JP3840230B2 - Rubber composition - Google Patents

Rubber composition Download PDF

Info

Publication number
JP3840230B2
JP3840230B2 JP2004095834A JP2004095834A JP3840230B2 JP 3840230 B2 JP3840230 B2 JP 3840230B2 JP 2004095834 A JP2004095834 A JP 2004095834A JP 2004095834 A JP2004095834 A JP 2004095834A JP 3840230 B2 JP3840230 B2 JP 3840230B2
Authority
JP
Japan
Prior art keywords
weight
plasticizer
carbon dioxide
parts
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004095834A
Other languages
Japanese (ja)
Other versions
JP2005281433A (en
Inventor
太賀彰 大場
朗一 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arai Seisakusho Co Ltd
Original Assignee
Arai Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arai Seisakusho Co Ltd filed Critical Arai Seisakusho Co Ltd
Priority to JP2004095834A priority Critical patent/JP3840230B2/en
Publication of JP2005281433A publication Critical patent/JP2005281433A/en
Application granted granted Critical
Publication of JP3840230B2 publication Critical patent/JP3840230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、二酸化炭素又は二酸化炭素を含む流体を密封対象とする密封装置に使用されるゴム組成物に関し、特に、二酸化炭素を冷媒として用いた空調システムにおける冷媒の漏れを防止するガスケット、パッキン、Oリング、オイルシールなどの密封装置に使用されるゴム組成物に関する。   The present invention relates to a rubber composition used for a sealing device that seals carbon dioxide or a fluid containing carbon dioxide, and in particular, a gasket, packing, and the like that prevent leakage of a refrigerant in an air conditioning system using carbon dioxide as a refrigerant. The present invention relates to a rubber composition used for sealing devices such as O-rings and oil seals.

従来、カーエアコンなどの冷凍空調機においては、オゾン層破壊といった環境問題の観点から主としてフロン系冷媒HFC−134aが冷媒として用いられている。ところが、近年、HFC−134aに対しても地球温暖化への影響が指摘され、使用が制限される方向にある。これに代わるものとして、地球温暖化係数が小さく、かつ自然冷媒でもある二酸化炭素冷媒が代替候補となっている。   Conventionally, in refrigeration air conditioners such as car air conditioners, a fluorocarbon refrigerant HFC-134a is mainly used as a refrigerant from the viewpoint of environmental problems such as ozone layer destruction. However, in recent years, HFC-134a has been pointed out as having an impact on global warming, and its use has been restricted. As an alternative, carbon dioxide refrigerant, which has a low global warming potential and is also a natural refrigerant, is an alternative candidate.

二酸化炭素冷媒を使用した冷凍空調システムでは、従来のフロンガス系冷媒と比較し、約7MPa以上の高圧環境条件下での使用となる。また、二酸化炭素冷媒が、密封装置に使用されるゴム組成物に対し与える影響もフロン系冷媒とは異なっている。   The refrigeration and air conditioning system using a carbon dioxide refrigerant is used under a high-pressure environment condition of about 7 MPa or more as compared with a conventional chlorofluorocarbon-based refrigerant. Moreover, the influence which a carbon dioxide refrigerant has with respect to the rubber composition used for a sealing device is also different from a fluorocarbon refrigerant.

このことから、二酸化炭素冷媒に適したゴム組成物が種々検討され、例えば特許文献1には、二酸化炭素冷媒の漏れ防止用として、有機過酸化物で架橋された水素化ニトリルゴムを主体とするゴムシール材が記載されている。このシール材では、結合アクリロニトリル量32〜40重量%の水素化ニトリルゴムが使用されている。また、特許文献2には、結合アクリロニトリル量が45重量%以上である水素化ニトリルゴムを使用したゴムシール材が記載されている。   For this reason, various rubber compositions suitable for carbon dioxide refrigerants have been studied. For example, Patent Document 1 mainly uses hydrogenated nitrile rubber crosslinked with an organic peroxide for preventing leakage of carbon dioxide refrigerant. A rubber seal is described. In this sealing material, hydrogenated nitrile rubber having a bound acrylonitrile amount of 32 to 40% by weight is used. Patent Document 2 describes a rubber seal material using hydrogenated nitrile rubber having a combined acrylonitrile amount of 45% by weight or more.

ところで、一般に、水素化ニトリルゴムのように、その構造中にアクリロニトリル基を含有するゴムでは、アクリロニトリル基の結合量によりゴムの特性が変わることが知られている。すなわち、結合アクリロニトリル量が多くなるとガスの透過性は低くなり、逆に少なくなるとガス透過性は高まる。一方、ゴムの耐寒特性については、結合アクリロニトリル量が多くなると悪化する。   By the way, it is generally known that, in a rubber containing an acrylonitrile group in its structure, such as a hydrogenated nitrile rubber, the properties of the rubber change depending on the amount of acrylonitrile group bonded. That is, as the amount of bound acrylonitrile increases, the gas permeability decreases, and conversely when it decreases, the gas permeability increases. On the other hand, the cold resistance of rubber deteriorates as the amount of bound acrylonitrile increases.

そのため、二酸化炭素のようにゴム組成物に対する透過性の高い物質を密封対象とする場合は、結合アクリロニトリル量が32〜40重量%と少ないと、二酸化炭素の透過性が高くなるという問題点がある。また、結合アクリロニトリル量を45重量%以上と多くすると、透過性は低く抑えられるものの、耐寒特性が悪くなる。結合アクリロニトリル量をそのまま高く維持しつつ耐寒性を向上させる手段として、耐寒性を向上させる可塑剤の使用が考えられる。しかし、この場合には可塑剤を多く使用する必要があり、圧縮永久歪み等のゴム物性に対し悪影響が大きく、また二酸化炭素の透過性も高まるという問題点が生じる。   Therefore, when a substance having a high permeability to the rubber composition such as carbon dioxide is to be sealed, there is a problem that the permeability of carbon dioxide is increased when the amount of bound acrylonitrile is as small as 32 to 40% by weight. . On the other hand, if the amount of bound acrylonitrile is increased to 45% by weight or more, the permeability can be kept low, but the cold resistance is deteriorated. As a means for improving cold resistance while maintaining the amount of bound acrylonitrile as high as possible, use of a plasticizer that improves cold resistance can be considered. However, in this case, it is necessary to use a large amount of a plasticizer, which causes a problem that the rubber physical properties such as compression set are greatly adversely affected and the carbon dioxide permeability is also increased.

また、主原料として塩素化ポリエチレンを使用することで、結合アクリロニトリル量が32〜40重量%の水素化ニトリルゴムを使用した場合に比べ、二酸化炭素の透過性を低下させることができる。しかし、この場合でも耐寒特性が悪化するという現象が見られる。
特開2002−146342号公報 特開2003−246976号公報
Moreover, by using chlorinated polyethylene as the main raw material, the permeability of carbon dioxide can be reduced as compared with the case where hydrogenated nitrile rubber having a bound acrylonitrile amount of 32 to 40% by weight is used. However, even in this case, there is a phenomenon that the cold resistance is deteriorated.
JP 2002-146342 A JP 2003-246976 A

従って、本発明の目的は、二酸化炭素又は二酸化炭素を含む流体を密封対象とする密封装置に使用可能な、耐二酸化炭素透過性、耐寒性、及び圧縮永久ひずみ特性の優れたゴム組成物を提供することである。   Accordingly, an object of the present invention is to provide a rubber composition excellent in carbon dioxide permeation resistance, cold resistance, and compression set characteristics, which can be used in a sealing device that seals carbon dioxide or a fluid containing carbon dioxide. It is to be.

上記課題を解決するために、本発明者らは、水素化ニトリルゴム又は塩素化ポリエチレンを主原料とするゴム組成物にエポキシ化植物油系可塑剤を配合すると二酸化炭素の透過性が抑制され、有機酸エステル系可塑剤を配合すると耐寒性が向上すること、水素化ニトリルゴムを主原料とする場合にその結合アクリロニトリル量が40〜45重量%の領域において、エポキシ化植物油系可塑剤や有機酸エステル系可塑剤を配合することにより圧縮永久ひずみ特性を良好に保ちつつ耐二酸化炭素透過性及び耐寒性の優れたゴム組成物が得られることを見いだして、本発明を完成するに至たったものである。   In order to solve the above-mentioned problems, the present inventors have reduced the carbon dioxide permeability by adding an epoxidized vegetable oil plasticizer to a rubber composition mainly composed of hydrogenated nitrile rubber or chlorinated polyethylene. Addition of acid ester plasticizer improves cold resistance. When hydrogenated nitrile rubber is used as the main raw material, the epoxidized vegetable oil plasticizer and organic acid ester are used in the region where the amount of bound acrylonitrile is 40 to 45% by weight. The present invention has been completed by finding that a rubber composition having excellent carbon dioxide permeability and cold resistance can be obtained while blending a plasticizer with good compression set characteristics. .

すなわち、本発明は以下の通りである。
(1)二酸化炭素又は二酸化炭素を含む流体を密封対象とする密封装置用のゴム組成物であって、主原料として水素化ニトリルゴムと、エポキシ化植物油系可塑剤とを含むことを特徴とするゴム組成物。
(2)素化ニトリルゴムの結合アクリロニトリル量が40〜45重量%である(1)に記載のゴム組成物。
(3)有機酸エステル系可塑剤をさらに含み、エポキシ化植物油系可塑剤と合わせたこれら2種類の可塑剤の総含有量が水素化ニトリルゴム100重量部当り、5〜20重量部である(1)又は(2)に記載のゴム組成物。
That is, the present invention is as follows.
(1) A rubber composition for sealing devices to be sealed the fluid containing carbon dioxide or carbon dioxide, characterized in that it comprises a hydrogenated Nitorirugo arm, and epoxidized vegetable oil plasticizer as main components Rubber composition.
(2) A rubber composition according to bound acrylonitrile amount of water hydride nitrile rubber is 40 to 45% by weight (1).
(3) further comprises an organic acid ester plasticizer, combined with epoxidized vegetable oil plasticizer these two total content of hydrogenated Nitorirugo beam 1 00 parts by weight per plasticizer is 5 to 20 parts by weight The rubber composition according to (1) or (2).

本発明による二酸化炭素又は二酸化炭素を含む流体を密封対象とする密封装置用のゴム組成物では、水素化ニトリルゴムを主原料とするゴム組成物にエポキシ化植物油系可塑剤を配合することによって、二酸化炭素の透過性が抑制され、密封性能が向上した。また、有機酸エステル系可塑剤を配合することによって、耐寒性が向上した。 The rubber composition for a sealing device for a fluid containing carbon dioxide or carbon dioxide according to the present invention a sealed, by blending an epoxidized vegetable oil plasticizer in the rubber composition of the hydrogenated Nitorirugo beam as a main material, Carbon dioxide permeability was suppressed and sealing performance was improved. Moreover, cold resistance improved by mix | blending an organic acid ester plasticizer.

また、主原料を水素化ニトリルゴムとする密封装置用のゴム組成物において、水素化ニトリルゴムの結合アクリロニトリル量を40〜45重量%とし、エポキシ化植物油系可塑剤及び適宜に有機酸エステル系可塑剤を配合することによって、圧縮永久ひずみ特性を良好に保ちつつ耐二酸化炭素透過性及び耐寒性の優れたゴム組成物を得ることができた。   Further, in a rubber composition for a sealing device in which the main raw material is a hydrogenated nitrile rubber, the amount of bound acrylonitrile of the hydrogenated nitrile rubber is 40 to 45% by weight, an epoxidized vegetable oil-based plasticizer and, optionally, an organic ester plastic By blending the agent, it was possible to obtain a rubber composition excellent in carbon dioxide permeability resistance and cold resistance while maintaining good compression set characteristics.

本発明のゴム組成物によって作られる密封装置は、二酸化炭素又は二酸化炭素を含んだ流体を密封対象としたものであり、例えば、二酸化炭素を冷媒としたカーエアコン等の冷凍空調機、冷凍冷蔵庫等において用いられるガスケット、パッキン、Oリング、オイルシール、メカニカルシールなどが挙げられるが、これらに限定されるものではない。   The sealing device made by the rubber composition of the present invention is intended to seal carbon dioxide or a fluid containing carbon dioxide, for example, a refrigeration air conditioner such as a car air conditioner using carbon dioxide as a refrigerant, a refrigerator refrigerator, etc. Examples include, but are not limited to, gaskets, packings, O-rings, oil seals, and mechanical seals.

本発明に用いられるエポキシ化植物油系可塑剤は、二酸化炭素に対し非相溶性であるので、ゴム組成物に配合することにより二酸化炭素の溶解性を低減できる。従って、エポキシ化植物油系可塑剤を水素化ニトリルゴム又は塩素化ポリエチレンを主原料とするゴム組成物に配合することによって、二酸化炭素の透過性を抑制することができる。また、同時にその耐寒特性も改善することができる。   Since the epoxidized vegetable oil plasticizer used in the present invention is incompatible with carbon dioxide, the solubility of carbon dioxide can be reduced by blending it with the rubber composition. Therefore, the permeability of carbon dioxide can be suppressed by blending the epoxidized vegetable oil-based plasticizer with a rubber composition mainly composed of hydrogenated nitrile rubber or chlorinated polyethylene. At the same time, the cold resistance can be improved.

エポキシ化植物油系可塑剤として、エポキシ化大豆油系などが使用でき、その配合量は、主原料の水素化ニトリルゴム又は塩素化ポリエチレン100重量部に対して5重量部以下であると、二酸化炭素の透過性を抑制する効果に乏しく、20重量部以上であると圧縮永久ひずみが劣る為、5〜20重量部とするのが好ましい。   As the epoxidized vegetable oil plasticizer, epoxidized soybean oil can be used, and its blending amount is 5 parts by weight or less with respect to 100 parts by weight of hydrogenated nitrile rubber or chlorinated polyethylene as the main raw material. The effect of suppressing the permeability is poor, and if it is 20 parts by weight or more, the compression set is inferior, so 5-20 parts by weight is preferable.

エポキシ化植物油系可塑剤の具体例としては、カポックスS−6(花王株式会社製)、パラプレックスG−60(シーピーホール製)、アデカサイザーO−130P(旭電化工業株式会社製)、アデカサイザーO−180P(旭電化工業株式会社製)、エデノールD81(コグニスジャパン株式会社製)、エデノールB316(コグニスジャパン株式会社製)、サンソサイザーE−2000H(新日本理化株式会社製)、サンソサイザーE−9000H(新日本理化株式会社製)などが挙げられる。   Specific examples of the epoxidized vegetable oil-based plasticizer include Capox S-6 (manufactured by Kao Corporation), Paraplex G-60 (manufactured by CP Hall), Adeka Sizer O-130P (manufactured by Asahi Denka Kogyo Co., Ltd.), Adeka Sizer O-180P (manufactured by Asahi Denka Kogyo Co., Ltd.), Edenol D81 (manufactured by Cognis Japan Co., Ltd.), Edenol B316 (manufactured by Cognis Japan Co., Ltd.), SUNSOSIZER E-2000H (manufactured by Shin Nippon Rika Co., Ltd.), SUNSOSIZER E- 9000H (Shin Nippon Rika Co., Ltd.) etc. are mentioned.

水素化ニトリルゴム( 以下「HNBR」と略す) とは、アクリロニトリルとブタジエンを共重合させたアクリロニトリルブタジエンゴム( 以下「NBR」と略す) の不飽和部位に水素付加してなる高分子材料である。HNBRは、その耐熱性、耐摩耗性がNBRよりも優れている事で知られており、自動車用ゴム部品として、オイルシール、Oリング、ガスケットなどに用いられている。   Hydrogenated nitrile rubber (hereinafter abbreviated as “HNBR”) is a polymer material obtained by hydrogenating an unsaturated site of acrylonitrile butadiene rubber (hereinafter abbreviated as “NBR”) obtained by copolymerizing acrylonitrile and butadiene. HNBR is known to be superior in heat resistance and wear resistance to NBR, and is used for oil seals, O-rings, gaskets, and the like as automotive rubber parts.

HNBRの具体例としては、Zetpol 1010( 日本ゼオン株式会社製、結合アクリロニトリル量44重量%) 、Zetpol 1020( 日本ゼオン株式会社製、結合アクリロニトリル44重量%) 、Therban A4307(バイエル社製、結合アクリロニトリル量43重量%)、Therban A4309(バイエル社製、結合アクリロニトリル量43重量%)、Therban C4367(バイエル社製、結合アクリロニトリル量43重量%)、Therban C4369(バイエル社製、結合アクリロニトリル量43重量%)などが挙げられる。 Specific examples of HNBR include Zetpol 1010 (manufactured by Nippon Zeon Co., Ltd., bonded acrylonitrile amount 44 wt%), Zetpol 1020 (manufactured by Nippon Zeon Co., Ltd., bonded acrylonitrile amount 44 wt%), Therban A4307 (manufactured by Bayer Co., Ltd., bonded acrylonitrile) 43% by weight), Therban A4309 (manufactured by Bayer, 43% by weight of bound acrylonitrile), Therban C4367 (manufactured by Bayer, 43% by weight of bound acrylonitrile), Therban C4369 (manufactured by Bayer, 43% by weight of bound acrylonitrile) Etc.

塩素化ポリエチレンの具体例としては、ダイソラックMR104( ダイソー株式会社製、含有塩素量40重量%) 、ダイソラックH135( ダイソー株式会社製、含有塩素量35重量%) 、ダイソラックC130( ダイソー株式会社製、含有塩素量30重量%) 、エラスレン301A( 昭和電工株式会社製、含有塩素量32重量%) 、エラスレン351A( 昭和電工株式会社製、含有塩素量36重量%) 、エラスレン401A( 昭和電工株式会社製、含有塩素量40重量%) 等が挙げられる。   Specific examples of chlorinated polyethylene include Daisolac MR104 (Daiso Co., Ltd., chlorine content 40 wt%), Daisolac H135 (Daiso Co., Ltd., chlorine content 35 wt%), Daisolac C130 (Daiso Co., Ltd., contained) Chlorine content 30% by weight), Eraslen 301A (Showa Denko Co., Ltd., containing chlorine content 32% by weight), Eraslen 351A (Showa Denko Co., Ltd. containing chlorine content 36% by weight), Eraslen 401A (Showa Denko Co., Ltd., The chlorine content is 40% by weight).

圧縮永久ひずみを小さく保ちつつ耐二酸化炭素透過性と耐寒性の両方が優れたゴム組成物を得るには、本発明のHNBRの結合アクリロニトリル量は、40〜45重量%とするのが好ましい。   In order to obtain a rubber composition excellent in both carbon dioxide permeation resistance and cold resistance while keeping the compression set small, the amount of bound acrylonitrile in the HNBR of the present invention is preferably 40 to 45% by weight.

また、水素化ニトリルゴム又は塩素化ポリエチレンを主原料とするゴム組成物に、有機酸エステル系可塑剤を配合すると、耐寒性が向上するので好ましい。耐寒性が向上するのは、可塑剤の凝固点が低く、ゴム組成物との相溶性が良好であるためである。この有機酸エステル系可塑剤は、構造中にエステル結合を含んだ可塑剤のことであり、ポリエーテルエステル系可塑剤、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤、トリメリット酸エステル系可塑剤、セバシン酸エステル系可塑剤、リン酸エステル系可塑剤などが用いられる。具体例としては、アデカサイザー RS−700、アデカサイザーRS−735、アデカサイザーC−8、アデカサイザーC−9N(以上旭電化工業株式会社製)、ジ−(2−エチルヘキシル)セバケート、ジ−(2−エチルヘキシル)アジペート、トリクレジルホスフェート、ジ−(2−エチルヘキシル)フタレートなどが挙げられる。   In addition, it is preferable to add an organic acid ester plasticizer to a rubber composition containing hydrogenated nitrile rubber or chlorinated polyethylene as a main raw material because cold resistance is improved. The reason why the cold resistance is improved is that the freezing point of the plasticizer is low and the compatibility with the rubber composition is good. This organic acid ester plasticizer is a plasticizer that contains an ester bond in its structure. Polyether ester plasticizer, phthalate ester plasticizer, adipate ester plasticizer, trimellitic acid ester A plasticizer, a sebacic acid ester plasticizer, a phosphoric acid ester plasticizer, or the like is used. As specific examples, Adeka Sizer RS-700, Adeka Sizer RS-735, Adeka Sizer C-8, Adeka Sizer C-9N (manufactured by Asahi Denka Kogyo Co., Ltd.), di- (2-ethylhexyl) sebacate, di- ( 2-ethylhexyl) adipate, tricresyl phosphate, di- (2-ethylhexyl) phthalate and the like.

エポキシ化植物油系可塑剤と有機酸エステル系可塑剤の両方を配合する場合には、HNBR又は塩素化ポリエチレン100重量部に対してエポキシ化植物油系可塑剤が5重量部以下であると、二酸化炭素の透過性を抑制する効果に乏しく、両可塑剤の総量が20重量部以上であると圧縮永久ひずみが劣る為、該総量を5〜20重量部とするのが好ましい。   When blending both an epoxidized vegetable oil plasticizer and an organic acid ester plasticizer, carbon dioxide containing 100 parts by weight of HNBR or chlorinated polyethylene and 5 parts by weight or less of epoxidized vegetable oil plasticizer The effect of suppressing the permeability is poor, and if the total amount of both plasticizers is 20 parts by weight or more, the compression set is inferior. Therefore, the total amount is preferably 5 to 20 parts by weight.

HNBR及び塩素化ポリエチレンを架橋する為の架橋剤としては、有機過酸化物を用いるのが好ましい。具体例としては、t−ブチルハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、1,1−ジ−t−ブチルパーオキシ・シクロヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)へキサン、1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシイソプロピルカルボナート等が挙げられる。   As a cross-linking agent for cross-linking HNBR and chlorinated polyethylene, an organic peroxide is preferably used. Specific examples include t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, dicumyl peroxide. , T-butylcumyl peroxide, 1,1-di-t-butylperoxy-cyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t -Butylperoxyisopropyl) benzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxybenzoate, t-butylperoxyisopropyl carbonate and the like.

有機過酸化物の配合量としては、HNBR又は塩素化ポリエチレン100重量部に対して2〜20重量部とするのが好ましい。   As a compounding quantity of an organic peroxide, it is preferable to set it as 2-20 weight part with respect to 100 weight part of HNBR or chlorinated polyethylene.

その他、本発明の目的を損なわない範囲で、架橋助剤、充填剤、金属酸化物、老化防止剤、滑剤などを適宜配合して用いることができる。   In addition, a crosslinking aid, a filler, a metal oxide, an antiaging agent, a lubricant and the like can be appropriately blended and used as long as the object of the present invention is not impaired.

架橋助剤としては、アクリル系架橋助剤、マレイミド系架橋助剤、メタアクリレート系架橋助剤が用いられる。具体例としてアクリル系架橋助剤では、トリアリルイソシアヌレート、マレイミド系架橋助剤では、N,N’−m−フェニレンジマレイミド、メタアクリレート系架橋助剤では、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートが挙げられる。   As the crosslinking aid, an acrylic crosslinking aid, a maleimide crosslinking aid, and a methacrylate crosslinking aid are used. As specific examples, for acrylic crosslinking aids, triallyl isocyanurate, for maleimide crosslinking aids, N, N'-m-phenylene dimaleimide, for methacrylate crosslinking aids, ethylene glycol dimethacrylate, trimethylolpropane Methacrylate is mentioned.

補強性充填剤としては、カーボンブラックが用いられる。具体例としては、HAFカーボンブラック、MAFカーボンブラック、FEFカーボンブラック、SRFカーボンブラック、GPFカーボンブラック、FTカーボンブラック、MTカーボンブラックなどが単独または2種以上の組み合わせで用いられる。また、カーボンブラック以外の充填剤もその用途に応じて単独または組み合わせて用いることができる。   Carbon black is used as the reinforcing filler. As specific examples, HAF carbon black, MAF carbon black, FEF carbon black, SRF carbon black, GPF carbon black, FT carbon black, MT carbon black and the like are used alone or in combination of two or more. Further, fillers other than carbon black can be used alone or in combination depending on the application.

金属酸化物としては、酸化亜鉛、水酸化カルシウム、酸化マグネシウムなどを、単独又は2種以上の組み合わせで用いることができる。   As the metal oxide, zinc oxide, calcium hydroxide, magnesium oxide, or the like can be used alone or in combination of two or more.

老化防止剤としては、4,4−(α,α−ジメチルベンジル)ジフェニルアミン、アルキル化ジフェニルアミンなどのジフェニルアミン系、2−メルカプトベンズイミダゾール、2−メルカプトベンズイミダゾール亜鉛塩などのベンズイミダゾール系などが用いられる。   Antiaging agents include diphenylamines such as 4,4- (α, α-dimethylbenzyl) diphenylamine and alkylated diphenylamine, and benzimidazoles such as 2-mercaptobenzimidazole and 2-mercaptobenzimidazole zinc salt. .

滑剤としては、パラフィン及び炭化水素樹脂系、脂肪酸系、脂肪酸アミド系、脂肪酸エステル系、脂肪族アルコール系などが用いられる。   As the lubricant, paraffin and hydrocarbon resin, fatty acid, fatty acid amide, fatty acid ester, aliphatic alcohol, and the like are used.

以下、本発明を実施例及び比較例についての試験結果を用いて説明する。ただし、本発明はこれらの実施例に制限されるものではない。
なお、実施例及び比較例において、充填剤として配合したFEFカーボンブラックの添加量を異ならせたのは、可塑剤の添加量の違いに伴うゴム組成物の硬さの変化を調整し、総ての例についてほぼ同等の硬さにして比較の妥当性を高めるためである。
Hereinafter, the present invention will be described using test results for Examples and Comparative Examples. However, the present invention is not limited to these examples.
In Examples and Comparative Examples, the amount of FEF carbon black added as a filler was varied because the change in the hardness of the rubber composition accompanying the difference in the amount of plasticizer was adjusted. This is to increase the validity of the comparison by setting the hardness to approximately the same.

実施例1:
実施例1は、結合アクリロニトリル量44重量%のHNBRにエポキシ化植物油系可塑剤を用いた配合例である。
本実施例においては、主原料としてのHNBR(Zetpol 1020、日本ゼオン株式会社製、結合アクリロニトリル量44重量%) 100重量部に対して、架橋剤として1,3−ビス(t−ブチルパーオキシイソプロピル)ベンゼン4重量部、充填剤としてHAFカーボンブラック20重量部、FEFカーボンブラック60重量部、可塑剤としてエポキシ化植物油系可塑剤(アデカサイザーO−130P、旭電化工業株式会社製)を10重量部、架橋助剤としてN,N’−m−フェニレンジマレイミド5重量部、老化防止剤としてアルキル化ジフェニルアミン1.5重量部、金属酸化物として酸化亜鉛3重量部、滑剤としてステアリン酸1重量部、ポリエチレンワックスを0.3重量部を用いた。
Example 1:
Example 1 is a blending example in which an epoxidized vegetable oil-based plasticizer is used for HNBR having an amount of 44% by weight of bound acrylonitrile.
In this example, 1,3-bis (t-butylperoxyisopropyl) as a crosslinking agent with respect to 100 parts by weight of HNBR (Zetpol 1020, manufactured by Nippon Zeon Co., Ltd., amount of bound acrylonitrile 44% by weight) as a main raw material. ) 4 parts by weight of benzene, 20 parts by weight of HAF carbon black as filler, 60 parts by weight of FEF carbon black, 10 parts by weight of epoxidized vegetable oil plasticizer (Adekasizer O-130P, manufactured by Asahi Denka Kogyo Co., Ltd.) 5 parts by weight of N, N′-m-phenylene dimaleimide as a crosslinking aid, 1.5 parts by weight of alkylated diphenylamine as an anti-aging agent, 3 parts by weight of zinc oxide as a metal oxide, 1 part by weight of stearic acid as a lubricant, 0.3 parts by weight of polyethylene wax was used.

実施例2:
実施例2は、結合アクリロニトリル量41重量%のHNBRにエポキシ化植物油系可塑剤を用いた配合例である。
本実施例においては、結合アクリロニトリル量44重量%のHNBR(Zetpol 1020、日本ゼオン株式会社製) を65重量部と結合アクリロニトリル量36重量%のHNBR(Zetpol 2020、日本ゼオン株式会社製)を35重量部ブレンドすることによって、結合アクリロニトリル量が41重量%のHNBR100重量部とした。それ以外は実施例1と同じ配合である。
Example 2:
Example 2 is a blending example in which an epoxidized vegetable oil-based plasticizer is used for HNBR having a bound acrylonitrile amount of 41% by weight.
In this example, 65 parts by weight of HNBR (Zetpol 1020, manufactured by Nippon Zeon Co., Ltd.) having a combined acrylonitrile amount of 44% by weight and 35% by weight of HNBR (Zetpol 2020, manufactured by Nippon Zeon Co., Ltd.) having a combined acrylonitrile amount of 36% by weight are used. By blending a part, HNBR was 100 parts by weight with a bound acrylonitrile amount of 41% by weight. Other than that, it is the same composition as Example 1.

実施例3:
実施例3は、結合アクリロニトリル量44重量%のHNBRにエポキシ化植物油系可塑剤と有機酸エステル系可塑剤とを用いた配合例である。
本実施例においては、有機酸エステル系可塑剤としてポリエーテルエステル系可塑剤(アデカサイザーRS700、旭電化工業株式会社製)を10重量部新たに添加し、充填剤としてのFEFカーボンブラックを70重量部とした以外は実施例1と同じ配合である。
Example 3:
Example 3 is a blending example in which an epoxidized vegetable oil-based plasticizer and an organic acid ester-based plasticizer are used for HNBR with a combined acrylonitrile content of 44% by weight.
In this example, 10 parts by weight of a polyether ester plasticizer (Adeka Sizer RS700, manufactured by Asahi Denka Kogyo Co., Ltd.) is newly added as an organic acid ester plasticizer, and 70 weights of FEF carbon black as a filler is added. The same formulation as in Example 1 except for the parts.

比較例1:
比較例1は、結合アクリロニトリル量49重量%のHNBRを用い、エポキシ化植物油系可塑剤及び有機酸エステル系可塑剤を全く使用しない場合の配合例である。
本比較例においては、結合アクリロニトリル量49重量%のHNBR(Zetpol 0020、日本ゼオン株式会社製) を用い、エポキシ化植物油系可塑剤を添加せず、充填剤としてのFEFカーボンブラック50重量部とした以外は実施例1と同じ配合である。
Comparative Example 1:
Comparative Example 1 is a blending example in which HNBR with a bound acrylonitrile amount of 49% by weight is used and no epoxidized vegetable oil plasticizer or organic acid ester plasticizer is used.
In this comparative example, HNBR (Zetpol 0020, manufactured by Nippon Zeon Co., Ltd.) having a combined acrylonitrile amount of 49% by weight was used, and an epoxidized vegetable oil plasticizer was not added, and 50 parts by weight of FEF carbon black as a filler was used. Except for this, the composition is the same as in Example 1.

比較例2:
比較例2は、結合アクリロニトリル量49重量%のHNBRを用い、耐寒性を向上させるために有機酸エステル系可塑剤を多く使用した場合の配合例である。
本比較例においては、結合アクリロニトリル量49重量%のHNBR(Zetpol 0020、日本ゼオン株式会社製) 100重量部とし、有機酸エステル系可塑剤としてポリエーテルエステル系可塑剤(アデカサイザーRS700、旭電化工業株式会製)を30重量部用い、充填剤としてのFEFカーボンブラックを80重量部とした以外は実施例1と同じ配合である。
Comparative Example 2:
Comparative Example 2 is a blending example using HNBR with a bound acrylonitrile amount of 49% by weight and a large amount of organic acid ester plasticizer used to improve cold resistance.
In this comparative example, HNBR (Zetpol 0020, manufactured by Nippon Zeon Co., Ltd.) having a combined acrylonitrile amount of 49% by weight was used as 100 parts by weight, and a polyether ester plasticizer (Adekasizer RS700, Asahi Denka Kogyo Co., Ltd.) as the organic acid ester plasticizer. The composition is the same as that of Example 1 except that 30 parts by weight of a stock company) and 80 parts by weight of FEF carbon black as a filler are used.

比較例3:
比較例3は、結合アクリロニトリル量36重量%のHNBRを用いた場合の配合例である。
本比較例は、結合アクリロニトリル量36重量%のHNBR(Zetpol 2020、日本ゼオン株式会社製) を用い、エポキシ化植物油系可塑剤を添加せず、FEFカーボンブラック50重量部とした以外は実施例1と同じ配合である。
Comparative Example 3:
Comparative Example 3 is a blending example using HNBR with a combined acrylonitrile amount of 36% by weight.
In this comparative example, HNBR (Zetpol 2020, manufactured by Nippon Zeon Co., Ltd.) having a bound acrylonitrile amount of 36% by weight was used, and no epoxidized vegetable oil plasticizer was added, and 50 parts by weight of FEF carbon black was used. Is the same formulation.

参考例4
参考例4は、主原料の塩素化ポリエチレンにエポキシ化植物油系可塑剤を用いた配合例である。
参考例においては、主原料としての塩素化ポリエチレン(ダイソラックMR104、ダイソー株式会社製・含有塩素量40重量%)100重量部に対して、架橋剤として2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンを4重量部、充填剤としてFEFカーボンブラック40重量部、可塑剤としてエポキシ化植物油系可塑剤(アデカサイザーO−130P、旭電化工業株式会社製)を10重量部、架橋助剤としてトリアリルイソシアヌレートを3重量部、金属酸化物として酸化マグネシウム10重量部を用いた。
Reference example 4
Reference Example 4 is a blending example in which an epoxidized vegetable oil-based plasticizer is used for the main raw material chlorinated polyethylene.
In this reference example, 2,5-dimethyl-2,5-di as a crosslinking agent with respect to 100 parts by weight of chlorinated polyethylene (Daisolac MR104, manufactured by Daiso Co., Ltd., containing 40% by weight of chlorine) as the main raw material 4 parts by weight of (t-butylperoxy) hexane, 40 parts by weight of FEF carbon black as a filler, and 10 parts by weight of an epoxidized vegetable oil plasticizer (Adekasizer O-130P, manufactured by Asahi Denka Kogyo Co., Ltd.) as a plasticizer In addition, 3 parts by weight of triallyl isocyanurate was used as a crosslinking aid, and 10 parts by weight of magnesium oxide was used as a metal oxide.

参考例5:
参考例5は、主原料の塩素化ポリエチレンに、エポキシ化植物油系可塑剤と有機酸エステル系可塑剤とを用いた配合例である。
参考例においては、可塑剤として有機酸エステル系可塑剤(アデカサイザーRS700、旭電化工業株式会社製)を10重量部新たに添加し、充填剤のFEFカーボンブラックを50重量部とした以外は参考例4と同じ配合である。
Reference example 5:
Reference Example 5 is a blending example in which an epoxidized vegetable oil plasticizer and an organic acid ester plasticizer are used as the main raw material chlorinated polyethylene.
In this reference example, 10 parts by weight of an organic acid ester plasticizer (Adekasizer RS700, manufactured by Asahi Denka Kogyo Co., Ltd.) was newly added as a plasticizer, and the filler FEF carbon black was changed to 50 parts by weight. The composition is the same as in Reference Example 4.

比較例4:
比較例4は、塩素化ポリエチレンを用いエポキシ化植物油系可塑剤及び有機酸エステル系可塑剤を全く使用しない場合の配合例である。
本比較例においては、エポキシ化植物油系可塑剤を添加せず、FEFカーボンブラック30重量部とした以外は実施例4と同じ配合である。
Comparative Example 4:
Comparative Example 4 is a blending example in which chlorinated polyethylene is used and no epoxidized vegetable oil plasticizer and organic acid ester plasticizer are used.
In this comparative example, the same composition as in Example 4 was obtained except that no epoxidized vegetable oil plasticizer was added and 30 parts by weight of FEF carbon black was used.

測定用の加硫ゴムシートおよびOリングの作製は、上記の各ゴム配合物を8インチオープンロールで混練を行い、その混練物をプレスにて180℃、6分間加圧成型し作製した。更にその後オーブンにて、150℃、4時間のポストキュアーを行った。   The vulcanized rubber sheet and the O-ring for measurement were prepared by kneading each of the above rubber compounds with an 8-inch open roll, and pressing and molding the kneaded material at 180 ° C. for 6 minutes. Further post-curing was then performed in an oven at 150 ° C. for 4 hours.

実施例1〜3、参考例4、5及び比較例1〜4の加硫ゴムの物理試験は、以下の測定方法にて実施した。
[常態物性]
加硫ゴムの硬さの測定は、JIS K 6253「加硫ゴム及び熱可塑性ゴムのかたさ試験方法」に準拠し、引張り強さ、伸び測定は、JIS K 6251「加硫ゴムの引張り試験方法」に準拠して測定した。
[圧縮永久ひずみ]
Oリングによる圧縮永久ひずみの測定は、JIS K 6262「加硫ゴム及び、熱可塑性ゴムの永久ひずみ試験方法」に準拠して測定した。
[二酸化炭素透過係数]
加硫ゴムシートより90mm×90mm×2mmの試料を切取り、東洋精機株式会社製のガス透過試験機を用いて、JIS K 7126「プラスチックフィルム及びシートの気体透過度試験方法」A法の試験方法により温度24℃、圧力0.1MPa の条件で測定した。
[耐寒性測定]
加硫ゴムシートより試料を10mg切取り、理学電機株式会社製の示差走査熱量計 DSC8230にて、ガラス転移温度を測定した。
The physical tests of the vulcanized rubbers of Examples 1 to 3, Reference Examples 4 and 5 and Comparative Examples 1 to 4 were carried out by the following measuring methods.
[Normal physical properties]
Measurement of hardness of vulcanized rubber conforms to JIS K 6253 “Testing method for hardness of vulcanized rubber and thermoplastic rubber”. Measurement of tensile strength and elongation is JIS K 6251 “Tensile test method of vulcanized rubber” Measured according to
[Compression set]
The compression set by the O-ring was measured in accordance with JIS K 6262 “Testing methods for permanent set of vulcanized rubber and thermoplastic rubber”.
[CO2 permeability coefficient]
A 90 mm x 90 mm x 2 mm sample was cut from the vulcanized rubber sheet, and a gas permeation tester manufactured by Toyo Seiki Co., Ltd. was used. The measurement was performed under the conditions of a temperature of 24 ° C. and a pressure of 0.1 MPa.
[Cold resistance measurement]
A 10 mg sample was cut from the vulcanized rubber sheet, and the glass transition temperature was measured with a differential scanning calorimeter DSC8230 manufactured by Rigaku Corporation.

主原料をHNBRとしたゴム組成物の実施例1〜3及び比較例1〜3についての、上記各測定の結果を表1に示す。   Table 1 shows the results of the above measurements for Examples 1 to 3 and Comparative Examples 1 to 3 of rubber compositions in which the main raw material is HNBR.

主原料を塩素化ポリエチレンとしたゴム組成物の参考例4、5及び比較例4についての、上記各測定の結果を表2に示す。 Table 2 shows the results of the above measurements for Reference Examples 4 and 5 and Comparative Example 4 of rubber compositions in which the main raw material was chlorinated polyethylene.

以上の測定結果より、以下のことが確認できた。
(1)HNBRを主原料にする場合(表1)、比較例3から分かるように、結合アクリロニトリル量が36重量%のHNBRを用いた場合には二酸化炭素の透過係数が13. 6[×10-16 (mol・m/m2・s・Pa)] と大きい値を示す。
From the above measurement results, the following could be confirmed.
(1) When HNBR is used as the main raw material (Table 1), as can be seen from Comparative Example 3, when HNBR with a combined acrylonitrile content of 36% by weight is used, the carbon dioxide permeability coefficient is 13.6 [× 10 -16 (mol · m / m 2 · s · Pa)].

(2)また、比較例1から分かるように、結合アクリロニトリル量が49重量%のHNBRを用いると、二酸化炭素の透過係数を3. 5 [×10-16 (mol・m/m2・s・Pa)] と低減することができるが、耐寒性の指標となるガラス転移温度が−10℃と劣る点が見られる。 (2) Further, as can be seen from Comparative Example 1, when HNBR having a combined acrylonitrile amount of 49% by weight is used, the permeability coefficient of carbon dioxide is 3.5 [× 10 −16 (mol · m / m 2 · s · Pa)], but the glass transition temperature, which is an index of cold resistance, is inferior to −10 ° C.

(3)比較例1の耐寒性を改善するために、比較例2に示すように結合アクリロニトリル量が49重量%のHNBRに対して有機酸エステル系可塑剤30重量部を使用すると、耐寒性はガラス転移温度−22℃と改善が見られるものの、圧縮永久ひずみ率が92% と大きく劣り、二酸化炭素の透過係数も5.1 [×10-16 (mol・m/m2・s・Pa)] と悪化する。 (3) In order to improve the cold resistance of Comparative Example 1, as shown in Comparative Example 2, when 30 parts by weight of the organic acid ester plasticizer is used with respect to HNBR having a bound acrylonitrile amount of 49% by weight, the cold resistance is Although the glass transition temperature is improved at -22 ° C, the compression set rate is greatly inferior at 92%, and the carbon dioxide permeability coefficient is 5.1 [× 10 -16 (mol · m / m 2 · s · Pa). It gets worse.

(4)一方、実施例1に示すように、結合アクリロニトリル量が44重量%のHNBRに対しエポキシ化植物油系可塑剤を使用した配合では、比較例1の結合アクリロニトリル量49重量%の場合と比較すると、二酸化炭素の透過係数は、3. 7 [×10-16 (mol・m/m2・s・Pa)) と比較例1の3. 5 [×10-16 (mol・m/m2・s・Pa)] とほぼ同等であり、その耐寒性は、ガラス転移温度−19℃と優れていることが分かった。 (4) On the other hand, as shown in Example 1, the formulation using an epoxidized vegetable oil-based plasticizer with respect to HNBR having a bound acrylonitrile amount of 44% by weight is compared with that of Comparative Example 1 having a bound acrylonitrile amount of 49% by weight. Then, the permeability coefficient of carbon dioxide is 3.7 [× 10 −16 (mol · m / m 2 · s · Pa)) and 3.5 [× 10 −16 (mol · m / m 2 ) of Comparative Example 1. It was found that the cold resistance was excellent at a glass transition temperature of −19 ° C.

(5)また、実施例2に示すように、結合アクリロニトリル量を41重量%としたHNBRに対しても、エポキシ化植物油系可塑剤を使用した配合では、耐寒性としてガラス転移温度−22℃を有し、比較例2に示す二酸化炭素の透過係数5.1 [×10-16 (mol・m/m2・s・Pa)) よりも二酸化炭素の透過係数4.1 [×10-16 (mol・m/m2・s・Pa)] と低減できた。 (5) Also, as shown in Example 2, with respect to HNBR in which the amount of bound acrylonitrile was 41% by weight, the formulation using an epoxidized vegetable oil plasticizer had a glass transition temperature of −22 ° C. as cold resistance. Carbon dioxide permeability coefficient 4.1 [× 10 -16 (× 10 -16 (mol · m / m 2 · s · Pa)) of carbon dioxide as shown in Comparative Example 2 mol · m / m 2 · s · Pa)].

(6)さらに、実施例3に示すように、結合アクリロニトリル量44重量%のHNBRにエポキシ化植物油系可塑剤と有機酸エステル系可塑剤とを配合することで、耐寒性をガラス転移温度−23℃と向上しつつ、比較例2に示す二酸化炭素の透過係数5.1 [×10-16 (mol・m/m2・s・Pa)] よりも4 .1 [×10-16 (mol・m/m2・s・Pa)] と低減でき、更に、圧縮永久ひずみ率も69%と良好であることがわかった。 (6) Furthermore, as shown in Example 3, by adding an epoxidized vegetable oil plasticizer and an organic acid ester plasticizer to HNBR with a bound acrylonitrile amount of 44% by weight, the cold resistance is made to have a glass transition temperature of -23. The carbon dioxide permeability coefficient shown in Comparative Example 2 was 5.1 [× 10 −16 (mol · m / m 2 · s · Pa)] as shown in Comparative Example 2 while improving to 4 ° C. 1 [× 10 −16 (mol · m / m 2 · s · Pa)], and the compression set was found to be as good as 69%.

(7)同様に、塩素化ポリエチレンを主原料とする場合(表2)においても、参考例4に示すように、エポキシ化植物油系可塑剤を配合することで比較例4と比べて二酸化炭素の透過係数を2.2 [×10-16 (mol・m/m2・s・Pa)] と低減することができる。 (7) Similarly, in the case of using chlorinated polyethylene as a main raw material (Table 2), as shown in Reference Example 4, by adding an epoxidized vegetable oil-based plasticizer, carbon dioxide The transmission coefficient can be reduced to 2.2 [× 10 −16 (mol · m / m 2 · s · Pa)].

(8)また、参考例5から分かるように、主原料の塩素化ポリエチレンにエポキシ化植物油系可塑剤と有機酸エステル系可塑剤とを配合することで耐寒性をガラス転移温度−24 ℃と向上しつつ、二酸化炭素の透過係数を2.6 [×10-16 (mol・m/m2・s・Pa)) と比較例4よりも低減できることがわかった。
(8) Further, as can be seen from Reference Example 5, the cold resistance is improved to a glass transition temperature of −24 ° C. by blending an epoxidized vegetable oil plasticizer and an organic acid ester plasticizer with chlorinated polyethylene as a main raw material. However, it was found that the permeability coefficient of carbon dioxide was 2.6 [× 10 −16 (mol · m / m 2 · s · Pa)), which was lower than that of Comparative Example 4.

このように、水素化ニトリルゴム(特に結合アクリロニトリル量が40〜45重量%)又は塩素化ポリエチレンを主原料とするゴム組成物において、エポキシ化植物油系可塑剤及び適宜に有機酸エステル系可塑剤を配合することによって、耐二酸化炭素透過性、耐寒性、及び圧縮永久ひずみ特性の優れたゴム組成物を得ることができた。


Thus, in a rubber composition mainly composed of hydrogenated nitrile rubber (particularly the amount of bound acrylonitrile is 40 to 45% by weight) or chlorinated polyethylene, an epoxidized vegetable oil-based plasticizer and optionally an organic acid ester-based plasticizer are added. By blending, a rubber composition excellent in carbon dioxide permeability resistance, cold resistance, and compression set characteristics could be obtained.


Claims (3)

二酸化炭素又は二酸化炭素を含む流体を密封対象とする密封装置用のゴム組成物であって、主原料として水素化ニトリルゴムと、エポキシ化植物油系可塑剤とを含むことを特徴とするゴム組成物。 A rubber composition for sealing devices to be sealed the fluid containing carbon dioxide or carbon dioxide, and hydrogenation Nitorirugo beam as main components, a rubber composition which comprises an epoxidized vegetable oil plasticizer . 素化ニトリルゴムの結合アクリロニトリル量が40〜45重量%である請求項1に記載のゴム組成物。 A rubber composition according to claim 1 bound acrylonitrile amount of water hydride nitrile rubber is 40 to 45 wt%. 有機酸エステル系可塑剤をさらに含み、エポキシ化植物油系可塑剤と合わせたこれら2種類の可塑剤の総含有量が水素化ニトリルゴム100重量部当り、5〜20重量部である請求項1又は2に記載のゴム組成物。 Further comprising an organic acid ester plasticizer, claim 1 total content of these two types of plasticizer combined with epoxidized vegetable oil plasticizer is hydrogenated Nitorirugo beam 1 00 parts by weight per 5 to 20 parts by weight Or the rubber composition of 2.
JP2004095834A 2004-03-29 2004-03-29 Rubber composition Expired - Lifetime JP3840230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095834A JP3840230B2 (en) 2004-03-29 2004-03-29 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095834A JP3840230B2 (en) 2004-03-29 2004-03-29 Rubber composition

Publications (2)

Publication Number Publication Date
JP2005281433A JP2005281433A (en) 2005-10-13
JP3840230B2 true JP3840230B2 (en) 2006-11-01

Family

ID=35180186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095834A Expired - Lifetime JP3840230B2 (en) 2004-03-29 2004-03-29 Rubber composition

Country Status (1)

Country Link
JP (1) JP3840230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238839A (en) * 2006-03-10 2007-09-20 Arai Pump Mfg Co Ltd Rubber composition
JP5589289B2 (en) * 2008-09-30 2014-09-17 Nok株式会社 Rubber composition
JP2010285611A (en) * 2009-05-11 2010-12-24 Japan Matekkusu Kk Rubber composition for sealing material, and sealing material
WO2013175877A1 (en) 2012-05-24 2013-11-28 Nok株式会社 Polyamine-vulcanizable highly saturated nitrile rubber composition
JP5850149B2 (en) * 2012-05-24 2016-02-03 Nok株式会社 Sealing material
CN114369298A (en) * 2022-02-16 2022-04-19 陕西奉航科技有限责任公司 Low-temperature-resistant low-pressure-change-resistant hydrogenated nitrile rubber for wind power and preparation method thereof

Also Published As

Publication number Publication date
JP2005281433A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
KR100902268B1 (en) Epdm composition
KR100854944B1 (en) Hydrogenated nitrile rubber composition
JP4800508B2 (en) Rubber composition for seal and carbon dioxide resistant seal using the same
JP6312183B1 (en) Rubber composition for use in high pressure gas seal member and high pressure gas seal member
JP5435185B1 (en) NBR composition
JP3840230B2 (en) Rubber composition
JP5205632B2 (en) Lip type seal
JP6034707B2 (en) Rubber composition for sealing pneumatic equipment and seal for pneumatic equipment using the same
JP3950353B2 (en) Low temperature fluorine elastomer composition
JP2006194560A (en) Sealing material for refrigerating system
JP5188096B2 (en) Rubber composition for forming seal member and seal member using the same
JP4712960B2 (en) Sealing material
JP5631413B2 (en) EPDM composition
JP4651202B2 (en) Sealing material using rubber composition for sealing material
JP2009102646A (en) HYDROGENATED NITRILE RUBBER-BASED SEAL MOLDING MATERIAL FOR R152a AND R134a
JP3502609B2 (en) Rubber composition for sealing, oil seal member using the same, and sealing material
JP2005344037A (en) Hydrogenated nbr rubber composition
JP3851213B2 (en) Rubber composition for sealing material and sealing material using the same
JP2007238839A (en) Rubber composition
JP5653605B2 (en) Rubber composition and seal member using the same
KR101267942B1 (en) Rubber components of O-ring for refrigerant compressor
JP5280569B2 (en) Rubber composition for forming seal member and seal member using the same
JP2006274012A (en) Rubber composition
JP2005089635A (en) Sealing material for refrigeration system
JP4195673B2 (en) Sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Ref document number: 3840230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250