JP6333207B2 - Bridge construction method and bridge structure - Google Patents

Bridge construction method and bridge structure Download PDF

Info

Publication number
JP6333207B2
JP6333207B2 JP2015072910A JP2015072910A JP6333207B2 JP 6333207 B2 JP6333207 B2 JP 6333207B2 JP 2015072910 A JP2015072910 A JP 2015072910A JP 2015072910 A JP2015072910 A JP 2015072910A JP 6333207 B2 JP6333207 B2 JP 6333207B2
Authority
JP
Japan
Prior art keywords
girder
abutment
bridge
concrete
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015072910A
Other languages
Japanese (ja)
Other versions
JP2016191279A (en
Inventor
俊太朗 轟
俊太朗 轟
敏弥 田所
敏弥 田所
卓稔 古屋
卓稔 古屋
大 岡本
大 岡本
西岡 英俊
英俊 西岡
徹也 佐々木
徹也 佐々木
真一 玉井
真一 玉井
恭彦 西
恭彦 西
達也 下津
達也 下津
裕輔 高野
裕輔 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2015072910A priority Critical patent/JP6333207B2/en
Publication of JP2016191279A publication Critical patent/JP2016191279A/en
Application granted granted Critical
Publication of JP6333207B2 publication Critical patent/JP6333207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は、耐震性を向上させかつ長スパン化が可能な橋梁の構築方法及びその橋梁構造物に関する。   The present invention relates to a bridge construction method capable of improving earthquake resistance and enabling a long span and a bridge structure thereof.

ジオグリッドで補強した補強盛土に接合されたRC橋台と、該RC橋台間に位置する橋桁を一体化した補強盛土(GRS(Geosynthetic-Reinforced Soil))一体橋梁が知られている。
例えば、特許文献1に示される補強盛土一体橋梁構造物では、堅牢で耐震性に優れた橋梁構造物が開示されている。
An RC abutment joined to a reinforced embankment reinforced with geogrids and a reinforced embankment (GRS (Geosynthetic-Reinforced Soil)) integrated bridge in which bridge girders located between the RC abutments are integrated are known.
For example, in the reinforced embankment integrated bridge structure disclosed in Patent Document 1, a bridge structure that is robust and excellent in earthquake resistance is disclosed.

特許文献1には、補強盛土一体橋梁構造物1として、図10に示されるように、ジオグリッド2と土嚢3とを用いて補強盛土4を構築するとともに、間隔をおいて位置する対面側にも、同様に、ジオグリッド2と土嚢3とを用いて補強盛土4を構築した後、これら対面する補強盛土4の壁面部5にてRC橋台6をそれぞれ設置し、これらRC橋台6とRC橋桁7の梁部分とをコンクリートにより剛結(剛結部を符号8で示す)したラーメン橋梁部9に関する構造体が開示されている。また、このように構成された補強盛土一体橋梁構造物1上には、列車が走行する線路Rが設置されている。   In Patent Document 1, as a reinforced embankment-integrated bridge structure 1, a reinforced embankment 4 is constructed using a geogrid 2 and a sandbag 3 as shown in FIG. Similarly, after constructing the reinforced embankment 4 using the geogrid 2 and the sandbag 3, RC abutments 6 are respectively installed on the wall surfaces 5 of the reinforced embankment 4 facing each other. 7 shows a structure related to a rigid frame bridge portion 9 in which the beam portion 7 is rigidly connected with concrete (the rigid connection portion is indicated by reference numeral 8). Moreover, on the reinforced embankment integrated bridge structure 1 configured as described above, a track R on which a train travels is installed.

特許第4863268号公報Japanese Patent No. 4863268

ところで、上記に示される補強盛土一体橋梁では、RC橋台とRC橋桁の梁部分とをコンクリートで一体化してラーメン橋梁部とすることで、耐震性の向上を図るとともに、支承部の省略が可能となり、経済的かつ維持管理の負担を軽減することができる構造となっている。
しかしながら、RC橋台とRC橋桁の梁部分とを結合した補強盛土一体橋梁に関する設計・施工実績では、短スパンの橋梁が中心であり、長スパンの橋梁の研究・施工事例がなく、設計法が確立されていない。
By the way, in the reinforced embankment integrated bridge shown above, the RC abutment and the RC bridge girder are integrated with concrete to make a ramen bridge part, thereby improving earthquake resistance and omitting the support part. It has a structure that can reduce the burden of maintenance and management economically.
However, in the design and construction results of the reinforced embankment bridge that combines the RC abutment and the beam part of the RC bridge girder, the short span bridge is the center, there is no research and construction example of the long span bridge, and the design method is established It has not been.

このため、今後、補強盛土一体橋梁の適用を拡大していくには、補強盛土一体橋梁の長スパン化に関する施工技術の確立が必要である。
また、上述した補強盛土一体橋梁は、桁形式としてRC桁が適用されるが、図10に符号Mで示される桁長さの長スパン化にあたっては、PC桁の適用が有効である。
PC桁は、人口減少及び少子高齢化により熟練技術者が少なくなることを鑑み、技術者の熟練度にかかわらず安定した品質を確保するには、施工現場とは別に設置された現場ヤード内で製作するプレキャスト方式とすることが望ましい。
しかしながら、補強盛土一体橋梁の長スパン化のためにPC桁を適用する技術は未だ確立されておらず、新たな技術が望まれていた。
For this reason, in order to expand the application of reinforced embankment-integrated bridges in the future, it is necessary to establish construction technology for extending the span of reinforced embankment-integrated bridges.
In addition, the RC girder is applied as the girder form to the above-mentioned reinforced embankment integrated bridge, but the application of the PC girder is effective in increasing the girder length indicated by the symbol M in FIG.
In order to ensure stable quality regardless of the skill level of engineers, the PC girder is in a site yard that is set up separately from the construction site, in view of the decrease in population and the declining birthrate and aging population. It is desirable to make the precast method to be manufactured.
However, a technique for applying a PC girder has not yet been established for extending the span of a reinforced embankment-integrated bridge, and a new technique has been desired.

ここで、補強盛土一体橋梁にPC桁を適用する際の具体的な問題点は、補強土橋台とPC桁の接合構造である。接合部には、桁自重、温度変化や収縮・クリープ、列車荷重、地震時の慣性力、それらに加え、接合後のクリープ変形による不静定力など、曲げ、せん断、ねじりが連成し作用する。一方で、補強盛土一体橋梁の接合部は損傷が発生しない構造とする必要がある。
すなわち、補強土橋台とPC桁の接合構造は、全ての作用に対して損傷を許容しない剛結構造とする必要があるが、その研究が十分に進んでいないのが実情である。
Here, a specific problem in applying the PC girder to the reinforced embankment integrated bridge is a joint structure of the reinforced earth bridge base and the PC girder. Girder weight, temperature change, shrinkage / creep, train load, inertial force during earthquake, and instability due to creep deformation after joining, bending, shearing, and torsion are coupled in the joint. To do. On the other hand, the joint part of the reinforced embankment integrated bridge needs to have a structure that does not cause damage.
In other words, the joint structure between the reinforced earth bridge abutment and the PC girder needs to be a rigid structure that does not allow damage to all functions, but the actual situation is that the research has not progressed sufficiently.

また、想定される最大級の地震に対して、構造物全体が損傷しない設計とすることは必ずしも合理的ではない。そのため、早期復旧が可能な箇所に損傷を集中させ、その箇所の塑性域で効率的に地震時のエネルギーを吸収する設計とする必要がある。補強盛土一体橋梁において、比較的復旧し易い箇所は、補強土橋台の壁面部である。したがって、接合部は損傷させず、補強土橋台の壁面部が損傷する接合構造とする必要がある。   In addition, it is not always reasonable to design a structure that does not damage the entire structure against the largest possible earthquake. For this reason, it is necessary to design a design that concentrates damage at a location where early recovery is possible, and efficiently absorbs energy during an earthquake in the plastic area of that location. In the reinforced embankment-integrated bridge, the part that is relatively easy to recover is the wall surface portion of the reinforced earth bridge. Therefore, it is necessary to have a joint structure in which the joint portion is not damaged and the wall surface portion of the reinforced earth abutment is damaged.

この発明は、上述した事情に鑑みてなされたものであって、補強土橋台にPC桁を適用することで長スパン化を実現するとともに、補強土橋台とPC桁の接合構造を剛結とし、地震時には補強土橋台の壁面部が損傷することを可能とする橋梁の構築方法及びその橋梁構造物を提供する。   This invention has been made in view of the above-described circumstances, and realizes a long span by applying a PC girder to the reinforced earth abutment, and makes the joint structure between the reinforced earth abutment and the PC girder rigid, Provided is a bridge construction method and a bridge structure capable of damaging a wall surface of a reinforced earth abutment during an earthquake.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の橋梁の構築方法は、ジオグリッドで補強した補強盛土に接合されたRC橋台上に、PC桁の主桁を載置するPC桁設置工程と、前記PC桁と一体に形成されたフランジの端面から突出した鉄筋及び前記PC桁の主桁に位置する接合面に配した鉄筋と、前記RC橋台から突出した鉄筋とを互いに重ねて配置する配筋工程と、前記重ねられた鉄筋を覆ってコンクリートを打設するコンクリート打設工程と、を有する橋梁の構築方法であって、前記PC桁の端部に位置するフランジには切欠部が形成されており、該PC桁のフランジから突出した鉄筋及び接合面に配した鉄筋を、前記RC橋台の鉄筋に重ねて配置する前記配筋工程を行うことを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The bridge construction method of the present invention includes a PC girder installation step of placing a PC girder main girder on an RC abutment joined to a reinforced embankment reinforced with geogrid, and a flange formed integrally with the PC girder. A reinforcing bar projecting from the end face of the steel bar and a reinforcing bar arranged on the joint surface located in the main girder of the PC girder, and a reinforcing bar projecting from the RC abutment, and a reinforcing bar covering step A concrete placing process for placing concrete, wherein a flange located at an end of the PC girder is formed with a notch and protruded from the flange of the PC girder The reinforcing bar is arranged in such a manner that the reinforcing bar and the reinforcing bar arranged on the joint surface are arranged so as to overlap the reinforcing bar of the RC abutment.

本発明の橋梁構造物は、ジオグリッドで補強した補強盛土に接合されたRC橋台と、
該RC橋台上に設置された複数の主桁及びこれら主桁を互いに接合するフランジを有するPC桁と、前記PC桁のフランジの端面及び接合面と前記RC橋台を、内部の鉄筋及びコンクリートを介して剛結した剛結構造部と、を具備し、前記剛結構造は、前記PC桁の端部のフランジに位置する切欠部にて、該PC桁のフランジから突出した鉄筋が、前記RC橋台の鉄筋に重ね合わされた状態で、コンクリートにより覆われることで形成されることを特徴とする。
The bridge structure of the present invention includes an RC abutment joined to a reinforced embankment reinforced with geogrid,
A PC girder having a plurality of main girders installed on the RC abutment and a flange for joining the main girders to each other, and an end surface and a joining surface of the flange of the PC girder and the RC abutment via internal reinforcing bars and concrete And the rigid structure has a notch portion located at the flange of the end portion of the PC girder, and a reinforcing bar protruding from the flange of the PC girder is connected to the RC abutment. It is characterized by being formed by being covered with concrete in a state of being overlaid on the reinforcing bars.

本発明に示される橋梁の構築方法によれば、PC桁の端部に位置するフランジには切欠部が形成されており、この切欠部にて、該PC桁のフランジから突出した鉄筋及び前記PC桁の主桁に位置する接合面に配した鉄筋を、補強土橋台の鉄筋に重ねて配置する配筋工程を行った後、これら重ねられた鉄筋を覆ってコンクリートを打設するコンクリート打設工程を行うようにした。これにより、切欠部を経由してPC桁が補強土橋台に剛結される。   According to the method for constructing a bridge shown in the present invention, a notch is formed in the flange located at the end of the PC girder, and the reinforcing bar protruding from the flange of the PC girder and the PC are formed in this notch. A concrete placement process in which the reinforcing bars placed on the joint surface located in the main girder of the girder are placed over the reinforcing bars of the reinforced earth bridge abutment, and then concrete is placed over the piled reinforcing bars To do. As a result, the PC girder is rigidly connected to the reinforced earth bridge via the notch.

一方、本発明に示される橋梁構造物によれば、PC桁の端部のフランジに位置する切欠部にて、該PC桁のフランジから突出した鉄筋が、補強土橋台の鉄筋に重ね合わされた状態で、コンクリートにより覆われる剛結構造部を具備するようにした。これにより、切欠部を経由してPC桁がRC橋台に剛結することができる。   On the other hand, according to the bridge structure shown in the present invention, the reinforcing bar protruding from the flange of the PC girder is overlapped with the reinforcing bar of the reinforcing earth abutment at the notch located at the flange of the end of the PC girder. Thus, a rigid structure part covered with concrete is provided. Thereby, the PC girder can be rigidly connected to the RC abutment via the notch.

すなわち、本発明(橋梁の構築方法、橋梁構造物)では、PC桁及び補強土橋台の接合部位を剛結構造とすることによって、橋梁全体の耐震性を高めることができる。
また、本発明では、補強土橋台上にPC桁を接合できる構成であるので、該PC桁にプレストレス構造を採用する等によって橋梁のスパンを長大化することができ、補強盛土一体橋梁の適用範囲の拡大を図ることができる。
さらに、本発明では、コンクリートが打設された打設コンクリート補強土橋台の外側面と、補強土橋台の外側面との間に、ハンチ部を追加形成することで、補強土橋台の壁面幅よりも接合部の断面を増幅し、地震時に接合部を損傷させず確実に補強土橋台の壁面部が損傷させることができる。
これに加えて、PC桁端部のフランジに形成された切欠部を、PC桁の主桁の幅寸法を最小限とする範囲に形成することで、該切欠部での接合部を最大幅に設けることができ、接合部を確実に剛結することができる。
That is, in the present invention (a bridge construction method and a bridge structure), the joint portion of the PC girder and the reinforced earth abutment has a rigid connection structure, thereby improving the earthquake resistance of the entire bridge.
Further, in the present invention, since the PC girder can be joined on the reinforced earth bridge platform, the span of the bridge can be lengthened by adopting a pre-stress structure or the like for the PC girder. The range can be expanded.
Furthermore, in the present invention, a haunch part is additionally formed between the outer surface of the cast concrete reinforced earth abutment on which concrete is cast and the outer surface of the reinforced earth abutment. In addition, the cross section of the joint can be amplified and the wall of the reinforced earth bridge can be surely damaged without damaging the joint during an earthquake.
In addition to this, by forming the notch formed in the flange of the PC girder end in a range that minimizes the width dimension of the main girder of the PC girder, the joint at the notch is maximized. It can be provided, and the joint can be securely rigidly connected.

本発明の実施形態に係る「補強盛土の構築工程」を示す図である。It is a figure which shows the "reinforcement embankment construction process" concerning the embodiment of the present invention. 本発明の実施形態に係る「RC橋台の設置工程」を示す図である。It is a figure which shows the "RC abutment installation process" concerning the embodiment of the present invention. 本発明の実施形態に係る「PC桁の設置工程」を示す図である。It is a figure which shows the "PC girder installation process" concerning the embodiment of the present invention. 本発明の実施形態に係る「配筋工程」を示す図である。It is a figure which shows the "bar arrangement process" concerning embodiment of this invention. PC桁端部の各側部を切り取ることで切欠部が形成されたことを示す平面図であって、(A)は側部切り取り前、(B)は側部切り取り後の図である。It is a top view which shows that the notch part was formed by cutting off each side part of a PC girder edge part, (A) is a figure before side part cutting, (B) is a figure after side part cutting. PC桁に形成された切欠部内の接合部から突出した鉄筋(L0)を示す斜視図である。It is a perspective view which shows the reinforcing bar (L0) which protruded from the junction part in the notch part formed in PC girder. (A)はPC桁主桁の端部を示す平面図、(B)はPC桁主桁の端部幅寸法を最小限したことを示す平面図である。(A) is a top view which shows the edge part of a PC girder main girder, (B) is a top view which shows having minimized the edge part width dimension of the PC girder main girder. (A)は常時に生じる曲げモーメントを示す図、(B)は地震発生時に生じる曲げモーメントを示す図である。(A) is a figure which shows the bending moment which always arises, (B) is a figure which shows the bending moment which arises at the time of the occurrence of an earthquake. 常時及び地震発生時の作用をまとめた表である。It is a table that summarizes the actions at all times and when an earthquake occurs. 従来のRC橋梁を示す図である。It is a figure which shows the conventional RC bridge.

本発明の実施形態に係る橋梁の構築方法及びその橋梁構造物について、図1〜図9を参照して説明する。
まず、図1〜図9を参照して、実施形態に係る橋梁の構築方法について工程順に説明する。
A bridge construction method and a bridge structure according to an embodiment of the present invention will be described with reference to FIGS.
First, with reference to FIGS. 1-9, the construction method of the bridge which concerns on embodiment is demonstrated to process order.

〔補強盛土の構築工程〕
図1に示すように、支持地盤10上に、ジオグリッド11と称する格子状の樹脂製の繊維材料を引張抵抗材として配置し、これを折り返した内部に、土嚢12を層状に積み上げることにより補強盛土13を構築する。なお、この補強盛土13は、後述するRC橋台のスパンに合わせて間隔をおいて構築する。
[Reinforcement embankment construction process]
As shown in FIG. 1, a grid-like resin fiber material called geogrid 11 is arranged on a supporting ground 10 as a tensile resistance material, and the sandbags 12 are stacked in layers inside the folded back to reinforce. The embankment 13 is constructed. In addition, this reinforcement embankment 13 is constructed | assembled at intervals according to the span of RC abutment mentioned later.

〔RC橋台の設置工程〕
次に、図2に示すように、支持地盤10が軟弱な場合には、補強盛土13の盛り立てによる地盤沈下などが収束した段階で基礎杭(図示略)などの基礎を施工するが、支持地盤10が堅固な場合には、基礎杭は不要となる。
次に、補強盛土13の対向面となる壁面部14にRC橋台15をそれぞれ設置し、このとき、該RC橋台15は、補強盛土13の壁面部14に対して密着及び接合して一体化する構造とする。
[RC abutment installation process]
Next, as shown in FIG. 2, when the supporting ground 10 is soft, foundations such as foundation piles (not shown) are constructed at the stage when the ground subsidence due to the embankment of the reinforcing embankment 13 has converged. When the ground 10 is solid, no foundation pile is required.
Next, RC abutments 15 are respectively installed on the wall surface portions 14 that are opposite surfaces of the reinforcing embankment 13. At this time, the RC abutments 15 are in close contact with and joined to the wall surface portion 14 of the reinforcing embankment 13. Structure.

〔PC桁の設置工程〕
次に、図3に示すように、ジオグリッド11で補強した補強盛土13に接合されたRC橋台15上に、PC桁20を載置する。
このPC桁20は橋梁施工現場近くの現場ヤード内にてプレキャスト方式により製造される。
また、このPC桁20は、図4に示すように、ウエブを構成する複数の主桁16と、これら主桁16の側部を互いに接合して一体化する板状のフランジ17とを有するものであって、RC橋台15上に主桁16の端部が載置されることで、該RC橋台15上に設置される。
[PC girder installation process]
Next, as shown in FIG. 3, the PC girder 20 is placed on the RC abutment 15 joined to the reinforcing embankment 13 reinforced with the geogrid 11.
The PC girder 20 is manufactured by a precast method in a site yard near the bridge construction site.
Further, as shown in FIG. 4, the PC girder 20 has a plurality of main girders 16 constituting a web and a plate-like flange 17 for joining and integrating the side portions of the main girder 16 to each other. In this case, the end of the main girder 16 is placed on the RC abutment 15 so that the RC abutment 15 is installed.

〔配筋工程〕
次に、図4〜図6に示すように、PC桁20のフランジ17の端面17Aから突出した複数本の鉄筋L1と、PC桁20の切欠部22(後述する)に形成された接合部33(後述する)から突出した鉄筋L0、RC橋台15から突出した複数本の鉄筋L2とを互いに重ねるように配置することで、鉄筋カゴ構造体21を実現している。
鉄筋L1の余長部は、PC桁20のフランジ17の端面17Aから水平方向に突出している。また、鉄筋L2は、全体として四角形のカゴ状に形成されて、その余長部がRC橋台15から垂直方向上方に向けて突出したものである。
なお、図5及び図6に示されるように、PC桁20は、端部の各側部20Aをそれぞれ切り取ることで切欠部22が形成され、この切欠部22内に接合部33が形成されるものである。
ここで、図5(A)〜図5(B)には、PC桁20の端部の各側部20Aを切り取る様子が示されており、図5(A)は側部20Aを切り取る前の図、図5(B)は側部20Aを切り取った後に形成された切欠部22を示す図である。
[Bar arrangement process]
Next, as shown in FIGS. 4 to 6, a plurality of reinforcing bars L <b> 1 projecting from the end surface 17 </ b> A of the flange 17 of the PC girder 20 and a joint 33 formed in a notch 22 (described later) of the PC girder 20. Reinforcing bar cage structure 21 is realized by arranging reinforcing bar L0 protruding from (described later) and a plurality of reinforcing bars L2 protruding from RC abutment 15 so as to overlap each other.
The extra length part of the reinforcing bar L1 protrudes from the end surface 17A of the flange 17 of the PC girder 20 in the horizontal direction. The reinforcing bar L2 is formed in a square basket shape as a whole, and its extra length protrudes from the RC abutment 15 upward in the vertical direction.
As shown in FIGS. 5 and 6, the PC girder 20 has a notch 22 formed by cutting each side 20 </ b> A at the end, and a joint 33 is formed in the notch 22. Is.
Here, FIGS. 5A to 5B show a state in which each side portion 20A of the end portion of the PC girder 20 is cut, and FIG. 5A is a state before the side portion 20A is cut. FIG. 5 (B) is a view showing the notch 22 formed after the side portion 20A is cut off.

また、鉄筋L1は、フランジ17の上面に沿って互いに平行に配置された上縁鉄筋18と、該フランジ17の下面に沿って互いに平行に配置された下縁鉄筋19とからなり、これら鉄筋18、19のいずれもが、RC橋台15から突出した鉄筋L2に重ね合わされている。
また、上縁鉄筋18の先端部(符号18Aで示す)は垂直方向の下方に屈曲されており、これによりRC橋台15から突出した鉄筋L2を囲みかつ該鉄筋L2と平行となるように配置されている。さらに、上縁鉄筋18の最先端部(符号18Bで示す)は内側に向けて斜めに折曲されており、この折曲部により、ハンチ部H(図4、図8参照)の形成が可能となる。
The reinforcing bar L1 includes an upper edge reinforcing bar 18 arranged in parallel with each other along the upper surface of the flange 17 and a lower edge reinforcing bar 19 arranged in parallel with each other along the lower surface of the flange 17. , 19 are superimposed on the reinforcing bar L2 protruding from the RC abutment 15.
Further, the tip end portion (indicated by reference numeral 18A) of the upper edge reinforcing bar 18 is bent downward in the vertical direction, so that the reinforcing bar L2 protruding from the RC abutment 15 is surrounded and parallel to the reinforcing bar L2. ing. Furthermore, the most advanced portion (indicated by reference numeral 18B) of the upper edge reinforcing bar 18 is bent obliquely inward, and the bent portion can form a haunch portion H (see FIGS. 4 and 8). It becomes.

また、PC桁20の端部は図4に符号Fで示されるようになっており、この端部Fが位置する箇所は、主桁16に対して内側に凹んだ切欠部22となっている。そして、この切欠部22内にて、フランジ17の端面から鉄筋L1が突出されるとともに、該鉄筋L1と接合面33に配した鉄筋L0、RC橋台15からのL2とが重なりあって鉄筋カゴ構造体21が形成されている。   Further, the end portion of the PC girder 20 is indicated by the symbol F in FIG. 4, and the location where the end portion F is located is a notch 22 that is recessed inward with respect to the main girder 16. . And in this notch part 22, while the reinforcing bar L1 protrudes from the end surface of the flange 17, the reinforcing bar L1 and the reinforcing bar L0 arranged on the joint surface 33 and L2 from the RC abutment 15 are overlapped, and the reinforcing bar cage structure. A body 21 is formed.

〔コンクリート打設工程〕
図4に示すように、PC桁20の切欠部22を含む端部Fに、重ねられた鉄筋L1、L0、L2からなる鉄筋カゴ構造体21を覆うようにコンクリートを打設する(以下、打設コンクリート30と言う)。
この打設コンクリート30は、鉄筋カゴ構造体21を介して、PC桁20と、RC橋台15とを接合するものであって、この接合によって剛結構造部31が形成されている。
[Concrete placing process]
As shown in FIG. 4, concrete is placed on the end F including the notch 22 of the PC girder 20 so as to cover the rebar cage structure 21 composed of the rebars L 1, L 0, and L 2 that are overlaid (hereinafter referred to as hammering). Called concrete 30).
This cast concrete 30 joins the PC girder 20 and the RC abutment 15 via the reinforcing bar cage structure 21, and a rigid structure 31 is formed by this joining.

さらに、打設コンクリート30の外側面30Aと、RC橋台15の外側面15Aとの間には、ハンチ部40が形成されている。
このハンチ部40は、上述した上縁鉄筋18の折曲された最先端部18Bに沿うように形成されるものであって、その存在により補強土橋台の壁面幅よりも接合部の断面を増幅させ、地震時に接合部は損傷させず補強土橋台の壁面部を先行して損傷させることができる。
Further, a haunch portion 40 is formed between the outer surface 30 </ b> A of the cast concrete 30 and the outer surface 15 </ b> A of the RC abutment 15.
The haunch portion 40 is formed along the bent most distal end portion 18B of the upper edge reinforcing bar 18, and the presence thereof amplifies the cross section of the joint portion rather than the wall width of the reinforced earth abutment. In the event of an earthquake, the joint portion can be damaged in advance without damaging the joint.

図7(A)及び(B)に示されるように、端部幅寸法aを、従来から縮小させて最小限とすることで形成されている(従来の主桁16´の端部幅寸法を符号a´で示す)。
また、接触構造部32における、主桁16と、打設コンクリート30又はRC橋台15との接合面33は、摩擦力向上のため、遅延剤や凸凹シート、横締めを施すと良い。
As shown in FIGS. 7A and 7B, it is formed by reducing the end width dimension a from the conventional one to a minimum (the end width dimension of the conventional main girder 16 'is reduced). (Indicated by the symbol a ′).
In addition, the contact surface 33 of the main structure 16 and the cast-in concrete 30 or the RC abutment 15 in the contact structure portion 32 may be subjected to a retarder, an uneven sheet, or lateral tightening to improve the frictional force.

また、上記橋梁構造物100は、上述したように、PC桁20とRC橋台15との接合部位に接触構造部32を設け、この接触構造部32にて、主桁16と、打設コンクリート30又はRC橋台15との接合面33及び接合面33に配した鉄筋L0を介して接触配置した。
これにより、図8(A)に示すように、常時においては、主に負の曲げモーメント(符号A1で示す)が生じるため、PC桁20に加わる力S(桁自重、温度変化や収縮・クリープ、列車荷重などで生じる力)に対して、鉄筋L1(の中の主に上縁鉄筋18、19)で抵抗する。
また、図8(B)に示すように、地震発生時においては、PC桁20に過大な力が掛かった場合には、接合面33の摩擦及び接合面33に配した鉄筋L0で抵抗する。そして、以上の点をまとめたのが、図9に示す表となる。
すなわち、本例の橋梁構造物100では、PC桁20及びRC橋台15の接合部位を剛結構造部31とすることによって、橋梁全体の耐震性を高めることができる。
Further, as described above, the bridge structure 100 is provided with the contact structure portion 32 at the joint portion between the PC girder 20 and the RC abutment 15, and in this contact structure portion 32, the main girder 16 and the cast concrete 30. Alternatively, the contact surface 33 with the RC abutment 15 and the reinforcing bar L0 disposed on the connection surface 33 are arranged in contact with each other.
As a result, as shown in FIG. 8 (A), since a negative bending moment (indicated by reference symbol A1) is mainly generated at all times, the force S applied to the PC beam 20 (girder weight, temperature change, shrinkage / creep) The force generated by the train load or the like is resisted by the reinforcing bar L1 (in particular, the upper edge reinforcing bars 18, 19).
Further, as shown in FIG. 8B, when an excessive force is applied to the PC girder 20 at the time of the occurrence of an earthquake, resistance is caused by the friction of the joint surface 33 and the reinforcing bar L0 disposed on the joint surface 33. The table shown in FIG. 9 is a summary of the above points.
That is, in the bridge structure 100 of this example, the joint portion of the PC girder 20 and the RC abutment 15 is the rigid connection structure portion 31, thereby improving the earthquake resistance of the entire bridge.

以上詳細に説明したように、本実施形態に示される橋梁の構築方法及びその橋梁構造物100によれば、PC桁20の端部Fには切欠部22が形成されており、この切欠部22にて、該PC桁20のフランジ17から突出した鉄筋L1、接合面33に配した鉄筋L0を、RC橋台15の鉄筋L2に重ねて配置する配筋工程を行った後、これら重ねられた鉄筋L1、L0、L2を覆うようにコンクリートを打設するコンクリート打設工程を行うようにした。
これにより、切欠部22を経由して、PC桁20がRC橋台15に剛結された剛結構造部31が形成される。
As described above in detail, according to the bridge construction method and the bridge structure 100 shown in the present embodiment, the notch 22 is formed at the end F of the PC girder 20. Then, the reinforcing bar L1 projecting from the flange 17 of the PC girder 20 and the reinforcing bar L0 arranged on the joint surface 33 are placed on the reinforcing bar L2 of the RC abutment 15 so as to be superposed, and then the superposed reinforcing bars. A concrete placing step of placing concrete so as to cover L1, L0, and L2 was performed.
As a result, a rigidly connected structure 31 in which the PC girder 20 is rigidly connected to the RC abutment 15 is formed via the notch 22.

すなわち、本実施形態では、PC桁20及びRC橋台15の接合部位の一部を剛結構造部31とすることによって、橋梁全体の耐震性を高めることができる。   That is, in this embodiment, the part of the joint part of the PC girder 20 and the RC abutment 15 is the rigid connection structure portion 31, so that the earthquake resistance of the entire bridge can be improved.

また、本実施形態では、RC橋台15上にPC桁20を接合できる構成であるので、該PC桁20にプレストレス構造を採用する等によって橋梁のスパンを長大化することができ、橋梁構築のコストダウンを図ることができる。   Moreover, in this embodiment, since the PC girder 20 can be joined on the RC abutment 15, the span of the bridge can be lengthened by adopting a prestress structure for the PC girder 20. Cost can be reduced.

さらに、本実施形態では、コンクリートが打設された打設コンクリート30の外側面と、RC橋台15の外側面との間にハンチ部Hを追加形成する。
なお、ここで設けられるハンチ部Hに関し、想定外の地震に対する部材毎の損傷順序は、設計上の観点や他部材と比較した修復性の容易さから当該ハンチ部下端を先行して損傷させるが良い。このため、接合部の耐力は、RC橋台のハンチ下端の耐力以上とする。
そして、橋台背面にハンチ部Hを設けたことにより、RC橋台15とPC桁20の剛性向上と地震時の塑性ヒンジ部の明確化、RC橋台15とPC桁20との接合部断面の確保による施工性の向上、接合部位への浸水の抑制、橋台前面にハンチを付ける場合と比較して内空断面を確保が可能となる。
Further, in the present embodiment, the haunch portion H is additionally formed between the outer surface of the cast concrete 30 on which the concrete is cast and the outer surface of the RC abutment 15.
In addition, regarding the haunch portion H provided here, the damage order for each member against an unexpected earthquake damages the lower end of the haunch portion in advance from the viewpoint of design and ease of repair compared to other members. good. For this reason, the proof stress of a junction part is made more than the proof strength of the haunch lower end of RC abutment.
And by providing the hunch part H on the back of the abutment, the rigidity of the RC abutment 15 and the PC girder 20 is improved, the plastic hinge part at the time of the earthquake is clarified, and the joint section between the RC abutment 15 and the PC girder 20 is secured. It is possible to improve the workability, suppress the inundation of the joints, and ensure the inner cross section compared to the case where a haunch is attached to the front of the abutment.

これに加えて、PC桁20の主桁16の幅寸法a(図7参照)を最小限とする範囲に形成することで、該切欠部22での剛結構造部を最大限に設けることができ、接合部を確実に剛結することができる。   In addition to this, by forming the width dimension a (see FIG. 7) of the main girder 16 of the PC girder 20 to a minimum, it is possible to maximize the rigid structure portion at the notch 22. It is possible to securely join the joint.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。   As mentioned above, although embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本発明は、剛性を高めて耐震性を向上させかつ長スパン化が可能な橋梁の構築方法及びその橋梁構造物に関する。   The present invention relates to a method for constructing a bridge capable of improving rigidity and improving seismic resistance and extending the span, and the bridge structure.

10 支持基盤
11 ジオグリッド
12 土嚢
13 補強盛土
14 壁面部
15 RC橋台
16 主桁
17 フランジ
20 PC桁
21 鉄筋カゴ構造体
22 切欠部
30 打設コンクリート
31 剛結構造部
32 接触構造部
33 接合面
100 橋梁構造物
L0 鉄筋
L1 鉄筋
L2 鉄筋
H ハンチ部
DESCRIPTION OF SYMBOLS 10 Support base 11 Geogrid 12 Sandbag 13 Reinforcement embankment 14 Wall part 15 RC abutment 16 Main girder 17 Flange 20 PC girder 21 Reinforcement cage structure 22 Notch part 30 Casting concrete 31 Rigid structure part 32 Contact structure part 33 Joint surface 100 Bridge structure L0 Rebar L1 Rebar L2 Rebar H Hunch

Claims (3)

ジオグリッドで補強した補強盛土に接合されたRC橋台上に、PC桁の主桁を載置するPC桁設置工程と、
前記PC桁と一体に形成されたフランジの端面から突出した鉄筋及び前記PC桁の主桁に位置する接合面に配した鉄筋と、前記RC橋台から突出した鉄筋とを互いに重ねて配置する配筋工程と、
前記重ねられた鉄筋を覆ってコンクリートを打設するコンクリート打設工程と、を有する橋梁の構築方法であって、
前記PC桁の端部に位置するフランジには切欠部が形成されており、該PC桁のフランジから突出した鉄筋及び接合面に配した鉄筋を、前記RC橋台の鉄筋に重ねて配置する前記配筋工程を行い、
前記コンクリートの外側面と、前記RC橋台の外側面との間には、ハンチ部が形成され、該ハンチ部の下端の耐力より、前記コンクリート打設工程による接合部の耐力を大きくしたことを特徴とする橋梁の構築方法。
PC girder installation process for placing the PC girder main girder on the RC abutment joined to the reinforced embankment reinforced with geogrid,
Reinforcing bars in which reinforcing bars projecting from the end face of the flange integrally formed with the PC girder, reinforcing bars arranged on the joint surface located in the main girder of the PC girder, and reinforcing bars projecting from the RC abutment are placed on top of each other. Process,
A concrete placement step of placing concrete covering the rebars, and a method for constructing a bridge,
A notch is formed in the flange located at the end of the PC girder, and the reinforcing bar protruding from the flange of the PC girder and the reinforcing bar arranged on the joint surface are arranged to overlap the reinforcing bar of the RC abutment. Perform the muscle process ,
A haunch portion is formed between the outer surface of the concrete and the outer surface of the RC abutment, and the proof strength of the joint portion in the concrete placing process is made larger than the proof strength of the lower end of the haunch portion. How to build a bridge.
前記切欠部にて、前記鉄筋を覆う打設コンクリートにより、前記PC桁とRC橋台とを剛結する剛結構造が形成されることを特徴とする請求項1に記載の橋梁の構築方法。   The bridge construction method according to claim 1, wherein a rigid structure that rigidly connects the PC girder and the RC abutment is formed by the cast concrete that covers the reinforcing bar at the notch. ジオグリッドで補強した補強盛土に接合されたRC橋台と、
該RC橋台上に設置された複数の主桁及びこれら主桁を互いに接合するフランジを有するPC桁と、
前記PC桁のフランジの端面及び接合面と前記RC橋台を、内部の鉄筋及びコンクリートを介して剛結した剛結構造部と、を具備し、
前記剛結構造は、前記PC桁の端部のフランジに位置する切欠部にて、該PC桁のフランジから突出した鉄筋が、前記RC橋台の鉄筋に重ね合わされた状態で、コンクリートにより覆われることで形成され、
前記コンクリートの外側面と、前記RC橋台の外側面との間には、ハンチ部が形成され、該ハンチ部の下端の耐力より、前記コンクリート打設工程による接合部の耐力を大きくしたことを特徴とする橋梁構造物。
RC abutment joined to reinforced embankment reinforced with geogrid,
A plurality of main girders installed on the RC abutment and a PC girder having a flange for joining the main girders to each other;
A rigid connection structure part in which the end face and the joint surface of the flange of the PC girder and the RC abutment are rigidly connected via an internal reinforcing bar and concrete;
The rigid structure is covered with concrete in a state where the reinforcing bar protruding from the flange of the PC girder is overlapped with the reinforcing bar of the RC abutment at a notch located at the flange of the end of the PC girder. Formed with
A haunch portion is formed between the outer surface of the concrete and the outer surface of the RC abutment, and the proof strength of the joint portion in the concrete placing process is made larger than the proof strength of the lower end of the haunch portion. Bridge structure.
JP2015072910A 2015-03-31 2015-03-31 Bridge construction method and bridge structure Active JP6333207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072910A JP6333207B2 (en) 2015-03-31 2015-03-31 Bridge construction method and bridge structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072910A JP6333207B2 (en) 2015-03-31 2015-03-31 Bridge construction method and bridge structure

Publications (2)

Publication Number Publication Date
JP2016191279A JP2016191279A (en) 2016-11-10
JP6333207B2 true JP6333207B2 (en) 2018-05-30

Family

ID=57245479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072910A Active JP6333207B2 (en) 2015-03-31 2015-03-31 Bridge construction method and bridge structure

Country Status (1)

Country Link
JP (1) JP6333207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114919063B (en) * 2022-06-08 2023-05-26 中交第二航务工程局有限公司 Method for assembling steel reinforcement framework of core box type box girder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6460213B1 (en) * 2000-08-07 2002-10-08 Concrete Precast Products Corp. Precast concrete structure having light weight encapsulated cores
JP4863268B2 (en) * 2006-06-01 2012-01-25 公益財団法人鉄道総合技術研究所 Bridge construction method and its bridge structure
JP5021526B2 (en) * 2008-02-29 2012-09-12 株式会社ピーエス三菱 Construction method of underpass and connecting structure of superstructure girder and underground wall
JP5367297B2 (en) * 2008-04-11 2013-12-11 オリエンタル白石株式会社 Bridge with precast cross girder and precast girder and its construction method
JP4245657B1 (en) * 2008-10-24 2009-03-25 朝日エンヂニヤリング株式会社 Rigid connection structure between pier and concrete girder

Also Published As

Publication number Publication date
JP2016191279A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP4863268B2 (en) Bridge construction method and its bridge structure
JP6812819B2 (en) Foundation reinforcement structure, reinforcement foundation structure and foundation reinforcement method
JP7017541B2 (en) Improvement structure and improvement method of existing sheet pile type quay
JP5634931B2 (en) Construction method of underground structure
JP5579635B2 (en) Underground structure and construction method of underground structure
JP6543077B2 (en) Construction method of structure
JP6333207B2 (en) Bridge construction method and bridge structure
JP5165455B2 (en) Steel slit dam and its construction method
JP6905387B2 (en) Construction method of earth retaining structure
JP6368584B2 (en) Foundation construction method
JP2001311314A (en) Method for realizing base isolation structure of existing building
JP6266246B2 (en) Steel column and footing joint structure and construction method
JP2006316495A (en) Foundation structure of bridge pier and its construction method
JP5480744B2 (en) Foundation for structure and its construction method
KR20110052360A (en) Downward construction method of underground structure that enables continuous basement wall using non-wale and diaphragm action of concrete slab
JP4798203B2 (en) Reinforcement structure and reinforcement method for existing foundation
JP6536895B2 (en) Concrete wall structure and construction method for reinforced embankment integrated bridge
JP6432764B2 (en) Column connection structure
JP3963326B2 (en) Seismic reinforcement structure for bridge pier and its construction method
JP5559075B2 (en) Underground structure
JP6886811B2 (en) Foundation structure and method of constructing foundation structure
JP5679849B2 (en) Underground structure
JP6801910B1 (en) How to build a wall structure
JP4236361B2 (en) Wall head reinforcement underground continuous wall, seismic building, and wall head reinforcement method for underground continuous wall
JP5480745B2 (en) Reinforcement method for existing foundations for structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6333207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250