100 m 2 / g, the effect as a mold may be insufficient. Moreover, it is preferable to perform ultrasonic treatment when stirring.

スズ微粒子としては、その平均粒子径が1nm〜50nmの範囲内であるものを用いることができる。平均粒子径が1nm未満になると、比表面積が増大してスズ微粒子表面を被覆する分散剤の量が増大し、焼成時に分散剤の脱離が不十分になるという不具合が生じる。一方、平均粒子径が50nmを超えると、スズ微粒子の分散性が低下するという不具合が生じる。   As the tin fine particles, those having an average particle diameter in the range of 1 nm to 50 nm can be used. When the average particle size is less than 1 nm, the specific surface area increases, the amount of the dispersant covering the surface of the tin fine particles increases, and there arises a problem that the detachment of the dispersant becomes insufficient during firing. On the other hand, when the average particle diameter exceeds 50 nm, there arises a problem that the dispersibility of the tin fine particles is lowered.

金属スズ微粒子分散液は、スズ微粒子の分散性を高めるための分散剤を含むことが好ましく、分散剤としては、炭素数6〜18の脂肪酸および炭素数6〜18の脂肪族アミンの少なくともいずれか一方を用いることが好ましい。炭素数6未満の脂肪酸や脂肪族アミンでは、スズ微粒子の分散性が低下するという不具合が生じる。一方、炭素数19以上の脂肪酸や脂肪族アミンでは、焼成時にスズ微粒子表面からの脂肪酸や脂肪族アミンの脱離が不十分となるという不具合が生じる。脂肪酸としては、例えば、カルボン酸を用いることができる。具体的には、炭素数6のヘキサン酸、2−エチル酪酸、ネオヘキサン酸(2,2−ジメチル酪酸);炭素数7のヘプタン酸、2−メチルヘキサン酸、シクロヘキサンカルボン酸;炭素数8のオクタン酸、2−エチルヘキサン酸、ネオオクタン酸(2,2−ジメチルヘキサン酸);炭素数9のノナン酸;炭素数10のデカン酸、ネオデカン酸(2,2−ジメチルオクタン酸);炭素数11のウンデカン酸;炭素数12のドデカン酸;炭素数14のテトラデカン酸;及び炭素数16のパルミチン酸;及び炭素数18のステアリン酸、オレイン酸、リノール酸、リノレン酸から選択された少なくとも1種を用いることが好ましい。脂肪族アミンとしては、炭素数6のヘキシルアミン、シクロヘキシルアミン、アニリン;炭素数7のヘプチルアミン;炭素数8のオクチルアミン、2−エチルヘキシルアミン;炭素数9のノニルアミン;炭素数10のデシルアミン;炭素数12のドデシルアミン;炭素数14のテトラドデシルアミン:炭素数16のパルミチルアミン;及び炭素数18のステアリルアミン、オレイルアミンから選択された少なくとも1種を好ましく用いることができる。   The metal tin fine particle dispersion preferably contains a dispersant for enhancing the dispersibility of the tin fine particles, and the dispersant is at least one of a fatty acid having 6 to 18 carbon atoms and an aliphatic amine having 6 to 18 carbon atoms. One is preferably used. In the case of fatty acids or aliphatic amines having less than 6 carbon atoms, there is a problem that the dispersibility of the tin fine particles is lowered. On the other hand, in the case of fatty acids and aliphatic amines having 19 or more carbon atoms, there arises a problem that the elimination of fatty acids and aliphatic amines from the surface of tin fine particles becomes insufficient during firing. As the fatty acid, for example, carboxylic acid can be used. Specifically, C6 hexanoic acid, 2-ethylbutyric acid, neohexanoic acid (2,2-dimethylbutyric acid); C7 heptanoic acid, 2-methylhexanoic acid, cyclohexanecarboxylic acid; C8 Octanoic acid, 2-ethylhexanoic acid, neooctanoic acid (2,2-dimethylhexanoic acid); Nonanoic acid having 9 carbon atoms; Decanoic acid having 10 carbon atoms, neodecanoic acid (2,2-dimethyloctanoic acid); At least one selected from the group consisting of undecanoic acid of 12 carbons; dodecanoic acid having 12 carbon atoms; tetradecanoic acid having 14 carbon atoms; and palmitic acid having 16 carbon atoms; It is preferable to use it. Examples of aliphatic amines include hexylamine, cyclohexylamine, and aniline having 6 carbon atoms; heptylamine having 7 carbon atoms; octylamine having 8 carbon atoms; 2-ethylhexylamine; nonylamine having 9 carbon atoms; decylamine having 10 carbon atoms; At least one selected from the group consisting of dodecylamine having 12 carbon atoms; tetradodecylamine having 14 carbon atoms: palmitylamine having 16 carbon atoms; and stearylamine and oleylamine having 18 carbon atoms can be preferably used.

上記の分散剤を含んでなる金属スズ微粒子分散液の溶媒としては、低極性溶媒を用いることができ、具体的には、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、トルエン、キシレン、シクロドデカン、シクロドデセン、オクチルベンゼン、ドデシルベンゼンから選ばれる少なくとも1種の液状炭化水素を単独でまたは組み合わせて用いることができる。   As the solvent of the tin metal fine particle dispersion containing the above-mentioned dispersant, a low polarity solvent can be used. Specifically, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, toluene, xylene, At least one liquid hydrocarbon selected from cyclododecane, cyclododecene, octylbenzene, and dodecylbenzene can be used alone or in combination.

また、酸化スズ微粒子を含む前駆体液としては、市販の酸化スズゾル溶液を好ましく使用することができる。市販の酸化スズゾル溶液の溶媒としては、アルコールや水などが用いられる。   Moreover, as a precursor liquid containing tin oxide fine particles, a commercially available tin oxide sol solution can be preferably used. Alcohol, water, etc. are used as a solvent of a commercially available tin oxide sol solution.

次に、上記スラリーを乾燥し、乾燥して得たものを焼成し、焼成して得られたものを粉砕する。乾燥は、減圧下で65〜110℃の温度で加熱することが好ましい。焼成は、大気中などの酸素含有雰囲気中で、上記炭素微粒子が完全に脱離する温度、例えば、600〜800℃の温度で行うことが好ましい。このように焼成することにより、金属スズが酸化されて酸化スズとなり、酸化スズで構成される担体粒子が得られる。しかも、鋳型としての炭素微粒子が燃焼して脱離するため、その脱離した部分が空孔となる。このため、得られた担体粒子は、多孔質で広い表面積を有するものとなり、しかも、後述する触媒金属微粒子を担持するための有効なサイトである酸素欠損を有するものとなる。   Next, the slurry is dried, the dried product is fired, and the fired product is pulverized. Drying is preferably performed at a temperature of 65 to 110 ° C. under reduced pressure. Firing is preferably performed in an oxygen-containing atmosphere such as the air at a temperature at which the carbon fine particles are completely desorbed, for example, at a temperature of 600 to 800 ° C. By firing in this way, metallic tin is oxidized to tin oxide, and carrier particles composed of tin oxide are obtained. In addition, since the carbon fine particles as the mold burn and desorb, the desorbed portion becomes a void. For this reason, the obtained carrier particles are porous and have a large surface area, and also have oxygen vacancies which are effective sites for supporting catalytic metal fine particles described later.

次に、酸化スズ担体粒子に触媒金属微粒子を担持させることにより、排ガス浄化用触媒が得られる。得られた排ガス浄化用触媒は、従来例のものに比べて多量の触媒金属微粒子が分散した状態で担持されたものとなる。触媒金属微粒子としては銀微粒子を用いることができ、その担持方法は公知の方法を用いることができる。例えば、酸化スズ担体粒子に銀微粒子分散液を混合、攪拌してスラリーを得て、そのスラリーを蒸発、乾燥し、その蒸発乾固物を焼成し、粉砕する。   Next, a catalyst for exhaust gas purification is obtained by supporting catalyst metal fine particles on the tin oxide support particles. The obtained exhaust gas-purifying catalyst is supported in a state in which a larger amount of catalytic metal fine particles are dispersed than in the conventional example. Silver fine particles can be used as the catalyst metal fine particles, and a known method can be used as the supporting method. For example, a silver fine particle dispersion is mixed with tin oxide carrier particles and stirred to obtain a slurry, the slurry is evaporated and dried, and the evaporated and dried product is fired and pulverized.

次に、本実施形態をより具体化した実施例について説明する。
(実施例1)
本実施例1では、前駆体液としてスズ微粒子分散液(株式会社アルバック製のスズナノメタルインク)「Sn1T」、スズ濃度:30.6重量%、溶媒:トルエン)を用い、フラスコ内でこのスズ微粒子分散液3.27gに炭素微粒子(オリオン・エンジニアドカーボンズ製のカーボンブラック「Printex 90」、BET比表面積:300m/g)0.3gを混合し、超音波処理を施して均一に攪拌してスラリーを調製した(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の30%である)。このスラリーをロータリーエバポレータで減圧しながら80℃まで昇温し、スズ微粒子分散液の溶媒(トルエン)を留去して蒸発乾固物を得た。この蒸発乾固物を回収し、110℃で8時間乾燥させた後、マッフル炉にて、大気雰囲気中、700℃で3時間焼成し、焼成したものを粉砕して酸化スズ担体粒子を得た。この酸化スズ担体粒子1.0gをフラスコに入れ、銀ナノ粒子分散液(株式会社アルバック製の銀ナノメタルインク「Ag1T」、銀濃度:4.5重量%、溶媒:トルエン)1.17gを混合し、超音波処理を施して均一に攪拌してスラリーを調製した。このスラリーをロータリーエバポレータで減圧しながら80℃まで昇温し、銀ナノ粒子分散液の溶媒(トルエン)を留去して蒸発乾固物を得た。この蒸発乾固物を回収し、110℃で8時間乾燥させた後、マッフル炉にて、大気雰囲気中、600℃で3時間焼成した。この焼成したものを粉砕することにより、酸化スズ担体粒子に銀微粒子が担持した排ガス浄化用触媒を得た(銀の担持量は排ガス浄化用触媒の総重量の5重量%である)。このようにして得た排ガス浄化用触媒を試料1aとし、この排ガス浄化用触媒の一部を分取して1000℃で10時間の加熱処理を行ったものを試料1bとした。これらの試料1a,1bの性能を「タイトコンタクト条件」により評価した。「タイトコンタクト条件」とは、浄化すべきPMと触媒とを十分に混合して両者の接触性を高めた状態で性能評価法である。具体的には、疑似PMとしてのカーボンブラック(オリオン・エンジニアドカーボンズ製のカーボンブラック「Printex 55」、BET比表面積:110m/g)と上記試料1a,1bとを1:10の重量比で乳鉢を用いて30分間夫々混合し、各混合粉体を窒素:酸素=79:21組成の混合ガスを流下させた雰囲気にて熱重量−示唆熱分析(TG−DTA)を行い、疑似PMの燃焼に伴う発熱反応が起こる温度をDTAプロファイルにて測定すると共に、疑似PMの燃焼に伴う重量減少をTGプロファイルにて測定することにより、試料1a,1bの性能を評価した。図2はDTAプロファイルを示す。図中実線で示す試料1aの発熱ピーク温度は408℃であり、破線で示す試料1bの発熱ピーク温度は381℃であり、両者の差は27℃であることが確認された。また、TGプロファイルにより、燃焼によって疑似PMの重量が半分に減少する温度T50を求めたところ、表1に示すように、試料1aは446℃であり、試料1bは456℃であることが確認された。これらの結果より、実施例1で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
Next, a more specific example of the present embodiment will be described.
Example 1
In Example 1, a tin fine particle dispersion (tin nanometal ink manufactured by ULVAC, Inc.) “Sn1T”, tin concentration: 30.6% by weight, solvent: toluene) was used as a precursor liquid, and the tin fine particle dispersion was performed in the flask. 3.27 g of the liquid was mixed with 0.3 g of carbon fine particles (carbon black “Printex 90” manufactured by Orion Engineered Carbons, BET specific surface area: 300 m 2 / g), subjected to ultrasonic treatment and stirred uniformly. A slurry was prepared (at this time, the weight of the carbon fine particles contained in the slurry is 30% of the weight of tin). The slurry was heated to 80 ° C. while reducing the pressure with a rotary evaporator, and the solvent (toluene) of the tin fine particle dispersion was distilled off to obtain an evaporated dry solid. The evaporated and dried product was recovered and dried at 110 ° C. for 8 hours, and then baked in an air atmosphere at 700 ° C. for 3 hours in a muffle furnace, and the baked product was pulverized to obtain tin oxide carrier particles. . 1.0 g of this tin oxide carrier particle is put in a flask, and 1.17 g of a silver nanoparticle dispersion (silver nanometal ink “Ag1T” manufactured by ULVAC, Inc., silver concentration: 4.5 wt%, solvent: toluene) is mixed. Then, a slurry was prepared by applying ultrasonic treatment and stirring uniformly. The slurry was heated to 80 ° C. while reducing the pressure with a rotary evaporator, and the solvent (toluene) of the silver nanoparticle dispersion was distilled off to obtain an evaporated dry product. The evaporated and dried product was collected, dried at 110 ° C. for 8 hours, and then baked in a muffle furnace at 600 ° C. for 3 hours in an air atmosphere. The fired product was pulverized to obtain an exhaust gas purification catalyst in which fine silver particles were supported on tin oxide carrier particles (the amount of silver supported was 5% by weight of the total weight of the exhaust gas purification catalyst). The exhaust gas-purifying catalyst thus obtained was designated as sample 1a, and a part of this exhaust gas-purifying catalyst was fractionated and subjected to heat treatment at 1000 ° C. for 10 hours as sample 1b. The performance of these samples 1a and 1b was evaluated by “tight contact conditions”. The “tight contact condition” is a performance evaluation method in a state in which PM to be purified and the catalyst are sufficiently mixed to improve the contact between them. Specifically, carbon black as a pseudo PM (carbon black “Printex 55” manufactured by Orion Engineered Carbons, BET specific surface area: 110 m 2 / g) and the above samples 1a and 1b in a weight ratio of 1:10. The mixture was mixed for 30 minutes using a mortar, and each mixed powder was subjected to thermogravimetric-suggested thermal analysis (TG-DTA) in an atmosphere in which a mixed gas of nitrogen: oxygen = 79: 21 was flowed, and simulated PM The temperature at which the exothermic reaction associated with the combustion of NO was measured with the DTA profile, and the weight loss associated with the combustion of the pseudo PM was measured with the TG profile, thereby evaluating the performance of the samples 1a and 1b. FIG. 2 shows the DTA profile. In the figure, the exothermic peak temperature of Sample 1a indicated by a solid line is 408 ° C., the exothermic peak temperature of Sample 1b indicated by a broken line is 381 ° C., and the difference between the two was confirmed to be 27 ° C. Further, when the temperature T 50 at which the weight of the pseudo PM is reduced by half by combustion is obtained from the TG profile, as shown in Table 1, it is confirmed that the sample 1a is 446 ° C. and the sample 1b is 456 ° C. It was done. From these results, the exhaust gas purifying catalyst obtained in Example 1 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

Figure 0006358902
Figure 0006358902

(実施例2)
炭素微粒子の混合量を0.5gとした点(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の50%である)以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料2aとした。そして、上記実施例1と同様に、試料2aをさらに1000℃で10時間の加熱処理したものを試料2bとし、これらの試料2a,2bの性能を評価した。図3のDTAプロファイルを参照して、図中実線で示す試料2aの発熱ピーク温度は390℃であり、破線で示す試料2bの発熱ピーク温度は382℃であり、両者の差は僅か8℃であることが確認された。また、表1に示すように、試料2aの温度T50は439℃であり、試料2bの温度T50は464℃であり、両者の差は25℃であることが確認された。これらの結果より、実施例2で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
(Example 2)
Exhaust gas purification in the same manner as in Example 1 except that the amount of carbon fine particles mixed was 0.5 g (at this time, the weight of carbon fine particles contained in the slurry is 50% of the weight of tin). A catalyst for use was obtained, and the obtained catalyst was designated as Sample 2a. In the same manner as in Example 1, the sample 2a was further heat-treated at 1000 ° C. for 10 hours as a sample 2b, and the performance of these samples 2a and 2b was evaluated. Referring to the DTA profile in FIG. 3, the exothermic peak temperature of sample 2a shown by the solid line in the figure is 390 ° C., the exothermic peak temperature of sample 2b shown by the broken line is 382 ° C., and the difference between them is only 8 ° C. It was confirmed that there was. Further, as shown in Table 1, the temperature T 50 of the sample 2a is 439 ° C., a temperature T 50 of the sample 2b is 464 ° C., the difference between them was confirmed to be 25 ° C.. From these results, the exhaust gas purifying catalyst obtained in Example 2 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(実施例3)
炭素微粒子の混合量を0.7gとした点(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の70%である)以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料3aとした。そして、上記実施例1と同様に、試料3aをさらに1000℃で10時間の加熱処理したものを試料3bとし、これらの試料3a,3bの性能を評価した。図4のDTAプロファイルを参照して、図中実線で示す試料2aの発熱ピーク温度は396℃であり、破線で示す試料2bの発熱ピーク温度は398℃であり、両者の差は僅か2℃であることが確認された。また、表1に示すように、試料3aの温度T50は433℃であり、試料3bの温度T50は460℃であり、両者の差は27℃であることが確認された。これらの結果より、実施例3で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
(Example 3)
Exhaust gas purification in the same manner as in Example 1 except that the amount of carbon fine particles mixed was 0.7 g (at this time, the weight of carbon fine particles contained in the slurry is 70% of the weight of tin). A catalyst for use was obtained, and the obtained catalyst was designated as Sample 3a. As in Example 1, the sample 3a was further heat-treated at 1000 ° C. for 10 hours as a sample 3b, and the performance of these samples 3a and 3b was evaluated. Referring to the DTA profile in FIG. 4, the exothermic peak temperature of sample 2a shown by the solid line in the figure is 396 ° C., the exothermic peak temperature of sample 2b shown by the broken line is 398 ° C., and the difference between them is only 2 ° C. It was confirmed that there was. Further, as shown in Table 1, the temperature T 50 of the sample 3a is 433 ° C., a temperature T 50 in the sample 3b is 460 ° C., the difference between them was confirmed to be 27 ° C.. From these results, the exhaust gas purifying catalyst obtained in Example 3 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(実施例4)
炭素微粒子の混合量を0.9gとした点(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の90%である)以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料4aとした。そして、上記実施例1と同様に、試料4aをさらに1000℃で10時間の加熱処理したものを試料4bとし、これらの試料4a,4bの性能を評価した。図5のDTAプロファイルを参照して、図中実線で示す試料4aの発熱ピーク温度は402℃であり、破線で示す試料4bの発熱ピーク温度は382℃であり、両者の差は僅か20℃であることが確認された。また、表1に示すように、試料4aの温度T50は437℃であり、試料4bの温度T50は488℃であり、両者の差は51℃であることが確認された。これらの結果より、実施例4で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
Example 4
Exhaust gas purification by the same method as in Example 1 except that the amount of carbon fine particles was 0.9 g (at this time, the weight of carbon fine particles contained in the slurry is 90% of the weight of tin) A catalyst for use was obtained, and the obtained catalyst was designated as Sample 4a. In the same manner as in Example 1, sample 4a was further heat-treated at 1000 ° C. for 10 hours as sample 4b, and the performance of these samples 4a and 4b was evaluated. Referring to the DTA profile in FIG. 5, the exothermic peak temperature of sample 4a shown by the solid line in the figure is 402 ° C., the exothermic peak temperature of sample 4b shown by the broken line is 382 ° C., and the difference between them is only 20 ° C. It was confirmed that there was. Further, as shown in Table 1, the temperature T 50 of the sample 4a is 437 ° C., a temperature T 50 in the sample 4b is 488 ° C., the difference between both was confirmed to be 51 ° C.. From these results, the exhaust gas purifying catalyst obtained in Example 4 can burn PM at a low temperature, and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(実施例5)
前駆体溶液として、酸化スズゾル(日産化学製セルナックスCX−S204IP、酸化スズ濃度20重量%、イソプロピルアルコール溶媒)を用いて、その混合量を6.35gとした点(このとき、スラリー中に含まれる炭素微粒子の重量は、スズの重量の30%である)以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料5aとした。そして、上記実施例1と同様に、試料5aをさらに1000℃で10時間の加熱処理したものを試料5bとし、これらの試料5a,5bの性能を評価した。試料5aのDTAの発熱ピーク温度は396℃であり、試料5bのDTAの発熱ピーク温度は415℃であり、両者の差は19℃であることが確認された。また、TGプロファイルにより、燃焼によって疑似PMの重量が半分に減少する温度T50を求めたところ、試料5aは440℃であり、試料5bは462℃であり、両者の差は22℃であることが確認された。これらの結果より、実施例5で得られた排ガス浄化用触媒は、低温でPMを燃焼させることができ、しかも、1000℃程度に加熱されても失活しない優れた耐熱性を有するものであることが判った。
(Example 5)
As a precursor solution, a tin oxide sol (manufactured by Nissan Chemical Co., Ltd., CELNAX CX-S204IP, tin oxide concentration 20 wt%, isopropyl alcohol solvent) was used, and the mixing amount was 6.35 g (at this time included in the slurry) Except that the weight of carbon fine particles is 30% of the weight of tin), an exhaust gas purifying catalyst was obtained in the same manner as in Example 1 above, and the obtained catalyst was used as sample 5a. In the same manner as in Example 1, sample 5a was further heat-treated at 1000 ° C. for 10 hours as sample 5b, and the performance of these samples 5a and 5b was evaluated. It was confirmed that the exothermic peak temperature of DTA of sample 5a was 396 ° C., the exothermic peak temperature of DTA of sample 5b was 415 ° C., and the difference between the two was 19 ° C. Further, when the temperature T 50 at which the weight of the pseudo PM is reduced by half by combustion is obtained from the TG profile, the sample 5a is 440 ° C., the sample 5b is 462 ° C., and the difference between them is 22 ° C. Was confirmed. From these results, the exhaust gas purifying catalyst obtained in Example 5 can burn PM at a low temperature and has excellent heat resistance that does not deactivate even when heated to about 1000 ° C. I found out.

(比較例1)
次に、上記実施例に対する比較例について説明する。比較例では、炭素微粒子の混合量を0gとした点、つまり、炭素微粒子を混合しない点以外は、上記実施例1と同様の方法で排ガス浄化用触媒を得て、得られた触媒を試料6aとした。そして、上記実施例1と同様に、試料6aをさらに1000℃で10時間の加熱処理したものを試料6bとし、これらの試料6a,6bの性能を評価した。図6のDTAプロファイルを参照して、図中実線で示す試料6aについては386℃に発熱ピークが見られるものの、破線で示す試料6bについては発熱ピークが小さいことが確認された。また、表1に示すように、試料6aの温度T50は442℃であり、試料6bの温度T50は539℃であり、両者の差は97℃と非常に大きいことが確認された。これらの結果より、比較例1で得られた排ガス浄化用触媒は1000℃程度に加熱されると失活することが判った。
(Comparative Example 1)
Next, a comparative example for the above embodiment will be described. In the comparative example, an exhaust gas purification catalyst was obtained in the same manner as in Example 1 except that the amount of carbon fine particles mixed was 0 g, that is, the carbon fine particles were not mixed, and the obtained catalyst was used as a sample 6a. It was. In the same manner as in Example 1, sample 6a was further heat-treated at 1000 ° C. for 10 hours as sample 6b, and the performance of these samples 6a and 6b was evaluated. With reference to the DTA profile in FIG. 6, it was confirmed that although the exothermic peak was observed at 386 ° C. for the sample 6a indicated by the solid line in the figure, the exothermic peak was small for the sample 6b indicated by the broken line. Further, as shown in Table 1, it was confirmed that the temperature T 50 of the sample 6a was 442 ° C., the temperature T 50 of the sample 6b was 539 ° C., and the difference between the two was very large at 97 ° C. From these results, it was found that the exhaust gas purifying catalyst obtained in Comparative Example 1 was deactivated when heated to about 1000 ° C.

以上説明したように、本実施形態及び実施例によれば、酸化スズ担体粒子を作製する際、前駆体液に鋳型としての炭素微粒子を混合するため、この混合により調整されたスラリーを乾燥すると、スズ微粒子の間に炭素微粒子が介在するものが得られる。そして、この乾燥により得られたものを焼成すると、スズ微粒子が酸化されて酸化スズ粒子となると共に、炭素微粒子が燃焼して除去され、この炭素微粒子が除去された部分が空孔となる。このため、焼成後に得られた酸化スズ担体粒子は、多孔質で広い表面積を有するものとなり、しかも、金属微粒子を担持させるための有効なサイトである酸素欠損を有するものとなる。この酸化スズ担体粒子にAg等の金属微粒子を担持すれば、従来例よりも多量の金属微粒子が分散した状態で担持される。このようにして作製された排ガス浄化用触媒は、300℃程度の低温でもPMを燃焼させることができ、1000℃程度に加熱されても失活しないことが確認された。
As described above, according to the present embodiment and the example, when preparing the tin oxide carrier particles, carbon fine particles as a template are mixed with the precursor liquid. What has carbon fine particles intervening between the fine particles is obtained. When the product obtained by this drying is fired, the tin fine particles are oxidized to become tin oxide particles, and the carbon fine particles are burned and removed, and the portions where the carbon fine particles are removed become pores. For this reason, the tin oxide carrier particles obtained after firing are porous and have a large surface area, and also have oxygen vacancies which are effective sites for supporting metal fine particles. If fine metal particles such as Ag are supported on the tin oxide carrier particles, a larger amount of fine metal particles than the conventional example is supported in a dispersed state. It was confirmed that the exhaust gas purifying catalyst thus produced can burn PM even at a low temperature of about 300 ° C. and does not deactivate even when heated to about 1000 ° C.

Claims (3)

酸化スズ担体粒子を作製し、作製した酸化スズ担体粒子に微粒子を担持させて排ガス浄化用触媒を得る排ガス浄化用触媒の製造方法において、
酸化スズ担体粒子は、スズ微粒子及び酸化スズ微粒子の少なくとも一方を含む前駆体液に炭素微粒子を混合してスラリーを調製し、調製したスラリーを乾燥し、乾燥したものを焼成して炭素微粒子を除去することにより作製することを特徴とする排ガス浄化用触媒の製造方法。
In the method for producing an exhaust gas purification catalyst, producing tin oxide carrier particles, and carrying the silver fine particles supported on the produced tin oxide carrier particles to obtain an exhaust gas purification catalyst,
The tin oxide carrier particles are prepared by mixing carbon fine particles with a precursor liquid containing at least one of tin fine particles and tin oxide fine particles to prepare a slurry, drying the prepared slurry, and firing the dried slurry to remove the carbon fine particles. The manufacturing method of the catalyst for exhaust gas purification characterized by producing by this.
前記スラリー中に含まれる炭素微粒子の重量をスズの重量の30%以上に設定したことを特徴とする請求項1記載の排ガス浄化用触媒の製造方法。   The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the weight of the carbon fine particles contained in the slurry is set to 30% or more of the weight of tin. 前記前駆体液として、スズ微粒子を溶媒に分散させたスズ微粒子分散液を用いることを特徴とする請求項1または2記載の排ガス浄化用触媒の製造方法。 Examples precursor liquid, according to claim 1 or 2 The method of manufacturing the exhaust gas purifying catalyst according to the scan's particles, characterized by using a scan's fine particle dispersion obtained by dispersing in a solvent.
JP2014177934A 2014-09-02 2014-09-02 Method for producing exhaust gas purification catalyst Active JP6358902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177934A JP6358902B2 (en) 2014-09-02 2014-09-02 Method for producing exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177934A JP6358902B2 (en) 2014-09-02 2014-09-02 Method for producing exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2016049520A JP2016049520A (en) 2016-04-11
JP6358902B2 true JP6358902B2 (en) 2018-07-18

Family

ID=55657467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177934A Active JP6358902B2 (en) 2014-09-02 2014-09-02 Method for producing exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6358902B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201534A (en) * 1981-06-05 1982-12-10 Mitsubishi Electric Corp Manufacture of catalyst or catalyst carrier
JPS6233543A (en) * 1985-08-07 1987-02-13 Hitachi Chem Co Ltd Catalyst for oxidation of combustible gas
JPH0824846B2 (en) * 1991-12-30 1996-03-13 川崎重工業株式会社 Gas purification catalyst and gas purification method
JPH06182209A (en) * 1992-12-21 1994-07-05 Mazda Motor Corp Production of catalyst for purification of exhaust gas
JPH0796140A (en) * 1993-09-29 1995-04-11 Tosoh Corp Waste gas purifying method
JPH09248459A (en) * 1996-03-13 1997-09-22 Riken Corp Material and method for exhaust gas-purifying
JPH10180113A (en) * 1996-12-26 1998-07-07 Hino Motors Ltd Catalyst for purifying exhaust gas and preparation thereof
JP3131630B2 (en) * 1999-03-08 2001-02-05 工業技術院長 Method for oxidizing and removing carbon fine particles in diesel engine exhaust gas and catalyst used therefor
DE10017282C2 (en) * 2000-04-06 2002-02-14 Omg Ag & Co Kg Process for the production of composite powder based on siler tin oxide and its use for the production of contact materials
JP4639455B2 (en) * 2000-10-02 2011-02-23 パナソニック株式会社 Exhaust gas purification material
JP4450984B2 (en) * 2000-12-25 2010-04-14 株式会社豊田中央研究所 Exhaust gas purification catalyst
JP2006289175A (en) * 2005-04-06 2006-10-26 Japan Energy Corp Diesel particulate filter and exhaust gas cleaning method using this

Also Published As

Publication number Publication date
JP2016049520A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
TWI655962B (en) Method for preparing a catalyzed fabric filter and a catalyzed fabric filter
KR20160074566A (en) Catalyst design for heavy-duty diesel combustion engines
JP2016531725A (en) High surface area catalyst
CN1576528A (en) Diesel particulate filter
US20160038874A1 (en) Three way catalytic converter using hybrid catalytic particles
CN101992089A (en) Three-dimensional ordered porous-mesoporous iron-based perovskite oxide catalyst and preparation method thereof
CN103781548B (en) Cleaning catalyst and manufacture method thereof for exhaust
JP5582671B2 (en) Exhaust gas purification catalyst, exhaust gas purification catalyst recovery method, and exhaust gas purification catalyst system
RU2686960C2 (en) Zoned catalyst composites
KR100996042B1 (en) Gas processing method for catalytically oxidizing carbon monoxide and hydrocarbons using a composition based on a metal and a silica-containing zirconia
Mukherjee et al. Superior catalytic performance of a CoO x/Sn–CeO 2 hybrid material for catalytic diesel soot oxidation
JP6376532B2 (en) Method for producing exhaust gas purification catalyst
JP6358902B2 (en) Method for producing exhaust gas purification catalyst
CN111215061A (en) Sintering-resistant high-dispersion noble metal catalyst, and preparation and application thereof
CN111379613B (en) Diesel particulate trap loaded with macroporous perovskite oxide and application thereof
KR102059404B1 (en) Cerium-Praseodymium mixed oxide catalyst with fibrous morphology for combustion of carbon particulate matter, and method for carbon particulate matter combustion using the same
KR101068543B1 (en) Mixtured Catalyst For Emission Reduction Device Of Diesel Vehicles And Preparing Method For The Same
CN103143383A (en) Molecular-sieve-supported platinum-base noble metal soot removal catalyst and preparation method thereof
JP5261930B2 (en) Gas purification method, gas purification catalyst, and exhaust gas purification device
JP5031642B2 (en) Catalyst production method
CN108404911A (en) A kind of Au/CeO for benzene catalysis oxidation2The preparation method of catalyst
EP2870997A1 (en) Catalyst for emission gas purification and production method thereof
JP2016500331A (en) Zoned diesel oxidation catalyst
JP2010221091A (en) Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter
JP5215880B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250