JP6347330B2 - Epitaxial wafer manufacturing method - Google Patents

Epitaxial wafer manufacturing method Download PDF

Info

Publication number
JP6347330B2
JP6347330B2 JP2015095717A JP2015095717A JP6347330B2 JP 6347330 B2 JP6347330 B2 JP 6347330B2 JP 2015095717 A JP2015095717 A JP 2015095717A JP 2015095717 A JP2015095717 A JP 2015095717A JP 6347330 B2 JP6347330 B2 JP 6347330B2
Authority
JP
Japan
Prior art keywords
growth
heat treatment
temperature
silicon
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015095717A
Other languages
Japanese (ja)
Other versions
JP2016213320A (en
Inventor
一成 須田
一成 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2015095717A priority Critical patent/JP6347330B2/en
Publication of JP2016213320A publication Critical patent/JP2016213320A/en
Application granted granted Critical
Publication of JP6347330B2 publication Critical patent/JP6347330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、エピタキシャルウェーハの製造方法に関する。   The present invention relates to an epitaxial wafer manufacturing method.

気相成長法により、シリコン単結晶基板の表面にエピタキシャル層を形成したシリコンエピタキシャルウェーハは、電子デバイスに広く使用されている。近年、電子デバイスの微細化によって、エピタキシャルウェーハの品質改善が重要な課題となっている。   A silicon epitaxial wafer in which an epitaxial layer is formed on the surface of a silicon single crystal substrate by a vapor deposition method is widely used for electronic devices. In recent years, with the miniaturization of electronic devices, quality improvement of epitaxial wafers has become an important issue.

エピタキシャル層には、成膜条件によって積層欠陥をはじめとする結晶欠陥が発生することがあり、エピタキシャル層成膜により発生した欠陥を総じてエピ欠陥と呼んでいる。このエピ欠陥の発生は、成膜の温度と深く関係しており、より低温ではエピ欠陥が発生しやすく、成膜条件を変更した際にエピ欠陥レベルが悪化する要因の一つとなっている。また、膜厚均一性も成膜条件の影響を受けやすく、低温で膜厚均一性は悪化する傾向がある。   Crystal defects such as stacking faults may occur in the epitaxial layer depending on the film forming conditions, and defects generated by the epitaxial layer film formation are generally called epi defects. The occurrence of epi defects is deeply related to the temperature of film formation. Epi defects tend to occur at lower temperatures, and this is one of the factors that deteriorate the epi defect level when the film formation conditions are changed. Also, the film thickness uniformity is easily affected by the film forming conditions, and the film thickness uniformity tends to deteriorate at low temperatures.

一方で、エピタキシャル層の表面粗さに関しても成膜条件、特に温度と深く関係している。この際の表面粗さとはパーティクルカウンタで算出されるヘイズレベルを表しており、低温でヘイズレベルは低減する傾向となり、エピ欠陥や膜厚均一性とは逆の相関となっており、ヘイズを低減するためにはエピ欠陥レベル、及び膜厚均一性が悪化してしまうという課題があった。   On the other hand, the surface roughness of the epitaxial layer is also closely related to the film forming conditions, particularly the temperature. The surface roughness at this time represents the haze level calculated by the particle counter, and the haze level tends to decrease at low temperatures, which is inversely correlated with epi defects and film thickness uniformity, reducing haze. In order to do so, there is a problem that the epi defect level and the film thickness uniformity deteriorate.

従来のエピタキシャルウェーハ反応工程においては、エピタキシャル成長の反応温度は1050℃〜1170℃の範囲で行われるのが一般的であり、上記反応温度より低温ではEP欠陥の増加や膜厚均一性の悪化、高温ではスリップの発生が起こり、製造条件としては相応しくない。上記反応温度の範囲内においては、前述したように、エピ欠陥レベル、膜厚均一性と表面粗さの一つの指標であるヘイズレベルは逆の相関となっており、ヘイズレベルを低減するとエピ欠陥レベル、膜厚均一性が悪化する傾向があった。   In the conventional epitaxial wafer reaction process, the reaction temperature for epitaxial growth is generally performed in the range of 1050 ° C to 1170 ° C. Below the above reaction temperature, EP defects increase and film thickness uniformity deteriorates. Then, slip occurs and is not suitable as a manufacturing condition. Within the above reaction temperature range, as described above, the epi-defect level, the haze level that is one index of film thickness uniformity and surface roughness have an inverse correlation. There was a tendency for the level and film thickness uniformity to deteriorate.

特許文献1では、主表面が(110)のウェーハを用いエピタキシャル層を成膜したのち、水素雰囲気で熱処理を行うことでヘイズレベルが改善しているが、ヘイズが発生しやすい主表面が(110)のシリコンウェーハに関するものであり、水素雰囲気での熱処理を行うことで、主表面が(100)のシリコンウェーハのヘイズレベルと同等まで低減するというものである。したがって、主表面が(100)のシリコンウェーハ自体のヘイズレベルを低減できる技術ではない。   In Patent Document 1, a wafer having a main surface of (110) is used to form an epitaxial layer, and then heat treatment is performed in a hydrogen atmosphere to improve the haze level. However, the main surface on which a haze is likely to occur is (110). The main surface is reduced to the same level as the haze level of the (100) silicon wafer by performing the heat treatment in a hydrogen atmosphere. Therefore, it is not a technique that can reduce the haze level of a silicon wafer having a main surface of (100).

特開2012-043892号公報JP 2012-043892 A

本発明は、上記した従来技術の問題点に鑑みなされたもので、主表面が(100)のシリコンウェーハの表面にシリコン単結晶エピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法において、エピ欠陥レベル、膜厚均一性を悪化させることなく、ヘイズレベルを低減できるエピタキシャルウェーハの製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and in an epitaxial wafer manufacturing method in which a silicon single crystal epitaxial layer is vapor-grown on the surface of a silicon wafer having a main surface of (100), an epitaxial defect level is provided. An object of the present invention is to provide an epitaxial wafer manufacturing method capable of reducing the haze level without deteriorating film thickness uniformity.

上記課題を解決するために、本発明のシリコンエピタキシャルウェーハの製造方法は、主表面が(100)のシリコンウェーハの表面にシリコン単結晶エピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法であり、主表面が(100)のシリコンウェーハの表面にシリコン単結晶エピタキシャル層を気相成長させる気相成長工程と、前記気相成長工程後に、連続して水素雰囲気で熱処理を行う成長後熱処理工程と、を有し、前記成長後熱処理工程の熱処理温度が、前記気相成長工程の成長温度より低温でありかつ800℃〜1120℃の範囲であることを特徴とする。 In order to solve the above problems, a method for producing a silicon epitaxial wafer of the present invention is a method for producing an epitaxial wafer in which a silicon single crystal epitaxial layer is vapor-phase grown on the surface of a silicon wafer having a main surface of (100). A vapor phase growth step in which a silicon single crystal epitaxial layer is vapor-phase grown on the surface of a silicon wafer having a surface of (100), and a post-growth heat treatment step in which heat treatment is continuously performed in a hydrogen atmosphere after the vapor phase growth step. a heat treatment temperature of the growth after the heat treatment step, wherein the range der Rukoto cold der Li Kui 800 ℃ ~1120 ℃ than the growth temperature of the vapor phase growth step.

前記成長後熱処理工程の熱処理温度が、前記成長温度より、50℃以上低温であるのが好ましい。   The heat treatment temperature in the post-growth heat treatment step is preferably lower than the growth temperature by 50 ° C. or more.

前記成長温度が1050℃〜1170℃の範囲であることが好ましい。   The growth temperature is preferably in the range of 1050 ° C to 1170 ° C.

前記成長後熱処理工程の熱処理温度が、800℃〜1120℃の範囲であることが好ましい。   The heat treatment temperature in the post-growth heat treatment step is preferably in the range of 800 ° C to 1120 ° C.

本発明によれば、主表面が(100)のシリコンウェーハの表面にシリコン単結晶エピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法において、エピ欠陥レベル、膜厚均一性を悪化させることなく、ヘイズレベルを低減できるエピタキシャルウェーハの製造方法を提供することができるという著大な効果を有する。   According to the present invention, in a method for producing an epitaxial wafer in which a silicon single crystal epitaxial layer is vapor-grown on the surface of a silicon wafer having a main surface of (100), the haze can be obtained without deteriorating the epi defect level and film thickness uniformity. It has a remarkable effect that an epitaxial wafer manufacturing method capable of reducing the level can be provided.

本発明のシリコンエピタキシャルウェーハの製造方法の一つの実施の形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the manufacturing method of the silicon epitaxial wafer of this invention. 比較例の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of a comparative example. 実施例の温度プロファイルを示すグラフである。It is a graph which shows the temperature profile of an Example.

図1を参照して、本発明のシリコンエピタキシャルウェーハの一つの実施の形態に係る製造方法を説明する。   With reference to FIG. 1, the manufacturing method which concerns on one embodiment of the silicon epitaxial wafer of this invention is demonstrated.

先ず、搬送装置を用いて、気相成長装置の反応容器内に備えられたサセプタに主表面の結晶方位(100)のシリコン単結晶基板を載置する(仕込み工程、図1のステップ10)。   First, a silicon single crystal substrate having a crystal orientation (100) of the main surface is placed on a susceptor provided in a reaction vessel of a vapor phase growth apparatus using a transfer device (preparation process, step 10 in FIG. 1).

次いで、反応容器内に水素ガスを流した状態で、シリコン単結晶エピタキシャル層を気相成長するための成長温度まで反応容器内の温度を昇温する(昇温工程、図1のステップ12)。この成長温度は基板表面の自然酸化膜を水素で除去できる1000℃以上に設定する。   Next, with the hydrogen gas flowing in the reaction vessel, the temperature in the reaction vessel is raised to a growth temperature for vapor phase growth of the silicon single crystal epitaxial layer (temperature raising step, step 12 in FIG. 1). This growth temperature is set to 1000 ° C. or higher at which the natural oxide film on the substrate surface can be removed with hydrogen.

次に成長温度を保持したままで水素ガスのみを反応容器内に導入しウェーハ表面の自然酸化膜を除去する(ベーク工程、図1のステップ14)。   Next, while maintaining the growth temperature, only hydrogen gas is introduced into the reaction vessel to remove the natural oxide film on the wafer surface (baking step, step 14 in FIG. 1).

次いで、反応容器内を成長温度に保持したままで、水素ガスとともに原料ガスをそれぞれ所定流量で供給し、所定膜厚となるまでエピタキシャル層を成長させる(気相成長工程、図1のステップ16)。   Next, while keeping the inside of the reaction vessel at the growth temperature, the source gas is supplied at a predetermined flow rate together with the hydrogen gas, and the epitaxial layer is grown until a predetermined film thickness is obtained (vapor phase growth step, step 16 in FIG. 1). .

さらに、前記気相成長工程後に、連続して水素雰囲気で成長後熱処理工程を行う(成長後熱処理工程、図1のステップ18)。前記成長後熱処理工程の熱処理温度は、前記気相成長工程の成長温度より低温であることが好ましく、前記成長後熱処理工程の熱処理温度が、前記成長温度より、50℃以上低温であることがより好ましい。   Further, after the vapor phase growth step, a post-growth heat treatment step is continuously performed in a hydrogen atmosphere (post-growth heat treatment step, step 18 in FIG. 1). The heat treatment temperature in the post-growth heat treatment step is preferably lower than the growth temperature in the vapor phase growth step, and the heat treatment temperature in the post-growth heat treatment step is more than 50 ° C. lower than the growth temperature. preferable.

反応容器内の温度を下降させて取り出し温度までエピタキシャルウェーハを冷却する(冷却工程、図1のステップ20)。この冷却工程では、800℃から400℃程度の間で、水素雰囲気から窒素雰囲気へと切換えられる。そして、窒素雰囲気のままで取り出し温度に至ったら気相成長装置からエピタキシャルウェーハを取り出す(取り出し工程、図1のステップ22)。   The temperature in the reaction vessel is lowered to cool the epitaxial wafer to the removal temperature (cooling step, step 20 in FIG. 1). In this cooling step, the hydrogen atmosphere is switched to the nitrogen atmosphere between about 800 ° C. and 400 ° C. Then, when the removal temperature is reached in the nitrogen atmosphere, the epitaxial wafer is taken out from the vapor phase growth apparatus (takeout step, step 22 in FIG. 1).

その後、エピタキシャルウェーハを洗浄し、不良ウェーハを選別し、シリコンエピタキシャルウェーハを得ることができる。   Thereafter, the epitaxial wafer can be cleaned, and the defective wafer can be selected to obtain a silicon epitaxial wafer.

以下に、本発明の実施例をあげてさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の技術思想から逸脱しない限り様々の変形が可能であることは勿論である。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and various modifications can be made without departing from the technical idea of the present invention. Of course.

枚葉式エピタキシャル成長装置において、直径300mm、主表面の面方位(100)のP型シリコン単結晶ウェーハを用いて、原料ガスとしてトリクロロシランを、キャリアガスとして水素を用い、シリコン単結晶エピタキシャル層を気相成長させた。原料ガスの供給量は10slm、キャリアガスの供給量は80slmを選択した。気相成長のみのもの(比較例)及び気相成長後に水素雰囲気での熱処理を行ったもの(実施例)で得られたエピタキシャルウェーハに対して、ヘイズレベル、エピ欠陥レベル、膜厚均一性を評価した。ヘイズレベルはパーティクルカウンタSP2のDW(Darkfield Wide)モードにて、エピ欠陥はSP2のDCO(Darkfield Composite Oblique)モード46nmupにて、膜厚均一性はFT-IRによりエピタキシャル層の膜厚を測定し、得られたエピタキシャル層膜厚の分布から最大値をTmax、最小値をTminとした場合、(Tmax - Tmin)/(Tmax + Tmin)にて算出し評価した。   In a single-wafer epitaxial growth apparatus, using a P-type silicon single crystal wafer having a diameter of 300 mm and a main surface orientation (100), using trichlorosilane as a source gas and hydrogen as a carrier gas, the silicon single crystal epitaxial layer is gasified. Phase growth. The supply amount of source gas was selected to be 10 slm, and the supply amount of carrier gas was selected to be 80 slm. Haze level, epi defect level, and film thickness uniformity for epitaxial wafers obtained by vapor phase growth only (comparative example) and heat treatment in hydrogen atmosphere after vapor phase growth (example) evaluated. The haze level is measured in the DW (Darkfield Wide) mode of the particle counter SP2, the epi defect is measured in the DCO (Darkfield Composite Oblique) mode 46nmup of the SP2, and the film thickness uniformity is measured by FT-IR. When the maximum value was Tmax and the minimum value was Tmin from the distribution of the obtained epitaxial layer thickness, the evaluation was performed by (Tmax−Tmin) / (Tmax + Tmin).

(比較例)
成膜条件を成長温度1170℃とし、気相成長のみ行ったエピタキシャルウェーハのエピ欠陥レベル、膜厚均一性、ヘイズレベルはそれぞれ3.0個/Wf、±0.82%、0.81ppmであった。比較例のエピタキシャル層の積層時の温度プロファイルを図2に示す。
(Comparative example)
The epitaxial defect level, film thickness uniformity, and haze level of the epitaxial wafer subjected only to vapor phase growth at the growth temperature of 1170 ° C. were 3.0 / Wf, ± 0.82%, and 0.81 ppm, respectively. FIG. 2 shows a temperature profile when the epitaxial layer of the comparative example is stacked.

(実施例)
実施例として、比較例と同様にして、成膜条件を成長温度1170℃とし、気相成長を行った後、連続して1000℃の水素雰囲気にて成長後熱処理を行ったエピタキシャルウェーハの、エピ欠陥レベル、膜厚均一性、ヘイズレベルはそれぞれ3.1個/Wf、±0.81%、0.53ppmであった。比較例と実施例の結果を表1に示すが、ヘイズレベルが実施例において低減しているのがわかる。また、実施例のエピタキシャル層の積層時及び成長後熱処理時の温度プロファイルを図3に示す。
(Example)
As an example, in the same manner as in the comparative example, after the vapor deposition was performed at the growth temperature of 1170 ° C., the epitaxial wafer was epitaxially grown after the post-growth heat treatment in a hydrogen atmosphere at 1000 ° C. The defect level, film thickness uniformity, and haze level were 3.1 / Wf, ± 0.81%, and 0.53 ppm, respectively. The results of the comparative example and the example are shown in Table 1, and it can be seen that the haze level is reduced in the example. Moreover, the temperature profile at the time of lamination | stacking of the epitaxial layer of an Example and the heat processing after a growth is shown in FIG.

Figure 0006347330
Figure 0006347330

(実験例)
枚葉式エピタキシャル成長装置において、直径300mm、主表面の面方位(100)のP型シリコン単結晶ウェーハを用いて、原料ガスとしてトリクロロシランを、キャリアガスとして水素を用い、シリコン単結晶エピタキシャル層を気相成長させた。原料ガスの供給量は10slm、キャリアガスの供給量は80slmを選択した。成膜条件を成長温度1050〜1170℃とし、気相成長のみを行った場合と、前記温度にてエピタキシャル層の積層後、水素雰囲気での成長後熱処理を700℃〜1170℃にて行った場合のヘイズレベルの結果を表2に示す。
(Experimental example)
In a single-wafer epitaxial growth apparatus, using a P-type silicon single crystal wafer having a diameter of 300 mm and a main surface orientation (100), using trichlorosilane as a source gas and hydrogen as a carrier gas, the silicon single crystal epitaxial layer is gasified. Phase growth. The supply amount of source gas was selected to be 10 slm, and the supply amount of carrier gas was selected to be 80 slm. When film-forming conditions are growth temperatures of 1050 to 1170 ° C. and only vapor phase growth is performed, and after growth of an epitaxial layer at the above temperature, post-growth heat treatment in a hydrogen atmosphere is performed at 700 to 1170 ° C. Table 2 shows the results of haze levels.

Figure 0006347330
Figure 0006347330

表2からわかるように、成長温度が1050℃〜1170℃の温度域においては、成長後熱処理工程の熱処理温度が800℃以上1120℃以下、かつ成長温度より50℃以上低い場合にヘイズレベルが気相成長のみを行った場合に比較して低減しており、本発明の実施形態を用いることで、エピ欠陥レベル、膜厚均一性を悪化させることなくヘイズレベルの低減が可能である。   As can be seen from Table 2, in the temperature range of 1050 ° C to 1170 ° C, the haze level is significant when the heat treatment temperature in the post-growth heat treatment step is 800 ° C or higher and 1120 ° C or lower and 50 ° C or lower than the growth temperature. Compared with the case where only the phase growth is performed, by using the embodiment of the present invention, it is possible to reduce the haze level without deteriorating the epi defect level and the film thickness uniformity.

Claims (3)

主表面が(100)のシリコンウェーハの表面にシリコン単結晶エピタキシャル層を気相成長させるエピタキシャルウェーハの製造方法であり、
主表面が(100)のシリコンウェーハの表面にシリコン単結晶エピタキシャル層を気相成長させる気相成長工程と、
前記気相成長工程後に、連続して水素雰囲気で熱処理を行う成長後熱処理工程と、
を有し、
前記成長後熱処理工程の熱処理温度が、前記気相成長工程の成長温度より低温でありかつ800℃〜1120℃の範囲であることを特徴とするシリコンエピタキシャルウェーハの製造方法。
An epitaxial wafer manufacturing method in which a silicon single crystal epitaxial layer is vapor-phase grown on the surface of a silicon wafer having a main surface of (100),
A vapor phase growth step in which a silicon single crystal epitaxial layer is vapor-phase grown on the surface of a (100) silicon wafer,
A post-growth heat treatment step of continuously performing heat treatment in a hydrogen atmosphere after the vapor phase growth step;
Have
The heat treatment temperature of the growth after the heat treatment step, method for producing a silicon epitaxial wafer, comprising range der Rukoto cold der Li Kui 800 ℃ ~1120 ℃ than the growth temperature of the vapor phase growth step.
前記成長後熱処理工程の熱処理温度が、前記成長温度より、50℃以上低温であることを特徴とする請求項1記載のシリコンエピタキシャルウェーハの製造方法。   The method for producing a silicon epitaxial wafer according to claim 1, wherein a heat treatment temperature in the post-growth heat treatment step is 50 ° C. or more lower than the growth temperature. 前記成長温度が1050℃〜1170℃の範囲であることを特徴とする請求項1又は2記載のシリコンエピタキシャルウェーハの製造方法。   The method for producing a silicon epitaxial wafer according to claim 1 or 2, wherein the growth temperature is in the range of 1050C to 1170C.
JP2015095717A 2015-05-08 2015-05-08 Epitaxial wafer manufacturing method Active JP6347330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095717A JP6347330B2 (en) 2015-05-08 2015-05-08 Epitaxial wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095717A JP6347330B2 (en) 2015-05-08 2015-05-08 Epitaxial wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2016213320A JP2016213320A (en) 2016-12-15
JP6347330B2 true JP6347330B2 (en) 2018-06-27

Family

ID=57552028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095717A Active JP6347330B2 (en) 2015-05-08 2015-05-08 Epitaxial wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP6347330B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3965931B2 (en) * 2001-04-06 2007-08-29 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP2006032799A (en) * 2004-07-20 2006-02-02 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and its manufacturing method
JP2006040972A (en) * 2004-07-22 2006-02-09 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and its manufacturing method
JP5375768B2 (en) * 2010-08-17 2013-12-25 信越半導体株式会社 Manufacturing method of silicon epitaxial wafer
JP6156188B2 (en) * 2014-02-26 2017-07-05 株式会社Sumco Epitaxial silicon wafer manufacturing method

Also Published As

Publication number Publication date
JP2016213320A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP4842094B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
WO2018120731A1 (en) Manufacturing method for silicon epitaxial wafer
KR20130040178A (en) Method for producing single crystal 3c-sic substrate and resulting single-crystal 3c-sic substrate
JP6298057B2 (en) Pretreatment method for base substrate, and manufacturing method of laminate using base substrate subjected to pretreatment
JP2019112269A (en) Method of manufacturing silicon carbide single crystal
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP5273150B2 (en) Manufacturing method of silicon epitaxial wafer
US10774444B2 (en) Method for producing SiC epitaxial wafer including forming epitaxial layer under different conditions
JP5996406B2 (en) Method for manufacturing silicon carbide epitaxial wafer
JP4894390B2 (en) Manufacturing method of semiconductor substrate
JP6150075B2 (en) Epitaxial wafer manufacturing method
US9957639B2 (en) Method for producing epitaxial silicon carbide wafer
JP2010248022A (en) Group iii nitride semiconductor self-standing substrate
JP6347330B2 (en) Epitaxial wafer manufacturing method
JP6489321B2 (en) Epitaxial wafer manufacturing method
JP5589867B2 (en) Manufacturing method of silicon epitaxial wafer
JP6924593B2 (en) Manufacturing method of epitaxial wafer
WO2017164036A1 (en) Method for producing group iii nitride laminate
JP5544859B2 (en) Manufacturing method of silicon epitaxial wafer
JP2014201457A (en) Method for producing crystal laminate structure
JP4600086B2 (en) Multilayer epitaxial silicon single crystal wafer manufacturing method and multilayer epitaxial silicon single crystal wafer
TW202314035A (en) Method for producing heteroepitaxial wafer
KR101905860B1 (en) Method of fabrication wafer
JP2010254483A (en) Nitride semiconductor substrate and method for producing the same
US20140137793A1 (en) Method of fabricating wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180515

R150 Certificate of patent or registration of utility model

Ref document number: 6347330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250