JP6312183B1 - Rubber composition for use in high pressure gas seal member and high pressure gas seal member - Google Patents

Rubber composition for use in high pressure gas seal member and high pressure gas seal member Download PDF

Info

Publication number
JP6312183B1
JP6312183B1 JP2017071804A JP2017071804A JP6312183B1 JP 6312183 B1 JP6312183 B1 JP 6312183B1 JP 2017071804 A JP2017071804 A JP 2017071804A JP 2017071804 A JP2017071804 A JP 2017071804A JP 6312183 B1 JP6312183 B1 JP 6312183B1
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
pressure gas
present
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071804A
Other languages
Japanese (ja)
Other versions
JP2018172538A (en
Inventor
内山 直行
直行 内山
加寿子 野見山
加寿子 野見山
太郎 木村
太郎 木村
稔寛 浦川
稔寛 浦川
真吾 斉田
真吾 斉田
洋典 児玉
洋典 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KABUSHIKI KAISHA TECHNO-TSUKIHOSHI
Fukuoka Prefectural Government
Original Assignee
KABUSHIKI KAISHA TECHNO-TSUKIHOSHI
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KABUSHIKI KAISHA TECHNO-TSUKIHOSHI, Fukuoka Prefectural Government filed Critical KABUSHIKI KAISHA TECHNO-TSUKIHOSHI
Priority to JP2017071804A priority Critical patent/JP6312183B1/en
Priority to CN201880005313.2A priority patent/CN110099981A/en
Priority to KR1020197017646A priority patent/KR102326698B1/en
Priority to PCT/JP2018/012531 priority patent/WO2018181373A1/en
Application granted granted Critical
Publication of JP6312183B1 publication Critical patent/JP6312183B1/en
Publication of JP2018172538A publication Critical patent/JP2018172538A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1087Materials or components characterised by specific uses
    • C09K2003/1096Cylinder head gaskets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0607Rubber or rubber derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S277/00Seal for a joint or juncture
    • Y10S277/935Seal made of a particular material
    • Y10S277/944Elastomer or plastic

Abstract

【課題】優れた耐摩耗性、耐低温性、耐熱性および耐ブリスター性を同時に満足する高圧ガス用シール部材に用いるためのゴム組成物および高圧ガス用シール部材を提供することである。【解決手段】 高圧ガスをシールする、高圧ガス用シール部材に用いられるためのゴム組成物であって、前記ゴム組成物中のゴム成分が、ポリブタジエンおよび/またはポリスチレンブタジエンゴムを含み、前記ゴム組成物が、−65℃以下のガラス転移点を有することを特徴とするゴム組成物。【選択図】 なし[PROBLEMS] To provide a rubber composition and a high-pressure gas sealing member for use in a high-pressure gas sealing member that simultaneously satisfy excellent wear resistance, low temperature resistance, heat resistance and blister resistance. A rubber composition for use in a high pressure gas sealing member for sealing high pressure gas, wherein the rubber component in the rubber composition contains polybutadiene and / or polystyrene butadiene rubber, and the rubber composition. A rubber composition, wherein the product has a glass transition point of -65 ° C or lower. [Selection figure] None

Description

本発明は、高圧ガス用シール部材に用いられるためのゴム組成物および高圧ガス用シール部材に関する。特に、水素またはヘリウムをシールする高圧ガス用シール部材に用いられるためのゴム組成物およびシール部材に関する。   The present invention relates to a rubber composition and a high pressure gas sealing member for use in a high pressure gas sealing member. In particular, the present invention relates to a rubber composition and a seal member for use in a high-pressure gas seal member that seals hydrogen or helium.

昨今、石油資源枯渇などのエネルギー問題、世界的な環境問題により、効率がよく、環境にやさしい燃料電池が話題になっている。燃料電池は、水素と酸素とを反応させて発電するシステムであるが、水素のハンドリングに課題がみられる。   In recent years, efficient and environmentally friendly fuel cells have become a hot topic due to energy problems such as oil resource depletion and global environmental problems. A fuel cell is a system that generates electricity by reacting hydrogen and oxygen, but there are problems in handling hydrogen.

現在は、水素を高圧にして貯蔵する方法、金属に水素を吸着させて貯蔵する方法、炭化水素を改質して水素を取り出す方法などが提案されているが、水素を高圧にして貯蔵する場合にはタンクに貯蔵することになる。   At present, methods of storing hydrogen at high pressure, methods of storing hydrogen by adsorbing it to metals, methods of extracting hydrogen by reforming hydrocarbons, etc. have been proposed. It will be stored in a tank.

また、燃料電池自動車(FCV)において70MPa程度の高圧タンク貯蔵が行われている。またFCVへ水素を供給する水素ステーションにおいては、充填時の圧縮加熱が起こることからプレクールとして−40℃へ冷却した水素をFCVへ供給しており、−40℃環境下の使用にも耐えうる高圧水素ガス用シール部材が必要となっている。現状の水素ステーションでは金属シールが使用されているが、金属シールはメンテナンス性に劣るという状況にある。そこで、一部では、金属シールの代替として、ゴム組成物がシール部材として用いられている。   In addition, high-pressure tank storage of about 70 MPa is performed in a fuel cell vehicle (FCV). In addition, the hydrogen station that supplies hydrogen to the FCV supplies the hydrogen cooled to -40 ° C as a precool to the FCV because compression heating occurs during filling, and can withstand use in an environment of -40 ° C. A hydrogen gas sealing member is required. At present hydrogen stations, metal seals are used, but metal seals are inferior in maintainability. Thus, in some cases, a rubber composition is used as a sealing member as an alternative to a metal seal.

一般的に、高圧ガスをシールするためにゴム組成物に要求される機能としては、加圧・減圧によって破壊しない(ブリスターが発生しない)こと、急減圧による断熱膨張で極く低温になってもゴム弾性を保つことなどが必要とされる。例えば、高圧燃料ガスとして知られるCNG(圧縮天然ガス、約20MPa)では、急減圧時の断熱膨張で−60℃程度まで温度が低下することが知られている。これを参照すれば、水素ガスはCNG以上の圧力で貯蔵されるため、−60℃以下でもゴム弾性を保つことが要求されるものと思われる。しかしながら、現在主に使用されているエチレン−プロピレン−ジエンゴム(EPDM)では、−45℃程度までしかゴム弾性を有しないため、低温特性が十分ではない。   In general, the functions required of rubber compositions to seal high-pressure gas are that they are not destroyed by pressurization / decompression (no blisters are generated), and even if the temperature becomes extremely low due to adiabatic expansion by rapid depressurization. It is necessary to maintain rubber elasticity. For example, it is known that CNG (compressed natural gas, about 20 MPa) known as a high-pressure fuel gas has a temperature lowered to about −60 ° C. due to adiabatic expansion during rapid decompression. Referring to this, since hydrogen gas is stored at a pressure higher than CNG, it seems that it is required to maintain rubber elasticity even at -60 ° C. or lower. However, ethylene-propylene-diene rubber (EPDM), which is mainly used at present, has rubber elasticity only up to about -45 ° C, and therefore has low temperature characteristics.

そのため、高圧ガス用シール部材の研究・開発が進められており、高圧ガス用シール部材用のゴム組成物としては、ブチルゴム、フッ素ゴム、水素化ニトリルゴム、EPDM等が提案されている(特許文献1〜3、非特許文献1)。
また、特許文献4には、水素ガス用シール材として用いられるゴム組成物として、特定の構造を有するシリコーンゴムが記載されている。
For this reason, research and development of high pressure gas seal members are underway, and butyl rubber, fluoro rubber, hydrogenated nitrile rubber, EPDM, and the like have been proposed as rubber compositions for high pressure gas seal members (Patent Documents). 1-3, nonpatent literature 1).
Patent Document 4 describes a silicone rubber having a specific structure as a rubber composition used as a sealing material for hydrogen gas.

一方、汎用ゴムとして、ポリブタジエンゴムやポリスチレンブタジエンゴムが知られおり、一般的にタイヤ用途に使用されている。なお、ポリブタジエンゴムやポリスチレンブタジエンゴムは、比較的ガス透過性が高いゴムである。   On the other hand, polybutadiene rubber and polystyrene butadiene rubber are known as general-purpose rubbers and are generally used for tire applications. Polybutadiene rubber and polystyrene butadiene rubber are rubbers having relatively high gas permeability.

特開2003−28302号公報JP 2003-28302 A 特開2015−108104号公報JP2015-108104A 特開2015−206002号公報JP2015-206002A 国際公開第2008/001625号International Publication No. 2008/001625

日本ゴム協会誌:Vol.89, No.10, Page.302−306 (2016)Journal of Japan Rubber Association: Vol. 89, no. 10, Page. 302-306 (2016)

しかしながら、特許文献1〜3等に開示されているブチルゴム、フッ素ゴム、水素化ニトリルゴム、EPDM等のゴム組成物も、低温時にシール性が損なわれやすい。例えば、EPDMは、−40℃環境下での使用を想定しても、温調がシビアとなり−45℃程度に下振れすれば、直ちに漏れが発生してしまうという課題がある。フッ素ゴムでは低温特性が不十分であり−40℃環境下ではシールすることは困難である。また、少なくともブチルゴム、フッ素ゴム、水素化ニトリルゴムは、急減圧時におけるブリスターの発生が問題となる。   However, the sealing properties of rubber compositions such as butyl rubber, fluororubber, hydrogenated nitrile rubber, and EPDM disclosed in Patent Documents 1 to 3 are easily impaired at low temperatures. For example, even if it is assumed that EPDM is used in a −40 ° C. environment, there is a problem that if the temperature control becomes severe and the temperature falls down to about −45 ° C., leakage immediately occurs. Fluororubber has insufficient low-temperature characteristics and is difficult to seal in an environment of −40 ° C. Further, at least butyl rubber, fluororubber, and hydrogenated nitrile rubber have a problem of occurrence of blisters during rapid decompression.

また、特許文献4等に開示されているシリコーンゴムは、摺動箇所ではシール性が損なわれるという問題がある。例えば、水素ステーションに用いられるシール部材は摺動箇所が多く、その様な部材としてシリコーンゴムを用いることは困難である。また、FCVの普及等により使用箇所が拡大すれば当然コストダウンも求められるが、シリコーンゴムは材料自体が高価であるため、コストダウンにも限界がある。   Further, the silicone rubber disclosed in Patent Document 4 and the like has a problem that the sealing performance is impaired at the sliding portion. For example, a seal member used in a hydrogen station has many sliding portions, and it is difficult to use silicone rubber as such a member. Further, if the use location is expanded due to the spread of FCV or the like, the cost reduction is naturally required, but the cost of silicone rubber is limited because the material itself is expensive.

また、高圧ガス用シール部材には、低温だけでなく、100℃程度の高温においてもシール性を維持することが求められるが、従来のゴム組成物は、広い温度範囲におけるシール性が十分ではなく改善の余地があった。
このように、広い温度範囲(特に、低温時)においてもシール性を損なわず、さらに、摺動箇所であっても使用できるシール部材が求められている現状がある。
Further, the high-pressure gas sealing member is required to maintain the sealing performance not only at a low temperature but also at a high temperature of about 100 ° C. However, the conventional rubber composition does not have a sufficient sealing performance in a wide temperature range. There was room for improvement.
As described above, there is a demand for a sealing member that does not impair sealing performance even in a wide temperature range (particularly at low temperatures) and that can be used even at a sliding portion.

一方、上述のように、高圧ガスをシールするために、ゴム組成物には様々な機能が求められ、従来、シール部材として、ブチルゴム、フッ素ゴム、水素化ニトリルゴム、EPDM、シリコーンゴム等の特殊ゴムが使用されていた。また、シール部材としては、気密性を高めるために、ガス透過性の低い素材を使用する傾向があった。そのため、汎用ゴムであり、比較的ガス透過性が高いポリブタジエンゴムやポリスチレンブタジエンゴムを高圧ガス用のシール部材に転用することは考えられていなかった。   On the other hand, as described above, various functions are required for rubber compositions to seal high-pressure gas. Conventionally, as sealing members, special materials such as butyl rubber, fluorine rubber, hydrogenated nitrile rubber, EPDM, and silicone rubber are used. Rubber was used. In addition, as a sealing member, there is a tendency to use a material having low gas permeability in order to improve airtightness. For this reason, it has not been considered to divert polybutadiene rubber or polystyrene butadiene rubber, which is a general-purpose rubber and has a relatively high gas permeability, to a sealing member for high-pressure gas.

しかしながら、本発明者らが検討したところ、長期間の使用にわたりシール性を維持するためには、ガス貯蔵時の気密性よりも、摩耗に対する耐久性を向上させることや、加圧・減圧の圧力変化時のシール部材の破壊を抑制することが重要であることを見出した。   However, as a result of investigations by the present inventors, in order to maintain the sealing performance over a long period of use, the durability against wear is improved rather than the airtightness during gas storage, and the pressure of pressurization / decompression is increased. It has been found that it is important to suppress the destruction of the seal member at the time of change.

かかる状況下、本発明の目的は、優れた耐摩耗性、耐低温性、耐熱性および耐ブリスター性を同時に満足する高圧ガス用シール部材に用いられるためのゴム組成物および高圧ガス用シール部材を提供することである。   Under such circumstances, an object of the present invention is to provide a rubber composition and a high-pressure gas sealing member for use in a high-pressure gas sealing member that simultaneously satisfy excellent wear resistance, low temperature resistance, heat resistance, and blister resistance. Is to provide.

本発明者らは、主にタイヤ用途として使用されるポリブタジエンゴムやポリスチレンブタジエンゴムに着目し、上記課題を解決すべく鋭意研究を重ねた結果、ポリブタジエンゴムやポリスチレンブタジエンゴムは、比較的ガス透過性が高いにもかかわらず、意外にも、上記課題を解決できることを見出し、本発明に至った。   The inventors of the present invention mainly focused on polybutadiene rubber and polystyrene butadiene rubber used as tire applications, and as a result of intensive research to solve the above problems, polybutadiene rubber and polystyrene butadiene rubber are relatively gas permeable. Despite being high, the present inventors have unexpectedly found that the above problems can be solved, and have reached the present invention.

すなわち、本発明は、以下の発明に係るものである。
<1>高圧ガスをシールする、高圧ガス用シール部材に用いられるためのゴム組成物であって、前記ゴム組成物中のゴム成分が、ポリブタジエンゴムおよび/またはポリスチレンブタジエンゴムを含み、前記ゴム組成物が、−65℃以下のガラス転移点を有するゴム組成物。
<2>前記高圧ガスは、水素またはヘリウムである前記<1>に記載のゴム組成物。
<3>前記ゴム成分中のブタジエンに由来する構造単位の含有量が、前記ゴム成分に対して、70質量%以上である前記<1>または<2>に記載のゴム組成物。
<4>前記ポリブタジエンゴムが、低シスタイプである前記<1>から<3>のいずれかに記載のゴム組成物。
<5>前記ゴム組成物が、過酸化物加硫体である前記<1>から<4>のいずれかに記載のゴム組成物。
<6>前記ゴム組成物を、アセトンを溶剤として用いて、JIS K 6229(2013)記載のA法に基づきソックスレー抽出したときの抽出物の抽出量が、前記ゴム組成物の10質量%以下である前記<1>から<5>のいずれかに記載のゴム組成物。
<7>前記<1>から<6>のいずれかに記載のゴム組成物を用いて成形された高圧ガス用シール部材。
<8>前記高圧ガス用シール部材が、Oリング、パッキンまたはガスケットのいずれかである前記<7>に記載の高圧ガス用シール部材。
That is, the present invention relates to the following inventions.
<1> A rubber composition for use in a high pressure gas sealing member for sealing high pressure gas, wherein the rubber component in the rubber composition includes polybutadiene rubber and / or polystyrene butadiene rubber, and the rubber composition A rubber composition having a glass transition point of −65 ° C. or lower.
<2> The rubber composition according to <1>, wherein the high-pressure gas is hydrogen or helium.
<3> The rubber composition according to <1> or <2>, wherein a content of a structural unit derived from butadiene in the rubber component is 70% by mass or more based on the rubber component.
<4> The rubber composition according to any one of <1> to <3>, wherein the polybutadiene rubber is a low cis type.
<5> The rubber composition according to any one of <1> to <4>, wherein the rubber composition is a peroxide vulcanizate.
<6> When the rubber composition is subjected to Soxhlet extraction based on Method A described in JIS K 6229 (2013) using acetone as a solvent, the extract amount is 10% by mass or less of the rubber composition. The rubber composition according to any one of <1> to <5>.
<7> A high-pressure gas sealing member molded using the rubber composition according to any one of <1> to <6>.
<8> The high pressure gas sealing member according to <7>, wherein the high pressure gas sealing member is any one of an O-ring, a packing, and a gasket.

本発明によれば、優れた耐摩耗性、耐低温性、耐熱性および耐ブリスター性を同時に満足する高圧ガス用シール部材に用いるためのゴム組成物および高圧ガス用シール部材を提供することができる。   According to the present invention, it is possible to provide a rubber composition and a high-pressure gas sealing member for use in a high-pressure gas sealing member that simultaneously satisfies excellent wear resistance, low temperature resistance, heat resistance, and blister resistance. .

実施例の耐水素圧力サイクル試験に用いた耐圧試験用装置の断面の模式図である。It is the schematic diagram of the cross section of the apparatus for a pressure | voltage resistant test used for the hydrogen-proof pressure cycle test of an Example. ガス供給口および漏洩検知口を有する治具を取り付ける前の耐圧試験用装置の写真である。It is a photograph of the apparatus for a pressure | voltage resistance test before attaching the jig | tool which has a gas supply port and a leak detection port. ガス供給口および漏洩検知口を有する治具を取り付ける前の耐圧試験用装置の断面の模式図である。It is a schematic diagram of the cross section of the apparatus for a pressure | voltage resistance test before attaching the jig | tool which has a gas supply port and a leak detection port.

以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本願において、「〜」という表現を用いた場合、その前後の数値または物理値を含む意味で用いることとする。   Hereinafter, the present invention will be described in detail with reference to examples and the like, but the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In the present application, when the expression “to” is used, it is used in a sense including numerical values or physical values before and after that.

1.本発明のゴム組成物
本発明は、高圧ガスをシールする、高圧ガス用シール部材に用いられるためのゴム組成物であって、前記ゴム組成物中のゴム成分が、ポリブタジエンゴムおよび/またはポリスチレンブタジエンゴムを含み、前記ゴム組成物が、−65℃以下のガラス転移点を有することを特徴とするゴム組成物(以下、「本発明のゴム組成物」と記載する場合がある。)に関する。
1. TECHNICAL FIELD The present invention relates to a rubber composition for use in a high-pressure gas sealing member that seals high-pressure gas, wherein the rubber component in the rubber composition is polybutadiene rubber and / or polystyrene butadiene. The present invention relates to a rubber composition (hereinafter, sometimes referred to as “the rubber composition of the present invention”) characterized in that it contains rubber and the rubber composition has a glass transition point of −65 ° C. or less.

なお、本願において、「ゴム成分」とは、本発明のゴム組成物中に含まれるゴム種からなる成分であり、本発明のゴム組成物からフィラー等の配合剤を除いた成分である。本発明のゴム組成物において、ゴム成分を構成するゴム種は、ポリブタジエンゴムおよび/またはポリスチレンブタジエンゴムを含む。本発明のゴム組成物は、ゴム成分単独で構成されてもよいし、ゴム成分に加えて、フィラー等の配合剤を含む構成であってもよい。詳しくは後述する。   In the present application, the “rubber component” is a component composed of a rubber species contained in the rubber composition of the present invention, and is a component obtained by removing compounding agents such as fillers from the rubber composition of the present invention. In the rubber composition of the present invention, the rubber type constituting the rubber component includes polybutadiene rubber and / or polystyrene butadiene rubber. The rubber composition of the present invention may be constituted by a rubber component alone or may contain a compounding agent such as a filler in addition to the rubber component. Details will be described later.

また、本願において、「ガラス転移点」とは、JIS K 6240(2013)に基づいて、昇温速度20℃/分でDSC測定(示差走査熱量測定)をして求められるガラス転移点を意味する。なお、DSC測定に際しては、事前にJIS K 6240(2013)の附属書JB記載の標準物質(シクロヘキサン)による温度校正、およびJIS K 7122(2014)記載のベースラインの調整を行う必要がある。   In the present application, the “glass transition point” means a glass transition point obtained by DSC measurement (differential scanning calorimetry) at a rate of temperature increase of 20 ° C./min based on JIS K 6240 (2013). . In the DSC measurement, it is necessary to perform temperature calibration with a standard substance (cyclohexane) described in Annex JB of JIS K 6240 (2013) and baseline adjustment described in JIS K 7122 (2014) in advance.

まず、本発明のゴム組成物は、高圧ガスをシールする、高圧ガス用シール部材に用いられるためのゴム組成物である。   First, the rubber composition of the present invention is a rubber composition for use in a high-pressure gas sealing member that seals high-pressure gas.

特に、本発明のゴム組成物は、水素やヘリウムをシールするシール部材に用いることが好適である。
水素やヘリウムは、他のガスに比べて分子のサイズが小さく、物質を透過しやすいため、シールすることが困難なガスであるが、本発明のゴム組成物は、水素やヘリウムのような分子サイズの小さなガスに対しても優れたシール特性を有する。
In particular, the rubber composition of the present invention is preferably used for a sealing member that seals hydrogen and helium.
Hydrogen or helium is a gas that is difficult to seal because it has a smaller molecular size than other gases and easily penetrates the substance, but the rubber composition of the present invention is a molecule such as hydrogen or helium. Excellent sealing properties even for small gas sizes.

本発明のゴム組成物は、低温(例えば−40℃程度)や高温(例えば、85℃程度)でもゴム弾性を保つことができ、耐摩耗性および耐ブリスター性に優れることから、低温から高温までの広い温度範囲で使用される機器の摺動部などに使用しても、優れたシール性を発揮する。   The rubber composition of the present invention can maintain rubber elasticity even at a low temperature (for example, about −40 ° C.) or a high temperature (for example, about 85 ° C.), and is excellent in wear resistance and blister resistance. Excellent sealing performance even when used in sliding parts of equipment used in a wide temperature range.

本発明のゴム組成物が、比較的ガス透過性が高いにもかかわらず、高圧ガスをシールすることができるメカニズムの詳細は不明であるが、以下のように推察される。   Although the rubber composition of the present invention has relatively high gas permeability, details of the mechanism capable of sealing high-pressure gas are unknown, but it is assumed as follows.

水素やヘリウムのようなガスの高圧ガス用シール部材において、急減圧時に発生しやすいブリスター破壊、体積膨張に伴うはみ出し破壊、座屈破壊が知られているが、これらの破壊は、高圧時にシール部材中に溶け込んだガスが減圧時に一気に放出されるために起こる現象である。シール部材を構成するゴム組成物のガス透過係数が低いものは、気密性は高いものの、シール部材中に溶け込んだガスの放出にも高抵抗力・長時間がかかることから、長時間にわたり材料内部から大きな力がかかり上記破壊に至ってしまう。
一方、シール部材を構成するゴム組成物のガス透過係数が高いものは、シール部材中に溶け込んだガスの放出に際し、低抵抗力・短時間ですむことから、シール部材内部から小さな力を短時間しか受けず、上記破壊は発生しにくい状況となる。
すなわち、ポリブタジエンゴムおよびポリスチレンブタジエンゴムは、ガス透過係数が高いため、急減圧時にシール部材中に溶け込んだガスを低抵抗力・短時間で放出できるため、本発明のゴム組成物は破壊されにくいと推察される。
In high-pressure gas sealing members such as hydrogen and helium, blister breakage, protrusion failure due to volume expansion, and buckling failure that are likely to occur during sudden decompression are known. This is a phenomenon that occurs because the gas dissolved inside is released at a time when the pressure is reduced. A rubber composition with a low gas permeability coefficient that constitutes a seal member has high airtightness, but it also takes a long time to release the gas dissolved in the seal member. Therefore, a great force is applied to the above destruction.
On the other hand, the rubber composition that has a high gas permeability coefficient of the seal member requires a low resistance and a short time when releasing the gas dissolved in the seal member. However, the destruction is unlikely to occur.
That is, since polybutadiene rubber and polystyrene butadiene rubber have a high gas permeability coefficient, the gas dissolved in the sealing member at the time of sudden decompression can be released in a low resistance and in a short time, so that the rubber composition of the present invention is hardly destroyed. Inferred.

そして、高圧ガス用シール部材は、通常、部材と部材の間に配置され高圧ガスと接触しにくいため、ポリブタジエンゴムやポリスチレンブタジエンゴム程度のガス透過性でも十分にガスをシールできているものと推察される。   The high-pressure gas sealing member is usually disposed between the members and is unlikely to come into contact with the high-pressure gas. Therefore, it is inferred that the gas can be sufficiently sealed even with gas permeability equivalent to that of polybutadiene rubber or polystyrene butadiene rubber. Is done.

また、高圧ガス用シール部材は、通常、部材と部材の間に配置され大気と接触しにくいため、ポリブタジエンゴムやポリスチレンブタジエンゴムのような耐候性、耐オゾン性、耐油性が低いゴム種を含む場合でもゴム組成物が劣化を受けにくいと推察される。   Further, since the high pressure gas sealing member is usually disposed between the members and hardly contacts the atmosphere, it contains a rubber type having low weather resistance, ozone resistance, and oil resistance such as polybutadiene rubber and polystyrene butadiene rubber. Even in this case, it is assumed that the rubber composition is not easily deteriorated.

結果として、本発明のゴム組成物は、優れた耐摩耗性、耐低温性、耐熱性および耐ブリスター性を同時に満足できていると推察される。   As a result, it is surmised that the rubber composition of the present invention can simultaneously satisfy excellent wear resistance, low temperature resistance, heat resistance and blister resistance.

また、後述する実施例で説明する通り、高圧ガス用シール部材のシール下限温度は、高圧ガス用シール部材を構成するゴム組成物のガラス転移点+25℃〜30℃程度であり、本発明のゴム組成物は、−65℃以下のガラス転移点を有するので、−40℃以下の使用環境に十分に耐えうることができる。本発明のゴム組成物が、−95℃程度のガラス転移点を有する場合、−70℃の使用環境でも使用可能である。   Further, as will be described in the examples described later, the seal lower limit temperature of the high pressure gas seal member is about the glass transition point of the rubber composition constituting the high pressure gas seal member + 25 ° C. to 30 ° C., and the rubber of the present invention. Since the composition has a glass transition point of −65 ° C. or lower, it can sufficiently withstand a use environment of −40 ° C. or lower. When the rubber composition of the present invention has a glass transition point of about -95 ° C, it can also be used in an environment of -70 ° C.

なお、本発明のゴム組成物は、複数のガラス転移点が観測されてもよい。本発明のゴム組成物は、−65℃以下に少なくとも1つガラス転移点を有すれば、−65℃より高い温度にガラス転移点を有してもよく、−65℃以下に2つ以上ガラス転移点を有してもよい。   In the rubber composition of the present invention, a plurality of glass transition points may be observed. The rubber composition of the present invention may have a glass transition point at a temperature higher than −65 ° C. as long as it has at least one glass transition point at −65 ° C. or lower. It may have a transition point.

本発明のゴム組成物は、上述のように、ゴム成分単独、または、ゴム成分とフィラー等の配合剤とを含む構成である。
本発明のゴム組成物中のゴム成分の含有量は、具体的には、JIS K 6226−2(2013)記載の方法により分析された全有機成分からJIS K 6229(2013)記載のA法により求めた溶剤(アセトン)抽出量を差し引いて算出できる。
As described above, the rubber composition of the present invention is configured to include a rubber component alone or a rubber component and a compounding agent such as a filler.
Specifically, the content of the rubber component in the rubber composition of the present invention is determined by the method A described in JIS K 6229 (2013) from the total organic components analyzed by the method described in JIS K 6262-2 (2013). It can be calculated by subtracting the obtained solvent (acetone) extraction amount.

ゴム組成物におけるゴム成分の含有量は、特に限定されないが、前記ゴム組成物を100質量%とした場合に、20〜70質量%であることが好ましく、35〜50質量%であることがより好ましい。   Although content of the rubber component in a rubber composition is not specifically limited, When the said rubber composition is 100 mass%, it is preferable that it is 20-70 mass%, and it is more preferable that it is 35-50 mass%. preferable.

本発明のゴム組成物のゴム成分は、ポリブタジエンゴムおよび/またはポリブタジエンスチレンゴムのゴム種を含めばよく、ポリブタジエンゴム単独であっても、ポリブタジエンスチレンゴム単独であっても、ポリブタジエンゴムとポリブタジエンスチレンゴムの混合物であってもよく、本発明の目的を損なわない範囲で、ポリブタジエンゴムおよびポリブタジエンスチレンゴム以外のゴム種(以下、「その他のゴム種」と記載する場合がある。)を含んでもよい。   The rubber component of the rubber composition of the present invention may include a polybutadiene rubber and / or a polybutadiene styrene rubber, and may be a polybutadiene rubber alone, a polybutadiene styrene rubber alone, a polybutadiene rubber and a polybutadiene styrene rubber. It may be a mixture of the above, and may contain rubber types other than polybutadiene rubber and polybutadiene styrene rubber (hereinafter may be referred to as “other rubber types”) as long as the object of the present invention is not impaired.

以下、ポリブタジエンゴム、ポリブタジエンスチレンゴムについて詳細に説明する。   Hereinafter, polybutadiene rubber and polybutadiene styrene rubber will be described in detail.

[ポリブタジエンゴム]
ポリブタジエンゴム(以下、「BR」と記載する場合がある。)は、共役ジエンモノマーの1,3−ブタジエンが付加重合したポリマーである。すなわち、BRは、ブタジエンに由来する構造単位からなるポリマーである。
ブタジエンに由来する構造単位の結合様式(モノマーの結合様式)により、三種類の幾何異性体(cis−1,4結合(シス)、trans−1,4結合(トランス)、1,2結合(ビニル))が主鎖中に形成され、さらに、1,2結合では不斉炭素原子をもつことから、1,2結合の連鎖が生成した場合、絶対配置の違いで、イソタクチック,シンジオタクチック、アタクチックの三種類の立体規則性(タクティシティ)が発現する。一般的に、ポリブタジエン主鎖中の結合様式はミクロ構造と呼ばれ、これらミクロ構造や立体規則性は重合方法を選択することで制御できる。
[Polybutadiene rubber]
Polybutadiene rubber (hereinafter sometimes referred to as “BR”) is a polymer obtained by addition polymerization of conjugated diene monomer 1,3-butadiene. That is, BR is a polymer composed of structural units derived from butadiene.
Three structural isomers (cis-1,4 bond (cis), trans-1,4 bond (trans), 1,2 bond (vinyl), depending on the bond mode of the structural unit derived from butadiene (monomer bond mode)) )) Is formed in the main chain, and the 1,2 bond has an asymmetric carbon atom. Therefore, when a chain of 1,2 bonds is formed, isotactic, syndiotactic, atactic due to differences in absolute configuration The three types of stereoregularity (tacticity) are expressed. In general, the bonding mode in the polybutadiene main chain is called a microstructure, and the microstructure and stereoregularity can be controlled by selecting a polymerization method.

BRはミクロ構造や重合法等の違いで分類されるが、本発明のゴム組成物に含有されるポリブタジエンゴムの種類は、本発明の目的を損なわない限り、特に限定されない。例えば、BRとしては、高シスタイプのポリブタジエンゴム(高シス−BR)や、低シスタイプのポリブタジエンゴム(低シス−BR)などが挙げられる。
なお、高シスタイプのポリブタジエンゴムとは、ポチブタジエン主鎖中のシス含量が90mol%以上のポリブタジエンゴムを意味し、低シスタイプのポリブタジエンゴムとは、ポリブタジエン主鎖中のシス含量が52mol%以下のポリブタジエンゴムを意味する。
Although BR is classified according to differences in microstructure, polymerization method, and the like, the type of polybutadiene rubber contained in the rubber composition of the present invention is not particularly limited as long as the object of the present invention is not impaired. Examples of BR include high cis type polybutadiene rubber (high cis-BR) and low cis type polybutadiene rubber (low cis-BR).
The high cis type polybutadiene rubber means a polybutadiene rubber having a cis content in the polybutadiene main chain of 90 mol% or more, and the low cis type polybutadiene rubber has a cis content in the polybutadiene main chain of 52 mol% or less. Of polybutadiene rubber.

高シスタイプのBRのガラス転移点(tg)は−100〜−95℃程度で低温特性が優れている。低シスタイプは、シス−1,4結合の結晶化が起こりにくいという利点がある。なお、高シスタイプ、低シスタイプの判別は加硫成形後の高圧ガス用シール部材でも可能である。ソックスレー抽出によりオイル等の不要分を除いたサンプルを用いNMR測定によりシス含量を算出でき、高シスタイプ、低シスタイプの判別が可能である。   The glass transition point (tg) of high cis type BR is about −100 to −95 ° C. and has excellent low temperature characteristics. The low cis type has an advantage that crystallization of cis-1,4 bonds hardly occurs. The high cis type and the low cis type can be discriminated by the high pressure gas sealing member after vulcanization molding. The cis content can be calculated by NMR measurement using a sample from which unnecessary components such as oil have been removed by Soxhlet extraction, and discrimination between high cis type and low cis type is possible.

好ましいポリブタジエンゴムとしては、低シスタイプのポリブタジエンゴムが挙げられる。低シスタイプのポリブタジエンゴムを用いることで、低温特性および耐摩耗性がより良好となり、ブリスターもより発生し難くなる。
また、低シスタイプのポリブタジエンゴムは、ビニル結合含量が低いほど、ガラス転移点も低く、高シス−BRで観察されるシス−1,4結合の結晶化も起こりにくいことから、低シスタイプのポリブタジエンゴム中のビニル結合の含量が低いほど好ましい。
Preferred polybutadiene rubber includes low cis type polybutadiene rubber. By using a low cis type polybutadiene rubber, low temperature characteristics and wear resistance are improved, and blisters are less likely to occur.
In addition, the lower the cis-type polybutadiene rubber, the lower the vinyl bond content, the lower the glass transition point, and the less the cis-1,4 bond crystallization observed at high cis-BR occurs. The lower the vinyl bond content in the polybutadiene rubber, the better.

具体的には、ポリブタジエンゴムとしては、JSR製品のJSR BR01、JSR T700、JSR BR51、JSR BR730、日本ゼオン製品のNipol BR1220、宇部興産製品のUBEPOL BR150、UBEPOL BR150B、UBEPOL BR130B、UBEPOL BR150L、UBEPOL BR360L、UBEPOL BR230、UBEPOL BR710、UBEPOL BR133P等を用いることができ、低シスタイプのポリブタジエンゴムとしては、日本ゼオン製品のNipol1250H、旭化成製品のジエンNF35R、クラレ製の液状ポリブタジエン:LBR−300、LBR−302B、LBR−305、LBR−307、LBR−352、LBR−361等のゴム用グレード等を用いることができる。   Specifically, as polybutadiene rubber, JSR products JSR BR01, JSR T700, JSR BR51, JSR BR730, Nippon Zeon products Nipol BR1220, Ube Industries' UBEPOL BR150, UBEPOL BR150B, UBEPOL BR130B, UBEPOL BR130B, UBEPOL BR130B, UBEPOL , UBEPOL BR230, UBEPOL BR710, UBEPOL BR133P, etc., and low cis type polybutadiene rubbers include Nipol 1250H, a Nippon Zeon product, Diene NF35R, an Asahi Kasei product, liquid polybutadiene made by Kuraray: LBR-302B Grades for rubber such as LBR-305, LBR-307, LBR-352, LBR-361 It can be used.

[ポリスチレンブタジエンゴム]
ポリブタジエンスチレンゴム(以下、「SBR」と記載する場合がある。)は、1,3−ブタジエンとスチレンからなるポリマーである。すなわち、ブタジエンに由来する構造単位と、スチレンに由来する構造単位とからなるポリマーである。
SBRは、乳化重合SBRと溶液重合SBRが主として工業化されており、本発明のゴム組成物に含まれるSBRとしては、低温特性の優れた溶液重合SBRが好ましい。
[Polystyrene butadiene rubber]
Polybutadiene styrene rubber (hereinafter sometimes referred to as “SBR”) is a polymer composed of 1,3-butadiene and styrene. That is, it is a polymer composed of a structural unit derived from butadiene and a structural unit derived from styrene.
As the SBR, emulsion polymerization SBR and solution polymerization SBR are mainly industrialized, and as the SBR contained in the rubber composition of the present invention, solution polymerization SBR having excellent low-temperature characteristics is preferable.

具体的には、ポリブタジエンスチレンゴムとしては、JSR製品のJSR 1500、JSR1502、JSR1507、JSR0202、JSR1503等を用いることができる。溶液重合SBRとしては、旭化成製品のタフデン1000、タフデン2000R、JSR製品のJSR SL552、JSR SL563、日本ゼオン製品のNipol NS116R等を用いることができる。   Specifically, JSR products such as JSR 1500, JSR1502, JSR1507, JSR0202 and JSR1503 can be used as the polybutadiene styrene rubber. As the solution polymerization SBR, Asahi Kasei products Toughden 1000, Toughden 2000R, JSR products JSR SL552, JSR SL563, Nippon Zeon products Nipol NS116R, and the like can be used.

本発明のゴム組成物においてゴム成分は、上述のように、その他のゴム種を含んでいてもよく、ポリブタジエンゴムおよび/またはポリブタジエンスチレンゴムと、その他のゴム種(ポリブタジエンゴムおよびポリブタジエンスチレンゴム以外のゴム種)とをブレンドして用いてもよい。その他のゴム種の種類は、特に限定されず、目的に応じて適宜選択される。   As described above, the rubber component in the rubber composition of the present invention may contain other rubber types, such as polybutadiene rubber and / or polybutadiene styrene rubber, and other rubber types (other than polybutadiene rubber and polybutadiene styrene rubber). Rubber type) may be blended. The kind of other rubber type is not particularly limited, and is appropriately selected according to the purpose.

その他のゴム種として好ましいものとして、ニトリルゴム(NBR)、エチレン−プロピレン−ジエンゴム(EPDM)、シリコーンゴムが挙げられる   Preferable examples of other rubber types include nitrile rubber (NBR), ethylene-propylene-diene rubber (EPDM), and silicone rubber.

例えば、耐摩耗性向上のため、ガラス転移点の低いニトリルゴム(低ニトリルNBR)をブレンドして用いることも可能ある。ニトリルゴムに関しては特に限定はされないが、例えば、JSR製品のJSR N260S、日本ゼオン製品のNipol DN401、Nipol DN401L、Nipol DN401LL等を用いることができる。   For example, nitrile rubber having a low glass transition point (low nitrile NBR) can be blended and used for improving wear resistance. Although it does not specifically limit regarding nitrile rubber, For example, JSR N260S of JSR product, Nipol DN401, Nipol DN401L, Nipol DN401LL, etc. of ZEON products can be used.

また、例えば、耐候性向上のため、ガラス転移点の低いエチレン−プロピレン−ジエンゴム(EPDM)をブレンドして用いることも可能である。EPDMに関しては特に限定はされないが、例えば、ダウ・ケミカル製品のNORDEL IP4570、NORDEL IP5565、住友化学製品のエスプレン532、エスプレン7456、JSR製品のT7141、EP342等を用いることができる。   Further, for example, ethylene-propylene-diene rubber (EPDM) having a low glass transition point may be blended and used for improving weather resistance. Although EPDM is not particularly limited, for example, NORDEL IP4570 and NORDEL IP5565 of Dow Chemical products, Espren 532 and Esprene 7456 of Sumitomo Chemical products, T7141, EP342 of JSR products, and the like can be used.

また、より低温特性を向上させるためにシリコーンゴムとのブレンドも可能である。シリコーンゴムに関しては、特に限定されないが、例えば、信越化学製品のKE−136Y−U、KE−186−Uやダウコーニング製品のDY32−379U等を用いることができる。   In addition, blending with silicone rubber is also possible in order to improve the low temperature characteristics. Although it does not specifically limit regarding silicone rubber, For example, Shin-Etsu Chemical products KE-136Y-U, KE-186-U, Dow Corning products DY32-379U, etc. can be used.

本発明のゴム組成物中のゴム成分が、ポリブタジエンゴムとポリブタジエンスチレンゴムの混合物、または、その他のゴム種を含む場合は、各ゴム種の配合量は、本発明の目的を達成できる範囲で、目的に応じて適宜決定すればよい。   When the rubber component in the rubber composition of the present invention includes a mixture of polybutadiene rubber and polybutadiene styrene rubber, or other rubber types, the blending amount of each rubber type is within a range where the object of the present invention can be achieved, What is necessary is just to determine suitably according to the objective.

好ましくは、ゴム成分中のブタジエンに由来する構造単位の含有量が、ゴム成分に対して70質量%以上である。ゴム成分中のブタジエンに由来する構造単位の含有量が、ゴム成分に対して70質量%以上あれば、ブリスター破壊、はみ出し破壊、座屈破壊等の破壊がより発生しにくい状況となり、シール部材として重要な評価特性である圧縮永久歪も小さく抑えることが可能となる。より好ましくは、ゴム成分中のブタジエンに由来する構造単位の含有量が、ゴム成分に対して80質量%以上であり、上記破壊はさらに発生しにくく、圧縮永久歪もさらに小さく抑えることが可能となる。   Preferably, the content of structural units derived from butadiene in the rubber component is 70% by mass or more based on the rubber component. If the content of the structural unit derived from butadiene in the rubber component is 70% by mass or more with respect to the rubber component, it becomes a situation in which breakdown such as blister breakage, protrusion breakage, and buckling failure is less likely to occur. It is also possible to suppress the compression set that is an important evaluation characteristic. More preferably, the content of the structural unit derived from butadiene in the rubber component is 80% by mass or more with respect to the rubber component, and the above-described fracture is less likely to occur, and the compression set can be further reduced. Become.

なお、本願において、「ブタジエンに由来する構造単位」とは、1,3−ブタジエン(モノマー)の単独重合または共重合により得られるポリマー中に存在する、1,3−ブタジエン1分子に由来する部分構造のことをいう。
「ゴム成分中のブタジエンに由来する構造単位の含有量」とは、ゴム成分を構成するゴム種が有するブタジエンに由来する構造単位の総量のことである。ブタジエンに由来する構造単位は、ポリブタジエンゴムおよびポリブタジエンスチレンゴムだけでなく、その他のゴム種に含まれていてもよい。
In the present application, “structural unit derived from butadiene” means a portion derived from one molecule of 1,3-butadiene, present in a polymer obtained by homopolymerization or copolymerization of 1,3-butadiene (monomer). Refers to the structure.
The “content of structural units derived from butadiene in the rubber component” refers to the total amount of structural units derived from butadiene contained in the rubber species constituting the rubber component. The structural unit derived from butadiene may be contained not only in polybutadiene rubber and polybutadiene styrene rubber but also in other rubber types.

ゴム成分中のブタジエンに由来する構造単位の含有量は、ゴム成分がポリブタジエンゴムからなる場合は、100質量%である。また、ゴム成分がポリブタジエンスチレンゴムからなる場合は、例えば、ブタジエンとスチレンとの共重合体組成比に基づき算出することができる。
その他のゴム種がブタジエンに由来する構造単位を有する場合には、ゴム成分中のブタジエンに由来する構造単位の含有量とは、ポリブタジエンゴムおよびポリブタジエンスチレンゴムに含有されるブタジエンに由来する構造単位と、その他のゴム種に含有されるブタジエンに由来する構造単位との総量となる。
The content of the structural unit derived from butadiene in the rubber component is 100% by mass when the rubber component is made of polybutadiene rubber. Moreover, when a rubber component consists of polybutadiene styrene rubber, it can calculate based on the copolymer composition ratio of a butadiene and styrene, for example.
When other rubber types have a structural unit derived from butadiene, the content of the structural unit derived from butadiene in the rubber component is a structural unit derived from butadiene contained in polybutadiene rubber and polybutadiene styrene rubber. The total amount with the structural unit derived from butadiene contained in other rubber types.

また、ゴム成分中のブタジエンに由来する構造単位の含有量は、例えば、ソックスレー抽出(JIS K 6229(2013)記載のA法)により、プロセスオイル等の配合剤を抽出した後に熱分解GCまたは熱分解GC−MSを用いて、組成既知のゴムまたはポリマーにより作成した検量線と分析結果(BR由来の熱分解物であるブタジエンや4−ビニル−1−シクロヘキセン等の検出ピーク、SBR由来の熱分解物であるブタジエンや4−ビニル−1−シクロヘキセン、スチレン等の検出ピーク、NBR由来の熱分解物であるブタジエンや4−ビニル−1−シクロヘキセン、アクリロニトリルの検出ピーク、EPDM由来の熱分解生成物である、C3〜C8パラフィンの検出ピーク等利用)を利用して算出することができる。
具体的には、ゴム成分中のブタジエンに由来する構造単位の含有量は、ブタジエンに由来する構造単位の熱分解物であるブタジエンや4−ビニル−1−シクロヘキセンの検出ピークから算出することが可能である。なお、ブタジエンや4−ビニル−1−シクロヘキセンの発生由来はBR、SBR、NBR、液状ゴム等いずれの発生由来のピークであっても構わない。
The content of the structural unit derived from butadiene in the rubber component is, for example, pyrolysis GC or heat after extracting compounding agents such as process oil by Soxhlet extraction (Method A described in JIS K 6229 (2013)). Calibration curve and analysis results (decomposition of BR derived pyrolysis products such as butadiene and 4-vinyl-1-cyclohexene, pyrolysis derived from SBR and decomposition using GC / MS with decomposition GC-MS Detection peaks of butadiene, 4-vinyl-1-cyclohexene, styrene, etc., and NBR-derived thermal decomposition products, butadiene, 4-vinyl-1-cyclohexene, detection peaks of acrylonitrile, thermal decomposition products derived from EPDM It can be calculated using a certain C3-C8 paraffin detection peak).
Specifically, the content of structural units derived from butadiene in the rubber component can be calculated from detection peaks of butadiene and 4-vinyl-1-cyclohexene, which are thermal decomposition products of structural units derived from butadiene. It is. In addition, the generation origin of butadiene or 4-vinyl-1-cyclohexene may be any generation origin peak such as BR, SBR, NBR, liquid rubber and the like.

より具体的には、JIS K 6231(2013)、JIS K 6231−2(2013)記載の分析条件または準拠する条件にて、保持時間が重ならない検出ピークを利用し、分析可能である。なお、ゴム成分中のブタジエンに由来する構造単位の含有量は、加硫成形後の高圧ガス用シール部材からでも測定可能である。   More specifically, analysis can be performed using detection peaks whose retention times do not overlap under the analysis conditions described in JIS K 6231 (2013) and JIS K 6231-2 (2013) or the conditions conforming to them. The content of structural units derived from butadiene in the rubber component can also be measured from a high-pressure gas sealing member after vulcanization molding.

本発明のゴム組成物は、上述のように、ゴム成分単独であっても、ゴム成分と配合剤とを含む構成であってもよいが、通常は、ゴム成分と配合剤とを含む。配合剤は、本発明の目的を損なわない範囲で、ゴム工業で一般的に使用されている公知の配合剤を使用すればよい。   As described above, the rubber composition of the present invention may be a rubber component alone or a composition containing a rubber component and a compounding agent, but usually contains a rubber component and a compounding agent. As the compounding agent, a known compounding agent generally used in the rubber industry may be used as long as the object of the present invention is not impaired.

配合剤の種類や添加量は、特に制限はないが、配合剤の種類や添加量によっては、本発明のゴム組成物が高圧ガスに長時間曝露された際に、本発明のゴム組成物の特性に変化を引き起こす場合があるため、本発明のゴム組成物を、アセトンを溶剤として用いて、JIS K 6229(2013)記載のA法に基づきソックスレー抽出したときの抽出物の抽出量が、本発明のゴム組成物の10質量%以下であることが好ましい。   The type and amount of compounding agent are not particularly limited, but depending on the type and amount of compounding agent, when the rubber composition of the present invention is exposed to high-pressure gas for a long time, Since the properties may be changed, the extraction amount of the extract when the rubber composition of the present invention is subjected to Soxhlet extraction based on Method A described in JIS K 6229 (2013) using acetone as a solvent is It is preferable that it is 10 mass% or less of the rubber composition of invention.

本発明のゴム組成物は、未架橋であってもよいが、通常、架橋される。なお、本願において、「架橋」と同義の言葉として「加硫」を用いる場合もある。すなわち、本願において、「加硫」は、硫黄、または、硫黄と加硫促進剤を使用してゴム成分を架橋することだけでなく、有機過酸化物等の硫黄以外の架橋剤を使用してゴム成分を架橋することも意味する。
架橋(加硫)方法は、本発明の目的を損なわない範囲で特に限定されない。
The rubber composition of the present invention may be uncrosslinked, but is usually crosslinked. In the present application, “vulcanization” may be used as a term synonymous with “crosslinking”. That is, in the present application, “vulcanization” means not only crosslinking of a rubber component using sulfur or sulfur and a vulcanization accelerator, but also using a crosslinking agent other than sulfur such as an organic peroxide. It also means cross-linking the rubber component.
The crosslinking (vulcanization) method is not particularly limited as long as the object of the present invention is not impaired.

より好ましい架橋(加硫)方法は、有機過酸化物を用いて架橋した、過酸化物加硫である。すなわち、本発明のゴム組成物は、過酸化物加硫体であることが好ましい。過酸化物加硫体は圧縮永久歪特性が向上し、FCV関連用途では、燃料電池触媒への硫黄被毒の心配がないため好ましい。過酸化物加硫体は、ゴム組成物の蛍光X線分析により硫黄が検出されないこと、または、ゴム組成物をソックスレー抽出し、抽出物をGC−MSやFT−IR分析をすることで、有機過酸化物の残渣(分解物)を検出すること等から確認できる。   A more preferred crosslinking (vulcanization) method is peroxide vulcanization, which is crosslinked using an organic peroxide. That is, the rubber composition of the present invention is preferably a peroxide vulcanizate. Peroxide vulcanizates have improved compression set characteristics and are preferred for FCV applications because there is no concern about sulfur poisoning of the fuel cell catalyst. Peroxide vulcanizates can be organically detected when sulfur is not detected by X-ray fluorescence analysis of the rubber composition, or the rubber composition is subjected to Soxhlet extraction and the extract is subjected to GC-MS or FT-IR analysis. This can be confirmed by detecting a peroxide residue (decomposed product).

有機過酸化物としては、一般にゴムに使用可能なものであれば特に制限なく使用することができ、例えばベンゾイルパーオキサイド、p−クロロベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、ジ第3ブチルパーオキサイド、第3ブチルクミルパーオキサイド、ジクミルパーオキサイド、1,1−ジ(第3ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジ(第3ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(第3ブチルパーオキシ)ヘキシン−3、1,3−ジ(第3ブチルパーオキシイソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、第3ブチルパーオキシベンゾエート第3ブチルパーオキシイソプロピルカーボネート、n−ブチル−4,4−ジ(第3ブチルパーオキシ)バレレート等が用いられる。これらの有機過酸化物は1種のみを使用してもよく、2種以上を併用してもよい。   Any organic peroxide that can be used for rubber can be used without particular limitation. For example, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, di-third Butyl peroxide, tertiary butyl cumyl peroxide, dicumyl peroxide, 1,1-di (tertiary butyl peroxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di ( Tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3,1,3-di (tert-butylperoxyisopropyl) benzene, 2,5-dimethyl -2,5-di (benzoylperoxy) hexane, tert-butylperoxybenzoate tert-butylperoxyisopropyl Boneto, n- butyl-4,4-di (tert-butylperoxy) valerate and the like are used. These organic peroxides may use only 1 type and may use 2 or more types together.

有機過酸化物の配合量は、有機過酸化物の種類等に応じて適宜決定すればよいが、通常、ゴム成分100質量部に対して、0.2〜8質量部、好ましくは1〜5質量部の割合で用いられる。   The compounding amount of the organic peroxide may be appropriately determined according to the type of the organic peroxide and the like, but is usually 0.2 to 8 parts by mass, preferably 1 to 5 parts per 100 parts by mass of the rubber component. Used in the ratio of parts by mass.

その他の配合剤としては、具体的には、カーボンブラック、シリカ等の補強剤、タルク、クレー、グラファイト、けい酸カルシウム、炭酸カルシウム等の充填剤、ステアリン酸、パルミチン酸、パラフィンワックス、プロセスオイル等の加工助剤、酸化亜鉛、酸化マグネシウム等の金属酸化物、老化防止剤、可塑剤、スコーチ防止剤などが挙げられる。これらの配合剤は、1種のみを使用してもよく、2種以上を併用してもよい。   Specific examples of other compounding agents include reinforcing agents such as carbon black and silica, fillers such as talc, clay, graphite, calcium silicate and calcium carbonate, stearic acid, palmitic acid, paraffin wax, and process oil. And processing aids, metal oxides such as zinc oxide and magnesium oxide, anti-aging agents, plasticizers, and scorch inhibitors. These compounding agents may use only 1 type and may use 2 or more types together.

本発明のゴム組成物は、カーボンブラックやシリカ等の補強剤を含んでもよい。補強剤は、1種のみを使用してもよく、2種以上を併用してもよい。   The rubber composition of the present invention may contain a reinforcing agent such as carbon black or silica. Only 1 type may be used for a reinforcing agent and it may use 2 or more types together.

補強剤としてのカーボンブラックが配合される場合には、カーボンブラックの種類としては、ハードカーボン種であるSAF、ISAFおよびHAFのうち少なくとも1種を含むことがゴムに強度を与える点から好ましい。
また、ソフトカーボン種であるFEF、GPF、HMFおよびSRFのうち少なくとも1種を含むことがゴムの圧縮永久歪特性のために好ましい。
ハードカーボン種とソフトカーボン種は併用するのが好ましい。
なお、SAF、ISAF、HAF、FEF、GPF、HMF、SRFはいずれも、米国のASTM規格D−1765−82aで分類されたカーボンブラックの略称である。
When carbon black as a reinforcing agent is blended, it is preferable that the carbon black includes at least one of hard carbon types SAF, ISAF and HAF from the viewpoint of giving strength to the rubber.
Moreover, it is preferable for the compression set property of rubber to contain at least one of soft carbon species FEF, GPF, HMF and SRF.
It is preferable to use a hard carbon species and a soft carbon species in combination.
SAF, ISAF, HAF, FEF, GPF, HMF, and SRF are all abbreviations of carbon black classified according to the American ASTM standard D-1765-82a.

カーボンブラック添加量は、目的に応じて適宜選択可能だが、強度、硬度、耐摩耗性の点から、ゴム成分100質量部に対して50質量部以上添加することが好ましく、100質量部以上がより好ましい。   The amount of carbon black added can be appropriately selected according to the purpose, but from the viewpoint of strength, hardness, and abrasion resistance, it is preferable to add 50 parts by mass or more with respect to 100 parts by mass of the rubber component, and more preferably 100 parts by mass or more. preferable.

また、本発明ゴム組成物は、プロセスオイルを含んでもよく、プロセスオイルを含む場合、プロセスオイルはパラフィン系またはナフテン系オイルが好ましい。
添加量は、本発明の目的を損なわない範囲で適宜決定すればよいが、高圧ガスに長時間曝露された際に、プロセスオイルが押し出され、ゴム組成物の特性変化が問題になる場合があるため、物性変化に影響を与えにくいゴム組成物または加硫後ゴム組成物中に対して10質量%以下が好ましい。なお、プロセスオイルの量は、ソックスレー抽出(JIS K 6229(2013)記載のA法)により測定できる。
Further, the rubber composition of the present invention may contain process oil. When the process oil is contained, the process oil is preferably paraffinic or naphthenic oil.
The addition amount may be appropriately determined within a range that does not impair the object of the present invention, but when exposed to a high-pressure gas for a long time, the process oil may be pushed out, which may cause a change in properties of the rubber composition. Therefore, the amount is preferably 10% by mass or less based on the rubber composition or the rubber composition after vulcanization which hardly affects the change in physical properties. The amount of process oil can be measured by Soxhlet extraction (Method A described in JIS K 6229 (2013)).

高圧ガス曝露による物質押し出し等による物性変化をさらに抑制するためには、サブ(ファクチス)や液状ゴムをプロセスオイルの代替として用いることが好ましい。サブ(ファクチス)は無硫黄タイプの過酸化物により処理されたサブ(ファクチス)が好ましく、液状ゴムは液状ブタジエンゴムまたは液状スチレンブタジエンゴムが、ポリブタジエンおよび/またはポリブタジエンスチレンとの相溶性の点から好ましい。   In order to further suppress changes in physical properties due to material extrusion due to high-pressure gas exposure, it is preferable to use sub (factis) or liquid rubber as an alternative to process oil. The sub (factis) is preferably a sub (factis) treated with a sulfur-free type peroxide, and the liquid rubber is preferably liquid butadiene rubber or liquid styrene butadiene rubber from the viewpoint of compatibility with polybutadiene and / or polybutadiene styrene. .

プロセスオイルの代替として用いることができる液状ゴムは、例えば、クラレ製の液状ポリブタジエン:LBR−300、LBR−302B、LBR−305、LBR−307、LBR−352、LBR−361等のゴム用グレード、クラレ製の液状スチレンブタジエンゴム:L−SBR−820、L−SBR−841等のゴム用グレード等が好適に用いられる。   Liquid rubber that can be used as an alternative to process oil is, for example, Kuraray liquid polybutadiene: rubber grades such as LBR-300, LBR-302B, LBR-305, LBR-307, LBR-352, and LBR-361, Kuraray-made liquid styrene butadiene rubber: grades for rubber such as L-SBR-820 and L-SBR-841 are preferably used.

また、本発明のゴム組成物は、老化防止剤を含んでもよく、老化防止剤は1種または2種以上を併用してもよい。老化防止剤は特に限定されず、従来公知のものを使用することができるが、窒素原子を含むものが好ましい。
具体的にはアミンーケトン系、芳香族第2級アミン系、イミダゾール系などが好ましい。このような老化防止剤は、老化防止効果に付随して、配合剤としてカーボンブラックを配合する場合に、カーボンブラックの分散効果も高めることから好ましい。
また、高圧ガスに長時間曝露された際に、老化防止剤が押し出され、ゴム組成物の特性変化が問題になる場合があるため、メタクリル基等の反応性官能基を有する不溶出性の老化防止剤が好ましい。
Moreover, the rubber composition of this invention may contain anti-aging agent, and anti-aging agent may use 1 type (s) or 2 or more types together. The anti-aging agent is not particularly limited and conventionally known anti-aging agents can be used, but those containing nitrogen atoms are preferable.
Specifically, amine-ketone type, aromatic secondary amine type, imidazole type and the like are preferable. Such an anti-aging agent is preferable because, in addition to the anti-aging effect, when carbon black is added as a compounding agent, the effect of dispersing the carbon black is also enhanced.
In addition, when exposed to high-pressure gas for a long time, the anti-aging agent is pushed out, and the property change of the rubber composition may become a problem, so that non-eluting aging having reactive functional groups such as methacrylic groups Inhibitors are preferred.

また、本発明のゴム組成物は、共架橋剤を含んでもよい。共架橋剤は例えば、多官能性不飽和化合物などが挙げられる。多官能性不飽和化合物は、1種のみを使用してもよく、2種以上を併用してもよい。   Further, the rubber composition of the present invention may contain a co-crosslinking agent. Examples of the co-crosslinking agent include polyfunctional unsaturated compounds. Only 1 type may be used for a polyfunctional unsaturated compound and it may use 2 or more types together.

多官能性不飽和化合物としては、例えば、キノンジオキシム系の多官能性不飽和化合物(例えば、p−キノンジオキシム等)、メタアクリレート系の多官能性不飽和化合物(例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタアクリレート、トリメチロールプロパントリメタクリレート等)、アリル系の多官能性不飽和化合物(例えば、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルトリメリテート等)、マレイミド系の多官能性不飽和化合物(例えば、マレイミド、フェニルマレイミド、N,N’−m−フェニレンビスマレイミド等)、無水マレイン酸、ジビニルベンゼン、ビニルトルエンおよび1,2−ポリブタジエンなどが挙げられる。   Examples of the polyfunctional unsaturated compound include a quinone dioxime-based polyfunctional unsaturated compound (for example, p-quinone dioxime) and a methacrylate-based polyfunctional unsaturated compound (for example, ethylene glycol dimethacrylate). , Diethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, etc.), allyl polyfunctional unsaturated compounds (eg diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, triallyl trimellitate, etc.), maleimide type Examples thereof include polyfunctional unsaturated compounds (eg, maleimide, phenylmaleimide, N, N′-m-phenylenebismaleimide), maleic anhydride, divinylbenzene, vinyltoluene, and 1,2-polybutadiene.

これらの中でも、シール部材の圧縮永久歪を低減するために、トリアリルイソシアヌレートおよびジエチレングリコールジメタクリレートが好ましい。
共架橋剤(特に、多官能性不飽和化合物)を使用する場合、ゴム成分100質量部に対して、好ましくは0.1〜20質量部であり、特に好ましくは1〜5質量部である。
Among these, triallyl isocyanurate and diethylene glycol dimethacrylate are preferable in order to reduce the compression set of the seal member.
When using a co-crosslinking agent (especially polyfunctional unsaturated compound), it is preferably 0.1 to 20 parts by mass, particularly preferably 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.

本発明のゴム組成物の好ましい態様のひとつは、ポリブタジエンゴムおよび/またはポリスチレンブタジエンゴムと、架橋剤と、補強剤とを含むゴム組成物である。例えば、このようなゴム組成物として、ポリブタジエンゴムおよび/またはポリスチレンブタジエンゴムと、有機過酸化物と、カーボンブラックとを含むゴム組成物が挙げられる。   One preferred embodiment of the rubber composition of the present invention is a rubber composition containing polybutadiene rubber and / or polystyrene butadiene rubber, a crosslinking agent, and a reinforcing agent. For example, such a rubber composition includes a rubber composition containing polybutadiene rubber and / or polystyrene butadiene rubber, an organic peroxide, and carbon black.

本発明のゴム組成物は、製造方法は特に限定されず、目的に応じて従来公知の方法から選択すればよい。例えば、本発明のゴム組成物の製造は、インターミックス、ニーダ、バンバリーミキサ等の混練機またはオープンロール等を用いて混練することによって行われる。また、加硫成形する場合は、例えば、射出成形機、圧縮成形機、加硫プレス等を用いて行われる。一般的に、加硫成形は、約150〜200℃で約3〜60分間程度加熱することによって行われ、必要に応じて約80〜150℃で約1〜24時間加熱するオーブン加熱(二次加硫)が行われる。   The production method of the rubber composition of the present invention is not particularly limited, and may be selected from conventionally known methods according to the purpose. For example, the rubber composition of the present invention is produced by kneading using a kneader such as an intermix, kneader, Banbury mixer or an open roll. In the case of vulcanization molding, for example, an injection molding machine, a compression molding machine, a vulcanization press, or the like is used. In general, vulcanization molding is performed by heating at about 150 to 200 ° C. for about 3 to 60 minutes, and if necessary, oven heating (secondary heating at about 80 to 150 ° C. for about 1 to 24 hours. Vulcanization) is performed.

2.高圧ガス用シール部材
また、本発明は、本発明のゴム組成物を用いて成形された高圧ガス用シール部材(以下、「本発明のシール部材」と記載する場合がある。)に関する。本発明のシール部材は、目的に応じて、本発明のゴム組成物をそのまま用いてもよいし、さらに、架橋や成形をして用いてもよい。また、本発明のゴム組成物を単独で用いて成形されたものでもよく、他の材料と組み合わせて用いて成形されたものでもよい。製造方法は、特に限定されず、本発明のシール部材は、従来公知の方法を目的に応じて適宜選択して製造できる。また、高圧ガス用シール部材は、ガスを実質的に漏洩しないようにできればよく、ガスが、タンク等の容器から完全に漏洩しないように密閉する必要はない。
2. Further, the present invention relates to a high-pressure gas seal member molded by using the rubber composition of the present invention (hereinafter sometimes referred to as “the seal member of the present invention”). For the sealing member of the present invention, the rubber composition of the present invention may be used as it is depending on the purpose, or may be used after being crosslinked or molded. Moreover, what was shape | molded using the rubber composition of this invention independently may be used, and what was shape | molded using in combination with another material may be used. The production method is not particularly limited, and the sealing member of the present invention can be produced by appropriately selecting a conventionally known method according to the purpose. Further, the high-pressure gas sealing member only needs to be able to substantially prevent the gas from leaking, and does not need to be sealed so that the gas does not completely leak from a container such as a tank.

本発明のシール部材は、成形体であれば形状は特に限定されず、その形状は、目的に応じて適宜選択できる。
本発明のシール部材としては、具体的には、Oリング、パッキン、ガスケット、ホースなどが挙げられ、好適には、Oリング、パッキンまたはガスケットのいずれかである。
If the sealing member of this invention is a molded object, a shape will not be specifically limited, The shape can be suitably selected according to the objective.
Specific examples of the sealing member of the present invention include an O-ring, packing, a gasket, and a hose, and any of O-ring, packing, and gasket is preferable.

本発明のシール部材の硬度は高圧ガス曝露後、急減圧時の体積膨張率を低く抑える効果および耐摩耗性向上の点から、デュロメータA硬度80以上が好ましく、デュロメータA硬度85以上がより好ましい。   The hardness of the seal member of the present invention is preferably a durometer A hardness of 80 or more, more preferably a durometer A hardness of 85 or more, from the viewpoint of reducing the volume expansion rate during rapid decompression after high pressure gas exposure and improving wear resistance.

本発明のシール部材は、高圧ガスに曝されてもブリスターを発生せず、低温特性に優れる特徴を有する。さらに、本発明のシール部材は、圧縮永久歪が小さく、且つ良好な耐摩耗性(摺動特性)を有する。従って、本発明のシール部材は、様々な高圧ガス用機器のシール部材に用いることができ、特に、水素ガスやヘリウムガスを取り扱う機器のシール部材として好適である。   The seal member of the present invention does not generate blisters even when exposed to high-pressure gas, and has the characteristics of excellent low-temperature characteristics. Furthermore, the sealing member of the present invention has a small compression set and good wear resistance (sliding characteristics). Therefore, the seal member of the present invention can be used as a seal member for various high-pressure gas equipment, and is particularly suitable as a seal member for equipment handling hydrogen gas or helium gas.

高圧ガス用機器としては、例えば、燃料電池車用高圧水素容器、水素ステーション用の各部材、宇宙産業用の高圧ヘリウム容器などが挙げられ、例えば、貯蔵高圧水素ガス(例えば、70MPa)の貯蔵タンクのシール部材、水素ステーション用シール部材、宇宙産業用途での高圧ヘリウムシール用のシール部材等として好適に使用することができる。   Examples of the high-pressure gas device include a high-pressure hydrogen container for a fuel cell vehicle, each member for a hydrogen station, a high-pressure helium container for the space industry, and the like. For example, a storage tank for stored high-pressure hydrogen gas (for example, 70 MPa) It can be suitably used as a sealing member for a hydrogen station, a sealing member for a hydrogen station, a sealing member for a high pressure helium seal in space industry applications, and the like.

本発明の高圧ガス用シール部材の耐圧性については、1MPa以上の高圧ガスでの使用を対象とし、特に貯蔵タンクの仕様記載に準ずる35MPa以上(例えば、50MPa、70MPa、90MPa)での使用条件下においても、すぐれた耐圧シール性が発揮される。   The pressure resistance of the sealing member for high-pressure gas of the present invention is intended for use with a high-pressure gas of 1 MPa or more, and is in particular used under conditions of 35 MPa or more (for example, 50 MPa, 70 MPa, 90 MPa) according to the specifications of the storage tank Even in this case, excellent pressure-resistant sealing performance is exhibited.

本発明の高圧ガス用シール部材は、広い温度範囲(特に低温環境)でも優れたシール性を発揮し、−70℃〜100℃(好ましくは−40℃〜85℃)での使用が好適である。   The high-pressure gas sealing member of the present invention exhibits excellent sealing properties even in a wide temperature range (particularly in a low temperature environment), and is preferably used at -70 ° C to 100 ° C (preferably -40 ° C to 85 ° C). .

また、本発明のシール部材を用いて、高圧ガスをシールする場合、本発明のシール部材単体でシールしてもよく、また、既存のグリースを併用することや、バックアップリングと本発明のシール部材とを併用することでシールすることも可能である。
グリースを併用する場合、グリースは特に制限なく、シリコーン系やフッ素系グリースを用いても良い。
バックアップリングと併用する場合、バックアップリングは特に制限なく、既存のフッ素系樹脂(PTFE、PFA、PVDF等)やガラス繊維/フッ素樹脂から成る複合体から作製されたバックアップリングを用いても良い。
Moreover, when sealing a high pressure gas using the sealing member of the present invention, the sealing member of the present invention may be sealed alone, or an existing grease may be used in combination, or a backup ring and the sealing member of the present invention may be used. It is also possible to seal by using together.
When grease is used in combination, the grease is not particularly limited, and silicone-based or fluorine-based grease may be used.
When used together with the backup ring, the backup ring is not particularly limited, and a backup ring made from a composite made of an existing fluororesin (PTFE, PFA, PVDF, etc.) or glass fiber / fluororesin may be used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて
実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

<実施例>
1.成分
実施例で使用した各成分を以下に列挙する。
(1)ゴム
低シス−BR:Nipol BR1250H(日本ゼオン製)、ジエンNF35R(旭化成製)
溶液重合SBR:タフデン2000R(スチレン量:25wt%)(旭化成製)
NBR:JSR NBR N260S(アクリロニトリル量:15wt%)(JSR製)
液状ゴム:クラプレンLBR−307B(クラレ製)
(2)カーボンブラック
シースト9(東海カーボン製)、シーストS(東海カーボン製)
(3)架橋剤(有機過酸化物)
C−8A(信越化学製、2,5−ジメチル−2,5−ビス(ターシャリーブチルパーオキシ)ヘキサン 80%品)
(4)その他の配合剤
老化防止剤:ノクラックG−1(大内新興化学製)
共架橋剤(多官能性不飽和化合物):NKエステル2G(新中村化学製、ジエチレングリコールジメタクリレート)
プロセスオイル:ダイアナプロセスオイルNS−100(出光興産製)
加工助剤:ステアリン酸
金属酸化物:酸化亜鉛
<Example>
1. Ingredients Each ingredient used in the examples is listed below.
(1) Rubber Low cis-BR: Nipol BR1250H (manufactured by ZEON), diene NF35R (manufactured by Asahi Kasei)
Solution polymerization SBR: Toughden 2000R (styrene content: 25 wt%) (manufactured by Asahi Kasei)
NBR: JSR NBR N260S (acrylonitrile amount: 15 wt%) (manufactured by JSR)
Liquid rubber: Claprene LBR-307B (Kuraray)
(2) Carbon Black Seast 9 (Tokai Carbon), Seast S (Tokai Carbon)
(3) Cross-linking agent (organic peroxide)
C-8A (manufactured by Shin-Etsu Chemical, 2,5-dimethyl-2,5-bis (tertiarybutylperoxy) hexane 80% product)
(4) Other compounding agents Anti-aging agent: NOCRACK G-1 (manufactured by Ouchi Shinsei Chemical)
Co-crosslinking agent (polyfunctional unsaturated compound): NK ester 2G (manufactured by Shin-Nakamura Chemical, diethylene glycol dimethacrylate)
Process oil: Diana process oil NS-100 (made by Idemitsu Kosan)
Processing aid: Stearic acid Metal oxide: Zinc oxide

2.ゴム組成物およびシール部材の製造
表1に示す質量部数で各成分を、混練機を用いて混練して、実施例1〜実施例8のゴム組成物を調製した。次に、実施例1〜実施例8のゴム組成物をプレス成形装置にて170℃でそれぞれプレス成形し、測定用サンプルおよびシール部材を得た。
2. Production of Rubber Composition and Seal Member Each component was kneaded using a kneader in the number of parts by mass shown in Table 1 to prepare rubber compositions of Examples 1 to 8. Next, the rubber compositions of Examples 1 to 8 were each press-molded at 170 ° C. with a press-molding apparatus to obtain measurement samples and seal members.

なお、常態物性測定、ガラス転移点測定および曝露試験に用いるための測定用サンプルは、2mm厚のシート状の成形体を得たのちに、各評価項目に応じた形状に打ち抜いて製造した。圧縮永久歪の評価用の測定サンプルは、JIS K 6262(2013)に従って製造した。シール部材は、Oリングの形状となるように製造した。   In addition, the sample for a measurement used for a normal-state physical-property measurement, a glass transition point measurement, and an exposure test produced the sheet-like molded object of 2 mm thickness, and was stamped and manufactured to the shape according to each evaluation item. A measurement sample for evaluation of compression set was produced according to JIS K 6262 (2013). The seal member was manufactured to have an O-ring shape.

3.評価
実施例1〜実施例8のゴム組成物およびシール部材の特性を以下のように評価した。
3. Evaluation The properties of the rubber compositions and seal members of Examples 1 to 8 were evaluated as follows.

(1)常態物性(硬さ、引張強さおよび伸び)
シール部材の硬さを、タイプAデュロメータを用いてJIS K 6253−3(2013)に従って測定した。また、引張強さおよび伸びを、JIS K 6251(2013)に従って測定した。
(1) Normal physical properties (hardness, tensile strength and elongation)
The hardness of the seal member was measured according to JIS K 6253-3 (2013) using a type A durometer. Moreover, the tensile strength and elongation were measured according to JIS K 6251 (2013).

(2)圧縮永久歪(耐熱性・耐寒性)
所定の温度(85℃または−40℃)にて25%圧縮し(圧縮割合はJIS B 2401−1附属書JC(2013)に基づく)、同温度にて24時間保存した後のシール部材の圧縮永久歪を、JIS K 6262(2013)に基づいて測定した。圧縮永久歪は、圧縮温度85℃では、圧縮解放後、室温にて放置し30分後に測定した値である。圧縮温度−40℃では、圧縮解放後、−40℃環境下にて放置し30分後に測定した値である。
(2) Compression set (heat resistance / cold resistance)
Compression of seal member after compression at a predetermined temperature (85 ° C or -40 ° C) by 25% (compression ratio is based on JIS B 2401-1 Annex JC (2013)) and stored at the same temperature for 24 hours The permanent set was measured based on JIS K 6262 (2013). The compression set is a value measured at a compression temperature of 85 ° C. after 30 minutes of standing at room temperature after releasing the compression. At a compression temperature of −40 ° C., it is a value measured after 30 minutes after being released from compression and left in a −40 ° C. environment.

(3)ガラス転移温度
シール部材のガラス転移温度を、JIS K 6240(2013)に基づいて、DSCを用いて測定した。測定条件は、窒素流量50mL/min、昇温速度20℃/minである。なお、DSC測定に際しては、事前にJIS K 6240(2013)の附属書JB記載の標準物質(シクロヘキサン)による温度校正、およびJIS K 7122(2014)記載のベースラインの調整を行った。
(3) Glass transition temperature The glass transition temperature of the sealing member was measured using DSC based on JIS K 6240 (2013). The measurement conditions are a nitrogen flow rate of 50 mL / min and a temperature increase rate of 20 ° C./min. In the DSC measurement, temperature calibration using a standard substance (cyclohexane) described in Annex JB of JIS K 6240 (2013) and baseline adjustment described in JIS K 7122 (2014) were performed in advance.

(4)ゴム成分中のブタジエンに由来する構造単位の量
メーカー記載のSBRのスチレン量およびNBRのアクリロニトリル量およびゴム組成物の配合から計算し、本実施例のゴム組成物におけるゴム成分中のブタジエンに由来する構造単位の質量%を算出した。
(4) Amount of structural unit derived from butadiene in rubber component Calculated from the styrene amount of SBR and the amount of acrylonitrile of NBR described in the manufacturer and the composition of the rubber composition, butadiene in the rubber component in the rubber composition of this example The mass% of the structural unit derived from was calculated.

(5)耐水素性
まず、(5−1)〜(5−4)の試験を行う前に、ヘリウムの高圧ガスを用いて、評価系にガス漏れやサンプル破損がないことを確認した。評価方法は、水素の変わりにヘリウムを使用した以外は、以下の(5−1)〜(5−4)と同様である。
(5) Hydrogen resistance First, before conducting the tests of (5-1) to (5-4), it was confirmed that there was no gas leakage or sample breakage in the evaluation system using a high-pressure gas of helium. The evaluation method is the same as the following (5-1) to (5-4) except that helium is used instead of hydrogen.

(5−1)曝露試験
測定用サンプルは、JIS K 6251(2013)に規定された7号ダンベル形状とした。
事前に室温にて測定用サンプルの1辺を測長(L0)した。
次に、圧力容器(容量100mL)内に測定用サンプルを入れ、90MPa水素に16時間、所定温度(室温または−40℃)にて曝露した後、曝露温度と同温度にて急速(5秒以内)に脱圧を行った。その後、速やかにサンプルを取り出し(室温)、脱圧後10分の測定用サンプルをスケールと共に室温下にて写真撮影した。測定用サンプルとスケールの写真から、測定サンプルの事前測定カ所と同一箇所を測長(L1)し、以下の式に従い、体積膨張率(%)を算出した。
体積膨張率(%) = (L1/L0)3×100
また、撮影後の写真および曝露後の実サンプルの目視にて、ブリスター破壊の有無を観察した。
(5-1) Exposure test The sample for measurement was made into the No. 7 dumbbell shape prescribed | regulated to JISK6251 (2013).
One side of the measurement sample was measured (L0) in advance at room temperature.
Next, a measurement sample is placed in a pressure vessel (capacity 100 mL), exposed to 90 MPa hydrogen for 16 hours at a predetermined temperature (room temperature or −40 ° C.), and then rapidly (within 5 seconds) at the same temperature as the exposure temperature. ) Was depressurized. Thereafter, the sample was quickly taken out (room temperature), and a measurement sample for 10 minutes after depressurization was photographed together with the scale at room temperature. From the measurement sample and the photograph of the scale, the same location as the pre-measurement location of the measurement sample was measured (L1), and the volume expansion coefficient (%) was calculated according to the following formula.
Volume expansion rate (%) = (L1 / L0) 3 × 100
Moreover, the presence or absence of blister destruction was observed by visual observation of the photograph after photography and the actual sample after exposure.

(5−2)耐水素圧力サイクル試験
図1に試験に用いた耐圧試験用装置の断面の模式図を示す。また、ガス供給口および漏洩検知口を有する治具を取り付ける前の装置の写真を図2に、ガス供給口および漏洩検知口を有する治具を取り付ける前の装置の断面の模式図を図3に示す。図1に示すように、本試験で用いた耐圧試験用装置は、Oリングをはめた後、ガス供給口および漏洩検知口を有する治具を取り付けることで、高圧ガスの供給およびガスの漏洩を検知することが可能である。
(5-2) Hydrogen Pressure Cycle Test FIG. 1 shows a schematic diagram of a cross section of a pressure test apparatus used in the test. FIG. 2 is a photograph of the device before attaching a jig having a gas supply port and a leak detection port, and FIG. 3 is a schematic cross-sectional view of the device before attaching a jig having a gas supply port and a leak detection port. Show. As shown in FIG. 1, the pressure test apparatus used in this test is equipped with a jig having a gas supply port and a leak detection port after fitting an O-ring, thereby preventing high-pressure gas supply and gas leakage. It is possible to detect.

まず、図1に示すように、耐圧試験用装置にシール部材を装填した。次に、所定の温度(85℃または−40℃)にて、常圧と90MPaとの間で水素加減圧サイクルを1サイクル6〜8秒にて6600回試験を行った。試験中の水素漏れの有無を圧力センサーにてモニターした。試験後のシール部材の損傷を目視で評価した。温度はシール部材を装填した治具表面温度をモニターして調整した。   First, as shown in FIG. 1, a seal member was loaded into a pressure test apparatus. Next, at a predetermined temperature (85 ° C. or −40 ° C.), the hydrogen pressure reduction cycle between normal pressure and 90 MPa was tested 6600 times in one cycle 6 to 8 seconds. The presence or absence of hydrogen leakage during the test was monitored with a pressure sensor. The seal member after the test was visually evaluated for damage. The temperature was adjusted by monitoring the surface temperature of the jig loaded with the seal member.

(5−3)耐水素摺動試験
まず、市販バルブ装置(超高圧水素ガス適応バルブ(フジキン社製バルブ))の弁の軸であるステム部分の既存のOリングの一部を取り外し、既存Oリングの代わりに本実施例のシール部材を装填した。次に、所定の温度(85℃または−40℃)にて90MPaの水素を張ったまま、弁を開閉1000回(開閉でステム1往復で1回)することで、弁の軸であるステムとシール部材間を摺動させ試験を行った。試験中はバルブ内圧力をモニターすることで試験中の水素漏れの有無を評価した。また試験後のシール部材の損傷有無を目視で評価した。温度はシール部材を装填したバルブの筐体表面温度をモニターして調整した。
(5-3) Hydrogen Resistance Sliding Test First, a part of the existing O-ring of the stem part which is the valve shaft of a commercially available valve device (super high pressure hydrogen gas adaptive valve (manufactured by Fujikin)) was removed, and the existing O-ring was removed. Instead of the ring, the seal member of this example was loaded. Next, with 90 MPa of hydrogen applied at a predetermined temperature (85 ° C. or −40 ° C.), the valve is opened and closed 1000 times (opening and closing the stem once and once), and the stem that is the shaft of the valve The test was performed by sliding between the seal members. During the test, the presence of hydrogen leakage during the test was evaluated by monitoring the pressure in the valve. Moreover, the presence or absence of damage to the sealing member after the test was visually evaluated. The temperature was adjusted by monitoring the surface temperature of the casing of the valve loaded with the seal member.

(5−4)−65℃高圧水素シール試験
(5−2)と同じ耐圧試験用装置を用いた。耐圧試験用装置にシール部材を装填し、−65℃にて、常圧と90MPaとの間で水素加減圧サイクルを3回行った。さらに、10分間、90MPaで水素を張ったまま、−65℃にてシール特性を確認した。試験中の水素漏れの有無を圧力センサーにてモニターし評価した。また、試験後のシール部材の損傷を目視で評価した。温度はシール部材を装填した治具表面温度をモニターして調整した。
(5-4) -65 ° C. High Pressure Hydrogen Seal Test The same pressure test apparatus as in (5-2) was used. A seal member was loaded into the pressure test apparatus, and a hydrogen pressure-reducing cycle was performed three times at −65 ° C. between normal pressure and 90 MPa. Further, the sealing properties were confirmed at −65 ° C. while hydrogen was applied at 90 MPa for 10 minutes. The presence or absence of hydrogen leakage during the test was monitored and evaluated with a pressure sensor. Moreover, damage of the sealing member after a test was evaluated visually. The temperature was adjusted by monitoring the surface temperature of the jig loaded with the seal member.

評価結果を表1に示す。表1に示すように、本発明の実施例のシール部材は低温での耐水素性も良好であり、高圧水素曝露試験に対しブリスター破壊はなく、体積膨張率も低く抑えられていた。   The evaluation results are shown in Table 1. As shown in Table 1, the seal members of the examples of the present invention also had good hydrogen resistance at low temperatures, no blister breakage, and a low volume expansion rate in the high-pressure hydrogen exposure test.

耐水素圧力サイクル試験では、−40℃(低温)で6600回および+85℃(高温)で6600回共に、水素漏れはなくシールテストに成功しており、試験後のシール部材のダメージも軽微であった。なお、実施例1に関しては、表1の※1記載のように85℃でのサイクル試験でオイルの一部喪失が確認されたが、全ての実施例においてシールテストは問題なかった。   In the hydrogen resistance pressure cycle test, the seal test was successful with no hydrogen leakage at 6600 times at −40 ° C. (low temperature) and 6600 times at + 85 ° C. (high temperature), and the damage to the seal member after the test was slight. It was. As for Example 1, as shown in * 1 of Table 1, some loss of oil was confirmed in the cycle test at 85 ° C., but there was no problem in the seal test in all Examples.

耐水素摺動試験でも、90MPa、−40℃(低温)で1000回および90MPa、+85℃(高温)で1000回共に、シール部材が破損することなく、かつ、水素が漏れることなくシールすることが可能であった。   Even in the hydrogen resistance sliding test, sealing can be performed without damage to the sealing member and without leakage of hydrogen at 1000 times at 90 MPa and −40 ° C. (low temperature) and 1000 times at 90 MPa and + 85 ° C. (high temperature). It was possible.

さらに、−65℃高圧水素シール試験においても、90MPa水素を漏れなくシールすることが可能であった。試験治具設計が−70℃だったため安全を考慮し−65℃にて試験を実施したが、ガラス転移点の値から、より低温でのシールも可能と考えられる。   Furthermore, in the −65 ° C. high pressure hydrogen seal test, it was possible to seal 90 MPa hydrogen without leakage. Since the test jig design was -70 ° C, the test was conducted at -65 ° C in consideration of safety. From the value of the glass transition point, it is considered possible to seal at a lower temperature.

<比較例>
1.成分
比較例で使用した各成分を以下に列挙する:
(1)ゴム
NBR:JSR NBR N230SL(中高ニトリル、アクリロニトリル量:35wt%)(JSR製) 、JSR NBR N240S(中ニトリル、アクリロニトリル量:26wt%)(JSR製)、JSR NBR N260S(アクリロニトリル量:15wt%)(JSR製)
(2)カーボンブラック
シースト9(東海カーボン製)、シースト3(東海カーボン製)
(3)架橋剤(有機化酸化物)
パークミルD−40(日本油脂製、ジクミルパーオキシド)
(4)その他の配合剤
老化防止剤:ノクラック6C(大内新興化学製)
共架橋剤(多官能性不飽和化合物):TAIC(日本化成)
加工助剤:ステアリン酸
金属酸化物:酸化亜鉛
<Comparative example>
1. Ingredients The ingredients used in the comparative examples are listed below:
(1) Rubber NBR: JSR NBR N230SL (medium / high nitrile, acrylonitrile amount: 35 wt%) (manufactured by JSR), JSR NBR N240S (medium nitrile, acrylonitrile amount: 26 wt%) (manufactured by JSR), JSR NBR N260S (acrylonitrile amount: 15 wt%) %) (Manufactured by JSR)
(2) Carbon Black Seast 9 (Tokai Carbon), Seast 3 (Tokai Carbon)
(3) Cross-linking agent (organic oxide)
Park Mill D-40 (Nippon Yushi, Dicumyl peroxide)
(4) Other compounding agents Anti-aging agent: NOCRACK 6C (manufactured by Ouchi Shinsei Chemical)
Co-crosslinking agent (polyfunctional unsaturated compound): TAIC (Nippon Kasei)
Processing aid: Stearic acid Metal oxide: Zinc oxide

2.ゴム組成物およびシール部材の製造
表2に示す質量部数で各成分を、混練機を用いて混練して、比較例1〜6のゴム組成物を調製した。次に、比較例1〜6のゴム組成物をプレス成形装置にて170℃でそれぞれプレス成形し、測定用サンプルおよびシール部材を得た。
なお、測定用サンプルおよびシール部材の形状は実施例と同じである。
2. Manufacture of rubber composition and seal member Each component was kneaded using a kneader in the number of parts by mass shown in Table 2 to prepare rubber compositions of Comparative Examples 1-6. Next, the rubber compositions of Comparative Examples 1 to 6 were each press-molded at 170 ° C. with a press-molding apparatus to obtain a measurement sample and a seal member.
The shapes of the measurement sample and the seal member are the same as those in the example.

3.評価
比較例1〜6のゴム組成物およびシール部材の特性(常態物性、ガラス転移点、曝露試験、高圧水素シール性試験)を評価した。
なお、常態物性の測定、ガラス転移点の測定および曝露試験は、実施例と同様にした。
また、比較例のゴム組成物におけるゴム成分中のブタジエンに由来する構造単位の量は、メーカー記載のNBRのアクリロニトリル量およびゴム組成物の配合から計算し算出した。
3. Evaluation The properties (normal physical properties, glass transition point, exposure test, high-pressure hydrogen sealability test) of the rubber compositions and seal members of Comparative Examples 1 to 6 were evaluated.
The measurement of normal properties, the measurement of glass transition point, and the exposure test were the same as in the examples.
Further, the amount of the structural unit derived from butadiene in the rubber component in the rubber composition of the comparative example was calculated and calculated from the acrylonitrile amount of NBR described in the manufacturer and the blending of the rubber composition.

また、比較例のゴム組成物は、実施例のゴム組成物に比べて、より高温で破損する恐れがあるため、−65℃高圧水素シール性試験に代えて、所定の温度(室温、−20℃、−30℃または−40℃)にて高圧水素シール性試験を実施した。試験方法は、−65℃に変えて、所定の温度(室温、−20℃、−30℃または−40℃)に変更した以外は、実施例の(5−4)と同様の方法で行った。   Further, since the rubber composition of the comparative example may be damaged at a higher temperature than the rubber composition of the example, instead of the −65 ° C. high pressure hydrogen sealability test, a predetermined temperature (room temperature, −20 High pressure hydrogen sealability test was conducted at a temperature of -30 ° C or -40 ° C. The test method was carried out in the same manner as in (5-4) of Example, except that the temperature was changed to -65 ° C and changed to a predetermined temperature (room temperature, -20 ° C, -30 ° C or -40 ° C). .

評価結果を表2に示す。比較例として、表2に示す室温下の高圧水素曝露試験の結果から、体積膨張率は硬度が上がると共に低減する結果であった。また、体積膨張率は、ゴム成分中のブタジエンに由来する構造単位の含有量が増えるに伴って低減する結果であった。さらに、−40℃環境下における高圧水素曝露試験では、試験環境温度がガラス転移点以下になるとブリスター破壊が観察される結果であった。   The evaluation results are shown in Table 2. As a comparative example, from the result of the high-pressure hydrogen exposure test at room temperature shown in Table 2, the volume expansion coefficient was a result of decreasing as the hardness increased. Moreover, the volume expansion coefficient was a result of decreasing as the content of structural units derived from butadiene in the rubber component increased. Furthermore, in the high-pressure hydrogen exposure test under a −40 ° C. environment, blister breakdown was observed when the test environment temperature was below the glass transition point.

比較例として、表2に示す各マイナス温度環境下にて高圧水素のシール試験を行ったが、試験環境温度がガラス転移点以上であっても漏れが発生し、ガラス転移点+25℃〜+30℃程度が、高圧水素シール可能な下限温度であることが示唆された。   As a comparative example, a high-pressure hydrogen seal test was performed in each minus temperature environment shown in Table 2, but leakage occurred even when the test environment temperature was equal to or higher than the glass transition point, and the glass transition point + 25 ° C. to + 30 ° C. It was suggested that the degree is the lower limit temperature at which high-pressure hydrogen sealing is possible.

また、既存品の比較例として、市販バルブ装置(超高圧水素ガス適応バルブ(フジキン社製バルブ))の低温対応既存Oリング(低温用EPDM)を同様に評価したところ、筐体温度調整時(−40℃狙い)、筐体温度が−43℃へ下振れした際に、速やかに水素漏れが発生した。   In addition, as a comparative example of existing products, a low-temperature compatible existing O-ring (EPDM for low temperature) of a commercially available valve device (super high pressure hydrogen gas adaptive valve (Fujikin valve)) was similarly evaluated. When the housing temperature dropped to -43 ° C, hydrogen leak occurred quickly.

本実施例のシール部材では同条件下、全く漏れは発生せず、上述のように−65℃においても高圧水素シールが可能であった。以上のように既存シール部材と本実施例のシール部材では明らかな違いが見られ、その優位性が明らかとなった。   The sealing member of this example did not leak at all under the same conditions, and as described above, high-pressure hydrogen sealing was possible even at −65 ° C. As described above, there is a clear difference between the existing seal member and the seal member of this embodiment, and the superiority thereof is clarified.

本発明のゴム組成物は、耐摩耗性、耐低温性、耐熱性および耐ブリスター性に優れ、様々な高圧ガス用機器のシール部材、特に、水素ガスやヘリウムガスを取り扱う機器のシール部材として用いることができ、産業的に有用である。   The rubber composition of the present invention is excellent in wear resistance, low temperature resistance, heat resistance and blister resistance, and is used as a seal member for various high-pressure gas equipment, particularly as a seal member for equipment handling hydrogen gas or helium gas. Can be industrially useful.

Claims (7)

高圧ガスをシールする、高圧ガス用シール部材に用いられるためのゴム組成物であって、
前記高圧ガスが、1MPa以上の水素またはヘリウムであり、
前記ゴム組成物中のゴム成分が、ポリブタジエンゴムおよび/またはポリスチレンブタジエンゴムを含み、
前記ゴム組成物が、−65℃以下のガラス転移点を有することを特徴とするゴム組成物。
A rubber composition for use in a high pressure gas sealing member for sealing high pressure gas,
The high-pressure gas is 1 MPa or more of hydrogen or helium;
The rubber component in the rubber composition includes polybutadiene rubber and / or polystyrene butadiene rubber,
The rubber composition having a glass transition point of −65 ° C. or lower.
前記ゴム成分中のブタジエンに由来する構造単位の含有量が、前記ゴム成分に対して、70質量%以上であることを特徴とする請求項1に記載のゴム組成物。 The content of structural units derived from butadiene in the rubber component is, relative to the rubber component, the rubber composition according to claim 1, characterized in that 70 mass% or more. 前記ポリブタジエンゴムが、低シスタイプであることを特徴とする請求項1または2に記載のゴム組成物。 The rubber composition according to claim 1 or 2 , wherein the polybutadiene rubber is a low cis type. 前記ゴム組成物が、過酸化物加硫体であることを特徴とする請求項1からのいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3 , wherein the rubber composition is a peroxide vulcanizate. 前記ゴム組成物を、アセトンを溶剤として用いて、JIS K 6229(2013)記載のA法に基づきソックスレー抽出したときの抽出物の抽出量が、前記ゴム組成物の10質量%以下であることを特徴とする請求項1からのいずれかに記載のゴム組成物。 When the rubber composition is subjected to Soxhlet extraction based on Method A described in JIS K 6229 (2013) using acetone as a solvent, the extract amount is 10% by mass or less of the rubber composition. The rubber composition according to any one of claims 1 to 4 , wherein 請求項1からのいずれかに記載のゴム組成物を用いて成形された高圧ガス用シール部材。 The high-pressure gas seal member formed from the rubber composition according to any one of claims 1 to 5. 前記高圧ガス用シール部材が、Oリング、パッキンまたはガスケットのいずれかであることを特徴とする請求項に記載の高圧ガス用シール部材。 The high-pressure gas sealing member according to claim 6 , wherein the high-pressure gas sealing member is any one of an O-ring, a packing, and a gasket.
JP2017071804A 2017-03-31 2017-03-31 Rubber composition for use in high pressure gas seal member and high pressure gas seal member Active JP6312183B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017071804A JP6312183B1 (en) 2017-03-31 2017-03-31 Rubber composition for use in high pressure gas seal member and high pressure gas seal member
CN201880005313.2A CN110099981A (en) 2017-03-31 2018-03-27 Rubber composition used in high pressure gas seal member, high pressure gas seal member, high pressure gas machine and high-pressure gas seal method
KR1020197017646A KR102326698B1 (en) 2017-03-31 2018-03-27 Rubber composition for use in sealing member for high-pressure gas, sealing member for high-pressure gas, apparatus for high-pressure gas, and high-pressure gas sealing method
PCT/JP2018/012531 WO2018181373A1 (en) 2017-03-31 2018-03-27 Rubber composition to be used for sealing member for high-pressure gases, sealing member for high-pressure gases, device for high-pressure gases, and high-pressure gas sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071804A JP6312183B1 (en) 2017-03-31 2017-03-31 Rubber composition for use in high pressure gas seal member and high pressure gas seal member

Publications (2)

Publication Number Publication Date
JP6312183B1 true JP6312183B1 (en) 2018-04-18
JP2018172538A JP2018172538A (en) 2018-11-08

Family

ID=61968264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071804A Active JP6312183B1 (en) 2017-03-31 2017-03-31 Rubber composition for use in high pressure gas seal member and high pressure gas seal member

Country Status (4)

Country Link
JP (1) JP6312183B1 (en)
KR (1) KR102326698B1 (en)
CN (1) CN110099981A (en)
WO (1) WO2018181373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051540A (en) * 2018-09-27 2020-04-02 株式会社バルカー Joint with seal member

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182459B2 (en) * 2018-12-27 2022-12-02 Toyo Tire株式会社 Tire rubber composition and pneumatic tire
JP7411446B2 (en) * 2019-02-27 2024-01-11 旭有機材株式会社 Rubber member for use as a seal member for fluid transport piping
US11441021B2 (en) 2019-07-29 2022-09-13 The Goodyear Tire & Rubber Company Pneumatic tire
US11214667B2 (en) 2019-07-29 2022-01-04 The Goodyear Tire & Rubber Company Pneumatic tire
JP7419697B2 (en) * 2019-08-01 2024-01-23 株式会社オートネットワーク技術研究所 Wire Harness
WO2023074312A1 (en) * 2021-11-01 2023-05-04 Nok株式会社 Rubber product, test jig and test device for seal material, and leak detection member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233296A (en) * 2004-02-19 2005-09-02 Kumamoto Technology & Industry Foundation Liquid helium transfer line
JP2007292235A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Valve assembly for pressure vessel, and pressure vessel
JP2014114878A (en) * 2012-12-10 2014-06-26 Kawasaki Heavy Ind Ltd Seal structure
WO2016208203A1 (en) * 2015-06-26 2016-12-29 日本ゼオン株式会社 Composition for gas seal member, and gas seal member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104833A (en) * 1998-09-29 2000-04-11 Kureha Elastomer Kk Rubber made seal material for aerosol spray
JP2003028302A (en) 2001-07-16 2003-01-29 Nok Corp Sealing device
CN101479343B (en) 2006-06-27 2011-08-31 Nok株式会社 Silicone rubber composition
KR101267942B1 (en) * 2011-09-30 2013-05-27 평화오일씰공업주식회사 Rubber components of O-ring for refrigerant compressor
EP2746046A1 (en) * 2012-12-21 2014-06-25 LANXESS Deutschland GmbH Composite part
JP2015108104A (en) 2013-12-03 2015-06-11 高石工業株式会社 Rubber composition
JP5885131B2 (en) * 2013-12-27 2016-03-15 住友電気工業株式会社 Cold resistant rubber composition
JP2015206002A (en) 2014-04-22 2015-11-19 三菱電線工業株式会社 Rubber composition and seal member for high pressure hydrogen device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233296A (en) * 2004-02-19 2005-09-02 Kumamoto Technology & Industry Foundation Liquid helium transfer line
JP2007292235A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Valve assembly for pressure vessel, and pressure vessel
JP2014114878A (en) * 2012-12-10 2014-06-26 Kawasaki Heavy Ind Ltd Seal structure
WO2016208203A1 (en) * 2015-06-26 2016-12-29 日本ゼオン株式会社 Composition for gas seal member, and gas seal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051540A (en) * 2018-09-27 2020-04-02 株式会社バルカー Joint with seal member

Also Published As

Publication number Publication date
CN110099981A (en) 2019-08-06
KR102326698B1 (en) 2021-11-16
KR20190086519A (en) 2019-07-22
WO2018181373A1 (en) 2018-10-04
JP2018172538A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6312183B1 (en) Rubber composition for use in high pressure gas seal member and high pressure gas seal member
JP5244469B2 (en) Method for imparting DME resistance to rubber components
JP5414196B2 (en) Fluoro rubber sealant with good high / low temperature load sealability
JP2015206002A (en) Rubber composition and seal member for high pressure hydrogen device
JP5223674B2 (en) Silicone rubber composition
WO2007094447A1 (en) Hydrogenated nbr compositions
JP4827426B2 (en) Rapid decompression-resistant fluorine rubber molding material
JP4855199B2 (en) Valve using a rapid decompression-resistant seal member
JP5223672B2 (en) Silicone rubber composition
JP2011168630A (en) Low-temperature resistant fluororubber composition exhibiting good fuel permeation resistance
US8697782B2 (en) Rubber composition
JP2019199549A (en) Rubber composition and seal material
KR101664740B1 (en) Gasket for fuel cells
KR20150077497A (en) Gasket for fuel cells
JP5205632B2 (en) Lip type seal
JP6034707B2 (en) Rubber composition for sealing pneumatic equipment and seal for pneumatic equipment using the same
JP3840230B2 (en) Rubber composition
JP4651202B2 (en) Sealing material using rubber composition for sealing material
KR101601380B1 (en) Blend gasket for fuel cells
JP5653605B2 (en) Rubber composition and seal member using the same
EP3409742A1 (en) Rubber composition and high-pressure hydrogen instrument seal component using same
JPH11100465A (en) Hydrogenated nbr composition
JP2016079200A (en) Fluororubber composition and seal structure provided with sealing material using the fluororubber composition
WO2015019807A1 (en) Seal for gasoline engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180314

R150 Certificate of patent or registration of utility model

Ref document number: 6312183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250