JP6323424B2 - Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance - Google Patents

Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance Download PDF

Info

Publication number
JP6323424B2
JP6323424B2 JP2015190563A JP2015190563A JP6323424B2 JP 6323424 B2 JP6323424 B2 JP 6323424B2 JP 2015190563 A JP2015190563 A JP 2015190563A JP 2015190563 A JP2015190563 A JP 2015190563A JP 6323424 B2 JP6323424 B2 JP 6323424B2
Authority
JP
Japan
Prior art keywords
film
mass
compound
surface treatment
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015190563A
Other languages
Japanese (ja)
Other versions
JP2017066446A (en
Inventor
土本 和明
和明 土本
武士 松田
武士 松田
三好 達也
達也 三好
松崎 晃
晃 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015190563A priority Critical patent/JP6323424B2/en
Publication of JP2017066446A publication Critical patent/JP2017066446A/en
Application granted granted Critical
Publication of JP6323424B2 publication Critical patent/JP6323424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、自動車、家電、建材などに用いられる表面処理溶融亜鉛めっき鋼板であって、表面処理皮膜中に6価クロムなどのクロム化合物を含まず、特に、耐食性および湿潤環境下での耐変色性に優れた表面処理溶融亜鉛めっき鋼板に関する。   The present invention is a surface-treated hot-dip galvanized steel sheet used for automobiles, home appliances, building materials, etc., and does not contain a chromium compound such as hexavalent chromium in the surface-treated film, and is particularly resistant to corrosion and discoloration in a wet environment. The present invention relates to a surface-treated hot-dip galvanized steel sheet having excellent properties.

従来、家電製品用鋼板、建材用鋼板、自動車用鋼板に使用される亜鉛系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的で、クロム酸、重クロム酸またはその塩類を主要成分とした表面処理液によるクロメート処理を施した鋼板が広く用いられてきた。しかしながら、最近の地球環境問題から、クロメート処理によらない無公害な表面処理鋼板、所謂クロムフリー処理鋼板を採用することへの要請が高まっている。   Conventionally, for the purpose of improving the corrosion resistance (white rust resistance, red rust resistance) on the surface of galvanized steel sheets used for steel sheets for household appliances, steel sheets for building materials, and steel sheets for automobiles, chromic acid, dichromic acid or Steel sheets subjected to chromate treatment with a surface treatment solution containing salts as main components have been widely used. However, due to recent global environmental problems, there is an increasing demand for adopting non-polluted surface-treated steel sheets that do not depend on chromate treatment, so-called chromium-free treated steel sheets.

クロムフリー処理鋼板に関する技術は既に数多く提案されており、クロム酸と同じIVA族に属するモリブデン酸、タングステン酸の不動態化作用を狙った技術、Ti、Zr、V、Mn、Ni、Coなどの遷移金属やLa、Ceなどの希土類元素の金属塩を用いる技術、タンニン酸などの多価フェノールカルボン酸やS、Nを含む化合物などのキレート剤をベースとする技術、シランカップリング剤を用いてポリシロキサン皮膜を形成する技術、或いは、これらを組み合わせた技術などが提案されている。   Many technologies related to chromium-free treated steel sheets have already been proposed. Technologies aiming at the passivating action of molybdic acid and tungstic acid belonging to the same group IVA as chromic acid, such as Ti, Zr, V, Mn, Ni, Co, etc. Using technology using metal salts of rare earth elements such as transition metals and La, Ce, technology based on chelating agents such as polyphenolic carboxylic acids such as tannic acid and compounds containing S and N, using silane coupling agents A technique for forming a polysiloxane film or a technique combining these techniques has been proposed.

具体的に例を挙げると以下の通りである。
(1)ポリビニルフェノール誘導体などの有機樹脂と酸成分とエポキシ化合物とを反応させて得られる被覆剤、シランカップリング剤、およびバナジウム化合物等を配合した処理液から皮膜を形成する技術(特許文献1〜4)
(2)水性樹脂とチオカルボニル基とバナジン酸化合物とリン酸を含む皮膜を形成する技術(特許文献5)
(3)Tiなどの金属化合物と、フッ化物、リン酸化合物等の無機酸および有機酸とを含む処理液から皮膜を形成する技術(特許文献6〜12)
(4)Ce、La、Y等の希土類元素とTi、Zr元素の複合皮膜を形成し、その皮膜中でめっき界面側に酸化物層、表面側に水酸化物層を濃化させる技術(特許文献13)や、CeとSi酸化物の複合皮膜を形成する技術(特許文献14)
Specific examples are as follows.
(1) Technology for forming a film from a treatment liquid containing a coating agent obtained by reacting an organic resin such as a polyvinylphenol derivative, an acid component, and an epoxy compound, a silane coupling agent, and a vanadium compound (Patent Document 1) ~ 4)
(2) Technology for forming a film containing an aqueous resin, a thiocarbonyl group, a vanadic acid compound, and phosphoric acid (Patent Document 5)
(3) Technology for forming a film from a treatment liquid containing a metal compound such as Ti and inorganic and organic acids such as fluoride and phosphate compounds (Patent Documents 6 to 12)
(4) Technology to form a composite film of rare earth elements such as Ce, La, Y, etc. and Ti, Zr elements, and to concentrate the oxide layer on the plating interface side and the hydroxide layer on the surface side in the film (patent Document 13) and technology for forming a composite film of Ce and Si oxide (Patent Document 14)

(5)下層に酸化物を含有するリン酸および/またはリン酸化合物皮膜、その上層に樹脂皮膜からなる有機複合被覆を形成する技術(特許文献15、16)
(6)特定のインヒビター成分とシリカ/ジルコニウム化合物からなる複合皮膜を形成する技術(特許文献17)
(7)水溶性ジルコニウム化合物と、テトラアルコキシシランと、エポキシ基を有する化合物と、キレート剤と、バナジン酸と、所定の金属化合物とからなる複合皮膜を形成する技術(特許文献18)
(8)特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、硝酸化合物からなる複合皮膜を形成する技術(特許文献19)
(5) Technology for forming an organic composite coating comprising a phosphoric acid and / or phosphoric acid compound film containing an oxide in the lower layer and a resin film on the upper layer (Patent Documents 15 and 16)
(6) Technology for forming a composite film comprising a specific inhibitor component and a silica / zirconium compound (Patent Document 17)
(7) Technology for forming a composite film comprising a water-soluble zirconium compound, a tetraalkoxysilane, a compound having an epoxy group, a chelating agent, vanadic acid, and a predetermined metal compound (Patent Document 18)
(8) Technology for forming a composite film composed of a specific silane compound, zirconium carbonate compound, vanadic acid compound, and nitric acid compound (Patent Document 19)

特開2003−13252号公報JP 2003-13252 A 特開2001−181860号公報JP 2001-181860 A 特開2004−263252号公報JP 2004-263252 A 特開2003−155452号公報Japanese Patent Laid-Open No. 2003-155542 特許第3549455号公報Japanese Patent No. 3549455 特許第3302677号公報Japanese Patent No. 3302677 特開2002−105658号公報JP 2002-105658 A 特開2004−183015号公報JP 2004-183015 A 特開2003−171778号公報JP 2003-171778 A 特開2001−271175号公報JP 2001-271175 A 特開2006−213958号公報JP 2006-213958 A 特開2005−48199号公報JP 2005-48199 A 特開2001−234358号公報JP 2001-234358 A 特許第3596665号公報Japanese Patent No. 3596665 特開2002−53980号公報JP 2002-53980 A 特開2002−53979号公報JP 2002-53979 A 特開2008−169470号公報JP 2008-169470 A 特開2010−255105号公報JP 2010-255105 A 特開2013−60647号公報JP 2013-60647 A

これらの技術により形成される皮膜は、有機成分または無機成分の複合添加によって亜鉛の白錆発生を抑制することを狙ったものであり、例えば、上記(1)、(2)の技術は、主に有機樹脂を添加することで耐食性を確保している。しかしながら、このような有機樹脂による皮膜は、屋外環境や高温多湿環境下では、樹脂劣化による変色が問題となる。また、皮膜形成には高温焼付が必須であり、板到達温度が30℃以上の乾燥条件が確保できれば足りるような簡易的なドライヤー乾燥で製造した場合には、耐食性が確保できない。   Films formed by these technologies aim to suppress the occurrence of zinc white rust by the combined addition of organic or inorganic components. For example, the technologies (1) and (2) above are mainly used. Corrosion resistance is ensured by adding an organic resin. However, such an organic resin film has a problem of discoloration due to resin deterioration in an outdoor environment or a high-temperature and high-humidity environment. Moreover, high temperature baking is essential for film formation, and corrosion resistance cannot be ensured when it is produced by simple dryer drying that can ensure drying conditions of a plate reaching temperature of 30 ° C. or higher.

上記(3)、(4)の技術では、有機成分を全く含有しない無機単独皮膜が提案されている。しかしながら、これらの金属酸化物・金属水酸化物による複合皮膜では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。
上記(5)の技術では、耐食性を確保するために、上層に樹脂皮膜を用いているため、上記(1)、(2)の技術と同様の問題がある。
In the techniques (3) and (4), an inorganic single film that does not contain any organic component has been proposed. However, these metal oxide / metal hydroxide composite films cannot provide sufficient corrosion resistance to the galvanized steel sheet unless the film is thickened. That is, when manufactured by simple dryer drying, drying becomes insufficient, and corrosion resistance cannot be ensured.
The technique (5) has the same problems as the techniques (1) and (2) because a resin film is used as an upper layer in order to ensure corrosion resistance.

上記(6)の技術では、インヒビター成分としてバナジン酸化合物の不動態化作用およびリン酸化合物による難溶性金属塩を利用し、更に骨格皮膜としてジルコニウム化合物、微粒子シリカ、シランカップリング剤の複合皮膜を形成させることで優れた耐食性を発現している。しかしながら、この技術では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。   In the technique of (6) above, a passivating action of a vanadate compound and a hardly soluble metal salt by a phosphate compound are used as an inhibitor component, and a composite film of a zirconium compound, fine particle silica, and a silane coupling agent is used as a skeleton film. By forming it, excellent corrosion resistance is expressed. However, with this technique, sufficient corrosion resistance cannot be imparted to the galvanized steel sheet unless the film is thickened. That is, when manufactured by simple dryer drying, drying becomes insufficient, and corrosion resistance cannot be ensured.

上記(7)、(8)の技術では、薄膜で耐食性に優れた亜鉛めっき鋼板を提供することが可能であるが、湿潤環境下での耐変色性が得られず、このため優れた耐食性と湿潤環境下での耐変色性を両立できないことが判った。
以上のように、現在までに提案されているクロムフリー処理鋼板では、平板部耐食性と湿潤環境下での耐変色性とを両立できないことが判った。
With the technologies (7) and (8), it is possible to provide a galvanized steel sheet that is thin and excellent in corrosion resistance. However, it is not possible to obtain discoloration resistance in a wet environment. It was found that the resistance to discoloration in a humid environment cannot be achieved.
As described above, it has been found that the chromium-free treated steel plates proposed so far cannot achieve both the corrosion resistance of the flat plate portion and the discoloration resistance in a wet environment.

したがって本発明の目的は、以上のような従来技術の課題を解決し、表面処理皮膜中に6価クロムなどのクロム化合物を含まず、薄膜で耐食性と湿潤環境下での耐変色性を高度に両立させることができるとともに、簡易な設備で製造可能な表面処理溶融亜鉛めっき鋼板を提供することにある。   Therefore, the object of the present invention is to solve the problems of the prior art as described above, and to provide a high corrosion resistance and discoloration resistance in a wet environment with a thin film that does not contain a chromium compound such as hexavalent chromium in the surface treatment film. The object is to provide a surface-treated hot-dip galvanized steel sheet that can be made compatible and can be manufactured with simple equipment.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、亜鉛めっき表層にAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、第1層皮膜として、特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、水とを特定の割合で配合した表面処理液による表面処理皮膜を形成し、その上部に第2層皮膜として、特定の有機高分子樹脂を基体樹脂とし、この基体樹脂中に特定の自己補修発現物質を適量配合した有機皮膜を形成することにより、上記問題点を解決できることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed a specific silane compound as a first layer film on the surface of a hot-dip galvanized steel sheet in which an Al oxide layer is formed on the galvanized surface layer. Then, a surface treatment film is formed by a surface treatment liquid in which a zirconium carbonate compound, a vanadic acid compound, and water are blended at a specific ratio, and a specific organic polymer resin is used as a base layer resin as a second layer film on the surface treatment liquid. The present inventors have found that the above problems can be solved by forming an organic film in which an appropriate amount of a specific self-repairing substance is blended in the base resin.

本発明はこのような知見に基づきなされたもので、下記を要旨とするものである。
[1]亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iii)の条件を満足する表面処理液を塗布し、乾燥することにより形成された、片面当たりの付着量が100〜800mg/mの表面処理皮膜を有し、
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
その上部に第2層皮膜として、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する、膜厚が0.1〜5μmの有機皮膜を有することを特徴とする表面処理溶融亜鉛めっき鋼板。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
The present invention has been made on the basis of such knowledge and has the following gist.
[1] A silane coupling agent (a1) having a glycidyl group on the surface of a hot dip galvanized steel sheet on which an Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm is formed on the surface layer of the galvanized layer, tetra A silane compound (A) having a hydrolyzable group obtained from alkoxysilane (a2) and phosphonic acid (a3), a zirconium carbonate compound (B), a vanadic acid compound (C), and water, A surface treatment film formed by applying a surface treatment solution satisfying the conditions (i) to (iii) and drying, and having a surface treatment film with an adhesion amount per side of 100 to 800 mg / m 2 ,
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
An organic polymer resin (α) having an OH group and / or COOH group is used as a base resin as a second layer film on the upper part thereof, and the following (a) to (e) with respect to 100 parts by mass (solid content) of the base resin: 1) at least one type of rust preventive additive (β) selected from 1 to 100 parts by mass (solid content) and having a film thickness of 0.1 to 5 μm Surface-treated galvanized steel sheet.
(A) Phosphate (b) Ca ion exchange silica (c) Molybdate (d) Silicon oxide (e) One or more kinds selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams Organic compounds

[2]亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iii)の条件を満足する表面処理液を塗布し、乾燥することにより、片面当たりの付着量が100〜800mg/mの表面処理皮膜を形成し、
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
その表面処理皮膜の表面に、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する塗料組成物を塗布し、加熱乾燥することにより、膜厚が0.1〜5μmの有機皮膜を形成することを特徴とする表面処理溶融亜鉛めっき鋼板の製造方法。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
[2] Silane coupling agent (a1) having a glycidyl group on the surface of a hot dip galvanized steel sheet having an Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm formed on the surface of the galvanized layer, tetra A silane compound (A) having a hydrolyzable group obtained from alkoxysilane (a2) and phosphonic acid (a3), a zirconium carbonate compound (B), a vanadic acid compound (C), and water, A surface treatment film satisfying the conditions (i) to (iii) is applied and dried to form a surface treatment film having an adhesion amount per side of 100 to 800 mg / m 2 .
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
An organic polymer resin (α) having an OH group and / or COOH group is used as a base resin on the surface of the surface treatment film, and the following (a) to (e) with respect to 100 parts by mass (solid content) of the base resin: By applying a coating composition containing 1 to 100 parts by mass (solid content) of at least one rust-preventing additive component (β) selected from among the above, the film thickness is 0.1 A method for producing a surface-treated hot-dip galvanized steel sheet, comprising forming a 5 μm organic film.
(A) Phosphate (b) Ca ion exchange silica (c) Molybdate (d) Silicon oxide (e) One or more kinds selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams Organic compounds

本発明の表面処理溶融亜鉛めっき鋼板は、亜鉛めっき表層のAl酸化物層と特定の成分を含有する表面処理皮膜との複合化、さらには、その上層の特定の有機皮膜の複合化とにより高いバリア性が得られ、クロメート皮膜に匹敵する耐食性と湿潤環境下での耐変色性を高度に両立させることができ、しかも簡易な設備で製造可能である。   The surface-treated hot-dip galvanized steel sheet of the present invention is higher due to the combination of the Al oxide layer of the galvanized surface layer and the surface treatment film containing a specific component, and further the combination of a specific organic film on the upper layer. Barrier properties are obtained, corrosion resistance comparable to that of chromate film and discoloration resistance in a wet environment can be achieved at a high level, and can be manufactured with simple equipment.

本発明で使用する溶融亜鉛めっき鋼板としては、溶融亜鉛めっきで得られるものであれば特に制限はないが、通常、溶融亜鉛めっき鋼板(GI)またはこれを合金化した合金化溶融亜鉛めっき鋼板(GA)が用いられる。
溶融亜鉛めっき鋼板の亜鉛めっき層の表層には、厚さが0.5nm以上10.0nm未満のAl酸化物層が形成されている必要がある。溶融亜鉛めっきでは、めっき浴中に微量Alが含まれため、亜鉛めっき層中には微量のAlが含有されることになるが、亜鉛めっき層中に含有されたAlは酸素との強い親和性を示すため、亜鉛めっき表層にAl酸化物層が形成される。
The hot dip galvanized steel sheet used in the present invention is not particularly limited as long as it can be obtained by hot dip galvanization, but is usually a hot dip galvanized steel sheet (GI) or an alloyed hot dip galvanized steel sheet obtained by alloying it ( GA) is used.
An Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm needs to be formed on the surface layer of the galvanized layer of the hot dip galvanized steel sheet. In hot dip galvanization, since a trace amount of Al is contained in the plating bath, a small amount of Al is contained in the galvanized layer, but Al contained in the galvanized layer has a strong affinity for oxygen. Therefore, an Al oxide layer is formed on the galvanized surface layer.

Al酸化物層の厚さが0.5nm未満では十分な耐食性および湿潤環境下での耐変色性が得られず、一方、10.0nmを超えると皮膜との密着性が低下するため、却って耐食性が低下し、また、密着性低下に伴い皮膜形成後の可溶成分が増加するため、湿潤環境下での耐変色性が低下する。
Al酸化物層の厚さは、亜鉛めっき層のAl含有量に影響されるだけでなく、溶融亜鉛めっき鋼板を大気中で放置あるいは数百℃で加熱することで厚くすることができるので、これらの条件(大気中で放置する条件、加熱条件など)を調整することにより、厚めに調整することができる。一方、アルカリ脱脂による化学的なエッチングや表面の研削などにより、Al酸化物層の厚さを薄くすることもできる。したがって、例えば、溶融亜鉛めっき鋼板に表面処理の前処理として施されるアルカリ脱脂において、アルカリ脱脂液の濃度や処理時間を調整することで、Al酸化物層の厚さを調整することができる。
Al酸化物層の厚さは、断面TEM観察により測定することができる。本発明では、無作為に選択された5箇所の測定値の平均値をもって、Al酸化物層の厚さとする。
If the thickness of the Al oxide layer is less than 0.5 nm, sufficient corrosion resistance and discoloration resistance in a wet environment cannot be obtained. On the other hand, if it exceeds 10.0 nm, the adhesion to the film is lowered, so that the corrosion resistance is not. In addition, since the soluble components after the film formation increases as the adhesiveness decreases, the discoloration resistance in a wet environment decreases.
The thickness of the Al oxide layer is not only affected by the Al content of the galvanized layer, but can also be increased by leaving the hot-dip galvanized steel sheet in the air or heating it at several hundred degrees Celsius. By adjusting the above conditions (conditions for leaving in the atmosphere, heating conditions, etc.), the thickness can be adjusted to be thicker. On the other hand, the thickness of the Al oxide layer can be reduced by chemical etching by alkali degreasing or surface grinding. Therefore, for example, in the alkaline degreasing performed as a pretreatment for the surface treatment on the hot-dip galvanized steel sheet, the thickness of the Al oxide layer can be adjusted by adjusting the concentration of the alkaline degreasing solution and the treatment time.
The thickness of the Al oxide layer can be measured by cross-sectional TEM observation. In the present invention, the average value of the measurement values at five randomly selected points is used as the thickness of the Al oxide layer.

本発明の表面処理溶融亜鉛めっき鋼板は、上記の溶融亜鉛めっき鋼板の表面(表層にAl酸化物層が形成された亜鉛めっき層の表面)に、特定の成分を含有する表面処理液を塗布し、乾燥することにより形成された表面処理皮膜を有し、その上部に第2層皮膜として、特定の基体樹脂と防錆添加成分を含有する有機皮膜を有する。
以下、溶融亜鉛めっき鋼板の表面に第1層皮膜として形成される表面処理皮膜について説明する。
The surface-treated hot-dip galvanized steel sheet of the present invention is obtained by applying a surface treatment liquid containing a specific component to the surface of the hot-dip galvanized steel sheet (the surface of the galvanized layer having an Al oxide layer formed on the surface layer). It has a surface treatment film formed by drying, and has an organic film containing a specific base resin and an anticorrosive additive component as a second layer film on the top.
Hereinafter, the surface treatment film formed as the first layer film on the surface of the hot dip galvanized steel sheet will be described.

本発明で用いる表面処理皮膜形成用の表面処理液は、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有する。なお、この表面処理液は、6価クロムなどのクロム化合物(但し、不可避的不純物として含まれるクロム化合物を除く。)を含有しない。   The surface treatment liquid for forming a surface treatment film used in the present invention is a silane having a hydrolyzable group obtained from a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2) and a phosphonic acid (a3). A compound (A), a zirconium carbonate compound (B), a vanadate compound (C), and water are contained. This surface treatment liquid does not contain a chromium compound such as hexavalent chromium (excluding chromium compounds contained as inevitable impurities).

加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを反応させることにより得られる化合物である。
シラン化合物(A)は、Si元素に直接結合する加水分解性基を有するシラン化合物であって、加水分解性基は水分と反応することによりシラノール基を形成する。シラン化合物(A)は、Si元素に結合する基の全てが加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性基であるものでもよい。
The silane compound (A) having a hydrolyzable group is obtained by reacting a phosphonic acid (a3) with a low condensate of a silane coupling agent (a1) having a glycidyl group and a tetraalkoxysilane (a2). Compound.
The silane compound (A) is a silane compound having a hydrolyzable group directly bonded to Si element, and the hydrolyzable group forms a silanol group by reacting with moisture. The silane compound (A) may be a group in which all of the groups bonded to the Si element are hydrolyzable groups, or a part of the groups bonded to the Si element may be hydrolyzable groups.

グリシジル基を有するシランカップリング剤(a1)は、Siを含む1分子中にグリシジル基および加水分解性基として炭素数が1〜5、好ましくは1〜3である低級アルコキシル基を含有するものであれば、特に限定されず、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられ、これらの1種以上を用いることができる。   The silane coupling agent (a1) having a glycidyl group contains a glycidyl group and a lower alkoxyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, as a hydrolyzable group in one molecule containing Si. If it exists, it will not specifically limit, For example, 3-glycidoxypropyl trimethoxysilane, 3-glycidoxypropyl triethoxysilane, 3-glycidoxypropylmethyl dimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyl Examples thereof include triethoxysilane, and one or more of these can be used.

テトラアルコキシシラン(a2)は、加水分解性基として4個の低級アルコキシル基を含有するものであり、一般式Si(OR)(式中、Rは同一のまたは異なる炭素数1〜5のアルキル基を示す)で示されるものであれば、特に限定されず、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランなどが挙げられ、これらの1種以上を用いることができる。
ホスホン酸(a3)としては、ヒドロキシエチレンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸、エチレジアミンテトラ(メチレンホスホン酸)などが挙げられ、これらの1種以上を用いることができる。
The tetraalkoxysilane (a2) contains four lower alkoxyl groups as hydrolyzable groups, and has a general formula Si (OR) 4 (wherein R is the same or different alkyl group having 1 to 5 carbon atoms). Group) is not particularly limited, and examples thereof include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane, and one or more of these can be used.
Examples of the phosphonic acid (a3) include hydroxyethylene diphosphonic acid, nitrilotris (methylenephosphonic acid), phosphonobutanetricarboxylic acid, and ethylenediaminetetra (methylenephosphonic acid). One or more of these may be used. it can.

加水分解性基を有するシラン化合物(A)は、上記したグリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物を含む。この低縮合物は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)の縮合反応により形成されるポリシロキサン結合を主骨格とするものであり、Si元素に結合する末端の基が加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性であるものでもよい。   The silane compound (A) having a hydrolyzable group includes a low condensate of the above-described silane coupling agent (a1) having a glycidyl group and tetraalkoxysilane (a2). This low condensate has a polysiloxane bond formed by the condensation reaction of the silane coupling agent (a1) and the tetraalkoxysilane (a2) as the main skeleton, and the terminal group bonded to the Si element is hydrolyzed. It may be a functional group, or a part of the group bonded to the Si element may be hydrolyzable.

加水分解性基を有するシラン化合物(A)としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30以下であれば、白色沈殿を生じることがなく、安定なシラン化合物(A)が得られるからである。
加水分解性基を有するシラン化合物(A)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを、反応温度1〜80℃で10分間〜20時間程度反応させ、オートクレープ処理を行うことなどにより得ることができる。
As the silane compound (A) having a hydrolyzable group, a compound having a condensation degree of 2 to 30 can be used, and a compound having a condensation degree of 2 to 10 is particularly preferable. This is because if the degree of condensation is 30 or less, no white precipitation occurs and a stable silane compound (A) is obtained.
The silane compound (A) having a hydrolyzable group is prepared by combining a low condensate of a silane coupling agent (a1) and a tetraalkoxysilane (a2) with a phosphonic acid (a3) at a reaction temperature of 1 to 80 ° C. It can be obtained by reacting for about 20 minutes to 20 minutes and performing autoclaving.

加水分解性基を有するシラン化合物(A)は、加水分解性基の特定および縮合状態を、ゲル・パーミッション・クロマトグラフィー(GPC)、NMRおよびIRを用いて測定することができる。
加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)とを反応させることにより、シランカップリング剤(a1)と、テトラアルコキシシラン(a2)が、水とホスホン酸(a3)により加水分解されて配位するものと考えられる。この加水分解反応およびホスホン酸(a3)による配位が同時に起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるシラン化合物を生成する。
In the silane compound (A) having a hydrolyzable group, the specific and condensed state of the hydrolyzable group can be measured using gel permission chromatography (GPC), NMR and IR.
The silane compound (A) having a hydrolyzable group is obtained by reacting a silane coupling agent (a1) having a glycidyl group, a tetraalkoxysilane (a2), and a phosphonic acid (a3). It is considered that (a1) and tetraalkoxysilane (a2) are coordinated by hydrolysis with water and phosphonic acid (a3). This hydrolysis reaction and coordination by phosphonic acid (a3) are obtained at the same time, and a silane compound that has extremely high stability at room temperature and can withstand long-term storage is produced.

また、ホスホン酸(a3)は、耐食性と保管安定性を確保する上でも有効な成分である。その理由は必ずしも明らかではないが、ホスホン酸(a3)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)に配位すると考えられ、表面処理液中でシラン化合物(A)が高分子化することを抑制する作用を有するものと考えられ、このような作用に起因して表面処理液を調製後長期に亘り保管した場合においても変質することなく、調製時の品質が維持されるものと考えられる。また、ホスホン酸(a3)は、後述するバナジン酸化合物(C)とも配位すると考えられ、腐食環境下でバナジウムが溶解し、再度、ポリシロキサン結合を形成するものと考えられる。   Phosphonic acid (a3) is also an effective component for securing corrosion resistance and storage stability. Although the reason is not necessarily clear, it is considered that the phosphonic acid (a3) coordinates to the silane coupling agent (a1) and the tetraalkoxysilane (a2), and the silane compound (A) is a polymer in the surface treatment liquid. It is thought that it has an action to suppress the formation of the material, and the quality at the time of preparation is maintained without deterioration even when the surface treatment liquid is stored for a long time after preparation due to such action. it is conceivable that. In addition, phosphonic acid (a3) is considered to coordinate with the vanadate compound (C) described later, and it is considered that vanadium dissolves in a corrosive environment to form a polysiloxane bond again.

グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)の配合比率は、耐食性などの観点から、シランカップリング剤(a1)の100質量部に対して、テトラアルコキシシラン(a2)を25〜75質量部、ホスホン酸(a3)を5〜30質量部とすることが好ましい。
表面処理液中でのシラン化合物(A)の含有量は、表面処理液の全固形分中で30〜70質量%とする。シラン化合物(A)の含有量が30質量%未満では耐食性が確保できず、一方、含有量が70質量%を超えると却って耐食性が低下する。
シラン化合物(A)は、炭酸ジルコニウム化合物(B)と混合することにより、一旦乾燥すると再度水には溶解しないバリア的効果を有する。
The blending ratio of the silane coupling agent (a1) having a glycidyl group, the tetraalkoxysilane (a2), and the phosphonic acid (a3) is based on 100 parts by mass of the silane coupling agent (a1) from the viewpoint of corrosion resistance. The tetraalkoxysilane (a2) is preferably 25 to 75 parts by mass and the phosphonic acid (a3) is preferably 5 to 30 parts by mass.
Content of the silane compound (A) in a surface treatment liquid shall be 30-70 mass% in the total solid of a surface treatment liquid. If the content of the silane compound (A) is less than 30% by mass, the corrosion resistance cannot be ensured. On the other hand, if the content exceeds 70% by mass, the corrosion resistance decreases.
By mixing with the zirconium carbonate compound (B), the silane compound (A) has a barrier effect that does not dissolve again in water once dried.

炭酸ジルコニウム化合物(B)としては、例えば、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩(例えば、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムリチウム)が挙げられ、これらの1種以上を用いることができる。なかでも、炭酸ジルコニウムアンモニウムが耐食性などの点から好ましい。   Examples of the zirconium carbonate compound (B) include salts of zirconium carbonate such as sodium, potassium, lithium, and ammonium (for example, zirconium ammonium carbonate, sodium zirconium carbonate, lithium zirconium carbonate), and one or more of these are used. be able to. Of these, ammonium zirconium carbonate is preferable from the viewpoint of corrosion resistance.

炭酸ジルコニウム化合物(B)の含有量は、炭酸ジルコニウム化合物(B)のZrをZrO換算した質量(ZrO換算質量)とシラン化合物(A)の質量との比(B/A)が0.3〜2.0となるようにし、好ましくは0.35〜1.5となるようにする。質量比(B/A)が0.3未満では耐食性が確保できず、一方、質量比(B/A)が2.0を超えると却って耐食性が低下する。また、質量比(B/A)が2.0を超えると、湿潤環境下での耐変色性も低下する。 The content of the zirconium carbonate compound (B) is such that the ratio (B / A) of the mass of ZrO 2 converted to ZrO 2 (ZrO 2 converted mass) of the zirconium carbonate compound (B) and the mass of the silane compound (A) is 0. 3 to 2.0, preferably 0.35 to 1.5. If the mass ratio (B / A) is less than 0.3, corrosion resistance cannot be ensured. On the other hand, if the mass ratio (B / A) exceeds 2.0, the corrosion resistance decreases. Moreover, when mass ratio (B / A) exceeds 2.0, the discoloration resistance in a humid environment will also fall.

バナジン酸化合物(C)は、亜鉛系めっき鋼板表面に形成される皮膜中において、水に溶解し易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。また、バナジン酸化合物(C)は、ホスホン酸(a3)に配位していると考えられ、腐食環境下でバナジン酸化合物(C)の一部がイオン化し、不働態化することにより優れた耐食性を発揮する。
バナジン酸化合物(C)としては、例えば、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、バナジルアセチルアセトネートなどが挙げられ、これらの1種以上を用いることができる。
The vanadic acid compound (C) is present in the film formed on the surface of the zinc-based plated steel sheet, uniformly dispersed in a form that is easily dissolved in water, and exhibits a so-called inhibitor effect during zinc corrosion. In addition, the vanadic acid compound (C) is considered to be coordinated to the phosphonic acid (a3), and the vanadic acid compound (C) is excellent in that it is ionized and passivated in a corrosive environment. Demonstrate corrosion resistance.
Examples of the vanadic acid compound (C) include ammonium metavanadate, sodium metavanadate, vanadyl acetylacetonate, and one or more of these can be used.

バナジン酸化合物(C)の含有量は、バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量との比(C/A)が0.010〜0.15となるようにし、好ましくは0.030〜0.10となるようにする。質量比(C/A)が0.010未満では耐食性が確保できず、一方、質量比(C/A)が0.15を超えると湿潤環境下での耐変色性が低下する。   The content of the vanadic acid compound (C) is such that the ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is 0.010 to 0.15, Preferably it is set to 0.030-0.10. If the mass ratio (C / A) is less than 0.010, corrosion resistance cannot be ensured. On the other hand, if the mass ratio (C / A) exceeds 0.15, discoloration resistance in a wet environment is lowered.

表面処理液には、潤滑性能を向上させるために潤滑剤を添加することができる。潤滑剤としては、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス、カルナバワックス、パラフィンワックス、モンタンワックス、ライスワックス、テフロン(登録商標)ワックス、2硫化炭素、グラファイトなどが挙げられ、これらの1種以上を用いることができる。
潤滑剤の含有量は、表面処理液の全固形分中で1〜10質量%が好ましく、3〜7質量%がより好ましい。潤滑剤の含有量を1質量%以上とすることで潤滑性能の向上効果が得られ、10質量%以下であれば亜鉛系めっき鋼板の耐食性が低下することはない。
A lubricant can be added to the surface treatment liquid in order to improve the lubricating performance. Examples of the lubricant include polyethylene wax, oxidized polyethylene wax, oxidized polypropylene wax, carnauba wax, paraffin wax, montan wax, rice wax, Teflon (registered trademark) wax, carbon disulfide, and graphite. Can be used.
The content of the lubricant is preferably 1 to 10% by mass, and more preferably 3 to 7% by mass in the total solid content of the surface treatment liquid. When the content of the lubricant is 1% by mass or more, an effect of improving the lubrication performance is obtained, and when it is 10% by mass or less, the corrosion resistance of the galvanized steel sheet is not lowered.

また、表面処理液には、作業性を向上させるための増粘剤、導電性を向上させるための導電性物質、意匠性向上のための着色顔料、造膜性向上のための溶剤等を、必要に応じて適宜添加してもよい。
表面処理液は、上記した成分を脱イオン水、蒸留水などの水中で混合することにより得られる。表面処理液の固形分濃度は適宜選択すればよい。また、表面処理液には、必要に応じてアルコール、ケトン、セロソルブ系の水溶性溶剤、消泡剤、防菌防カビ剤、着色剤などを添加してもよい。ただし、これら(すなわち、成分(A)〜(C)と水と潤滑剤以外の添加成分)は本発明で得られる性能を損なわない程度に添加することが重要であり、添加量は表面処理液の全固形分中で5質量%未満とすることが好ましい。
In addition, the surface treatment liquid contains a thickener for improving workability, a conductive substance for improving conductivity, a color pigment for improving design properties, a solvent for improving film forming property, and the like. You may add suitably as needed.
The surface treatment liquid can be obtained by mixing the above-described components in water such as deionized water or distilled water. What is necessary is just to select the solid content concentration of a surface treatment liquid suitably. Moreover, you may add alcohol, a ketone, a cellosolve-type water-soluble solvent, an antifoamer, a fungicidal agent, a coloring agent, etc. to a surface treatment liquid as needed. However, it is important to add these components (that is, components (A) to (C), water, and an additive component other than the lubricant) to the extent that the performance obtained in the present invention is not impaired. The total solid content is preferably less than 5% by mass.

表面処理皮膜の片面当たりの付着量は100〜800mg/m、好ましくは200〜500mg/mである。片面当たりの皮膜付着量が100mg/m未満では耐食性不足が懸念され、一方、800mg/mを超えると、ドライヤー乾燥などの簡易設備での製造が困難となる。 The adhesion amount per one side of the surface treatment film is 100 to 800 mg / m 2 , preferably 200 to 500 mg / m 2 . If the coating amount per side is less than 100 mg / m 2 , there is a concern about insufficient corrosion resistance. On the other hand, if it exceeds 800 mg / m 2 , production with simple equipment such as dryer drying becomes difficult.

本発明の表面処理溶融亜鉛めっき鋼板は、上述した表面処理液を、亜鉛めっき表層にAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に塗布し、次いで乾燥することにより、乾燥後の片面当たりの付着量が100〜800mg/mとなるように製造される。
表面処理液を溶融亜鉛めっき鋼板の表面に塗布する方法としては、ロールコート法、バーコート法、浸漬法、スプレー塗布法などの任意の方法を採ることができる。処理される溶融亜鉛めっき鋼板の形状等によって適宜最適な方法を選択すればよい。例えば、処理される溶融亜鉛めっき鋼板がシート状であれば、ロールコート法やバーコート法、或いは、表面処理液を溶融亜鉛めっき鋼板表面にスプレーした後、ロール絞りや気体を高圧で吹きかけて塗布量を調整するスプレー塗布法を用いるのが適当である。また、溶融亜鉛めっき鋼板が成型品の場合は、表面処理液に浸漬して引き上げ、必要に応じて圧縮エアーで余分な表面処理液を吹き飛ばして塗布量を調整する方法などが適当である。
The surface-treated hot-dip galvanized steel sheet of the present invention is coated on the surface of the hot-dip galvanized steel sheet in which the Al oxide layer is formed on the surface of the galvanized surface, and then dried, so that one side after drying It is manufactured so that the amount of adhesion per unit is 100 to 800 mg / m 2 .
As a method for applying the surface treatment liquid to the surface of the hot-dip galvanized steel sheet, any method such as a roll coating method, a bar coating method, a dipping method, a spray coating method, or the like can be employed. What is necessary is just to select an optimal method suitably according to the shape etc. of the hot dip galvanized steel plate to be processed. For example, if the hot dip galvanized steel sheet to be processed is a sheet, then roll coating or bar coating, or spraying a surface treatment solution on the surface of the hot dip galvanized steel sheet, and then spraying with a roll squeezing or gas at a high pressure. It is appropriate to use a spray coating method that adjusts the amount. Moreover, when the hot dip galvanized steel sheet is a molded product, a method of adjusting the coating amount by immersing it in a surface treatment liquid and pulling it up and blowing off excess surface treatment liquid with compressed air as necessary is suitable.

また、溶融亜鉛めっき鋼板に表面処理液を塗布する前に、必要に応じて、溶融亜鉛めっき鋼板表面の油分や汚れを除去することを目的とした前処理を施してもよい。前処理の方法は、特に限定されないが、例えば、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。溶融亜鉛めっき鋼板は、防錆目的で防錆油が塗られている場合が多く、また、防錆油が塗油されていない場合でも、表面には作業中に付着した油分や汚れなどがある。上記の前処理を施すことにより、亜鉛めっき層の表面が清浄化され、均一に濡れやすくなる。溶融亜鉛めっき鋼板表面上で表面処理液が均一に濡れる場合は、前処理は特に必要でない。   In addition, before applying the surface treatment liquid to the hot dip galvanized steel sheet, pretreatment for the purpose of removing oil and dirt on the hot dip galvanized steel sheet surface may be performed as necessary. The pretreatment method is not particularly limited, and examples thereof include hot water washing, solvent washing, and alkaline degreasing washing. Hot-dip galvanized steel sheets are often coated with rust-preventive oil for the purpose of rust-prevention, and even when rust-preventive oil is not applied, the surface has oil or dirt attached during work. . By performing the above pretreatment, the surface of the galvanized layer is cleaned and easily wetted uniformly. When the surface treatment liquid gets wet uniformly on the surface of the hot dip galvanized steel sheet, pretreatment is not particularly necessary.

表面処理液を塗布した後、乾燥する際の加熱温度(最高到達板温)は、特に制限はないが、通常、30〜200℃程度である。加熱温度が30℃以上であれば皮膜中に水分が残存しないため、また、加熱温度が200℃以下であれば皮膜のクラック発生が抑制されるため、表面処理溶融亜鉛めっき鋼板の耐食性低下等の問題を生じることがないからである。また、加熱時間は、使用される溶融亜鉛めっき鋼板の種類などによって適宜最適な条件が選択される。なお、生産性などの観点からは、0.1〜60秒程度が好ましく、1〜30秒程度がより好ましい。   Although there is no restriction | limiting in particular in the heating temperature at the time of drying after apply | coating a surface treatment liquid (maximum ultimate board temperature), Usually, it is about 30-200 degreeC. If the heating temperature is 30 ° C. or higher, no moisture remains in the film, and if the heating temperature is 200 ° C. or lower, the generation of cracks in the film is suppressed. This is because there is no problem. The heating time is appropriately selected depending on the type of hot-dip galvanized steel sheet used. From the viewpoint of productivity and the like, about 0.1 to 60 seconds is preferable, and about 1 to 30 seconds is more preferable.

本発明の表面処理溶融亜鉛めっき鋼板は、表面処理皮膜がクロム化合物を含有することなく、優れた耐食性と湿潤環境下での耐変色性を有し、しかも簡易設備で製造可能である利点がある。このように優れた性能を有する理由は必ずしも明らかではないが、以下のような作用効果によるものであると考えられる。   The surface-treated hot-dip galvanized steel sheet of the present invention has the advantage that the surface-treated film does not contain a chromium compound, has excellent corrosion resistance and resistance to discoloration in a wet environment, and can be manufactured with simple equipment. . The reason for such excellent performance is not necessarily clear, but is considered to be due to the following effects.

本発明においては、亜鉛めっき表層に存在するAl酸化物層と表面処理皮膜の複合化による効果で高いバリア性が得られるものと考えられる。従来のクロメート皮膜では、クロム酸が亜鉛と反応することで皮膜を形成するため、めっき表層にAl酸化物層が存在しない方が高い耐食性が得られる。これに対して、本発明のようにクロメートフリー皮膜、特に亜鉛との反応層を多く形成しない表面処理皮膜を有するものでは、めっき表層にAl酸化物層が一定厚さ以上存在すると、Al酸化物層そのものが持つバリア効果と、特定の表面処理液により形成される表面処理皮膜による下記のような効果が複合化され、優れた耐食性が得られるものと考えられる。また、Al酸化物層の厚さが過剰であれば、化成処理液との反応性が低下するため皮膜形成後の可溶成分が増加し、湿潤環境下での耐変色性が低下すると考えられる。   In the present invention, it is considered that a high barrier property can be obtained by the effect of combining the Al oxide layer and the surface treatment film existing on the surface layer of the galvanizing. In the conventional chromate film, a film is formed by the reaction of chromic acid with zinc, so that a higher corrosion resistance is obtained when the Al oxide layer is not present on the plating surface layer. On the other hand, in the case of having a chromate-free film, particularly a surface-treated film that does not form many reaction layers with zinc as in the present invention, if the Al oxide layer is present on the plating surface layer with a certain thickness or more, the Al oxide It is considered that the barrier effect possessed by the layer itself and the following effects by the surface treatment film formed by the specific surface treatment liquid are combined to obtain excellent corrosion resistance. Moreover, if the thickness of the Al oxide layer is excessive, the reactivity with the chemical conversion solution decreases, so the soluble components after film formation increase, and the discoloration resistance in a wet environment is considered to decrease. .

まず、表面処理液の成分のうち、シラン化合物(A)と炭酸ジルコニウム化合物(B)により、亜鉛めっき層の表面に形成される皮膜の骨格が構成される。シラン化合物(A)の加水分解性基は、亜鉛めっき層の表面と反応することにより皮膜成分を固定化するとともに、炭酸ジルコニウム化合物(B)と三次元架橋すると考えられる。さらに、シランカップリング剤(a1)のグリシジル基も亜鉛めっき層表面と反応し、皮膜の結合力がより強固になるものと考えられる。このようにして形成された表面処理皮膜は、一旦乾燥すると再度水には溶解せずバリア的効果を有するため、上記Al酸化物層によるバリア効果と相俟って優れた耐食性が得られる。また、樹脂のように温度が必要な架橋反応による皮膜形成ではないため、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜形成ができる。   First, among the components of the surface treatment liquid, the skeleton of the coating formed on the surface of the galvanized layer is constituted by the silane compound (A) and the zirconium carbonate compound (B). The hydrolyzable group of the silane compound (A) is considered to fix the coating component by reacting with the surface of the galvanized layer and three-dimensionally crosslink with the zirconium carbonate compound (B). Furthermore, it is considered that the glycidyl group of the silane coupling agent (a1) also reacts with the surface of the galvanized layer, and the bond strength of the film becomes stronger. The surface treatment film formed in this way, once dried, does not dissolve in water again and has a barrier effect, so that excellent corrosion resistance is obtained in combination with the barrier effect of the Al oxide layer. Further, since the film is not formed by a crosslinking reaction that requires a temperature like a resin, the film can be appropriately formed even by a simple drying means such as dryer drying.

また、表面処理液の成分のうち、バナジン酸化合物(C)は、皮膜中において水に溶け易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。すなわち、バナジン酸化合物(C)は、腐食環境下で一部がイオン化し、不動態化することにより、亜鉛の腐食自体を抑制するものと考えられる。また、ホスホン酸(a3)に配位するため、イオン化した後に、シラン化合物(A)の加水分解性基が三次元架橋することにより、皮膜欠陥部を補修し、亜鉛の腐食を抑制するものと考えられる。   Among the components of the surface treatment liquid, the vanadic acid compound (C) is present in the film in a form that is easily dispersed in a form that is easily soluble in water, and exhibits a so-called inhibitory effect during zinc corrosion. That is, it is considered that the vanadic acid compound (C) is partially ionized and passivated in a corrosive environment, thereby suppressing zinc corrosion itself. Moreover, since it coordinates to phosphonic acid (a3), after ionization, the hydrolyzable group of the silane compound (A) is three-dimensionally cross-linked, thereby repairing a film defect portion and suppressing corrosion of zinc. Conceivable.

すなわち、表面処理液は、シラン化合物(A)と炭酸ジルコニウム化合物(B)により緻密な皮膜を形成して、高い耐食性を得るとともに、腐食インヒビターとしてバナジン酸化合物(C)を皮膜中に含有させることにより、溶融亜鉛めっき鋼板に追従した緻密な皮膜を形成することができる。   That is, the surface treatment liquid forms a dense film with the silane compound (A) and the zirconium carbonate compound (B) to obtain high corrosion resistance, and contains a vanadate compound (C) as a corrosion inhibitor in the film. Thus, a dense film following the hot dip galvanized steel sheet can be formed.

次に、上記表面処理皮膜(第1層皮膜)の上部に第2層皮膜として形成される有機皮膜について説明する。
第1層皮膜の上部に形成される有機皮膜は、基体樹脂であるOH基および/またはCOOH基を有する有機高分子樹脂(α)と、自己補修性発現物質である下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)とを含む(好ましくは、主成分として含む)ものである。なお、この有機皮膜は、6価クロムなどのクロム化合物(但し、不可避的不純物として含まれるクロム化合物を除く。)を含有しない。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
Next, the organic film formed as the second layer film on the surface treatment film (first layer film) will be described.
The organic film formed on the upper part of the first layer film includes an organic polymer resin (α) having an OH group and / or COOH group as a base resin, and the following (a) to (e) as self-repairing substances. ) And one or more rust preventive additive components (β) selected from (preferably included as a main component). In addition, this organic film does not contain chromium compounds such as hexavalent chromium (however, excluding chromium compounds contained as inevitable impurities).
(A) Phosphate (b) Ca ion exchange silica (c) Molybdate (d) Silicon oxide (e) One or more kinds selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams Organic compounds

有機皮膜の基体樹脂としては、OH基および/またはCOOH基を有する有機高分子樹脂(α)を用いる。また、そのなかでは熱硬化性樹脂が好ましく、特にエポキシ樹脂または変性エポキシ樹脂が好ましい。さらにその中でも、酸素などの腐食因子に対して優れた遮断性を有する熱硬化性のエポキシ樹脂や変性エポキシ樹脂が最適であり、とりわけ高度な導電性およびスポット溶接性を得るために皮膜の付着量を低レベルにする場合には特に有利である。OH基および/またはCOOH基を有する有機高分子樹脂としては、例えば、エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、アクリル系共重合体樹脂、エチレン−アクリル酸共重合体樹脂、アルキッド樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアミン樹脂、ポリフェニレン樹脂類およびこれらの樹脂の2種以上の混合物若しくは付加重合物などが挙げられる。   As the base resin for the organic film, an organic polymer resin (α) having an OH group and / or a COOH group is used. Among them, a thermosetting resin is preferable, and an epoxy resin or a modified epoxy resin is particularly preferable. Among them, thermosetting epoxy resins and modified epoxy resins that have excellent barrier properties against corrosion factors such as oxygen are the most suitable, and in particular, the amount of coating to obtain high conductivity and spot weldability. It is particularly advantageous when the level is low. Examples of organic polymer resins having OH groups and / or COOH groups include epoxy resins, polyhydroxy polyether resins, acrylic copolymer resins, ethylene-acrylic acid copolymer resins, alkyd resins, polybutadiene resins, and phenols. Examples thereof include resins, polyurethane resins, polyamine resins, polyphenylene resins, and mixtures or addition polymers of two or more of these resins.

(1)エポキシ樹脂
エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ノボラックなどをグリシジルエーテル化したエポキシ樹脂、ビスフェノールAにプロピレンオキサイド、エチレンオキサイドまたはポリアルキレングリコールを付加し、グリシジルエーテル化したエポキシ樹脂、さらには脂肪族エポキシ樹脂、脂環族エポキシ樹脂、ポリエーテル系エポキシ樹脂などを用いることができる。
これらエポキシ樹脂は、特に低温での硬化を必要とする場合には、数平均分子量1500以上のものが望ましい。なお、上記エポキシ樹脂は単独または異なる種類のものを混合して使用することもできる。
(1) Epoxy resin As an epoxy resin, an epoxy resin obtained by glycidyl etherification of bisphenol A, bisphenol F, novolak, etc., an epoxy resin obtained by adding propylene oxide, ethylene oxide or polyalkylene glycol to bisphenol A, and further, An aliphatic epoxy resin, an alicyclic epoxy resin, a polyether epoxy resin, or the like can be used.
These epoxy resins preferably have a number average molecular weight of 1500 or more, particularly when curing at low temperatures is required. In addition, the said epoxy resin can also be used individually or in mixture of a different kind.

変性エポキシ樹脂としては、上記エポキシ樹脂中のエポキシ基またはビドロキシル基に各種変性剤を反応させた樹脂が挙げられる。例えば、乾性油脂肪酸中のカルボキシル基を反応させたエポキシエステル樹脂、アクリル酸、メタクリル酸などで変性したエポキシアクリレート樹脂、イソシアネート化合物を反応させたウレタン変性エポキシ樹脂、エポキシ樹脂にイソシアネート化合物を反応させたウレタン変性エポキシ樹脂にアルカノールアミンを付加したアミン付加ウレタン変性エポキシ樹脂などを挙げることができる。   Examples of the modified epoxy resin include resins obtained by reacting various modifiers with the epoxy group or bidoxyl group in the epoxy resin. For example, an isocyanate compound is reacted with an epoxy ester resin reacted with a carboxyl group in a drying oil fatty acid, an epoxy acrylate resin modified with acrylic acid, methacrylic acid, or the like, a urethane-modified epoxy resin reacted with an isocyanate compound, or an epoxy resin. Examples thereof include amine-added urethane-modified epoxy resins obtained by adding alkanolamines to urethane-modified epoxy resins.

上記ポリヒドロキシポリエーテル樹脂は、単核型若しくは2核型の2価フェノールまたは単核型と2核型との混合2価フェノールを、アルカリ触媒の存在下にほぼ等モル量のエピハロヒドリンと重縮合させて得られる重合体である。単核型2価フェノールの代表例としてはレゾルシン、ハイドロキノン、カテコールが挙げられ、2核型フェノールの代表例としてはビスフェノールAが挙げられ、これらは単独で使用しても或いは2種以上を併用してもよい。   The polyhydroxy polyether resin is a polycondensation of a mononuclear or binuclear dihydric phenol or a mixed dihydric phenol of mononuclear and binuclear with an approximately equimolar amount of epihalohydrin in the presence of an alkali catalyst. It is a polymer obtained by making it. Representative examples of mononuclear dihydric phenols include resorcin, hydroquinone, and catechol. Representative examples of dinuclear phenols include bisphenol A. These may be used alone or in combination of two or more. May be.

(2)ウレタン樹脂
ウレタン樹脂としては、例えば、油変性ポリウレタン樹脂、アルキド系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ポリウレタン樹脂などを挙げることができる。
(3)アルキド樹脂
アルキド樹脂としては、例えば、油変性アルキド樹脂、ロジン変性アルキド樹脂、フェノール変性アルキド樹脂、スチレン化アルキド樹脂、シリコン変性アルキド樹脂、アクリル変性アルキド樹脂、オイルフリーアルキド樹脂、高分子量オイルフリーアルキド樹脂などを挙げることができる。
(2) Urethane resin Examples of the urethane resin include an oil-modified polyurethane resin, an alkyd polyurethane resin, a polyester polyurethane resin, a polyether urethane resin, and a polycarbonate polyurethane resin.
(3) Alkyd resin Examples of alkyd resins include oil-modified alkyd resins, rosin-modified alkyd resins, phenol-modified alkyd resins, styrenated alkyd resins, silicon-modified alkyd resins, acrylic-modified alkyd resins, oil-free alkyd resins, and high molecular weight oils. A free alkyd resin etc. can be mentioned.

(4)アクリル系樹脂
アクリル系樹脂としては、例えば、ポリアクリル酸およびその共重合体、ポリアクリル酸エステルおよびその共重合体、ポリメタクリル酸エステルおよびその共重合体、ポリメタクリル酸エステルおよびその共重合体、ウレタン−アクリル酸共重合体(またはウレタン変性アクリル樹脂)、スチレン−アクリル酸共重合体などが挙げられ、さらにこれらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂を用いてもよい。
(4) Acrylic resin Examples of the acrylic resin include polyacrylic acid and copolymers thereof, polyacrylic acid esters and copolymers thereof, polymethacrylic acid esters and copolymers thereof, polymethacrylic acid esters and copolymers thereof. Examples include polymers, urethane-acrylic acid copolymers (or urethane-modified acrylic resins), styrene-acrylic acid copolymers, and these resins were further modified with other alkyd resins, epoxy resins, phenol resins, and the like. A resin may be used.

(5)エチレン樹脂(ポリオレフィン樹脂)
エチレン樹脂としては、例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、カルボキシル変性ポリオレフィン樹脂などのエチレン系共重合体、エチレン−不飽和カルボン酸共重合体、エチレン系アイオノマーなどが挙げられ、さらに、これらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂を用いてもよい。
(5) Ethylene resin (polyolefin resin)
Examples of ethylene resins include ethylene-acrylic acid copolymers, ethylene-methacrylic acid copolymers, ethylene copolymers such as carboxyl-modified polyolefin resins, ethylene-unsaturated carboxylic acid copolymers, ethylene ionomers, and the like. Furthermore, resins obtained by modifying these resins with other alkyd resins, epoxy resins, phenol resins, or the like may be used.

(6)アクリルシリコン樹脂
アクリルシリコン樹脂としては、例えば、主剤としてアクリル系共重合体の側鎖または末端に加水分解性アルコキシシリル基を含み、これに硬化剤を添加したものなどが挙げられる。これらのアクリルシリコン樹脂を用いた場合、優れた耐候性が期待できる。
(7)フッ素樹脂
フッ素樹脂としては、フルオロオレフィン系共重合体があり、これには例えば、モノマーとしてアルキルビニルエーテル、シンクロアルキルビニルエーテル、カルボン酸変性ビニルエステル、ヒドロキシアルキルアリルエーテル、テトラフルオロプロピルビニルエーテルなどと、フッ素モノマー(フルオロオレフィン)とを共重合させた共重合体がある。これらフッ素樹脂を用いた場合には、優れた耐候性と優れた疎水性が期待できる。
(6) Acrylic Silicon Resin Examples of the acrylic silicon resin include those containing a hydrolyzable alkoxysilyl group at the side chain or terminal of the acrylic copolymer as a main agent and added with a curing agent. When these acrylic silicon resins are used, excellent weather resistance can be expected.
(7) Fluororesin Fluororesin includes fluoroolefin copolymers, such as alkyl vinyl ether, synchroalkyl vinyl ether, carboxylic acid-modified vinyl ester, hydroxyalkyl allyl ether, tetrafluoropropyl vinyl ether and the like as monomers. And a copolymer obtained by copolymerizing a fluorine monomer (fluoroolefin). When these fluororesins are used, excellent weather resistance and excellent hydrophobicity can be expected.

また、樹脂の乾燥温度の低温化を狙いとして、樹脂粒子のコア部分とシェル部分とで異なる樹脂種類、または異なるガラス転移温度の樹脂からなるコア・シェル型水分散性樹脂を用いることができる。
また、自己架橋性を有する水分散性樹脂を用い、例えば、樹脂粒子にアルコキシシラン基を付与することによって、樹脂の加熱乾燥時にアルコキシシランの加水分解によるシラノール基の生成と樹脂粒子間のシラノール基の脱水縮合反応を利用した粒子間架橋を利用することができる。
また、有機皮膜に使用する樹脂としては、有機樹脂をシランカップリング剤を介してシリカと複合化させた有機複合シリケートも好適である。
For the purpose of lowering the drying temperature of the resin, it is possible to use a core / shell type water-dispersible resin made of a resin having different resin types or different glass transition temperatures in the core portion and the shell portion of the resin particles.
In addition, by using a water-dispersible resin having self-crosslinkability, for example, by adding an alkoxysilane group to the resin particles, silanol groups are generated by hydrolysis of the alkoxysilane when the resin is heated and dried, and silanol groups between the resin particles Interparticle cross-linking utilizing the dehydration condensation reaction can be used.
Further, as the resin used for the organic film, an organic composite silicate in which an organic resin is combined with silica through a silane coupling agent is also suitable.

本発明では有機皮膜の耐食性や加工性の向上を狙いとして、特に熱硬化性樹脂を用いることが望ましい。この場合、尿素樹脂(ブチル化尿素樹脂など)、メラミン樹脂(ブチル化メラミン樹脂)、ブチル化尿素・メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂、ブロックイソシアネート、オキサゾリン化合物、フェノール樹脂などの硬化剤を配合することができる。   In the present invention, it is particularly desirable to use a thermosetting resin for the purpose of improving the corrosion resistance and workability of the organic film. In this case, a curing agent such as urea resin (butylated urea resin, etc.), melamine resin (butylated melamine resin), butylated urea / melamine resin, benzoguanamine resin, etc., blocked isocyanate, oxazoline compound, phenol resin, etc. can do.

以上述べた有機樹脂の中で、耐食性、加工性、塗装性を考慮すると、エポキシ樹脂、エチレン系樹脂が好ましく、特に、酵素などの腐食因子に対して優れた遮断性を有する熱硬化性のエポキシ樹脂や変性エポキシ樹脂が特に好適である。これらの熱硬化性樹脂としては、熱硬化性エポキシ樹脂、熱硬化性変性エポキシ樹脂、エポキシ基含有モノマーと共重合したアクリル系共重合体樹脂、エポキシ基を有するポリブタジエン樹脂、エポキシ基を有するポリウレタン樹脂、およびこれらの樹脂の付加物もしくは縮合物などが挙げられ、これらのエポキシ基含有樹脂の1種を単独で、または2種以上混合して用いることができる。   Among the organic resins described above, in view of corrosion resistance, workability, and paintability, epoxy resins and ethylene resins are preferable, and thermosetting epoxy having excellent blocking properties against corrosion factors such as enzymes, in particular. Resins and modified epoxy resins are particularly suitable. These thermosetting resins include thermosetting epoxy resins, thermosetting modified epoxy resins, acrylic copolymer resins copolymerized with epoxy group-containing monomers, polybutadiene resins having epoxy groups, and polyurethane resins having epoxy groups. And adducts or condensates of these resins, and one of these epoxy group-containing resins can be used alone or in admixture of two or more.

次に、自己補修性発現物質である防錆添加成分(β)について説明する。
上記成分(a)であるリン酸塩は、単塩、複塩などの全ての種類の塩を含む。また、それを構成する金属カチオンに限定はなく、リン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸アルミニウムなどのいずれの金属カチオンでもよい。また、リン酸イオンの骨格や縮合度などにも限定はなく、正塩、二水素塩、一水素塩または亜リン酸塩のいずれでもよく、さらに、正塩はオルトリン酸塩の他、ポリリン酸塩などの全ての縮合リン酸塩を含む。
Next, the antirust additive component (β), which is a self-repairing substance, will be described.
The phosphate which is the said component (a) contains all kinds of salts, such as a single salt and a double salt. Moreover, there is no limitation in the metal cation which comprises it, and any metal cation, such as zinc phosphate, magnesium phosphate, calcium phosphate, and aluminum phosphate, may be used. Further, there is no limitation on the skeleton or the degree of condensation of phosphate ions, and any of normal salt, dihydrogen salt, monohydrogen salt or phosphite may be used. In addition, orthophosphate may be polyphosphate other than orthophosphate. Includes all condensed phosphates such as salts.

また、上記成分(a)であるリン酸塩とともにカルシウム化合物を複合添加することにより、耐食性をさらに向上させることができる。カルシウム化合物は、カルシウム酸化物、カルシウム水酸化物、カルシウム塩のいずれでもよく、これらの1種または2種以上を使用できる。また、カルシウム塩の種類にも特に制限はなく、ケイ酸カルシウム、炭酸カルシウム、リン酸カルシウムなどのようなカチオンとしてカルシウムのみを含む単塩のほか、リン酸カルシウム・亜鉛、リン酸カルシウム・マグネシウムなどのようなカルシウムとカルシウム以外のカチオンを含む複塩を使用してもよい。   Moreover, corrosion resistance can further be improved by adding a calcium compound together with the phosphate which is the said component (a). The calcium compound may be any of calcium oxide, calcium hydroxide, and calcium salt, and one or more of these can be used. In addition, there are no particular restrictions on the type of calcium salt. In addition to simple salts containing only calcium as a cation such as calcium silicate, calcium carbonate, and calcium phosphate, calcium and calcium such as calcium phosphate / zinc, calcium phosphate / magnesium, etc. Double salts containing other cations may be used.

また、上記成分(b)であるCaイオン交換シリカは、カルシウムイオンを多孔質シリカゲル粉末の表面に固定したもので、腐食環境下でCaイオンが放出されて沈殿膜を形成する。
Caイオン交換シリカとしては任意のものを用いることができるが、平均粒子径が6μm以下、望ましくは4μm以下のものが好ましく、例えば、平均粒子径が2〜4μmのものを用いることができる。Caイオン交換シリカの平均粒子径が6μmを超えると耐食性が低下するとともに、塗料組成物中での分散安定性が低下する。
Caイオン交換シリカ中のCa濃度は1質量%以上、望ましくは2〜8質量%であることが好ましい。Ca濃度が1質量%未満ではCa放出による防錆効果が十分に得られない。なお、Caイオン交換シリカの表面積、pH、吸油量については特に限定されない。
Moreover, the Ca ion exchange silica which is said component (b) is what fixed the calcium ion on the surface of the porous silica gel powder, Ca ion is discharge | released in a corrosive environment, and forms a precipitation film | membrane.
Any Ca ion-exchanged silica can be used, but those having an average particle size of 6 μm or less, preferably 4 μm or less are preferable, and for example, those having an average particle size of 2 to 4 μm can be used. When the average particle size of the Ca ion exchange silica exceeds 6 μm, the corrosion resistance is lowered and the dispersion stability in the coating composition is lowered.
The Ca concentration in the Ca ion-exchanged silica is 1% by mass or more, preferably 2 to 8% by mass. When the Ca concentration is less than 1% by mass, the rust prevention effect due to Ca release cannot be obtained sufficiently. The surface area, pH, and oil absorption amount of the Ca ion exchange silica are not particularly limited.

以上のようなCaイオン交換シリカとしては、W.R.Grace&Co.製のSHIELDEX C303(平均粒子径2.5〜3.5μm、Ca濃度3質量%)、SHIELDEX AC3(平均粒子径2.3〜3.1μm、Ca濃度6質量%)、SHIELDEX AC5(平均粒子径3.8〜5.2μm、Ca濃度6質量%)(以上、いずれも商品名)、富士シリシア化学(株)製のSHIELDEX(平均粒子径3μm、Ca濃度6〜8質量%)、SHIELDEX SY710(平均粒子径2.2〜2.5μm、Ca濃度6.6〜7.5質量%)(以上、いずれも商品名)などを用いることができる。   As the Ca ion exchange silica as described above, W.R.Grace & Co. SHIELDEX C303 (average particle size 2.5 to 3.5 μm, Ca concentration 3% by mass), SHIELDEX AC3 (average particle size 2.3 to 3.1 μm, Ca concentration 6% by mass), SHIELDEX AC5 (average particle size) 3.8-5.2 μm, Ca concentration 6% by mass (all are trade names), SHIELDEX (average particle size 3 μm, Ca concentration 6-8% by mass) manufactured by Fuji Silysia Chemical Ltd., SHIELDEX SY710 ( An average particle size of 2.2 to 2.5 μm and a Ca concentration of 6.6 to 7.5% by mass) (all are trade names) can be used.

上記成分(c)であるモリブデン酸塩は、その骨格、縮合度に限定はなく、例えば、オルトモリブデン酸塩、パラモリブデン酸塩、メタモリブデン酸塩などが挙げられる。また、単塩、複塩などの全ての塩を含み、複塩としてはリン酸モリブデン酸塩などが挙げられる。
上記成分(d)である酸化ケイ素は、コロイダルシリカ、乾式シリカのいずれでもよい。コロイダルシリカとしては、水系皮膜形成樹脂をベースとする場合には、例えば、日産化学工業(株)製のスノーテックスO、スノーテックスN、スノーテックス20、スノーテックス30、スノーテックス40、スノーテックスC、スノーテックスS(以上、いずれも商品名)、触媒化成工業(株)製のカタロイドS、カタロイドSI−350、カタロイドSI−40、カタロイドSA、カタロイドSN(以上、いずれも商品名)、旭電化工業(株)製のアデライトAT−20〜50、アデライトAT−20N、アデライトAT−300、アデライトAT−300S、アデライトAT20Q(以上、いずれも商品名)などを用いることができる。
The molybdate that is the component (c) is not limited in its skeleton and degree of condensation, and examples thereof include orthomolybdate, paramolybdate, and metamolybdate. Moreover, all salts, such as a single salt and a double salt, are included, and phosphoric acid molybdate etc. are mentioned as a double salt.
The silicon oxide as the component (d) may be either colloidal silica or dry silica. When colloidal silica is based on a water-based film-forming resin, for example, Snowtex O, Snowtex N, Snowtex 20, Snowtex 30, Snowtex 40, Snowtex C manufactured by Nissan Chemical Industries, Ltd. , Snowtex S (above, all are trade names), Cataloid S, Cataloid SI-350, Cataloid SI-40, Cataloid SA, Cataloid SN (above, all are trade names) manufactured by Catalytic Kasei Kogyo Co., Ltd., Asahi Denka Adelite AT-20-50 manufactured by Kogyo Co., Ltd., Adelite AT-20N, Adelite AT-300, Adelite AT-300S, Adelite AT20Q (all are trade names) and the like can be used.

また、溶剤系皮膜形成樹脂をベースとする場合には、例えば、日産化学工業(株)製のオルガノシリカゾルMA−ST−M、オルガノシリカゾルIPA−ST、オルガノシリカゾルEG−ST、オルガノシリカゾルE−ST−ZL、オルガノシリカゾルNPC−ST、オルガノシリカゾルDMAC−ST、オルガノシリカゾルDMAC−ST−ZL、オルガノシリカゾルXBA−ST、オルガノシリカゾルMIBK−ST(以上、いずれも商品名)、触媒化成工業(株)製のOSCAL−1132、OSCAL−1232、OSCAL−1332、OSCAL−1432、OSCAL−1532、OSCAL−1632、OSCAL−1722(以上、いずれも商品名)などを用いることができる。   In addition, when the solvent-based film forming resin is used as a base, for example, organosilica sol MA-ST-M, organosilica sol IPA-ST, organosilica sol EG-ST, organosilica sol E-ST manufactured by Nissan Chemical Industries, Ltd. -ZL, organosilica sol NPC-ST, organosilica sol DMAC-ST, organosilica sol DMAC-ST-ZL, organosilica sol XBA-ST, organosilica sol MIBK-ST (all are trade names), manufactured by Catalyst Kasei Kogyo Co., Ltd. OSCAL-1132, OSCAL-1232, OSCAL-1332, OSCAL-1432, OSCAL-1532, OSCAL-1632, OSCAL-1722 (all of which are trade names) can be used.

特に、有機溶剤分散型シリカゾルは、分散性に優れ、ヒュームドシリカよりも耐食性に優れている。
また、ヒュームドシリカとしては、例えば、日本アエロジル(株)製のAEROSIL R971、AEROSIL R812、AEROSIL R811、AEROSIL R974、AEROSIL R202、AEROSIL R805、AEROSIL 130、AEROSIL 200、AEROSIL 300、AEROSIL 300CF(以上、いずれも商品名)などを用いることができる。
In particular, the organic solvent-dispersed silica sol is excellent in dispersibility and superior in corrosion resistance than fumed silica.
Examples of the fumed silica include AEROSIL R971, AEROSIL R812, AEROSIL R811, AEROSIL R974, AEROSIL R202, AEROSIL R805, AEROSIL 130, AEROSIL 200, AEROSIL 300, and more from AEROSIL 300CF manufactured by Nippon Aerosil Co., Ltd. Can also be used.

微粒子シリカは、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制することができると考えられている。
耐食性の観点からは、微粒子シリカは粒子径が5〜50nm、望ましくは5〜20nm、さらに好ましくは5〜15nmのものを用いるのが好ましい。
The fine-particle silica contributes to the formation of a dense and stable zinc corrosion product in a corrosive environment, and the corrosion product is considered to be able to suppress the promotion of corrosion by being densely formed on the plating surface. It has been.
From the viewpoint of corrosion resistance, it is preferable to use fine silica particles having a particle diameter of 5 to 50 nm, desirably 5 to 20 nm, more preferably 5 to 15 nm.

上記成分(e)の有機化合物のうち、トリアゾール類としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、1H−ベンゾトリアゾールなどが、またチオール類としては、1,3,5−トリアジン−2,4,6−トリチオール、2−メルカプトベンツイミダゾールなどが、またチアジアゾール類としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどが、またチアゾール類としては、2−N,N−ジエチルチオベンゾチアゾール、2−メルカプトベンゾチアゾール類などが、またチウラム類としては、テトラエチルチウラムジスルフィドなどが、それぞれ挙げられる。   Among the organic compounds of the component (e), triazoles include 1,2,4-triazole, 3-amino-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 5- Amino-3-mercapto-1,2,4-triazole, 1H-benzotriazole, etc., and thiols include 1,3,5-triazine-2,4,6-trithiol, 2-mercaptobenzimidazole, etc. The thiadiazoles include 5-amino-2-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole, and the thiazoles include 2-N, N -Diethylthiobenzothiazole, 2-mercaptobenzothiazole, etc., and thiurams include tetraethylthiuramdisulfur Such as soil, and the like, respectively.

有機皮膜中での上記防錆添加成分(β)の合計の配合量(上記成分(a)〜(e)の中から選ばれる1種以上の自己補修性発現物質の合計の配合量)は、基体樹脂(有機高分子樹脂(α))100質量部(固形分)に対して、1〜100質量部(固形分)、好ましくは10〜50質量部(固形分)とする。防錆添加成分(β)の配合量が1質量部未満では耐食性向上効果が小さい。一方、配合量が100質量部を超えると、耐食性が低下するので好ましくない。   The total amount of the antirust additive component (β) in the organic film (the total amount of one or more self-repairing substances selected from the components (a) to (e)) is: It is 1-100 mass parts (solid content) with respect to 100 mass parts (solid content) of base resin (organic polymer resin ((alpha))), Preferably it is 10-50 mass parts (solid content). If the blending amount of the antirust additive component (β) is less than 1 part by mass, the effect of improving corrosion resistance is small. On the other hand, if the blending amount exceeds 100 parts by mass, the corrosion resistance decreases, which is not preferable.

また、有機皮膜中には上記の防錆添加成分に加えて、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機リン酸およびその塩(例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩、およびこれらの金属塩、アルカリ金属塩、アルカリ土類金属塩など)、有機インヒビター(例えば、ヒドラジン誘導体、チオール化合物、ジチオカルバミン酸塩など)などの1種または2種以上を添加できる。   In addition to the above rust preventive additives, the organic film contains other oxide fine particles (eg, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, antimony oxide), phosphomolybdic acid as a corrosion inhibitor. Salts (eg, aluminum phosphomolybdate), organic phosphoric acid and its salts (eg, phytic acid, phytate, phosphonic acid, phosphonate, and metal salts thereof, alkali metal salts, alkaline earth metal salts, etc. ), Organic inhibitors (for example, hydrazine derivatives, thiol compounds, dithiocarbamates, etc.) can be added.

有機皮膜中には、さらに必要に応じて、皮膜の加工性を向上させる目的で固形潤滑剤を配合することができる。
本発明に適用できる固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの1種または2種以上を用いることができる。
(1)ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2)フッ素樹脂微粒子:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
If necessary, a solid lubricant can be blended in the organic film for the purpose of improving the workability of the film.
Examples of the solid lubricant applicable to the present invention include the following, and one or more of these can be used.
(1) Polyolefin wax, paraffin wax: For example, polyethylene wax, synthetic paraffin, natural paraffin, micro wax, chlorinated hydrocarbon, etc. (2) Fluorine resin fine particles: For example, polyfluoroethylene resin (polytetrafluoroethylene resin, etc.) , Polyvinyl fluoride resin, polyvinylidene fluoride resin, etc.

また、この他にも、脂肪酸アミド系化合物(例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど)、金属石けん類(例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど)、金属硫化物(例えば、二硫化モリブデン、二硫化タングステンなど)、グラファイト、フッ化黒鉛、窒化ホウ素、ポリアルキレングリコール、アルカリ金属硫酸塩などの1種または2種以上を用いてもよい。   In addition, fatty acid amide compounds (eg, stearic acid amide, palmitic acid amide, methylene bis stearoamide, ethylene bis stearoamide, oleic acid amide, esylic acid amide, alkylene bis fatty acid amide), metal Soaps (eg, calcium stearate, lead stearate, calcium laurate, calcium palmitate, etc.), metal sulfides (eg, molybdenum disulfide, tungsten disulfide, etc.), graphite, graphite fluoride, boron nitride, polyalkylene glycol, You may use 1 type, or 2 or more types, such as an alkali metal sulfate.

以上の固形潤滑剤の中でも、特に、ポリエチレンワックス、フッ素樹脂微粒子(なかでも、ポリ4フッ化エチレン樹脂微粒子)が好適である。
ポリエチレンワックスとしては、例えば、ヘキスト社製のセリダスト 9615A、セリダスト 3715、セリダスト 3620、セリダスト 3910(以上、いずれも商品名)、三洋化成(株)製のサンワックス 131−P、サンワックス 161−P(以上、いずれも商品名)、三井石油化学(株)製のケミパール W−100、ケミパール W−200、ケミパール W−500、ケミパール W−800、ケミパール W−950(以上、いずれも商品名)などを用いることができる。
Among the above solid lubricants, polyethylene wax and fluororesin fine particles (in particular, polytetrafluoroethylene resin fine particles) are preferable.
Polyethylene wax includes, for example, Celestus 9615A, Celidust 3715, Celidust 3620, Celidust 3910 (all are trade names) manufactured by Hoechst, Sunwax 131-P, Sanwax 161-P manufactured by Sanyo Chemical Co., Ltd. All of the above are trade names), Chemipearl W-100, Chemipearl W-200, Chemipearl W-500, Chemipearl W-800, Chemipearl W-950 (all are trade names) manufactured by Mitsui Petrochemical Co., Ltd. Can be used.

また、フッ素樹脂微粒子としては、テトラフルオロエチレン微粒子が最も好ましく、例えば、ダイキン工業(株)製のルブロン L−2、ルブロン L−5(以上、いずれも商品名)、三井・デュポン(株)製のMP1100、MP1200(以上、いずれも商品名)、旭アイシーアイフロロポリマーズ(株)製のフルオンディスパージョン AD1、フルオンディスパージョン AD2、フルオン L141J、フルオン L150J、フルオン L155J(以上、いずれも商品名)などが好適である。   Further, as the fluororesin fine particles, tetrafluoroethylene fine particles are most preferable. For example, Lubron L-2, Lubron L-5 (all are trade names) manufactured by Daikin Industries, Ltd., Mitsui DuPont Co., Ltd. MP1100, MP1200 (all are trade names), full-on dispersion AD1, full-on dispersion AD2, full-on L141J, full-on L150J, full-on L155J (all are trade names) manufactured by Asahi IC Fluoropolymers Co., Ltd. Is preferred.

また、これらのなかで、ポリオレフィンワックスとテトラフルオロエチレン微粒子の併用により特に優れた潤滑効果が期待できる。
有機皮膜中での固形潤滑剤の配合量は、基体樹脂(有機高分子樹脂(α))100質量部(固形分)に対して、1〜80質量部(固形分)、好ましくは3〜40質量部(固形分)とすることが好ましい。固形潤滑剤の配合量が1質量部未満では潤滑効果が乏しく、一方、配合量が80質量部を超えると塗装性が低下するので好ましくない。
Among these, a particularly excellent lubricating effect can be expected by the combined use of polyolefin wax and tetrafluoroethylene fine particles.
The blending amount of the solid lubricant in the organic film is 1 to 80 parts by mass (solid content), preferably 3 to 40 with respect to 100 parts by mass (solid content) of the base resin (organic polymer resin (α)). It is preferable to set it as a mass part (solid content). When the blending amount of the solid lubricant is less than 1 part by mass, the lubricating effect is poor. On the other hand, when the blending amount exceeds 80 parts by mass, the paintability is lowered, which is not preferable.

有機皮膜中には、さらに必要に応じて、添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、有機溶剤可溶性アゾ系染料、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、キレート剤(例えば、チオールなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種または2種以上を添加することができる。
有機皮膜の乾燥膜厚は0.1〜5μm、好ましくは0.3〜3μm、さらに好ましくは0.5〜2μmとする。有機皮膜の膜厚が0.1μm未満では耐食性が不十分であり、一方、膜厚が5μmを超えると湿潤環境下での耐変色性が低下する。
In the organic film, as necessary, organic coloring pigments (for example, condensed polycyclic organic pigments, phthalocyanine organic pigments), coloring dyes (for example, organic solvent-soluble azo dyes, water-soluble substances) Azo metal dyes), inorganic pigments (eg, titanium oxide), chelating agents (eg, thiols), conductive pigments (eg, metal powders such as zinc, aluminum, nickel, etc.), iron phosphide, antimony-doped oxidation Tin or the like), a coupling agent (for example, a silane coupling agent, a titanium coupling agent, etc.), or one or more of melamine and cyanuric acid adducts can be added.
The dry film thickness of the organic film is 0.1 to 5 μm, preferably 0.3 to 3 μm, and more preferably 0.5 to 2 μm. When the film thickness of the organic film is less than 0.1 μm, the corrosion resistance is insufficient. On the other hand, when the film thickness exceeds 5 μm, the discoloration resistance in a wet environment is lowered.

以上述べた第2層皮膜である有機皮膜の防食機構については、次のように考えられる。
すなわち、OH基および/またはCOOH基を有する有機高分子樹脂(α)(好ましくは熱硬化性樹脂、さらに好ましくはエポキシ樹脂および/または変性エポキシ樹脂)が架橋剤との反応により緻密なバリア皮膜を形成し、このバリア皮膜は、酸素などの腐食因子の透過抑制能に優れているため、優れた耐食性(バリア性)が得られるものと考えられる。
The anticorrosion mechanism of the organic film that is the second layer film described above is considered as follows.
That is, an organic polymer resin (α) having an OH group and / or a COOH group (preferably a thermosetting resin, more preferably an epoxy resin and / or a modified epoxy resin) forms a dense barrier film by reaction with a crosslinking agent. Since this barrier film is excellent in permeation suppressing ability of corrosion factors such as oxygen, it is considered that excellent corrosion resistance (barrier property) can be obtained.

そして、本発明では、そのような有機皮膜自体の優れた耐食性(バリア性)に加えて、有機皮膜を構成する有機高分子樹脂中のOH基やCOOH基により第1層皮膜との強固な結合力が得られるため、特に優れた耐食性(バリア性)が得られるものと考えられる。したがって、これらの効果と亜鉛めっき表層のAl酸化物層及び第1層皮膜による耐食性向上効果が複合的に得られるため、非常に優れた耐食性が得られるものと考えられる。   In the present invention, in addition to the excellent corrosion resistance (barrier property) of the organic film itself, strong bonding to the first layer film by OH groups and COOH groups in the organic polymer resin constituting the organic film. It is considered that particularly excellent corrosion resistance (barrier properties) can be obtained because of the strength. Therefore, since these effects and the effect of improving the corrosion resistance by the Al oxide layer and the first layer film on the galvanized surface layer are obtained in combination, it is considered that very excellent corrosion resistance can be obtained.

また、本発明では上記のような特定の有機高分子樹脂からなる有機皮膜中に、
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
の中から選ばれる1種以上の防錆添加成分(β)(自己補修性発現物質)を適量配合することにより、特に優れた防食性能(自己修復効果)を得ることができる。この特定の有機皮膜中に上記(a)〜(e)の成分を配合したことにより得られる防食機構は以下のように考えられる。
In the present invention, in the organic film made of the specific organic polymer resin as described above,
(A) Phosphate (b) Ca ion exchange silica (c) Molybdate (d) Silicon oxide (e) One or more kinds selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams A particularly excellent anticorrosion performance (self-healing effect) can be obtained by blending an appropriate amount of at least one rust-preventing additive (β) (self-repairing substance) selected from organic compounds. The anticorrosion mechanism obtained by blending the components (a) to (e) in the specific organic film is considered as follows.

まず、上記(a)の成分は、腐食環境化において加水分解によってリン酸イオンに解離し、溶出金属と錯形成反応を起こすことにより保護皮膜を形成する。
また、上記(b)の成分の場合は、腐食環境下でNaイオンなどのカチオンが侵入すると、イオン交換作用によりシリカ表面のCaイオンが放出され、さらに、腐食環境下でのカソード反応によりOHイオンが生成してめっき界面近傍のpHが上昇すると、Caイオン交換シリカから放出されたCaイオンがCa(OH)としてめっき界面近傍に沈殿し、緻密で難溶性の生成物として欠陥を封鎖し、腐食反応を抑制する。また、溶出した亜鉛イオンはCaイオンと交換されてシリカ表面に固定される効果も考えられる。
First, the component (a) dissociates into phosphate ions by hydrolysis in a corrosive environment, and forms a protective film by causing a complexing reaction with the eluted metal.
In the case of the component (b), when a cation such as Na ion enters in a corrosive environment, Ca ions on the silica surface are released by an ion exchange action, and further, OH ions are generated by a cathodic reaction in the corrosive environment. When the pH in the vicinity of the plating interface rises, Ca ions released from the Ca ion exchange silica precipitate as Ca (OH) 2 in the vicinity of the plating interface, block defects as a dense and poorly soluble product, Inhibits corrosion reactions. Moreover, the eluted zinc ion is exchanged with Ca ion, and the effect fixed to the silica surface is also considered.

また、上記(c)の成分は、不動態化効果によって自己補修性を発現する。すなわち、腐食環境下で溶存酸素と共にめっき皮膜表面に緻密な酸化物を形成し、これが腐食起点を封鎖することによって腐食反応を抑制する。
また、上記(d)の成分は、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制する。
また、上記(e)の成分は吸着効果によって自己補修性を発現する。すなわち、腐食によって溶出した亜鉛やアルミニウムが、上記(e)の成分が有する窒素や硫黄を含む極性基に吸着して不活性皮膜を形成し、これが腐食起点を封鎖することによって腐食反応を抑制する。
The component (c) exhibits self-repairing properties due to a passivating effect. That is, a dense oxide is formed on the surface of the plating film together with dissolved oxygen in a corrosive environment, and this inhibits the corrosion reaction by blocking the corrosion starting point.
In addition, the component (d) contributes to the formation of a dense and stable zinc corrosion product in a corrosive environment, and the corrosion product is formed densely on the plating surface, thereby suppressing the promotion of corrosion. To do.
The component (e) exhibits self-repairing properties due to the adsorption effect. That is, zinc and aluminum eluted by corrosion adsorb to the polar group containing nitrogen and sulfur contained in the component (e) to form an inactive film, which inhibits the corrosion reaction by blocking the corrosion starting point. .

一般の有機皮膜中に上記(a)〜(e)の成分を配合した場合でも、ある程度の防食効果は得られるが、本発明のように特定の有機高分子樹脂からなるバリア性に優れた有機皮膜中に上記(a)〜(e)の自己補修性発現物質を配合したことにより、両者の効果(バリア性と自己補修性)が複合化し、これにより極めて優れた防食効果が発揮されるものと考えられる。
また、上記(a)の成分とともにカルシウム化合物を複合添加した場合には、カルシウム化合物は、腐食環境下においてめっき金属よりも優先的に溶出することにより、めっき金属の溶出をトリガーとせずにリン酸イオンと錯形成反応を起こして緻密で難溶性の保護皮膜を形成し、腐食反応を抑制する。
なお、以上述べた(a)〜(e)の成分のうちの2種以上を複合添加すれば、各々の成分による腐食抑制作用が複合化されるため、より優れた耐食性が得られる。
Even when the components (a) to (e) are blended in a general organic film, a certain degree of anticorrosion effect can be obtained, but an organic material having excellent barrier properties made of a specific organic polymer resin as in the present invention. By blending the above self-repairing substances (a) to (e) into the film, both effects (barrier property and self-repairing property) are combined, thereby exhibiting an extremely excellent anticorrosion effect. it is conceivable that.
In addition, when a calcium compound is added together with the component (a) above, the calcium compound elutes preferentially over the plated metal in a corrosive environment, so that the phosphoric acid is not triggered by the elution of the plated metal. It causes a complexing reaction with ions to form a dense and sparingly soluble protective film to suppress the corrosion reaction.
In addition, if two or more of the above-described components (a) to (e) are added in combination, the corrosion inhibiting action by each component is combined, so that more excellent corrosion resistance can be obtained.

有機皮膜(第2層皮膜)は、上述したような有機高分子樹脂(α)と防錆添加成分(β)を含有し、さらに必要に応じて他の成分を含有する塗料組成物を表面処理皮膜の表面に塗布し、加熱乾燥することにより形成される。有機皮膜用の塗料組成物を塗布する方法としては、ロールコート法、バーコート法、浸漬法、スプレー塗布法などの任意の方法を採ることができる。処理される溶融亜鉛めっき鋼板の形状等によって適宜最適な方法を選択すればよい。例えば、処理される溶融亜鉛めっき鋼板がシート状であれば、ロールコート法やバーコート法、或いは、表面処理液を溶融亜鉛めっき鋼板表面(表面処理皮膜の表面)にスプレーした後、ロール絞りや気体を高圧で吹きかけて塗布量を調整するスプレー塗布法を用いるのが適当である。また、溶融亜鉛めっき鋼板が成型品の場合は、表面処理液に浸漬して引き上げ、必要に応じて圧縮エアーで余分な表面処理液を吹き飛ばして塗布量を調整する方法などが適当である。   The organic coating (second layer coating) contains the organic polymer resin (α) and the anticorrosive additive (β) as described above, and further treats the coating composition containing other components as necessary. It is formed by applying to the surface of the film and drying by heating. As a method for applying the coating composition for the organic film, any method such as a roll coating method, a bar coating method, a dipping method, and a spray coating method can be adopted. What is necessary is just to select an optimal method suitably according to the shape etc. of the hot dip galvanized steel plate to be processed. For example, if the hot-dip galvanized steel sheet to be treated is a sheet, a roll coating method, a bar coat method, or a surface treatment solution is sprayed on the surface of the hot-dip galvanized steel sheet (surface of the surface treatment film), It is appropriate to use a spray coating method in which the amount of coating is adjusted by blowing gas at a high pressure. Moreover, when the hot dip galvanized steel sheet is a molded product, a method of adjusting the coating amount by immersing it in a surface treatment liquid and pulling it up and blowing off excess surface treatment liquid with compressed air as necessary is suitable.

塗料組成物の塗布後、通常は水洗することなく、加熱乾燥を行うが、塗料組成物の塗布後に水洗工程を実施しても構わない。加熱乾燥処理には、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができるが、耐食性の観点からは高周波誘導加熱炉が特に好ましい。加熱処理は、到達板温で40〜350℃の範囲で行うことが望ましい。加熱乾燥温度が40℃未満では皮膜の架橋が進行せず、耐食性が不十分となるおそれがある。また、加熱乾燥温度が350℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じて耐食性が低下するおそれがある。
本発明の表面処理溶融亜鉛めっき鋼板は種々の用途に適用することができ、例えば、建築、電気、自動車等の各種分野で使用される材料などに好適に用いられる。
After application of the coating composition, drying is usually performed without washing with water, but a washing process may be performed after application of the coating composition. For the heat drying treatment, a dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace, or the like can be used, but a high frequency induction heating furnace is particularly preferable from the viewpoint of corrosion resistance. The heat treatment is desirably performed in the range of 40 to 350 ° C. at the ultimate plate temperature. If the heating and drying temperature is less than 40 ° C., crosslinking of the film does not proceed and the corrosion resistance may be insufficient. Further, when the heating and drying temperature exceeds 350 ° C., not only is it uneconomical, but there is a risk that defects occur in the film and the corrosion resistance is lowered.
The surface-treated hot-dip galvanized steel sheet of the present invention can be applied to various uses, and is suitably used for materials used in various fields such as architecture, electricity, and automobiles.

(1)供試板(溶融亜鉛めっき鋼板)
下記の市販の溶融亜鉛めっき鋼板を供試板として用いた。
(i)溶融亜鉛めっき鋼板(GI):板厚0.8mm、めっき目付量60/60(g/m
(ii)合金化溶融亜鉛めっき鋼板(GA):板厚0.8mm、めっき目付量40/40(g/m
なお、めっき目付量は鋼板両面の各めっき付着量であり、例えば、めっき目付量60/60(g/m)とは、鋼板の両面のそれぞれに60g/mのめっき層を有することを意味する。
なお、めっき表層のAl酸化物層の厚さは、下記するように前処理のアルカリ脱脂液濃度および処理時間を調整することにより調整した。
(1) Test plate (hot dip galvanized steel plate)
The following commercially available galvanized steel sheets were used as test plates.
(I) Hot-dip galvanized steel sheet (GI): Plate thickness 0.8 mm, plating basis weight 60/60 (g / m 2 )
(Ii) Alloyed hot-dip galvanized steel sheet (GA): plate thickness 0.8 mm, plating basis weight 40/40 (g / m 2 )
In addition, the plating basis weight is each plating adhesion amount on both surfaces of the steel sheet. For example, the plating basis weight 60/60 (g / m 2 ) means that each of both surfaces of the steel sheet has a plating layer of 60 g / m 2. means.
In addition, the thickness of the Al oxide layer on the plating surface layer was adjusted by adjusting the pretreatment alkaline degreasing solution concentration and the treatment time as described below.

(2)供試板の前処理(洗浄)
上記供試板(溶融亜鉛めっき鋼板)の表面にアルカリ脱脂(日本パーカライジング(株)製「ファインクリーナーE6406」を使用説明書に基づいて処理)を施し、表面の油分や汚れを取り除くとともに、Al酸化物層の厚さを調整した。具体的には、めっき表層にAl酸化物層が形成されためっき鋼板をアルカリ脱脂するに当たり、アルカリ脱脂液濃度が高いほど、また処理時間が長いほど、Al酸化物層の厚さは小さくなるので、表5の条件でアルカリ脱脂を行い、Al酸化物層の厚さを調整した。次に、水道水で水洗して供試板の表面が水で100%濡れることを確認した後、純水(脱イオン水)を流しかけ、次いで、100℃雰囲気のオーブンで水分を乾燥し、これを試験板として使用した。
(2) Pretreatment of test plate (cleaning)
Alkali degreasing (treated with “Fine Cleaner E6406” manufactured by Nihon Parkerizing Co., Ltd. according to the instruction manual) is applied to the surface of the above test plate (hot dip galvanized steel plate) to remove oil and dirt on the surface, and Al oxidation The thickness of the material layer was adjusted. Specifically, when alkali degreasing a plated steel sheet having an Al oxide layer formed on the plating surface layer, the higher the alkali degreasing solution concentration and the longer the treatment time, the smaller the thickness of the Al oxide layer. Alkaline degreasing was performed under the conditions shown in Table 5 to adjust the thickness of the Al oxide layer. Next, after rinsing with tap water and confirming that the surface of the test plate is 100% wet with water, pour pure water (deionized water), and then dry the moisture in an oven at 100 ° C., This was used as a test plate.

(3)表面処理皮膜(第1層皮膜)用の表面処理液
(3-1)表面処理液用の化合物
表面処理液用の化合物としては、以下のものを用いた。
(3-1-1)シラン化合物(A)の製造
・製造例1(シラン化合物A1)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランと脱イオン水とを混合し、アンモニア水を滴下し、シラン化合物を沈殿させた。脱イオン水で洗浄後、ホスホン酸としてニトリロトリス(メチレンスルホン酸)を加えてかき混ぜ、シラン化合物A1を得た。
(3) Surface treatment liquid for surface treatment film (first layer film) (3-1) Compound for surface treatment liquid The following compounds were used as compounds for the surface treatment liquid.
(3-1-1) Production / Production Example 1 of Silane Compound (A) (Silane Compound A1)
3-Glycidoxypropyltrimethoxysilane, tetraethoxysilane, and deionized water were mixed, and ammonia water was added dropwise to precipitate a silane compound. After washing with deionized water, nitrilotris (methylene sulfonic acid) was added as phosphonic acid and stirred to obtain silane compound A1.

・製造例2(シラン化合物A2)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランの混合物を、脱イオン水にホスホン酸としてヒドリキシエチレンジホスホン酸を混合した混合液中に、20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、シラン化合物A2を得た。
・製造例3(シラン化合物A3)
製造例2のシラン化合物A2を、さらに80℃で1時間熟成し、シラン化合物A3を得た。
Production Example 2 (Silane Compound A2)
A mixture of 3-glycidoxypropyltrimethoxysilane and tetraethoxysilane was added dropwise to a mixture of deionized water and hydroxyethylene diphosphonic acid as phosphonic acid with stirring at 20 ° C. over 1 hour. . Thereafter, aging was carried out at 25 ° C. for 2 hours to obtain a silane compound A2.
Production Example 3 (Silane Compound A3)
Silane compound A2 of Production Example 2 was further aged at 80 ° C. for 1 hour to obtain silane compound A3.

(3-1-2)炭酸ジルコニウム化合物(B)
B1:炭酸ジルコニウムアンモニウム
B2:炭酸ジルコニウムナトリウム
(3-1-3)バナジン酸化合物(C)
C1:メタバナジン酸アンモニウム
C2:バナジルアセチルアセトネート(V:19.2質量%)
(3-2)表面処理液の調製
上記化合物を表1に示す割合にて水中で混合し、固形分が15質量%の表面処理液を得た。
(3-1-2) Zirconium carbonate compound (B)
B1: Ammonium zirconium carbonate B2: Sodium zirconium carbonate (3-1-3) Vanadic acid compound (C)
C1: ammonium metavanadate C2: vanadyl acetylacetonate (V: 19.2% by mass)
(3-2) Preparation of surface treatment liquid The above compounds were mixed in water at the ratio shown in Table 1 to obtain a surface treatment liquid having a solid content of 15% by mass.

(4)有機皮膜(第2層皮膜)用の塗料組成物
(4-1)塗料組成物用の成分
塗料組成物用の有機高分子樹脂(基体樹脂)、防錆添加成分としては、以下のものを用いた。
(4-1-1)有機高分子樹脂(α)
α1:エポキシ樹脂
α2:ウレタン樹脂
(4-1-2)防錆添加成分(β)
β1:Caイオン交換シリカ
β2:リン酸Zn
β3:リンモリブデン酸Al
β4:コロイダルシリカ
β5:テトラエチルチウラムジスルフィド
(4-2)塗料組成物の調製
上記有機高分子樹脂(α)に表2〜表4に示す割合で上記防錆添加成分(β)を配合し、塗料組成物を得た。
(4) Coating composition for organic coating (second layer coating) (4-1) Component for coating composition Organic polymer resin (substrate resin) for coating composition, rust preventive additive component, Things were used.
(4-1-1) Organic polymer resin (α)
α1: Epoxy resin α2: Urethane resin (4-1-2) Antirust additive component (β)
β1: Ca ion exchange silica β2: Zn phosphate
β3: phosphomolybdate Al
β4: Colloidal silica β5: Preparation of coating composition of tetraethylthiuram disulfide (4-2) The above rust preventive additive (β) is blended with the organic polymer resin (α) in the proportions shown in Tables 2 to 4, A composition was obtained.

(5)表面処理方法
上記表面処理皮膜(第1層皮膜)用の表面処理液をバーコート処理またはスプレー処理により各試験板に塗布し、その後、水洗することなく、そのまま熱風炉で乾燥させ、表面処理皮膜(第1層皮膜)を形成させた。乾燥条件は、炉雰囲気温度と炉に入れている時間により調節した。
バーコート処理とスプレー処理は、以下のように行った。
・バーコート処理:表面処理液を試験板に滴下して、#3〜5バーコーターで処理した。使用したバーコーターの番手と表面処理液の固形分濃度を変化させることにより、所定の皮膜付着量となるように調整した。
・スプレー処理:表面処理液を試験板にスプレー処理し、ロールコーターにて皮膜付着量の調整を行った。ロールコーターの条件と表面処理液の固形分濃度を変化させることにより、所定の皮膜付着量となるように調整した。
次いで、上記有機皮膜(第2層皮膜)用の塗料組成物をロールコーターにより塗布した後、熱風乾燥炉において種々の温度で加熱乾燥した。皮膜厚は、塗料組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
(5) Surface treatment method The surface treatment solution for the surface treatment film (first layer film) is applied to each test plate by bar coating or spraying, and then dried in a hot air oven without washing, A surface treatment film (first layer film) was formed. The drying conditions were adjusted according to the furnace atmosphere temperature and the time in the furnace.
The bar coat treatment and spray treatment were performed as follows.
Bar coating treatment: The surface treatment solution was dropped onto the test plate and treated with a # 3-5 bar coater. By adjusting the count of the bar coater used and the solid content concentration of the surface treatment liquid, the coating amount was adjusted to be a predetermined amount.
-Spray treatment: The surface treatment solution was sprayed on the test plate, and the amount of the film was adjusted with a roll coater. By adjusting the conditions of the roll coater and the solid content concentration of the surface treatment liquid, adjustment was made so as to obtain a predetermined coating amount.
Next, the coating composition for the organic film (second layer film) was applied by a roll coater and then heat-dried at various temperatures in a hot air drying furnace. The film thickness was adjusted by the solid content (heating residue) of the coating composition or the application conditions (roll rolling force, rotational speed, etc.).

(6)評価試験の方法
(6-1)耐食性
発明例および比較例の試験板から70mm×150mmのサイズの試験片を切り出し、この試験片の裏面と端部をビニールテープでシールして、JIS−Z−2371−2000に準拠した塩水噴霧試験(SST)を実施した。塩水噴霧試験における白錆発生面積率が5%となるまでの時間を測定し、耐食性を以下のように評価した。
◎:白錆発生面積率が5%となるまでの時間が480時間以上
○:白錆発生面積率が5%となるまでの時間が360時間以上、480時間未満
△:白錆発生面積率が5%となるまでの時間が240時間以上、360時間未満
×:白錆発生面積率が5%となるまでの時間が240時間未満
(6) Evaluation Test Method (6-1) Corrosion Resistance A test piece of 70 mm × 150 mm size was cut out from the test plates of the inventive example and the comparative example, and the back and end portions of this test piece were sealed with vinyl tape, and JIS A salt spray test (SST) based on -Z-2371-2000 was performed. The time until the white rust occurrence area ratio in the salt spray test was 5% was measured, and the corrosion resistance was evaluated as follows.
◎: Time until white rust generation area ratio reaches 5% or more 480 hours or more ○: Time until white rust generation area ratio reaches 5% or more 360 hours or less, less than 480 hours Δ: White rust generation area ratio Time until 5% is 240 hours or more and less than 360 hours ×: Time until white rust occurrence area ratio is 5% is less than 240 hours

(6-2)湿潤環境下での耐変色性
発明例および比較例の試験板から70mm×150mmのサイズの試験片を2枚切り出し、対象面を重ね合わせてトルク強度20kgfで締め付けたものを、50℃、98%RHの恒温槽に4週間保持し、保持前後の試験片の色調を評価した。保持前後の試験片の色調を分光色彩計で測定し、その色調をLab表色系のL値で表し、保持前後のL値の差ΔLで耐変色性を以下のように評価した。
◎:ΔL≧−2
○:−2>ΔL≧−5
△:−5>ΔL≧−10
×:ΔL<−10
(7)Al酸化物層の厚さの測定
試験板の断面をTEMで観察してAl酸化物層の厚さを測定し、無作為に選択された5箇所の測定値の平均値をもって、Al酸化物層の厚さとした。
(6-2) Discoloration resistance in a wet environment Two test pieces having a size of 70 mm × 150 mm were cut out from the test plates of the inventive example and the comparative example, and the target surfaces were overlapped and tightened with a torque strength of 20 kgf. It was kept in a constant temperature bath at 50 ° C. and 98% RH for 4 weeks, and the color tone of the test piece before and after the holding was evaluated. The color tone of the test piece before and after holding was measured with a spectrocolorimeter, the color tone was expressed by the L value of the Lab color system, and the resistance to discoloration was evaluated by the difference ΔL between the L values before and after holding as follows.
A: ΔL ≧ −2
○: −2> ΔL ≧ −5
Δ: −5> ΔL ≧ −10
×: ΔL <−10
(7) Measurement of the thickness of the Al oxide layer The cross section of the test plate is observed with a TEM to measure the thickness of the Al oxide layer, and the average value of the measurement values at five randomly selected points is used as the Al oxide layer. The thickness of the oxide layer.

以上の評価試験の結果を、溶融亜鉛めっき鋼板の種類・構成、表面処理液の組成、表面処理条件、有機皮膜の形成条件とともに、表1〜表5に示す。なお、乾燥温度は試験板表面の到達温度である。
本発明条件を満足しない比較例は、耐食性、湿潤環境下での耐変色性のいずれかが不十分である。これに対して本発明例は、表面処理皮膜および有機皮膜中にクロム化合物を含有することなく、優れた耐食性および湿潤環境下での耐変色性が得られている。
The results of the above evaluation tests are shown in Tables 1 to 5 together with the type and configuration of the hot-dip galvanized steel sheet, the composition of the surface treatment liquid, the surface treatment conditions, and the formation conditions of the organic film. The drying temperature is the temperature reached on the surface of the test plate.
In the comparative example that does not satisfy the conditions of the present invention, either corrosion resistance or discoloration resistance in a wet environment is insufficient. On the other hand, the examples of the present invention have excellent corrosion resistance and discoloration resistance in a wet environment without containing a chromium compound in the surface treatment film and the organic film.

Figure 0006323424
Figure 0006323424

Figure 0006323424
Figure 0006323424

Figure 0006323424
Figure 0006323424

Figure 0006323424
Figure 0006323424

Figure 0006323424
Figure 0006323424

Claims (2)

亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iii)の条件を満足する表面処理液(但し、硝酸化合物を含有する表面処理液を除く。)を塗布し、乾燥することにより形成された、片面当たりの付着量が100〜800mg/mの表面処理皮膜を有し、
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
その表面処理皮膜の上部に第2層皮膜として、OH基若しくはCOOH基、またはOH基とCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する、膜厚が0.1〜5μmの有機皮膜を有することを特徴とする表面処理溶融亜鉛めっき鋼板。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
A silane coupling agent (a1) having a glycidyl group, tetraalkoxysilane (on the surface of a hot dip galvanized steel sheet on which an Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm is formed on the surface layer of the galvanized layer, a hydrolyzable silane compound (A) obtained from a2) and phosphonic acid (a3), a zirconium carbonate compound (B), a vanadic acid compound (C), and water; A surface treatment liquid satisfying the conditions of (iii) ( excluding a surface treatment liquid containing a nitric acid compound) is applied and dried, and the adhesion amount per side is 100 to 800 mg / m 2 surface treatment film,
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
An organic polymer resin (α) having an OH group, COOH group, or OH group and COOH group is used as a base resin as a second layer film on the surface treatment film, and 100 parts by mass (solid content) of the base resin is used. On the other hand, it contains 1 to 100 parts by mass (solid content) of one or more rust preventive additives (β) selected from the following (a) to (e), and the film thickness is 0.1 to 5 μm. A surface-treated hot-dip galvanized steel sheet characterized by having an organic film.
(A) Phosphate (b) Ca ion exchange silica (c) Molybdate (d) Silicon oxide (e) One or more kinds selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams Organic compounds
亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iii)の条件を満足する表面処理液(但し、硝酸化合物を含有する表面処理液を除く。)を塗布し、乾燥することにより、片面当たりの付着量が100〜800mg/mの表面処理皮膜を形成し、
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
その表面処理皮膜の表面に、OH基若しくはCOOH基、またはOH基とCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する塗料組成物を塗布し、加熱乾燥することにより、膜厚が0.1〜5μmの有機皮膜を形成することを特徴とする表面処理溶融亜鉛めっき鋼板の製造方法。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
A silane coupling agent (a1) having a glycidyl group, tetraalkoxysilane (on the surface of a hot dip galvanized steel sheet on which an Al oxide layer having a thickness of 0.5 nm or more and less than 10.0 nm is formed on the surface layer of the galvanized layer, a hydrolyzable silane compound (A) obtained from a2) and phosphonic acid (a3), a zirconium carbonate compound (B), a vanadic acid compound (C), and water; A surface having an adhesion amount per side of 100 to 800 mg / m 2 by applying and drying a surface treatment liquid satisfying the conditions of (iii) ( excluding a surface treatment liquid containing a nitric acid compound) Forming a treatment film,
(I) The silane compound (A) is 30 to 70% by mass in the total solid content of the surface treatment liquid.
(Ii) The ratio (B / A) of the mass of the zirconium carbonate compound (B) in terms of ZrO 2 and the mass of the silane compound (A) is 0.3 to 2.0.
(Iii) The ratio (C / A) of the V-converted mass of the vanadic acid compound (C) to the mass of the silane compound (A) is from 0.010 to 0.15.
An organic polymer resin (α) having an OH group, COOH group, or OH group and COOH group is used as a base resin on the surface of the surface treatment film, and the following (a ) To (e), a coating composition containing a total of 1 to 100 parts by mass (solid content) of one or more rust preventive additives (β) is selected, and then dried by heating. Forms a 0.1-5 micrometer organic membrane | film | coat, The manufacturing method of the surface treatment hot-dip galvanized steel plate characterized by the above-mentioned.
(A) Phosphate (b) Ca ion exchange silica (c) Molybdate (d) Silicon oxide (e) One or more kinds selected from triazoles, thiols, thiadiazoles, thiazoles, thiurams Organic compounds
JP2015190563A 2015-09-29 2015-09-29 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance Active JP6323424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190563A JP6323424B2 (en) 2015-09-29 2015-09-29 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190563A JP6323424B2 (en) 2015-09-29 2015-09-29 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2017066446A JP2017066446A (en) 2017-04-06
JP6323424B2 true JP6323424B2 (en) 2018-05-16

Family

ID=58491829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190563A Active JP6323424B2 (en) 2015-09-29 2015-09-29 Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP6323424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099424B2 (en) * 2019-09-20 2022-07-12 Jfeスチール株式会社 Zinc-based plated steel sheet with surface treatment film and its manufacturing method
CN114289281A (en) * 2021-12-02 2022-04-08 烨辉(中国)科技材料有限公司 Method for preparing anti-blackening aluminium-zinc-magnesium product and product prepared by method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517737B2 (en) * 2004-06-15 2010-08-04 Jfeスチール株式会社 Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance
JP5870570B2 (en) * 2011-09-14 2016-03-01 Jfeスチール株式会社 Surface treatment liquid for galvanized steel sheet, galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2017066446A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
KR101471948B1 (en) Zinc-based metal coated steel sheet
US9051654B2 (en) Galvanized steel sheet
KR101560929B1 (en) Surface treatment composition for Zn coated steel sheet with excellent corrosion resistance, and surface treated Zn coated steel sheet using the same
WO2005049314A1 (en) Surface treated steel plate excellent in corrosion resistance, electroconductivity and appearance of coating film
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
KR102376587B1 (en) Metal surface treatment agent for zinc-plated steel material, coating method, and coated steel material
KR102314431B1 (en) Coating composition for hot dip galvanized steel sheet having excellent blackening-resistance and alkali-resistance the surface treated hot dip galvanized steel sheet prepared by using the coating composition and method for preparing the surface treated hot dip galvanized steel sheet
JP3911965B2 (en) Organic coated steel plate with excellent corrosion resistance
JP4844128B2 (en) High corrosion resistance surface-treated steel sheet and manufacturing method thereof
JP2011068996A (en) Composition for surface treatment of metallic material, and treatment method
JP6569194B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP3903740B2 (en) Organic coated steel plate with excellent corrosion resistance
JP2005048199A (en) Surface-treated steel plate of excellent corrosion resistance, conductivity and film appearance
JP2011195941A (en) Surface-treated steel sheet
JP6323424B2 (en) Surface-treated hot-dip galvanized steel sheet with excellent corrosion resistance
JP2002363766A (en) Organic coated steel sheet having excellent corrosion resistance and electric conductivity
JP4517737B2 (en) Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance
JP4123702B2 (en) Organic coated steel plate with excellent corrosion resistance
JP2002363768A (en) Organic-coated steel sheet having excellent corrosion resistance in hot and humid environment
JP5441109B2 (en) High corrosion resistance surface-treated steel sheet
JP4419533B2 (en) Surface-treated steel sheet with excellent corrosion resistance, conductivity, and coating appearance
JP3911966B2 (en) Organic coated steel plate with excellent corrosion resistance
JP3412541B2 (en) Organic coated steel sheet with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6323424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250