JP6320700B2 - Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof - Google Patents

Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof Download PDF

Info

Publication number
JP6320700B2
JP6320700B2 JP2013160479A JP2013160479A JP6320700B2 JP 6320700 B2 JP6320700 B2 JP 6320700B2 JP 2013160479 A JP2013160479 A JP 2013160479A JP 2013160479 A JP2013160479 A JP 2013160479A JP 6320700 B2 JP6320700 B2 JP 6320700B2
Authority
JP
Japan
Prior art keywords
metal
carbon fiber
fiber composite
composite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013160479A
Other languages
Japanese (ja)
Other versions
JP2015030928A (en
Inventor
重克 大西
重克 大西
中壽賀 章
章 中壽賀
清晴 中川
清晴 中川
貴広 鳥山
貴広 鳥山
有泰 金
有泰 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Kansai University
Original Assignee
Sekisui Chemical Co Ltd
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Kansai University filed Critical Sekisui Chemical Co Ltd
Priority to JP2013160479A priority Critical patent/JP6320700B2/en
Publication of JP2015030928A publication Critical patent/JP2015030928A/en
Application granted granted Critical
Publication of JP6320700B2 publication Critical patent/JP6320700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属−炭素繊維複合体及び該金属−炭素繊維複合体の製造方法、並びに炭素繊維及び該炭素繊維の製造方法に関する。   The present invention relates to a metal-carbon fiber composite, a method for producing the metal-carbon fiber composite, a carbon fiber, and a method for producing the carbon fiber.

従来、各種ガスの吸蔵材料、二次電池の電極材料、電気二重層キャパシタ材料、触媒の坦持材料等の分野に応用する目的で、炭素材料に関する様々な研究がなされている。   Conventionally, various researches on carbon materials have been made for the purpose of application to fields such as various gas storage materials, secondary battery electrode materials, electric double layer capacitor materials, and catalyst support materials.

例えば、下記特許文献1では、触媒と反応温度の適正化を図ることにより得られた、高比表面積をもつ炭素ナノ繊維が開示されている。そして、この炭素ナノ繊維は、高性能触媒調製用担体や電気二重層キャパシタへの使用が期待される旨が記載されている。   For example, Patent Document 1 below discloses carbon nanofibers having a high specific surface area obtained by optimizing the catalyst and reaction temperature. And it is described that this carbon nanofiber is expected to be used for a carrier for preparing a high-performance catalyst and an electric double layer capacitor.

また、下記特許文献2では、CVD法により、基材となる触媒表面からカーボンナノチューブを成長させる方法が記載されている。   Patent Document 2 below describes a method of growing carbon nanotubes from a catalyst surface serving as a base material by a CVD method.

特開2006−241651号公報JP 2006-241651 A US2005/0112409A1US2005 / 0112409A1

しかしながら、特許文献1の炭素ナノ繊維や特許文献2のカーボンナノチューブは、メソ孔又はマクロ孔を炭素繊維自体が持たず、また、炭素ナノ繊維と引出電極への接続が必要あるため、電気二重層キャパシタ等の二次電池の電極材料等への応用が困難であった。   However, the carbon nanofibers of Patent Document 1 and the carbon nanotubes of Patent Document 2 do not have mesopores or macropores in the carbon fibers themselves and need to be connected to the carbon nanofibers and the extraction electrode. Application to electrode materials of secondary batteries such as capacitors has been difficult.

本発明の目的は、炭素繊維自体に複数の細孔が存在しており、二次電池の電極材料、導電性ペースト又は電気二重層キャパシタ材料等への応用が可能である、金属−炭素繊維複合体を提供することにある。   An object of the present invention is a metal-carbon fiber composite in which a plurality of pores are present in the carbon fiber itself and can be applied to an electrode material, a conductive paste or an electric double layer capacitor material of a secondary battery. To provide a body.

本発明に係る金属−炭素繊維複合体は、マトリックスとなる触媒活性のない第1の金属と、上記第1の金属の表面と内部のうち少なくとも一方に分散されている、触媒活性のある2種以上の第2の金属からなるナノ微粒子とを含む金属複合体と、上記ナノ微粒子から延びている複数の細孔を有する炭素繊維とを備える。   The metal-carbon fiber composite according to the present invention includes two types of catalytically active materials dispersed in at least one of the first metal having no catalytic activity as a matrix and the surface and the inside of the first metal. A metal composite including the above-described second metal nanoparticle and a carbon fiber having a plurality of pores extending from the nanoparticle.

本発明に係る金属−炭素繊維複合体のある特定の局面では、上記第1の金属が、周期表第8族〜第10族の遷移金属以外の金属である。   In a specific aspect of the metal-carbon fiber composite according to the present invention, the first metal is a metal other than a transition metal of Group 8 to Group 10 of the periodic table.

本発明に係る金属−炭素繊維複合体の他の特定の局面では、上記第2の金属は、周期表第8族〜第10族に属する少なくとも1種の遷移金属である。   In another specific aspect of the metal-carbon fiber composite according to the present invention, the second metal is at least one transition metal belonging to Groups 8 to 10 of the periodic table.

本発明に係る金属−炭素繊維複合体では、好ましくは、上記第1の金属が、銅である。   In the metal-carbon fiber composite according to the present invention, preferably, the first metal is copper.

本発明に係る金属−炭素繊維複合体では、好ましくは、上記第2の金属が、鉄、コバルト、ニッケル又はパラジウムから成る群から選択された2種以上の金属からなる。
上記第2の金属は、鉄、コバルト、ニッケル又はパラジウムからなる群から選択された2種以上の金属からなることがより好ましく、鉄とコバルトであることが、さらに好ましい。
In the metal-carbon fiber composite according to the present invention, preferably, the second metal is composed of two or more metals selected from the group consisting of iron, cobalt, nickel, or palladium.
The second metal is more preferably made of two or more metals selected from the group consisting of iron, cobalt, nickel or palladium, and more preferably iron and cobalt.

本発明に係る金属−炭素繊維複合体では、好ましくは、上記第2の金属が、上記金属中に、0.3〜18重量%の割合で含有されている。   In the metal-carbon fiber composite according to the present invention, preferably, the second metal is contained in the metal in a proportion of 0.3 to 18% by weight.

本発明に係る金属−炭素繊維複合体では、好ましくは、上記細孔が、メソ孔又はマクロ孔を含んでいる。上記メソ孔又はマクロ孔の孔径は、10nm〜200nmであることがより好ましい。   In the metal-carbon fiber composite according to the present invention, preferably, the pores include mesopores or macropores. The diameter of the mesopores or macropores is more preferably 10 nm to 200 nm.

本発明に係る金属−炭素繊維複合体では、好ましくは、上記細孔が、上記炭素繊維の側面と横断面の双方に存在している。   In the metal-carbon fiber composite according to the present invention, preferably, the pores are present on both the side surface and the cross section of the carbon fiber.

本発明に係る金属−炭素繊維複合体の製造方法では、上記第1の金属と、上記第1の金属の表面と内部のうち少なくとも一方に分散している上記第2の金属のナノ微粒子とを含む、金属複合体を準備する工程と、上記ナノ微粒子に加熱下で炭素源を接触させる工程とを備える。   In the method for producing a metal-carbon fiber composite according to the present invention, the first metal and the second metal nanoparticles dispersed on at least one of the surface and the inside of the first metal are included. Including a step of preparing a metal complex and a step of bringing the nanoparticle into contact with a carbon source under heating.

本発明に係る金属−炭素繊維複合体の製造方法では、上記金属複合体を準備する工程が、上記第1の金属と上記第2の金属に熱処理を施すことにより行われる。   In the method for producing a metal-carbon fiber composite according to the present invention, the step of preparing the metal composite is performed by subjecting the first metal and the second metal to a heat treatment.

本発明に係る複数の細孔を有する炭素繊維の製造方法では、金属−炭素繊維複合体から、酸やアルカリにより金属複合体を除去する方法や炭素繊維を粉砕処理などで切断した後に分級する方法により、金属複合体を単離する工程を備える。   In the method for producing a carbon fiber having a plurality of pores according to the present invention, a method of removing the metal composite from the metal-carbon fiber composite with acid or alkali, or a method of classifying the carbon fiber after cutting it by pulverization or the like A step of isolating the metal complex.

本発明に係る複数の細孔を有する炭素繊維は、金属−炭素繊維複合体から、酸やアルカリにより金属複合体を除去する方法や炭素繊維を粉砕処理などで切断した後に分級する方法により、金属複合体を単離することにより得られた炭素繊維である。   The carbon fiber having a plurality of pores according to the present invention is obtained by a method of removing a metal complex from a metal-carbon fiber complex with an acid or an alkali, or a method of classifying a carbon fiber after being cut by pulverization or the like. It is a carbon fiber obtained by isolating the composite.

本発明によれば、炭素繊維自体に複数の細孔が存在している、金属−炭素繊維複合体が得られる。   According to the present invention, a metal-carbon fiber composite is obtained in which a plurality of pores are present in the carbon fiber itself.

本発明に係る金属−炭素繊維複合体の製造方法によれば、炭素繊維に複数の細孔が存在している、金属−炭素繊維複合体を提供することが可能となる。   According to the method for producing a metal-carbon fiber composite according to the present invention, it is possible to provide a metal-carbon fiber composite in which a plurality of pores are present in the carbon fiber.

熱処理工程と炭素源を接触させる工程の温度プロファイルの一例を示す図である。It is a figure which shows an example of the temperature profile of the process with which a heat treatment process and a carbon source are made to contact. 金属複合体中に析出したナノ微粒子(鉄、コバルト)の透過顕微鏡写真を示す図である、It is a figure which shows the transmission micrograph of the nanoparticle (iron, cobalt) which precipitated in the metal complex, 実施例1において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。1 is an electron micrograph of a metal-carbon fiber composite material obtained in Example 1. FIG. 実施例1において得られた金属−炭素繊維複合材料の拡大図の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the enlarged view of the metal-carbon fiber composite material obtained in Example 1. FIG. 実施例2において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in Example 2. FIG. 実施例3において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in Example 3. FIG. 実施例4において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in Example 4. FIG. 実施例5において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in Example 5. FIG. 比較例1において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in the comparative example 1. 比較例2において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in the comparative example 2. 比較例3において得られた金属−炭素繊維複合材料の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the metal-carbon fiber composite material obtained in the comparative example 3.

以下、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。   Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention.

(金属−炭素繊維複合体)
本発明に係る金属−炭素繊維複合体は、金属と、該金属の表面から延びている、複数の炭素繊維とを備える。上記金属の形状としては、特に限定されず、例えば、粉体状、箔状又は線状のものを用いることができる。粉体状である場合、その数平均粒子径は、好ましくは、0.5〜45μmである。上記金属は、マトリックスとなる触媒活性のない第1の金属と、触媒活性のある2種以上の第2の金属とを含む、金属複合体である。上記第2の金属は、上記第1の金属の表面と内部のうち少なくとも一方に分散されているナノ微粒子である。上記ナノ微粒子は、上記第1の金属の表面と内部の双方、又は表面のみに分散されていることが望ましい。この上記ナノ微粒子は触媒として作用し、上記炭素繊維は、上記ナノ微粒子から延びている構造をとることができる。
(Metal-carbon fiber composite)
The metal-carbon fiber composite according to the present invention includes a metal and a plurality of carbon fibers extending from the surface of the metal. The shape of the metal is not particularly limited, and for example, a powder shape, a foil shape, or a linear shape can be used. In the case of powder, the number average particle diameter is preferably 0.5 to 45 μm. The metal is a metal complex including a first metal having no catalytic activity as a matrix and two or more second metals having catalytic activity. The second metal is a nanoparticle dispersed on at least one of the surface and the inside of the first metal. The nanoparticles are preferably dispersed on both the surface and the inside of the first metal or only on the surface. The nanoparticle acts as a catalyst, and the carbon fiber can take a structure extending from the nanoparticle.

上記第1の金属としては、例えば、銅、ニオブ、タンタル、アルミニウム、銀、クロム、モリブデン、マンガン、マグネシウム、タングステン、金又はチタンを用いることができる。そして、銅又は銀を用いることが好ましく、銅を用いることがより好ましい。   As the first metal, for example, copper, niobium, tantalum, aluminum, silver, chromium, molybdenum, manganese, magnesium, tungsten, gold, or titanium can be used. And it is preferable to use copper or silver, and it is more preferable to use copper.

上記第2の金属としては、特に限定されないが、触媒種となる周期表第8族〜第10族の遷移金属を好適に用いることができる。上記周期表第8族〜第10族の遷移金属としては、例えば、鉄、ニッケル、コバルト又はパラジウムが挙げられ、鉄又はコバルトであることが好ましい。鉄とコバルトを組み合わせて用いることが好ましい。   Although it does not specifically limit as said 2nd metal, The transition metal of the periodic table group 8-10 used as a catalyst seed | species can be used suitably. Examples of the transition metal of Group 8 to Group 10 of the periodic table include iron, nickel, cobalt, and palladium, and iron or cobalt is preferable. It is preferable to use a combination of iron and cobalt.

上記金属複合体全体に対する、上記第2金属の総含有量は、0.03〜18重量%であることが好ましく、0.1〜12重量%であることがより好ましい。さらに好ましくは0.3〜8重量%である。含有率が上記範囲にある場合、簡易な熱処理によりナノ微粒子が析出し易いため好適である。   The total content of the second metal with respect to the entire metal composite is preferably 0.03 to 18% by weight, and more preferably 0.1 to 12% by weight. More preferably, it is 0.3-8 weight%. When the content is in the above range, it is preferable because the nanoparticles are likely to precipitate by a simple heat treatment.

本発明において、より多くの上記ナノ微粒子を表面に分散させるために、上記金属複合体の表面をエッチングしてもよい。金属複合体表面における、ナノ微粒子の占める面積は、3〜50%であることが好ましい。この面積が小さすぎると触媒反応が弱く、大きすぎるとナノ微粒子同士が接触し粗大化してしまうことがある。   In the present invention, the surface of the metal composite may be etched in order to disperse more nanoparticles on the surface. The area occupied by the nano-particles on the surface of the metal composite is preferably 3 to 50%. If this area is too small, the catalytic reaction is weak, and if it is too large, the nanoparticles may come into contact with each other and become coarse.

上記金属複合体を形成する上記第1の金属と上記第2の金属の組み合わせとしては、特に限定されないが、上記第1の金属に銅を用い、上記第2の金属に鉄又はコバルトを用いることが好ましい。銅マトリックス中に鉄とコバルトを組み合わせて使用した場合、熱処理などにより、鉄とコバルトは混ざった状態で、ナノ微粒子としてマトリックス中に自己組織化的に析出するためである。   The combination of the first metal and the second metal forming the metal composite is not particularly limited, but copper is used for the first metal and iron or cobalt is used for the second metal. Is preferred. This is because when iron and cobalt are used in combination in a copper matrix, the iron and cobalt are mixed in a self-organized form as nanoparticles in a matrix by heat treatment or the like.

上記金属複合体の構成成分として、第3の金属を含有してもよい。このような成分としては、例えば、ケイ素、リン、マグネシウム、アルミニウム、マンガン、ニオブ、バナジウム、亜鉛又はすずを挙げることができる。上記第3の金属は、上記第2の金属と混合してナノ微粒子を形成することができ、ナノ微粒子の触媒能をより一層高めたり、細孔の発生をより高めることができる。上記第3の金属は、第2の金属と同程度の割合で含まれていることが好ましい。   You may contain a 3rd metal as a structural component of the said metal complex. Examples of such components include silicon, phosphorus, magnesium, aluminum, manganese, niobium, vanadium, zinc, and tin. The third metal can be mixed with the second metal to form nanoparticles, and the catalytic ability of the nanoparticles can be further increased and the generation of pores can be further increased. It is preferable that the third metal is contained in the same proportion as the second metal.

上記炭素繊維は、上記金属複合体の表面から延びている。上記炭素繊維としては、例えば、カーボンナノチューブ、カーボンフィラメント、カーボンナノフィラメント、カーボンナノコイル、を用いる事ができる。上記炭素繊維の横断面の形状は、特に限定されず、円形、角形のような形状のものが挙げられ、角形であることが好ましい。上記、炭素繊維は、単一の繊維であってもよく、複数の繊維からなる繊維束であってもよい。上記単一の繊維の繊維径は、5〜100nmであることが好ましい。また、上記繊維束の繊維径は、20〜2000nmであることが好ましい。   The carbon fiber extends from the surface of the metal composite. As said carbon fiber, a carbon nanotube, a carbon filament, a carbon nanofilament, a carbon nanocoil can be used, for example. The shape of the cross section of the carbon fiber is not particularly limited, and examples thereof include a circular shape and a rectangular shape, and a rectangular shape is preferable. The carbon fiber may be a single fiber or a fiber bundle composed of a plurality of fibers. The fiber diameter of the single fiber is preferably 5 to 100 nm. Moreover, it is preferable that the fiber diameter of the said fiber bundle is 20-2000 nm.

本発明の金属−炭素繊維複合体では、上記炭素繊維に複数の細孔が存在している。上記細孔が存在していることにより、比表面積が大きくでき有用である。   In the metal-carbon fiber composite of the present invention, the carbon fiber has a plurality of pores. The presence of the pores is useful because the specific surface area can be increased.

上記細孔としては、特に限定されないが、直径2nm以下のマイクロ孔(ミクロ孔)、直径2nm〜50nmのメソ孔、直径50nm以上のマクロ孔を用いることができる。なかでも、メソ孔又はマクロ孔であることが好ましい。上記メソ孔又はマクロ孔は、細孔全体の50%以上の割合で含まれていることが好ましい。また、上記細孔の孔径は、10〜200nmであることが好ましい。上記範囲にある場合、二次電池の電解質が付着しやすく好適に用いることができる。また、上記細孔は、繊維の横断面だけでなく、側面にも存在していることが好ましい。側面にも細孔が存在していることにより、より一層比表面積を大きくすることができる。   The pores are not particularly limited, and micropores having a diameter of 2 nm or less (micropores), mesopores having a diameter of 2 nm to 50 nm, and macropores having a diameter of 50 nm or more can be used. Of these, mesopores or macropores are preferable. The mesopores or macropores are preferably contained at a ratio of 50% or more of the entire pores. The pore diameter is preferably 10 to 200 nm. When it exists in the said range, the electrolyte of a secondary battery can adhere easily and can be used suitably. Moreover, it is preferable that the said pore exists not only in the cross section of a fiber but in a side surface. The presence of pores on the side surface can further increase the specific surface area.

本発明に係る金属−炭素繊維複合体には、上述したように、炭素繊維に複数の細孔が存在している。従って、比表面積が大きく、特定のサイズの分子が接着、吸着し易いという特徴を有する。よって、各種ガスの吸蔵材料、二次電池の電極材料、導電性ペースト、電気二重層キャパシタ材料、電線、熱伝導シート、熱伝導チューブ、熱伝導性コンポジット等の素材又は触媒の坦持材料など、広範な分野で好適に使用することができる。例えば、上記金属−炭素繊維複合体の金属複合体の上記第1の金属として線状、箔状の銅を用いれば、メソ孔炭素繊維よりなる電極と、該電極から配線された上記銅を引き出し電極とする電極材料を作製することができる。上記電極材料は、内部抵抗を小さくできるため、有用である。また、本発明の金属−炭素繊維複合体は、耐摩耗性に優れ、かつ高い導電性を有するので、カーボンブラシ等の接点材料や粉末冶金用材料として用いることができる。   As described above, the metal-carbon fiber composite according to the present invention has a plurality of pores in the carbon fiber. Therefore, the specific surface area is large, and a specific size molecule is easily adhered and adsorbed. Therefore, various gas storage materials, secondary battery electrode materials, conductive pastes, electric double layer capacitor materials, electric wires, thermal conductive sheets, thermal conductive tubes, thermal conductive composite materials, etc. or catalyst support materials, It can be suitably used in a wide range of fields. For example, if linear or foil-like copper is used as the first metal of the metal composite of the metal-carbon fiber composite, an electrode made of mesoporous carbon fiber and the copper wired from the electrode are drawn out. An electrode material used as an electrode can be manufactured. The electrode material is useful because the internal resistance can be reduced. Moreover, since the metal-carbon fiber composite of the present invention has excellent wear resistance and high conductivity, it can be used as a contact material such as a carbon brush or a material for powder metallurgy.

(金属−炭素繊維複合体の製造方法)
本発明に係る金属−炭素繊維複合体の製造方法では、まず、マトリックスとなる第1の金属と、上記第1の金属の表面と内部のうち少なくとも一方に分散している、触媒活性のある2種以上の第2の金属のナノ微粒子とを含む、金属複合体を準備する工程1と、上記ナノ微粒子に加熱下で炭素源を接触させる化学気相成長法(CVD法)により、上記金属−炭素繊維複合体を生成する工程2とを備える。
(Method for producing metal-carbon fiber composite)
In the method for producing a metal-carbon fiber composite according to the present invention, first, a catalytically active 2 dispersed in at least one of the first metal serving as a matrix and the surface and the inside of the first metal. Step 1 of preparing a metal composite containing at least two kinds of second metal nanoparticles, and chemical vapor deposition (CVD method) in which a carbon source is brought into contact with the nanoparticles under heating, the metal- And a step 2 of producing a carbon fiber composite.

上記金属複合体を準備する工程1の一例としては、まず、溶融や溶体化処理により、上記第2の金属を上記第1の金属中に固溶させる。次に、触媒種である上記第2の金属を自己組織化させ、ナノ微粒子を得る。上記自己組織化は、熱処理によって行うことができる。そして、上記熱処理の温度としては、特に限定されないが300℃〜1050℃であることが好ましい。   As an example of step 1 for preparing the metal composite, first, the second metal is solid-dissolved in the first metal by melting or solution treatment. Next, the second metal, which is a catalyst species, is self-assembled to obtain nanoparticles. The self-assembly can be performed by heat treatment. And although it does not specifically limit as temperature of the said heat processing, It is preferable that it is 300 to 1050 degreeC.

上記ナノ微粒子を得るための上記熱処理は、工程2の炭素源に上記ナノ微粒子を接触する直前に行ってもよく、別の工程で行っても良い。また、上記金属が粉体状の場合は、工程2の前半に行ってもよい。また、この方法においては、冷却速度を制御することにより、ナノ微粒子の大きさを調整することができる。   The heat treatment for obtaining the nano fine particles may be performed immediately before contacting the nano fine particles with the carbon source in Step 2 or may be performed in a separate step. Moreover, when the said metal is a powder form, you may carry out to the first half of the process 2. FIG. Further, in this method, the size of the nano fine particles can be adjusted by controlling the cooling rate.

工程1の他の例としては、第1の金属及び第2の金属を溶体化処理した後、熱処理によりナノ粒子を析出させる方法が挙げられる。また、金属体が粉体である場合は、例えば、第1の金属及び第2の金属を溶解し、得られた液体を噴霧する、アトマイズ法により作製してもよい。アトマイズ法としては、水アトマイズ法、ガスアトマイズ法又は遠心力アトマイズ法などが挙げられる。上記溶体化処理又は上記アトマイズ処理を施された金属体は、その後、酸化防止雰囲気中で300℃〜700℃、数分〜数百時間の熱処理をする事により、ナノ微粒子を析出し、第1の金属中に分散することができる。なお、ナノ粒子の大きさ及び密度は、第2の金属の含有量や熱処理条件(温度、時間)等で制御できる。   Another example of step 1 is a method in which the first metal and the second metal are subjected to a solution treatment, and then nanoparticles are deposited by heat treatment. Moreover, when a metal body is powder, you may produce by the atomizing method which melt | dissolves a 1st metal and a 2nd metal and sprays the obtained liquid, for example. Examples of the atomizing method include a water atomizing method, a gas atomizing method, and a centrifugal atomizing method. The metal body that has been subjected to the solution treatment or the atomization treatment is then subjected to heat treatment at 300 ° C. to 700 ° C. for several minutes to several hundred hours in an oxidation-preventing atmosphere, thereby precipitating nano-particles. Can be dispersed in the metal. The size and density of the nanoparticles can be controlled by the content of the second metal, the heat treatment conditions (temperature, time), and the like.

得られた金属複合体の表面により多くのナノ粒子が表出するように、得られた金属複合体の表面をエッチングしてもよい。エッチングは、例えば、ナイタール液、又は酢酸アンモニウム−メタノール溶液等で金属複合体の表面を処理することによって実施できる。   The surface of the obtained metal composite may be etched so that more nanoparticles are exposed on the surface of the obtained metal composite. Etching can be carried out, for example, by treating the surface of the metal composite with a nital solution or an ammonium acetate-methanol solution.

工程2では、上記ナノ微粒子に加熱下で炭素源を接触させるCVD法により、上記金属−炭素繊維複合体を生成する。工程2は、反応容器内で行うことができる。上記反応容器としては、上記細孔を有する炭素繊維が得られる限り、特に限定されない。回転型、縦型、流動層型又は自由落下型の反応容器を適宜用いることができる。   In step 2, the metal-carbon fiber composite is produced by a CVD method in which the nanoparticle is brought into contact with a carbon source under heating. Step 2 can be performed in a reaction vessel. The reaction vessel is not particularly limited as long as the carbon fiber having the pores is obtained. A rotary type, vertical type, fluidized bed type or free-fall type reaction vessel can be used as appropriate.

工程2の操作は、例えば、触媒化学気相成長法(Cat−CVD法)によって、実施することができる。詳細には、上記金属複合体の所定量を反応管に充填した後、所定温度まで加熱し、炭素繊維の原料である炭素源を、上記ナノ微粒子の表面上に供給することにより行う。上記加熱の温度としては、300℃〜900℃であることが好ましく、400℃〜800℃であることがより好ましい。450℃〜750℃であることがさらに好ましい。上記炭素源は、単独で触媒上に供給してもよく、キャリアガスとともに触媒上に供給してもよい。このようなキャリアガスとしては、例えば、不活性ガス、還元性ガスを用いることができるし、上記還元性ガスと不活性ガスとの混合ガスを用いることもでき、特に限定されないが、酸素以外を用いることが好ましい。より好ましくは、窒素、アルゴン、水素、ヘリウムを用いることができる。これらのガスは、炭素含有化合物の線速及び濃度のコントロールができる。なお、酸素ガスについては、爆発範囲外であれば使用してもよい。また、単独で触媒上に供給する場合は、真空ポンプなどによる減圧下で行うことができる。   The operation of step 2 can be performed by, for example, catalytic chemical vapor deposition (Cat-CVD method). Specifically, after a predetermined amount of the metal composite is filled in the reaction tube, the reaction tube is heated to a predetermined temperature, and a carbon source that is a raw material of carbon fiber is supplied onto the surface of the nanoparticle. The heating temperature is preferably 300 ° C to 900 ° C, more preferably 400 ° C to 800 ° C. More preferably, it is 450 degreeC-750 degreeC. The carbon source may be supplied alone on the catalyst, or may be supplied on the catalyst together with the carrier gas. As such a carrier gas, for example, an inert gas or a reducing gas can be used, or a mixed gas of the reducing gas and the inert gas can be used. It is preferable to use it. More preferably, nitrogen, argon, hydrogen, or helium can be used. These gases can control the linear velocity and concentration of the carbon-containing compound. Note that oxygen gas may be used as long as it is outside the explosion range. Moreover, when supplying on a catalyst independently, it can carry out under pressure reduction with a vacuum pump etc.

上記炭素源である炭素含有化合物としては、特に限定されないが、炭素数1〜30の化合物を用いることができ、炭素数1〜7であることが好ましい。より好ましくは、炭素数1〜4であり、更に好ましくは炭素数1又は2の化合物が用いられる。また、炭化水素は芳香族であっても、非芳香族であってもよい。加えて、アルコール類、ケトン類、アルデヒド類、エーテル類等の酸素含有炭素化合物を用いることもできる。これらの炭素含有化合物としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、エチレン、プロピレン、アセチレン、ベンゼン、トルエン、キシレン、クメン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、ナフタレン、フェナントレン、アントラセン、メタノール、エタノール、プロパノール、ブタノール、アセトン、ホルムアルデヒド、アセトアルデヒド、トリオキサン、ジオキサン、ジメチルエーテル、ジエチルエーテル、酢酸エチル、一酸化炭素またはこれらの混合物が挙げられる。これらの中でも、メタン、エタン、エチレン、アセチレン、プロパンおよびプロピレンから選ばれた炭素化合物が、純度の高いカーボンナノチューブを得られる点で好ましい。そして、これらは常温、常圧中で気体であるため、ガスとして供給量を規定して反応に供することができる。一方、他の炭素含有化合物は、常圧で反応を行う場合、気化などの工程を追加する必要がある。   Although it does not specifically limit as a carbon containing compound which is the said carbon source, A C1-C30 compound can be used and it is preferable that it is C1-C7. More preferably, it is C1-C4, More preferably, a C1-C2 compound is used. Further, the hydrocarbon may be aromatic or non-aromatic. In addition, oxygen-containing carbon compounds such as alcohols, ketones, aldehydes, and ethers can be used. Examples of these carbon-containing compounds include methane, ethane, propane, butane, pentane, hexane, heptane, ethylene, propylene, acetylene, benzene, toluene, xylene, cumene, ethylbenzene, diethylbenzene, trimethylbenzene, naphthalene, phenanthrene, anthracene. , Methanol, ethanol, propanol, butanol, acetone, formaldehyde, acetaldehyde, trioxane, dioxane, dimethyl ether, diethyl ether, ethyl acetate, carbon monoxide or a mixture thereof. Among these, a carbon compound selected from methane, ethane, ethylene, acetylene, propane and propylene is preferable in that a carbon nanotube with high purity can be obtained. And since these are gases in normal temperature and a normal pressure, supply amount can be prescribed | regulated as gas and it can use for reaction. On the other hand, when other carbon-containing compounds are reacted at normal pressure, it is necessary to add a process such as vaporization.

上記工程1及び上記工程2の一例としてのヒートプロファイルを図1に示す。ここで、図中1−A及び1−Bの工程は、上記工程1であり、図中1−Cの工程は上記工程2を示す。図中、斜線部分では、エチレンガス雰囲気下において、その他の部分については、窒素ガス雰囲気下で処理を行っている。   A heat profile as an example of the step 1 and the step 2 is shown in FIG. Here, the steps 1-A and 1-B in the drawing are the step 1 and the step 1-C in the drawing shows the step 2. In the drawing, the shaded portion is treated in an ethylene gas atmosphere, and the other portions are treated in a nitrogen gas atmosphere.

図1における、1−Aの工程において、300℃〜400℃で銅粉をエチレンガスに接触させる(凝集防止工程)。次に、図中、1−Bの工程で、不活性ガス中で400℃〜650℃に保持し銅粉中及び銅粉表面にナノ触媒を析出させる(触媒析出工程)。そして、図中、1−Cの工程で、ナノ微粒子から炭素同素体が生成する(炭素生成工程)。   In step 1-A in FIG. 1, the copper powder is brought into contact with ethylene gas at 300 to 400 ° C. (aggregation preventing step). Next, in the figure, in step 1-B, the nanocatalyst is deposited in the copper powder and on the surface of the copper powder while being kept at 400 ° C. to 650 ° C. in an inert gas (catalyst deposition step). In the figure, a carbon allotrope is generated from the nanoparticles in the step 1-C (carbon generation step).

本製造方法により得られた、金属−炭素繊維複合体は、そのまま使用することが好ましいが、使用形態によっては、金属−炭素繊維複合体から、金属複合体を単離して用いても構わない。例えば、金属−炭素繊維複合体から、酸やアルカリにより金属複合体を除去することができる。また、箔状、線状の金属複合体から延びている炭素繊維は、掻き取る事により分離することができる。粉体状の金属複合体から延びている炭素繊維は、粉砕処理後に風力分級、沈降法による分級、磁界による分離が可能である。   The metal-carbon fiber composite obtained by this production method is preferably used as it is, but the metal composite may be isolated from the metal-carbon fiber composite and used depending on the form of use. For example, the metal composite can be removed from the metal-carbon fiber composite with acid or alkali. Moreover, the carbon fibers extending from the foil-like or linear metal composite can be separated by scraping. The carbon fibers extending from the powdered metal composite can be separated by wind classification, sedimentation, and magnetic field after pulverization.

次に、具体的な実施例につき説明する。なお、本発明は以下の実施例に限定されるものではない。   Next, specific examples will be described. In addition, this invention is not limited to a following example.

(実施例1〜5及び比較例1〜3)
(金属複合体の作製)
表1の組成の金属複合体の溶解物から、水アトマイズ法、又はガスアトマイズ法により、Cu−Fe−Co及びCu−Co等の各金属微粒子(粉体)を製造した。
(Examples 1-5 and Comparative Examples 1-3)
(Production of metal composite)
Each metal fine particle (powder) such as Cu—Fe—Co and Cu—Co was produced from the melted metal composite having the composition shown in Table 1 by a water atomizing method or a gas atomizing method.

(CVD法による金属−炭素繊維複合体の作製)
4gの上記金属複合体粉を、内径26mm長さ70mmの石英セル中に投入し、内径32mm、長さ700mmのロータリー円筒形石英管を用いた、銅炭素複合CVD反応器(ロータリーキルン)により、表1の条件で金属複合体上に炭素繊維を生成し、表1に示す実施例1〜5及び比較例1〜3の金属−炭素繊維複合体を作製した。
(Production of metal-carbon fiber composite by CVD method)
4 g of the above metal composite powder was put into a quartz cell having an inner diameter of 26 mm and a length of 70 mm, and a copper carbon composite CVD reactor (rotary kiln) using a rotary cylindrical quartz tube having an inner diameter of 32 mm and a length of 700 mm was used. Carbon fiber was produced | generated on the metal composite on 1 conditions, and the metal-carbon fiber composite of Examples 1-5 shown in Table 1 and Comparative Examples 1-3 was produced.

なお、図2は、銅マトリックス中に鉄とコバルトよりなるナノ微粒子が析出したナノ微粒子の透過顕微鏡写真を示す図である。このナノ微粒子はEDS元素像により鉄及びコバルトで構成されている事が確認出来ている。   In addition, FIG. 2 is a figure which shows the transmission micrograph of the nanoparticle which the nanoparticle consisting of iron and cobalt precipitated in the copper matrix. It was confirmed from the EDS element image that the nano fine particles were composed of iron and cobalt.

(金属−炭素繊維複合体の評価)
1)SEMによる観察
実施例1〜5及び比較例1〜3の金属−炭素繊維複合体をFE−SEMによって観察した。結果を、図3〜図11及び表2に示す。実施例1〜5においては、細孔を側面に持つ炭素繊維が生成していることを観察できた。
(Evaluation of metal-carbon fiber composite)
1) Observation by SEM The metal-carbon fiber composites of Examples 1 to 5 and Comparative Examples 1 to 3 were observed by FE-SEM. The results are shown in FIGS. In Examples 1 to 5, it was observed that carbon fibers having pores on the side surfaces were generated.

一方、第2の金属に鉄又はコバルトを使用していない比較例1、3においては、炭素繊維の側面に細孔は観察されなかった。比較例2においては太い繊維(500nm)の先に細い繊維(10〜50nm)が観察された。   On the other hand, in Comparative Examples 1 and 3 in which iron or cobalt was not used as the second metal, no pores were observed on the side surfaces of the carbon fibers. In Comparative Example 2, thin fibers (10 to 50 nm) were observed at the tip of thick fibers (500 nm).

2)比表面積測定
本発明のメソ孔性炭素繊維の比表面積や、メソ孔及びマクロ孔の測定方法は、多孔質材料の同定法として使用される、N(メソ〜マクロ孔の場合)を用いたガス吸着法による細孔分布測定法を用いる。本発明の比表面積測定と細孔分布測定は、島津製作所株式会社製の定容量式ガス吸着法測定装置BELSORP−miniを用いた。対象試料の前処理としては、80℃、2時間脱ガス処理を行った。吸着ガスとしてNを使用した。比表面積は、BET法で算出される。メソ孔〜マクロ孔測定の場合、液体N温度-196℃で相対圧約0.01〜0.99までの等温吸着測定を実施した。メソ孔〜マクロ孔の場合、同装置のDH解析法にて約20〜2000Åの範囲のメソ孔〜マクロ孔の細孔分布を算出した。ピーク微分細孔容積とは上記解析ソフトにて導出されるメソ孔〜マクロ孔の細孔分布のピークまたはショルダー中心値の細孔容量値のことを指す。メソ孔〜マクロ孔の細孔分布におけるピーク径とは、横軸を対数表示したその細孔分布に現れるピークやショルダー状のピーク系及びショルダーの中心値を意味する。
2) Specific surface area measurement The specific surface area of the mesoporous carbon fiber of the present invention, and the method for measuring mesopores and macropores are N 2 (in the case of meso-macropores) used as a method for identifying porous materials. The pore distribution measurement method by the gas adsorption method used is used. The specific surface area measurement and pore distribution measurement of the present invention were performed using a constant volume gas adsorption method measuring apparatus BELSORP-mini manufactured by Shimadzu Corporation. As pretreatment of the target sample, degassing treatment was performed at 80 ° C. for 2 hours. N 2 was used as the adsorption gas. The specific surface area is calculated by the BET method. In the case of mesopore-macropore measurement, isothermal adsorption measurement was performed at a liquid N 2 temperature of −196 ° C. and a relative pressure of about 0.01 to 0.99. In the case of mesopores to macropores, the pore distribution of mesopores to macropores in the range of about 20 to 2000 mm was calculated by the DH analysis method of the same apparatus. The peak differential pore volume refers to the peak of the pore distribution of mesopores to macropores derived from the analysis software or the pore volume value of the shoulder center value. The peak diameter in the pore distribution of mesopores to macropores means a peak appearing in the pore distribution logarithmically expressed on the horizontal axis, a shoulder-like peak system, and the center value of the shoulder.

表中にはピークの細孔サイズを記した。また2山分布になっている物は2点記入した。   The peak pore size is shown in the table. In addition, two points are entered for the two mountain distribution.

結果を、表2に示す。   The results are shown in Table 2.

実施例1〜5において、比表面積が比較例1〜3よりも大きくなっていることを確認した。特に、実施例1においては、1−Bの工程が長時間で有るため比表面積が大きくなった事が考えられる。また、比較例1〜3も平均細孔径及び細孔サイズは測定されるが、これは複数の繊維の間の空間が細孔として測定された物が主であり、本発明の細孔とは異なる。   In Examples 1-5, it confirmed that the specific surface area was larger than Comparative Examples 1-3. In particular, in Example 1, it can be considered that the specific surface area increased because the step 1-B was performed for a long time. Moreover, although the average pore diameter and pore size are also measured in Comparative Examples 1 to 3, this is mainly a product in which the space between a plurality of fibers is measured as pores. Different.

Claims (8)

マトリックスとなる銅と、前記銅の内部に分散されている、鉄及びコバルトを含む2種以上の金属からなるナノ微粒子とを含む金属複合体と、
前記ナノ微粒子から延びている複数の細孔を有する炭素繊維とを備える、金属−炭素繊維複合体。
A metal composite comprising copper as a matrix, and nanoparticles formed of two or more metals including iron and cobalt, dispersed in the copper;
A metal-carbon fiber composite comprising a carbon fiber having a plurality of pores extending from the nanoparticle.
前記金属複合体中に、前記鉄及びコバルトを含む2種以上の金属が、0.3〜18重量%の割合で含有されている、請求項1に記載の金属−炭素繊維複合体。   2. The metal-carbon fiber composite according to claim 1, wherein two or more kinds of metals including iron and cobalt are contained in the metal composite in a proportion of 0.3 to 18% by weight. 前記細孔が、メソ孔又はマクロ孔を含む、請求項1又は2に記載の金属−炭素繊維複合体。   The metal-carbon fiber composite according to claim 1 or 2, wherein the pores include mesopores or macropores. 前記メソ孔又はマクロ孔の孔径が、10nm〜200nmである、請求項1〜3のいずれか1項に記載の金属−炭素繊維複合体。   The metal-carbon fiber composite according to any one of claims 1 to 3, wherein a pore diameter of the mesopores or macropores is 10 nm to 200 nm. 前記細孔が、前記炭素繊維の側面と横断面の双方に存在している、請求項1〜4のいずれか1項に記載の金属−炭素繊維複合体。   The metal-carbon fiber composite according to any one of claims 1 to 4, wherein the pores are present on both a side surface and a cross section of the carbon fiber. 請求項1〜5のいずれか1項に記載の金属−炭素繊維複合体の製造方法であって、
前記銅と、前記銅の内部に分散している前記鉄及びコバルトを含む2種以上の金属のナノ微粒子とを含む、金属複合体を準備する工程と、
前記ナノ微粒子に加熱下で炭素源を接触させる工程とを備える、金属−炭素繊維複合体の製造方法。
A method for producing a metal-carbon fiber composite according to any one of claims 1 to 5,
Preparing a metal composite comprising the copper and nanoparticles of two or more metals including the iron and cobalt dispersed in the copper;
And a step of bringing a carbon source into contact with the nanoparticle under heating.
前記金属複合体を準備する工程が、前記銅と前記鉄及びコバルトを含む2種以上の金属に熱処理を施すことにより行われる、請求項6に記載の金属−炭素繊維複合体の製造方法。   The method for producing a metal-carbon fiber composite according to claim 6, wherein the step of preparing the metal composite is performed by subjecting two or more kinds of metals including copper, iron, and cobalt to a heat treatment. 請求項1〜5のいずれか1項に記載の金属−炭素繊維複合体から、酸やアルカリにより金属複合体を除去する方法、又は炭素繊維を切断した後に分級する方法により、金属複合体を単離する工程を備える、複数の細孔を有する炭素繊維の製造方法。
The metal composite is simply separated from the metal-carbon fiber composite according to any one of claims 1 to 5 by a method of removing the metal composite with an acid or alkali, or a method of classifying after cutting the carbon fiber. A method for producing a carbon fiber having a plurality of pores, comprising a step of separating.
JP2013160479A 2013-08-01 2013-08-01 Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof Active JP6320700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013160479A JP6320700B2 (en) 2013-08-01 2013-08-01 Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013160479A JP6320700B2 (en) 2013-08-01 2013-08-01 Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof

Publications (2)

Publication Number Publication Date
JP2015030928A JP2015030928A (en) 2015-02-16
JP6320700B2 true JP6320700B2 (en) 2018-05-09

Family

ID=52516505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013160479A Active JP6320700B2 (en) 2013-08-01 2013-08-01 Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof

Country Status (1)

Country Link
JP (1) JP6320700B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685909B2 (en) * 2013-08-21 2020-04-22 コーネル・ユニバーシティーCornell University Porous carbon nanofiber and method for producing the same
JP2016209771A (en) * 2016-09-23 2016-12-15 豊丸産業株式会社 Pachinko machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363759B2 (en) * 1997-11-07 2003-01-08 キヤノン株式会社 Carbon nanotube device and method of manufacturing the same
US6518218B1 (en) * 1999-03-31 2003-02-11 General Electric Company Catalyst system for producing carbon fibrils
JP3765999B2 (en) * 2000-06-30 2006-04-12 株式会社東芝 Fuel cell
JP3884313B2 (en) * 2001-03-28 2007-02-21 株式会社東芝 Catalyst for carbon fiber synthesis and method for producing carbon fiber
JP4037814B2 (en) * 2003-09-26 2008-01-23 株式会社東芝 Membrane-electrode assembly for fuel cell and fuel cell

Also Published As

Publication number Publication date
JP2015030928A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
KR102182553B1 (en) Method for manufacturing single atom catalyst supported on carbon carrier
Pang et al. Applications of 2D MXenes in energy conversion and storage systems
Nieto-Márquez et al. Carbon nanospheres: synthesis, physicochemical properties and applications
Zhao et al. Growth of carbon nanocoils by porous α-Fe 2 O 3/SnO 2 catalyst and its buckypaper for high efficient adsorption
Yang et al. Graphene-supported Ag-based core–shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane
JP5436528B2 (en) Carbon nanotubes on carbon nanofiber substrate
Chen et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite
Xie et al. Research on the preparation of graphdiyne and its derivatives
Li et al. Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high-performance catalyst for CO x-free hydrogen production from ammonia
Wang et al. Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin
WO2004035882A2 (en) Ultra-fine fibrous carbon and preparation method thereof
EP2873457B1 (en) Catalyst for preparing chiral selective and conductive selective single-walled carbon nanotube, preparation method and application thereof
Ping et al. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition
JP5831966B2 (en) Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio
Miniach et al. Growth of carbon nanofibers from methane on a hydroxyapatite-supported nickel catalyst
Yao et al. Ultrafast, controllable synthesis of sub-nano metallic clusters through defect engineering
Zhang et al. Fabrication of Au/CNT hollow fiber membrane for 4-nitrophenol reduction
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
JP6320700B2 (en) Metal-carbon fiber composite and production method thereof, and carbon fiber and production method thereof
CN106607019A (en) Propane dehydrogenation catalyst and preparation method thereof
KR101174136B1 (en) Method for Synthesis and Morphological Control of Carbon Nanotubes
Kariim et al. Studies on the suitability of alumina as bimetallic catalyst support for MWCNTs growth in a CVD reactor
Van Hung et al. Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications
Gergeroglu et al. Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure
JP2022530905A (en) Carbon-Carbon Nanotube Hybrid Material and Its Manufacturing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6320700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250