JP6347963B2 - 動力伝達シャフト - Google Patents

動力伝達シャフト Download PDF

Info

Publication number
JP6347963B2
JP6347963B2 JP2014027402A JP2014027402A JP6347963B2 JP 6347963 B2 JP6347963 B2 JP 6347963B2 JP 2014027402 A JP2014027402 A JP 2014027402A JP 2014027402 A JP2014027402 A JP 2014027402A JP 6347963 B2 JP6347963 B2 JP 6347963B2
Authority
JP
Japan
Prior art keywords
shaft
torque
power transmission
spline
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014027402A
Other languages
English (en)
Other versions
JP2015152116A (ja
Inventor
真 友上
真 友上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2014027402A priority Critical patent/JP6347963B2/ja
Publication of JP2015152116A publication Critical patent/JP2015152116A/ja
Application granted granted Critical
Publication of JP6347963B2 publication Critical patent/JP6347963B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

この発明は動力伝達シャフトに関する。より詳しくは、ねじれ量に応じてねじり剛性を変化させるようにしたもので、限定する趣旨ではないが、例えば自動車用ドライブシャフトに利用することにより、入力トルク(ねじれ量)に応じてねじり剛性を変化させ、車両の乗り心地を向上させることができる。
図4に一般的な自動車用ドライブシャフトを示す。このドライブシャフトは、シャフトSと、その両端に取り付けた固定式等速自在継手J1及びしゅう動式等速自在継手J2とで構成され、エンジンからの動力すなわちトルクを駆動輪に伝達する役割を果たす。
ドライブシャフトは、トルクが加わると、構成部品の弾性変形により円周方向にねじりが発生する。固定式等速自在継手J1の端部としゅう動式等速自在継手J2の端部のねじれ量(ねじれ角)ω(rad)は次式で表される。
ω=(1/K1+1/K2+1/K3)・T
ここに、
K1:固定式等速自在継手J1のねじり剛性(Nm/rad)、
K2:しゅう動式等速自在継手J2のねじり剛性(Nm/rad)、
K3:シャフトSのねじり剛性(Nm/rad)、
T:入力トルク(Nm)。
一般に、K1、K2、K3は弾性範囲内では定数であり、入力トルクが変化しても一定である。ドライブシャフトにおいては、一般的にK3<<K1、K2の関係にあり、したがって、ドライブシャフトのねじり特性はシャフトSの特性が大きく影響する。
特許文献1(特許第5182419号公報)には、ドライブシャフトの中間シャフト(センターシャフト)に摩擦接触により振動を減衰する振動減衰機構を設けることが記載されている(特許文献1の図1参照)。この振動減衰機構は、シャフトに固定した固定部と、シャフトと摩擦接触する摩擦接触部を、軸方向に離間させて配置し、摩擦接触部に摩擦接触圧を付与することによって減衰性能を発揮するようにしている。
特許文献2(特開2012−255555号公報)には、駆動エンドピースと被駆動エンドピースを可撓性環状スリーブで連結した可撓性軸継ぎ手が記載されており、可撓性環状スリーブを介してトルクを伝達することによりねじり振動減衰機能をもたせている。
特許文献3(実開昭62−179421号公報)には、インナシャフトと筒状体とを有し、筒状体をインナシャフトよりもねじり剛性の高い連結部材でインナシャフトに接続した駆動軸が記載されている(特許文献3の第1図参照)。インナシャフトには外向き突起が設けてあり、一方、筒状体には内向き突起が設けてあり、これらの突起を交互に、相対回動自在に配置し、相互間に液密の流体室を形成させて非圧縮性の流体を収容する(特許文献3の図3参照)。この駆動軸によれば、静トルクは、十分な強度を与えたインナシャフトによって確実に伝達され、変動トルクは、インナシャフトをねじり変形させて流体室に容積変動を生じさせ、流体が両突起の周辺を流動する抵抗によって減衰されるというものである。
特許文献4(特開2010−265929号公報)には、軸方向に相対移動可能なインナシャフトとアウタシャフトからなり、インナシャフトはスプライン外歯をもち、アウタシャフトはスプライン内歯をもった可変剛性軸が記載されている(特許文献4の図3参照)。そして、スプライン外歯とスプライン内歯のかみ合いがはずれた状態ではインナシャフトのみで動力を伝達する低剛性状態となり、スプライン外歯とスプライン内歯がかみ合った状態ではインナシャフトとアウタシャフトの両方で動力を伝達する高剛性状態となる。
可変剛性軸は、内燃機関からの動力を伝達するトルクコンバータと駆動輪との間に設けられ、インナシャフトとアウタシャフトの相対的な軸方向位置関係を変えてスプライン外歯とスプライン内歯のかみ合い状態を変更することにより、ねじり剛性を変更する。例えば、ロックアップ状態検出手段によりトルクコンバータのロックアップ機構がロックアップ状態であると検出され、かつ、トルク検出手段により検出された検出トルクが、予め設定された設定トルクよりも小さい場合に、低剛性状態となるように制御される。トルクコンバータがロックアップ状態、すなわちエンジンの動力が直接伝達されるときに、可変剛性軸が低剛性状態になるので、ロックアップ状態の時にエンジンの動力の変動により可変剛性軸に発生するこもり音などの騒音が確実に抑制される。また、トルクコンバータがロックアップ状態にないときは、可変剛性軸が高剛性状態になる。したがって、エンジンの動力がトルクコンバータで増幅されて、高い負荷トルクが可変剛性軸に入力されても、可変剛性軸がねじれることは著しく少なくなり、可変剛性軸の疲労強度の低下を招くことはなく、耐久性が著しく向上するというものである。
特許第5182419号公報 特開2012−255555号公報 実開昭62−179421号公報 特開2010−265929号公報
自動車用ドライブシャフトの場合、加速時のダイレクト感が得られるように、特にM/T(マニュアルトランスミッション)車やスポーツタイプの車両では高いねじり剛性が求められる傾向にある。そのため、ドライブシャフトの構成要素のうち、相対的に剛性の低いシャフトの部分に、剛性が高く軽量な中空タイプのシャフトを使用するものが見られる。
近年は、環境に優しい車としてEV(電気自動車)/HEV(ハイブリッド車)が注目され、広く普及している。これらの車は減速時のエネルギーを電気に変える減速エネルギー回生機構(以下、単に回生機構という)をもっている。また、内燃機関の車両でも減速時のエネルギーを回生する機構を備えているものもある。回生機構をもった車の場合、走行中、ドライブシャフトは車両前進方向に回転しながら、加速時はエンジンからのプラストルクが働き、回生機構の作動時すなわち減速時はタイヤからのマイナストルクが働く。回生機構をもたない車でもエンジンブレーキが働いたときはマイナストルクが働くが、回生機構をもった車における回生によるマイナストルクの方が大きい。
回生機構をもった車も強い加速を行うときは、当然、ドライブシャフトの剛性が高く、しっかりとした加速感が求められる。その一方で、加速した後の定常走行時などに、緩加速と回生による減速を繰り返す場合、プラストルク⇒トルクゼロ⇒マイナストルク、マイナストルク⇒トルクゼロ⇒プラストルクのようにトルクゼロ(0)を跨ぐ状況が発生する。この場合、ドライブシャフトの剛性が高いとトルクの変化が敏感に伝わり、ぎくしゃくした感じを与えるため車両の乗り心地を害する。
そのため、乗り心地の観点からは、ドライブシャフトの剛性が低く、トルク変化に対してドライブシャフトの回転変化に遅れが生じ、挙動が緩慢な状況が好まれると考えられる。すなわち、図5(B)に示すように、ねじれ角ゼロをまたいだ一定の領域では低剛性で、前記領域以外では剛性が高くなるような特性が求められる。
ここで、図5は、縦軸にトルク(T)、横軸にねじれ角(ω)をとり、剛性特性を模式的に示したものである。図5(A)の線図が直線的に変化しているのに対し、図5(B)の線図は、ねじれ角(ω)ゼロをまたいだ一定領域におけるねじり剛性が前記領域以外の領域におけるねじり剛性よりも小さいことを表している。
そこで、本発明の目的は、入力トルクに応じてねじり剛性を変化させることのできる動力伝達シャフトを提供することである。
なお、特許文献1、2に記載されている従来技術は、いずれも、ねじり振動を減衰させることを目的とした振動減衰技術であって、ドライブシャフトのねじり剛性自体を変化させて車両の乗り心地を向上させるものではない。
特許文献3に記載された駆動軸は、インナシャフトによって静トルク及び変動トルクが伝達される際、静トルクはインナシャフトによって強度上の不安なく確実に伝達され、変動トルクは、インナシャフトをねじり変形させ、外向き突起の周方向両側において容積変動を生ずるので、流体が両突起の周辺、特に外向き突起の外側の間隙を流動する抵抗によって減衰される。要するに、トルクの伝達はもっぱらインナシャフトによって行い、ねじり振動の減衰を目的として、アウタシャフトを設けて流体室を形成したものであり、当該駆動軸のねじり剛性を変化させるものではない。
特許文献4に記載された可変剛性軸は、インナシャフトとアウタシャフトを軸方向に相対移動させて、スプライン外歯とスプライン内歯のかみ合い状態を変更することによって低剛性状態と高剛性状態を切り替える。しかも、この切替えをロックアップ状態検出手段やトルク検出手段からの信号に応答して制御装置によって行うようにしたものであって、当該回転軸の剛性が自動的に変化するわけではない。また、装置全体が大きくなり、かつ制御が必要なため装置として煩雑になってしまう。
本発明は、動力伝達シャフトの簡単な構造によって、図5(B)に示すような剛性特性を実現するものである。すなわち、本発明の動力伝達シャフトは、ねじれ角ゼロをまたいだ領域におけるねじり剛性が前記領域外の領域におけるねじり剛性よりも低いことを特徴とする。
本発明の動力伝達シャフトは、入力トルクの大きさに応じてねじり剛性が変化する。したがって、自動車のドライブシャフトに適用することにより、車両の乗り心地を向上させることができる。すなわち、ねじり剛性が高い領域ではしっかりとした加速感が得られ、ねじり角が低い領域ではトルクの反転(プラストルク⇒トルクゼロ⇒マイナストルク、マイナストルク⇒トルクゼロ⇒プラストルク)の挙動を緩慢にする。その結果、ぎくしゃくした感じがなくなり乗り心地が向上する。
本発明の実施の形態を示す動力伝達シャフトの縦断面図である。 図1に示す動力伝達シャフトを用いたドライブシャフトの縦断面図である。 (A)は図1のIII‐III断面図、(B)は第一軸と第二軸との接続部の部分拡大図、(C)は第二軸と第三軸との接続部の部分拡大図である。 従来のドライブシャフトの縦断面図である。 (A)は従来のドライブシャフトの剛性特性を示す模式的線図、(B)は本発明のドライブシャフトの剛性特性を示す模式的線図である。
以下、自動車用ドライブシャフトに適用した場合を例にとって、図面を参照しながら本発明の実施の形態を説明する。
動力伝達シャフトの実施例を図1に示し、その動力伝達シャフトを利用した自動車用ドライブシャフトの実施例を図2に示す。
既述のとおり、図4に示した従来のドライブシャフトは、中間シャフトSの一方の端部に固定式等速自在継手J1を取り付け、もう一方の端部にしゅう動式等速自在継手J2を取り付けてある。中間シャフトSが単一のシャフトであるのに対して、図1に示す動力伝達シャフトは、3つの軸すなわち、第一軸10と、第二軸20と、第三軸30とで構成されている。
第一軸10は、固定式等速自在継手J1の内輪とトルク伝達可能に接続するために、スプライン軸12を有する。
第二軸20は、しゅう動式等速自在継手J2の内側継手部材とトルク伝達可能に接続するために、スプライン軸22を有する。
第三軸30は、第一軸10と第二軸20の間に介在し、一方の端部で第一軸10とトルク伝達可能に接続し、他方の端部で第二軸20とトルク伝達可能に接続する。
第一軸10は、軸部10aと円筒部10bとが一体的に形成してある。なお、円筒部10bの底が軸部10aと円筒部10bの境界であるかのような引き出し線の取り方をしてあるが、あくまで便宜上のことである。
第一軸10の軸部10aは、軸端部にスプライン軸12が形成してあり、また、円筒部10b側には、ブーツB1(図2参照)の小径側取付け部の内周面形状と対応した形状のブーツ固定部14が設けてある。
第一軸10の円筒部10bは、端面側の内周面にスプライン孔16が形成してあり、このスプライン孔16で第二軸20のスプライン軸26とトルク伝達可能に接続するようになっている。また、円筒部10bの底には、第三軸30と接続するための下孔18が設けてある。
第一軸10は、材質にS40C程度の中炭素鋼を選定し、外周面に高周波焼入れによる表面硬化処理を施して強化してある。
第二軸20は、軸部20aとヘッド部20bとを一体的に形成してある。第二軸20の軸部20aは、軸端部にスプライン軸22が形成してあり、また、ヘッド部20b側には、ブーツB2(図2参照)の小径側取付け部の内周面形状と対応した形状のブーツ固定部24が設けてある。
第二軸20のヘッド部20bは、スプライン軸26が形成してあり、既述のとおり、このスプライン軸26で第一軸10のスプライン孔16とトルク伝達可能に接続するようになっている。また、ヘッド部20bの端面には、第三軸30と接続するための下孔28が設けてある。
第二軸20は、材質にS40C程度の中炭素鋼を選定し、外周面は、高周波焼入れによる表面硬化処理を施して強化してある。
第三軸30は、材質にS40C程度の中炭素鋼を選定し、外周面に高周波熱処理による表面硬化処理を施して強化してある。
第三軸30の両端にはスプライン軸32、34が形成してある。スプライン軸32を第一軸10の下孔18に圧入することにより、第一軸10と第三軸30をトルク伝達可能に接続する。同様に、スプライン軸34を第二軸20の下孔28に圧入することにより、第二軸20と第三軸30をトルク伝達可能に接続する。
第一軸10のスプライン軸16と第二軸20のスプライン孔26で構成される接続部には、図3(B)に示すように、円周方向のすきまδがある。図3(A)(B)では半径方向のすきまが誇張して示してあるが、この接続部のスプライン軸16とスプライン孔26は大径合わせ又は小径合わせとして、曲げ方向にガタがないようにすることが望ましい。
また、図1に示すように、第一軸10と第二軸20の接合部には、異物の侵入を防止するため、ゴムや合成樹脂から成形した可撓性のキャップ29を装着するのが好ましい。
実施の形態では、第一軸10と第三軸30、第二軸20と第三軸30の接続は塑性結合による。すなわち、第一軸10の下孔18及び第二軸20の下孔28は、それぞれ熱処理の熱影響がないように加工して、未焼入れのまま残す。そして、これらの下孔18、28に、表面硬化処理層を施した第三軸30のスプライン軸32、34をそれぞれ圧入する。これにより、スプライン軸32、34の歯が下孔18、28に食い込み、第一軸10と第三軸30との間、第二軸20と第三軸30との間にはガタが発生しない(図3(C)参照)。
スプライン軸32の歯と下孔18との凹凸嵌合部位は、円周方向及び軸方向の全域において密着している。同じくスプライン軸34の歯と下孔28との凹凸嵌合部位は、円周方向及び軸方向の全域において密着している。それぞれの接続は塑性結合にかぎらず、スプライン軸32、34の歯で下孔18、28の内壁を切削することにより凹凸嵌合構造を形成し、当該凹凸嵌合部位が円周方向及び軸方向の全域において密着するようにしてもよい。
上述の構造において、トルクが加わった場合のねじり特性を説明する。
入力トルクが小さく、第一軸10と第二軸20の接続部16、26の相対ねじれ量がδになるまで、第一軸10と第二軸20の接続部でスプライン歯の接触はなく、第一軸10の円筒部10bはトルク伝達に関与しない。よって、トルクは、第一軸10の軸部10a、第三軸30、第二軸20といった経路で伝達される。
入力トルクが大きくなり、第一軸10と第二軸20の接続部16、26の相対ねじれ量がδになると、第一軸10と第二軸20の接続部16、26でスプライン歯が接触し、第一軸10の円筒部10bもトルク伝達に関与することとなる。よって、トルク伝達は、第一軸10の軸部10a、第一軸10の円筒部10b、第三軸30、第二軸20といった経路で行われる。この場合、第一軸10の円筒部10bと第三軸30の剛性は和として現れる。
簡易的に、各部のねじり剛性を、
第一軸10の軸部10a:Kaa
第一軸10の円筒部10b:Kab
第三軸30:Kc
第二軸20:Kb
とすると、シャフトのねじり剛性は次のように表わされる。
0<第一軸10と第二軸20の接続部16、26の相対ねじれ量<δの場合、
シャフトのねじり剛性=1/(1/Kaa+1/Kc+1/Kb)、
第一軸10と第二軸20の接続部16、26の相対ねじれ量=δの場合、
シャフトのねじり剛性=1/(1/Kaa+1/(Kab+Kc)+1/Kb)。
第三軸30を、Kaa、Kab、Kbに対してKcが小さくなるように設計すれば、図5(B)に示すような剛性特性が得られる。
上述の動力伝達シャフトの両端に等速自在継手J1、J2を取り付けることにより、図2に示す自動車用ドライブシャフトが得られる。等速自在継手J1、J2の詳細は周知のとおりであるが、簡単に言及するならば次のとおりである。
固定式等速自在継手J1は、内輪42と、外輪44と、ケージ46と、ボール48を主要な構成要素としており、内輪42のスプライン孔を第一の軸10のスプライン軸12と接続する。内輪42の球面状外周面と外輪44の球面状内周面がケージ46を介して球面接触しているため、この固定式等速自在継手J1は角度変位のみ可能である。
内輪42は、球面状外周面に軸方向に延びるボール溝を円周方向に等間隔に形成してある。外輪44は、球面状内周面に軸方向に延びるボール溝を円周方向に等間隔に形成してある。対をなす内輪42のボール溝と外輪44のボール溝との間にボール48が組み込んである。内輪42のボール溝と外輪44のボール溝とで形成されるボールトラックの断面形状は、曲率中心が継手中心をはさんで反対方向にオフセットした円弧形状であるため、外輪44の奥側から開口端面側へ向かって拡開したくさび形状を呈する。ケージ46は、ボール48を収容するためのポケットが円周方向に所定間隔で形成してあり、ケージ46によりすべてのボール48が同一平面に保持される。
外輪44の内部には潤滑グリースを充填する。その潤滑グリースのもれを防止し、かつ、外部から異物が侵入するのを防止するために、ブーツB1が装着してある。図示した例ではブーツB1は合成樹脂で略円すい形状に成形した蛇腹タイプであって、大径端部を外輪44の開口端部に取り付け、小径端部を第一の軸10のシール取付け部14に取り付けてある。
しゅう動式等速自在継手J2はトリポード型等速自在継手で、内側継手部材(52、54)と、トルク伝達部材としてのスフェリカルローラ56と、外側継手部材としてのハウジング58を主要な構成要素としている。
内側継手部材はボス52とトラニオンジャーナル54とからなり、ボス52に形成したスプライン孔を第二軸20のスプライン軸22と接続する。トラニオンジャーナル54はボス52の円周方向に等間隔に配置してあり、ボス52の半径方向に突出している。各トラニオンジャーナル54に、ニードルローラを介して回転自在に、スフェリカルローラ56が担持されている。
ハウジング58の内周に、ハウジング58の軸方向に走るトラック溝が形成してあり、このトラック溝にスフェリカルローラ56を収容する。継手が角度をとって回転するとき、スフェリカルローラ56はトラック溝に沿って転動しながらハウジング58の軸方向に移動する。
ハウジング58の内部には潤滑グリースを充填する。その潤滑グリースのもれを防止し、かつ、外部から異物が侵入するのを防止するために、ブーツB2が装着してある。図示したブーツB2はゴムで略円すい形状に成形した蛇腹タイプであって、大径端部をハウジング58の開口端部に取り付け、小径端部を第二軸20のシール取付け部24に取り付けてある。
上述の実施例の効果をまとめるならば次のとおりである。
動力伝達シャフトは、図5(B)に示すように、ねじれ角ゼロをまたいだ一定領域のねじり剛性を前記一定領域外のねじり剛性よりも低くすることにより、とりわけ自動車用ドライブシャフトに適用した場合に乗り心地向上に貢献することができる。自動車用ドライブシャフトでは、ねじれ角ゼロをまたいでプラストルクからマイナストルクへ、逆にマイナストルクからプラストルクへといった入力トルクの反転が起こり得るため、ねじれ角ゼロをまたいだ一定領域におけるねじり剛性を低くすることで乗り心地が向上する。その一方で、ねじれ角ゼロをまたいだ一定領域外ではねじり剛性を高くすることにより、強い加速を行う時にはしっかりとした加速感が得られる。
第一軸10と第二軸20と第三軸30を有し、第一軸10と第二軸20をトルク伝達可能に接続し、かつ、第一軸10と第二軸20を第三軸30を介してトルク伝達可能に接続し、第一軸10と第二軸20の接続部16,26に円周方向のすきまδが設けてある。このような構成を採用することにより、円周方向のすきまδがなくなるまでは第一軸10から第三軸30を介して第二軸20へトルクが伝達され、円周方向のすきまδがなくなると第一軸10と第二軸20の接続部16,26もトルク伝達に関与する。このようにして、ねじり剛性がねじれ量に応じて変化する。
前記一定領域では、第一軸10と第二軸20の接続部に円周方向のすきまδがある状態で、第一軸10と第三軸30と第二軸20とが接続し、前記一定領域外では、第一軸10と第三軸30と第二軸20とが接続し、かつ、第一軸10と第二軸20は円周方向のすきまδがなくなり直接結合する。このような構成を採用することにより、確実に、円周方向のすきまδがなくなるまでは第一軸10から第三軸30を介して第二軸20へトルクが伝達され、円周方向のすきまδがなくなると第一軸10と第二軸20の接続部もトルク伝達に関与することとなる。
第一軸10と第三軸30の接続部及び第二軸20と第三軸30の接続部に、第三軸30のスプライン軸32、34の歯の圧入に基づく塑性結合又は切削により凹凸結合構造を形成させることで、当該凹凸嵌合部位は円周方向及び軸方向の全域において密着する。したがって、一層確実に、円周方向のすきまδがなくなるまでは第一軸10から第三軸30を介して第二軸20へトルクが伝達され、円周方向のすきまδがなくなると第一軸10と第二軸20の接続部もトルク伝達に関与することとなる。
第一軸10、第二軸20、第三軸30は、材質を機械構造用炭素鋼とし、外周面に高周波焼入れによる表面硬化処理を施すことにより、各軸の強度を確保し、かつ、第一軸10と第二軸20、第二軸20と第三軸30の塑性結合を可能にする。
上記動力伝達シャフトの一端に固定式等速自在継手J1を取り付け、他端にしゅう動作式等速自在継手J2を取り付けた自動車用ドライブシャフトは、すでに述べたとおり、とりわけ自動車用ドライブシャフトに適用した場合に乗り心地向上に貢献することができる。
以上、自動車用ドライブシャフトに適用した場合を例にとって本発明の実施の形態を説明したが、本発明は、図示し、かつ、ここに記述した実施の形態に限らず、特許請求の範囲を逸脱することなく、種々の改変を加えて実施をすることができることは言うまでもない。
例えば、動力伝達シャフトには、入力側、出力側の方向性はなく、したがって、図1の固定式等速自在継手J1としゅう動式等速自在継手J2を入れ替えてもよい。固定式等速自在継手としてツェッパ型等速自在継手を例示したが、他の固定式等速自在継手を採用してもよい。同様に、しゅう動式等速自在継手の一例としてトリポード型等速自在継手を例示したが、他のしゅう動式等速自在継手を採用してもよい。
また、第一軸10と第二軸20をトルク伝達可能に接続するための構造としてスプラインを例示したが、円周方向にすきまδがあり、かみ合いによりトルク伝達が可能な、スプラインに類似する連結構造であればよい。なお、図3(B)において、スプライン歯の両側のすきまを符号δで表しているが、両者のすきまの値は必ずしも等しくなくてよい。
さらに、第三軸30の両端をスプライン軸32、34とした場合を例示したが、トルク伝達が可能な、山と谷をもったスプライン類似の形状であってもよい。一例としてはセレーションを挙げることができる。
10 第一軸
10a 軸部
10b 円筒部
12 スプライン軸
14 ブーツ装着部
16 スプライン孔
18 下孔
20 第二軸
22 スプライン軸
24 ブーツ装着部
26 スプライン軸
28 下孔
29 キャップ
30 第三軸
32 スプライン軸
34 スプライン軸
B1 ブーツ
B2 ブーツ
J1 固定式等速自在継手
J2 しゅう動式等速自在継手

Claims (4)

  1. ねじれ角ゼロをまたいだ一定領域におけるねじり剛性が前記一定領域外の領域におけるねじり剛性よりも低い動力伝達シャフトであって、
    軸部と円筒部とが一体的に形成された第一軸と、軸部とヘッド部とが一体的に形成された第二軸と、第一軸の円筒部の内周側に位置する第三軸とを有し、
    前記一定領域では、第一軸の円筒部と第二軸のヘッド部との接続部に円周方向のすきまがある状態で、第一軸の軸部と第二軸のヘッド部とを第三軸を介して凹凸結合によりトルク伝達可能に接続し、前記一定領域外の領域では、第三軸の外周側で第一軸の円筒部と第二軸のヘッド部とを前記すきまがなくなった状態でかみ合いによりトルク伝達可能に接続する動力伝達シャフト。
  2. 第一軸と第三軸の接続部及び第二軸と第三軸の接続部に、第三軸のスプライン軸の歯の圧入に基づく塑性結合又は切削により凹凸嵌合構造を形成した請求項1の動力伝達シャフト。
  3. 第一軸、第二軸、第三軸は、材質が機械構造用炭素鋼で、高周波焼入れによる表面硬化処理が施してある請求項1又は2の動力伝達シャフト。
  4. 請求項1〜3のいずれか1項に記載の動力伝達シャフトの一端に固定式等速自在継手を、他端にしゅう動式等速自在継手を取り付けた自動車用ドライブシャフト。
JP2014027402A 2014-02-17 2014-02-17 動力伝達シャフト Expired - Fee Related JP6347963B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027402A JP6347963B2 (ja) 2014-02-17 2014-02-17 動力伝達シャフト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027402A JP6347963B2 (ja) 2014-02-17 2014-02-17 動力伝達シャフト

Publications (2)

Publication Number Publication Date
JP2015152116A JP2015152116A (ja) 2015-08-24
JP6347963B2 true JP6347963B2 (ja) 2018-06-27

Family

ID=53894607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027402A Expired - Fee Related JP6347963B2 (ja) 2014-02-17 2014-02-17 動力伝達シャフト

Country Status (1)

Country Link
JP (1) JP6347963B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061238A (ja) * 2015-09-25 2017-03-30 Ntn株式会社 車両用駆動装置
KR102366365B1 (ko) * 2017-05-18 2022-02-25 엘지디스플레이 주식회사 반사형 액정 필름 및 이를 포함하는 표시장치
JP6969269B2 (ja) * 2017-10-11 2021-11-24 トヨタ自動車株式会社 車両用動力伝達シャフト

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228274Y2 (ja) * 1984-11-02 1990-07-30
JP2010036821A (ja) * 2008-08-07 2010-02-18 Toyota Motor Corp 車両用動力伝達部材
JP5250825B2 (ja) * 2008-11-20 2013-07-31 株式会社ジェイテクト 車両用ドライブシャフト
JP2012149685A (ja) * 2011-01-18 2012-08-09 Ntn Corp 等速自在継手用シャフト

Also Published As

Publication number Publication date
JP2015152116A (ja) 2015-08-24

Similar Documents

Publication Publication Date Title
US20060181069A1 (en) Telescopic shaft
KR101428284B1 (ko) 프로펠러 샤프트
JP2009511839A (ja) 取付方法における最適比を有する直接トルクフロー連結部
KR20120136916A (ko) 전동식 동력 보조 조향장치의 감속기
JP6347963B2 (ja) 動力伝達シャフト
JP2019526759A (ja) 等速ジョイント管板上のダンパー
JP6206341B2 (ja) 車両の動力伝達構造
EP3455514B1 (en) Boot assembly for a constant velocity joint
GB2311117A (en) Driveshaft for a motor vehicle driveline
CN101476612A (zh) 一种用于主减速器的扭转减振器
WO2005057035A1 (en) Plunging constant velocity joint for a propshaft tuned for energy absorption
JP2017030452A (ja) 車両のトランスファ構造
KR101187529B1 (ko) 자동차용 앵글드 오프셋 볼타입 등속조인트
JP2020055522A (ja) センターベアリングアセンブリ
US20050130751A1 (en) Plunging constant velocity joint for a propshaft tuned for energy absorption
JP7382706B2 (ja) プロペラシャフト用摺動式等速自在継手
JP2013044349A (ja) 等速自在継手
US9518611B2 (en) Driveshaft assembly
CN103917800B (zh) 扭转振动衰减装置
JP2007120544A (ja) ドライブシャフト
KR100646925B1 (ko) 등속 조인트
CN103883636A (zh) 一种万向节组件
JP4766236B2 (ja) 車両用ドライブシャフト及びその製造方法
JP7382705B2 (ja) プロペラシャフト用摺動式等速自在継手
JP6361614B2 (ja) トランスファ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6347963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees