JP6264990B2 - Manufacturing method of nitride semiconductor substrate - Google Patents

Manufacturing method of nitride semiconductor substrate Download PDF

Info

Publication number
JP6264990B2
JP6264990B2 JP2014064413A JP2014064413A JP6264990B2 JP 6264990 B2 JP6264990 B2 JP 6264990B2 JP 2014064413 A JP2014064413 A JP 2014064413A JP 2014064413 A JP2014064413 A JP 2014064413A JP 6264990 B2 JP6264990 B2 JP 6264990B2
Authority
JP
Japan
Prior art keywords
base substrate
substrate
nitride semiconductor
manufacturing
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014064413A
Other languages
Japanese (ja)
Other versions
JP2015187043A (en
Inventor
斉 水口
斉 水口
祐之 井上
祐之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014064413A priority Critical patent/JP6264990B2/en
Publication of JP2015187043A publication Critical patent/JP2015187043A/en
Application granted granted Critical
Publication of JP6264990B2 publication Critical patent/JP6264990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、窒化物半導体からなる自立基板の製造方法に関する。   The present invention relates to a method for manufacturing a free-standing substrate made of a nitride semiconductor.

窒化ガリウム等の窒化物半導体はバンドギャップが大きく、また、組成の調整によってバンドギャップの大きさを調整可能である為、緑色発光素子、青色発光素子、紫外発光素子等様々な発光素子に利用される。   Nitride semiconductors such as gallium nitride have a large band gap, and the size of the band gap can be adjusted by adjusting the composition. Therefore, they are used in various light emitting elements such as green light emitting elements, blue light emitting elements, and ultraviolet light emitting elements. The

一方、窒化物半導体は融点が高いため、液相成長法によってバルク結晶を得るのは困難である。そのため、ハイドライド気相成長法等の気相成長法を用いて窒化物半導体を得るのが一般的である。   On the other hand, since a nitride semiconductor has a high melting point, it is difficult to obtain a bulk crystal by a liquid phase growth method. Therefore, it is common to obtain a nitride semiconductor using a vapor phase growth method such as a hydride vapor phase growth method.

窒化物半導体と同等の格子定数を有する材料は高価であるため、一般的に気相成長法においてはアルミナ(サファイア)等の比較的安価な異種基板を下地基板に用いる。得られる窒化物半導体は、異種基板が存在した状態で新たな基板(所謂テンプレート)として用いられることもあれば、異種基板から分離した状態で新たな基板(所謂自立基板)として用いられることもある。得られる窒化物半導体は格子定数の違いが原因で10個/cm程度かそれ以上の表面欠陥密度を有する。 Since a material having a lattice constant equivalent to that of a nitride semiconductor is expensive, a relatively inexpensive heterogeneous substrate such as alumina (sapphire) is generally used as a base substrate in the vapor phase growth method. The resulting nitride semiconductor may be used as a new substrate (so-called template) in the presence of a heterogeneous substrate, or may be used as a new substrate (so-called self-standing substrate) in a state separated from the heterogeneous substrate. . The resulting nitride semiconductor has a surface defect density of about 10 6 / cm 2 or more due to the difference in lattice constant.

気相成長法以外の技術の例としては、特許文献1の技術がある。特許文献1には、超臨界アンモニア含有溶媒からガリウム含有窒化物の単結晶を得る方法(所謂アモノサーマル法)が開示されている。特許文献1によれば表面欠陥密度が10/cm程度の窒化ガリウム系単結晶が得られるとされている。特許文献1では直径25mm程度(約1インチ)までのシードを用いた例が具体的に開示されている。 As an example of a technique other than the vapor phase growth method, there is a technique of Patent Document 1. Patent Document 1 discloses a method for obtaining a gallium-containing nitride single crystal from a supercritical ammonia-containing solvent (so-called ammonothermal method). According to Patent Literature 1, a gallium nitride single crystal having a surface defect density of about 10 4 / cm 2 is obtained. Patent Document 1 specifically discloses an example in which a seed having a diameter of about 25 mm (about 1 inch) is used.

一方、より大きい基板の上に半導体素子構造を形成すればより効率的に半導体素子を得ることが可能になる。その為、複数枚の下地基板上に窒化物半導体単結晶を成長させ、より大きな窒化物半導体基板を得る技術も存在する。   On the other hand, if a semiconductor element structure is formed on a larger substrate, a semiconductor element can be obtained more efficiently. Therefore, there is a technique for growing a nitride semiconductor single crystal on a plurality of base substrates to obtain a larger nitride semiconductor substrate.

特許文献2では、特定形状のタイル基板を複数並べ、並べられた複数のタイル基板上にIII族窒化物半導体結晶を成長させる技術が提案されている。具体的には窒化ガリウムをタイル基板として用い、それらを複数並べ、並べられたタイル基板上にハイドライド気相成長法によって窒化ガリウム結晶を成長させる例が開示されている。但し、タイル基板がどのように得られたのかについては具体的に開示されていない。   Patent Document 2 proposes a technique in which a plurality of tile substrates having a specific shape are arranged and a group III nitride semiconductor crystal is grown on the arranged tile substrates. Specifically, an example is disclosed in which gallium nitride is used as a tile substrate, a plurality of them are arranged, and a gallium nitride crystal is grown on the tile substrate arranged by hydride vapor phase epitaxy. However, it is not specifically disclosed how the tile substrate was obtained.

ところで、直径の大きい窒化物半導体の単結晶をワイヤーソー等で切断すると、直径の小さいそれに比べて高い頻度で割れが発生する傾向にある。そのため、特許文献3のような窒化物半導体単結晶の外周面を一定以上研削する技術も提案されている。   By the way, when a nitride semiconductor single crystal having a large diameter is cut with a wire saw or the like, cracks tend to occur more frequently than those having a small diameter. For this reason, a technique for grinding the outer peripheral surface of a nitride semiconductor single crystal more than a certain value as in Patent Document 3 has also been proposed.

特表2006−509708号公報JP-T-2006-509708 特開2012−036102号公報JP 2012-036102 A 特開2013−060349号公報JP 2013-060349 A

先述のアモノサーマル法によって得られる窒化物半導体は極めて低い表面転位密度を有すが、工程が煩雑であり、大面積の単結晶を得にくい傾向にある。しかし、近年の半導体発光素子に対する特性要求はますます強まり、転位密度の低減もその一つとなっていた。そのため、転位密度、面積及び製造効率の全てを満たすような製造方法が求められていた。   The nitride semiconductor obtained by the above-mentioned ammonothermal method has a very low surface dislocation density, but the process is complicated and it tends to be difficult to obtain a large-area single crystal. However, in recent years, the demand for characteristics of semiconductor light emitting devices has been increasing, and the reduction of dislocation density has been one of them. Therefore, a production method that satisfies all of the dislocation density, area, and production efficiency has been demanded.

本発明は上述の事情に鑑みてなされたものである。本発明の目的は、低い表面転位密度を有する大面積の窒化物半導体からなる自立基板を効率良く得る製造方法を提供することである。   The present invention has been made in view of the above circumstances. An object of the present invention is to provide a manufacturing method for efficiently obtaining a free-standing substrate made of a large-area nitride semiconductor having a low surface dislocation density.

上記目的を達成するために本発明者は鋭意検討を重ね、本発明を完成するに至った。本発明者は、アモノサーマル法によって得られる複数個の窒化物半導体結晶を接合して下地基板とすることを出発点とし、窒化物半導体層の形成と特定の手法による窒化物半導体層の分離とを繰り返すことで、低転位密度且つ大面積の窒化物半導体からなる自立基板を効率良く得られることを見出した。   In order to achieve the above object, the present inventor has intensively studied and completed the present invention. The present inventor started the formation of a nitride semiconductor layer and separated the nitride semiconductor layer by a specific method, starting from bonding a plurality of nitride semiconductor crystals obtained by an ammonothermal method to form a base substrate. It was found that a free-standing substrate made of a nitride semiconductor having a low dislocation density and a large area can be obtained efficiently by repeating the above.

本発明の窒化物半導体基板の製造方法は、アモノサーマル法により得られ、窒化物半導体からなる第一の元結晶を準備する元結晶準備工程と、前記第一の元結晶を略長方形の形状に研削加工し、第二の元結晶を得る第一の研削加工工程と、複数の前記第二の元結晶を全体として矩形状に接合し、第一の下地基板を得る第一の接合工程と、前記第一の下地基板上に第一の窒化物半導体層を形成する第一の成長工程と、前記第一の窒化物半導体層の外周部を研削、除去する第一の除去工程と、前記外周部を研削、除去された前記第一の窒化物半導体層を前記第一の下地基板から分離し、第二の下地基板を得る第一の分離工程と、を含む第一の基板製造工程と、複数の前記第二の下地基板を全体として矩形状に接合し、第三の下地基板を得る第二の接合工程と、前記第三の下地基板を略円形に研削加工し、第四の下地基板を得る第二の研削加工工程と、前記第四の下地基板上に第二の窒化物半導体層を形成する第二の成長工程と、前記第二の窒化物半導体層の外周部を研削、除去する第二の除去工程と、前記外周部を研削、除去された前記第二の窒化物半導体層を前記第四の下地基板から分離し、最終基板を得る第二の分離工程と、を含む第二の基板製造工程とを含むことを特徴とする。   The method for producing a nitride semiconductor substrate of the present invention is obtained by an ammonothermal method, and a first crystal preparing step for preparing a first original crystal made of a nitride semiconductor, A first grinding step for obtaining a second base crystal, and a first joining step for obtaining a first base substrate by joining the plurality of second base crystals in a rectangular shape as a whole. A first growth step of forming a first nitride semiconductor layer on the first base substrate, a first removal step of grinding and removing an outer peripheral portion of the first nitride semiconductor layer, A first separation step of separating the first nitride semiconductor layer whose peripheral portion has been ground and removed from the first base substrate to obtain a second base substrate; and The second base substrate is joined in a rectangular shape as a whole to obtain a third base substrate. A second grinding process for grinding the third base substrate into a substantially circular shape to obtain a fourth base substrate, and forming a second nitride semiconductor layer on the fourth base substrate. A second growth step, a second removal step of grinding and removing the outer peripheral portion of the second nitride semiconductor layer, and the second nitride semiconductor layer ground and removed of the outer peripheral portion of the second nitride semiconductor layer. And a second separation step of separating the fourth base substrate to obtain a final substrate, and a second substrate manufacturing step.

本発明の窒化物半導体基板の製造方法は上記の特徴を備えているため、低転位密度且つ大面積の窒化物半導体からなる自立基板を効率良く得ることができる。   Since the nitride semiconductor substrate manufacturing method of the present invention has the above-described characteristics, a free-standing substrate made of a nitride semiconductor having a low dislocation density and a large area can be obtained efficiently.

図1は本発明の窒化物半導体基板の製造方法における、第一の基板製造工程の一例の概念図である。FIG. 1 is a conceptual diagram of an example of a first substrate manufacturing process in the nitride semiconductor substrate manufacturing method of the present invention. 図2は本発明の窒化物半導体基板の製造方法における、第二の基板製造工程の一例の概念図である。FIG. 2 is a conceptual diagram illustrating an example of a second substrate manufacturing process in the nitride semiconductor substrate manufacturing method of the present invention.

以下、本発明の窒化物半導体基板の製造方法について説明する。但し、本発明は以下の説明によって制限されるものではない。また、図面は説明の為の概念図であり、簡略化、特定部位の強調等が施されている。   Hereinafter, the manufacturing method of the nitride semiconductor substrate of this invention is demonstrated. However, the present invention is not limited by the following description. Further, the drawings are conceptual diagrams for explanation, and are simplified, emphasized specific parts, and the like.

本発明の窒化物半導体基板の製造方法は、大きく分けて二つの基板製造工程を含む。各基板製造工程を中心に説明する。   The method for manufacturing a nitride semiconductor substrate of the present invention roughly includes two substrate manufacturing steps. The description will focus on each substrate manufacturing process.

[1.第一の基板製造工程]
第一の基板製造工程は、アモノサーマル法によって得られる元結晶を準備することを出発点とし、一世代目の自立基板を得る工程である。以下、図1を参照しながら説明する。
[1−1.元結晶準備工程]
図1の(a)の様に、公知のアモノサーマル法によって得られ、窒化物半導体からなる第一の元結晶11を準備する。前記第一の元結晶は通常表面欠陥密度が10/cm程度かそれ以下と低い。一方でその面積は500mm程度と小さい。そのため、第一の元結晶は予め複数用意し、以降の工程で同時に用いる。アモノサーマル法によって得られる窒化物半導体は窒化ガリウム、窒化アルミニウム、窒化インジウムアルミニウムガリウム等があるが、その組成は目的に応じて適宜選択すれば良い。アモノサーマル法の技術は窒化ガリウムについて比較的進んでいるので、第一の元結晶に窒化ガリウムを選択すると本工程を実行し易い。
[1. First substrate manufacturing process]
The first substrate manufacturing process is a process of obtaining a first-generation self-supporting substrate starting from preparing an original crystal obtained by an ammonothermal method. Hereinafter, a description will be given with reference to FIG.
[1-1. Original crystal preparation process]
As shown in FIG. 1A, a first original crystal 11 made of a nitride semiconductor and obtained by a known ammonothermal method is prepared. The first original crystal usually has a surface defect density as low as about 10 4 / cm 3 or less. On the other hand, the area is as small as about 500 mm 2 . Therefore, a plurality of first original crystals are prepared in advance and used simultaneously in the subsequent steps. Nitride semiconductors obtained by the ammonothermal method include gallium nitride, aluminum nitride, indium aluminum gallium nitride, and the like, and the composition may be appropriately selected according to the purpose. Since the technology of the ammonothermal method is relatively advanced with respect to gallium nitride, this step can be easily performed when gallium nitride is selected as the first original crystal.

[1−2.第一の研削加工工程]
図1の(b)の様に、夫々の第一の元結晶11を矩形状に研削加工し、第二の元結晶12を得る。第二の元結晶12の研削加工された面には、次の工程で強固な接合部とすべく、後述の処理を施す。第二の元結晶12の上面から見た形状は厳密な直線、直角を有する必要はなく、先述の目的に適合する程度に矩形状であれば良い。略正方形の形状であれば次の工程で並べ易いが、夫々の第二の元結晶12の形状が略合同であれば必ずしも略正方形で無くても良い。
[1-2. First grinding process]
As shown in FIG. 1B, each first original crystal 11 is ground into a rectangular shape to obtain a second original crystal 12. The ground surface of the second original crystal 12 is subjected to a process described later in order to form a strong joint in the next step. The shape seen from the upper surface of the second original crystal 12 does not need to have a strict straight line and a right angle, but may be a rectangular shape suitable for the purpose described above. If it is a substantially square shape, it is easy to arrange in the next step. However, if the shapes of the respective second original crystals 12 are substantially congruent, they need not be substantially square.

[1−2−a.接合面の研磨]
ダイヤモンド砥粒等を用いて第二の元結晶11の接合面(図1の(b)においてはその法線が紙面に対して水平である為図示されていない)の表面粗さを1nm以下にする。より具体的な表面粗さは、元結晶の組成、結晶品質等に応じて適宜決定する。
[1-2-a. Polishing the joint surface]
Using diamond abrasive grains or the like, the surface roughness of the bonding surface of the second original crystal 11 (not shown in FIG. 1B because its normal is horizontal to the paper surface) is 1 nm or less. To do. More specific surface roughness is appropriately determined according to the composition of the original crystal, crystal quality, and the like.

[1−2−b.接合面の修飾]
プラズマ処理等によって接合面を水酸基で修飾する。プラズマ処理を行う場合、例えば酸素100%、圧力1.0〜3.0Pa程度の雰囲気下で高周波等の電場をかけ、放電させれば良い。
[1-2-b. Modification of joint surface]
The bonding surface is modified with a hydroxyl group by plasma treatment or the like. When performing the plasma treatment, for example, an electric field such as a high frequency may be applied in an atmosphere of 100% oxygen and a pressure of about 1.0 to 3.0 Pa to be discharged.

[1−3.第一の接合工程]
図1の(c)の様に、得られた複数の第二の元結晶12を全体として矩形状に並べ、接合し、第一の下地基板13を得る。図1の(c)では第一の下地基板13は4枚の第二の元結晶12からなるが、枚数、並べ方は必ずしもこの通りである必要はない。複数の第二の元結晶12の並べ方は、夫々の第二の元結晶のオフ角、結晶面等が全体として統一されるような並べ方とする。接合は、水酸基で予め修飾された接合面を互いに接触させ、熱処理等によって接合面を脱水し、接合面間に共有結合を与えることでなされる。このようにして、並べられた複数の第二の元結晶12は一体化され、第一の下地基板13となる。得られた第一の下地基板13は適当な冶具に適当な方法で固定し、次の工程に移す。
[1-3. First joining process]
As shown in FIG. 1C, the obtained plurality of second original crystals 12 are arranged in a rectangular shape as a whole and bonded to obtain a first base substrate 13. In FIG. 1C, the first base substrate 13 is composed of four second original crystals 12, but the number and arrangement are not necessarily the same. The plurality of second original crystals 12 are arranged such that the off angles, crystal planes, and the like of the respective second original crystals are unified as a whole. Bonding is performed by bringing the bonding surfaces modified beforehand with a hydroxyl group into contact with each other, dehydrating the bonding surfaces by heat treatment or the like, and providing a covalent bond between the bonding surfaces. In this way, the plurality of arranged second original crystals 12 are integrated into a first base substrate 13. The obtained first base substrate 13 is fixed to an appropriate jig by an appropriate method, and is transferred to the next step.

[1−4.第一の成長工程]
図1の(d)の様に、得られた第一の下地基板13上に公知の手法を用いて第一の窒化物半導体層14を形成する。公知の手法は気相成長法、液相成長法、固相成長法のいずれでも良いが、気相成長法は結晶の成長方向の制御が行い易いため好ましい。なかでもハイドライド気相成長法(HVPE法)は結晶成長速度(成膜速度)が速いため、特に好ましい。
[1-4. First growth process]
As shown in FIG. 1D, the first nitride semiconductor layer 14 is formed on the obtained first base substrate 13 using a known method. A known method may be any of a vapor phase growth method, a liquid phase growth method, and a solid phase growth method. However, the vapor phase growth method is preferable because the crystal growth direction can be easily controlled. Of these, hydride vapor phase epitaxy (HVPE) is particularly preferred because of its high crystal growth rate (film formation rate).

[1−5.第一の除去工程]
図1の(e)の様に、得られた第一の窒化物半導体層14の外周部を研削、除去する。窒化物半導体層は外部からの衝撃によってクラックが入りやすいので、この工程で結晶表面を荒らし、次の工程におけるクラック発生を防止する。第一の窒化物半導体層14はその面積が小さいので、ハンドグラインダ、ディスクグラインダ等、小型で研削自由度の高い携帯用グラインダを用いて研削、除去すると、外形を維持した状態で以降の工程に移ることができ、好ましい。誤って第一の下地基板13を研削、除去してしまわない様、研削、除去する外周部は、第一の下地基板13の上面から離間した領域であることが好ましい。研削、除去に用いる砥石は、窒化物半導体層がある程度の速さで研削、除去できる程度に粗いものを用いる。砥石、結着剤の種類等にもよるが、番手が180から300ぐらいのものであれば特に問題ない。
[1-5. First removal step]
As shown in FIG. 1E, the outer peripheral portion of the obtained first nitride semiconductor layer 14 is ground and removed. Since the nitride semiconductor layer is easily cracked by an impact from the outside, the crystal surface is roughened in this step, and the occurrence of cracks in the next step is prevented. Since the first nitride semiconductor layer 14 has a small area, when it is ground and removed using a small-sized portable grinder such as a hand grinder or a disk grinder, the outer shape is maintained and the subsequent process is performed. This is preferable. The outer peripheral portion to be ground and removed is preferably a region separated from the upper surface of the first base substrate 13 so that the first base substrate 13 is not accidentally ground and removed. A grindstone used for grinding and removal is rough enough to grind and remove the nitride semiconductor layer at a certain speed. Although depending on the type of grindstone and binder, there is no particular problem if the count is about 180 to 300.

[1−6.第一の分離工程]
外周部を研削された第一の窒化物半導体層14を、ワイヤーソー等を用いて第一の下地基板から分離する。やはり誤って第一の下地基板を研削、除去してしまわない様、ワイヤーソーは第一の下地基板の上面からある程度離間した高さを通過させることが好ましい。分離された第一の窒化物半導体層は、第二の下地基板15として以降の工程で用いる。より大きな自立基板を得るため、予め第二の下地基板15を複数用意し、以降の工程で同時に用いる。
[1-6. First separation step]
The first nitride semiconductor layer 14 whose outer peripheral portion is ground is separated from the first base substrate using a wire saw or the like. In order not to accidentally grind and remove the first base substrate, it is preferable that the wire saw pass through a height that is somewhat separated from the upper surface of the first base substrate. The separated first nitride semiconductor layer is used in the subsequent steps as the second base substrate 15. In order to obtain a larger free-standing substrate, a plurality of second base substrates 15 are prepared in advance and used simultaneously in the subsequent steps.

[1−7.下地基板の再利用]
第一の分離工程で第二の下地基板(第一の窒化物半導体層)を除いた残部16は、第一の下地基板13の上面の高さ辺りまで研磨して平坦化し、新たな第一の下地基板として用いても良い。このように再利用される下地基板を用いた新たな第一の基板製造工程を経ても、同等の品質を有する大面積の窒化物半導体基板を得ることができる。また、下地基板の再利用は当該下地基板を得るまでの工程を省略することにつながるので、製造効率がより高まることになる。なお、第一の成長工程における熱履歴が元結晶の熱履歴と著しく異なる場合、第一の下地基板の結晶性が悪化することがある。そのため、本工程における研磨は、新たな第一の下地基板に第一の窒化物半導体層がわずかに残る程度に留めることが好ましい。
[1-7. Reuse of base substrate]
The remaining portion 16 excluding the second base substrate (first nitride semiconductor layer) in the first separation step is polished and flattened to the height of the upper surface of the first base substrate 13, and a new first It may be used as an underlying substrate. A large-area nitride semiconductor substrate having the same quality can be obtained even through a new first substrate manufacturing process using the base substrate that is reused in this way. In addition, the reuse of the base substrate leads to omitting the process until the base substrate is obtained, and thus the manufacturing efficiency is further increased. If the thermal history in the first growth step is significantly different from the thermal history of the original crystal, the crystallinity of the first base substrate may deteriorate. For this reason, it is preferable that the polishing in this step be limited to the extent that the first nitride semiconductor layer remains slightly on the new first base substrate.

[2.第二の基板製造工程]
第二の製造工程は、第二の下地基板を用い、更に大きな二世代目の自立基板を得る工程である。以下、図2を参照しながら説明する。
[2. Second substrate manufacturing process]
The second manufacturing process is a process of obtaining a larger second generation free-standing substrate using the second base substrate. Hereinafter, a description will be given with reference to FIG.

[2−1.第二の接合工程]
図2の(a)及び(b)の様に、得られた複数の第二の下地基板21を全体として矩形状に並べ、接合し、第三の下地基板22を得る。詳細は第一の接合工程に準ずる。
[2-1. Second joining process]
As shown in FIGS. 2A and 2B, the plurality of obtained second base substrates 21 are arranged in a rectangular shape as a whole and bonded to obtain a third base substrate 22. Details follow the first joining process.

[2−2.第二の研削加工工程]
図2の(c)の様に、得られた第三の下地基板22を略円形に研削加工し、第四の下地基板23を得る。第三の下地基板22は十分な大きさ(3000mm程度以上)なので、さらなる接合工程を意識する必要が無く、むしろ後述の円筒研削盤の様な大型の装置による除去工程が可能な形状にする。
[2-2. Second grinding process]
As shown in FIG. 2C, the obtained third base substrate 22 is ground into a substantially circular shape to obtain a fourth base substrate 23. Since the third base substrate 22 is sufficiently large (about 3000 mm 2 or more), there is no need to be aware of further joining processes, but rather a shape that can be removed by a large apparatus such as a cylindrical grinder described later. .

[2−3.第二の成長工程]
図2の(d)の様に、得られた第四の下地基板23上に公知の手法を用いて第二の窒化物半導体層24を形成する。詳細は第一の成長工程に準ずる。
[2-3. Second growth process]
As shown in FIG. 2D, the second nitride semiconductor layer 24 is formed on the obtained fourth base substrate 23 using a known method. Details follow the first growth process.

[2−4.第二の除去工程]
図2の(e)の様に、得られた第二の窒化物半導体層24の外周部を研削、除去する。第四の下地基板は十分大面積なので、砥石の動きをより精密に制御可能な円筒研削盤を用いると、第二の窒化物半導体層24に加わる外力のムラが減る。その結果、窒化物半導体層24にクラックが発生しにくくなり好ましい。誤って第四の下地基板23を研削、除去してしまわない様、研削、除去する外周部は、第四の下地基板23の上面から離間した領域であることが好ましい。研削、削除に用いる砥石については、第一の除去工程に準ずる。
[2-4. Second removal step]
As shown in FIG. 2E, the outer peripheral portion of the obtained second nitride semiconductor layer 24 is ground and removed. Since the fourth base substrate has a sufficiently large area, unevenness in external force applied to the second nitride semiconductor layer 24 is reduced by using a cylindrical grinder capable of controlling the movement of the grindstone more precisely. As a result, cracks are less likely to occur in the nitride semiconductor layer 24, which is preferable. The outer peripheral portion to be ground and removed is preferably a region separated from the upper surface of the fourth base substrate 23 so that the fourth base substrate 23 is not accidentally ground and removed. The grindstone used for grinding and deletion conforms to the first removal step.

[2−5.第二の分離工程]
図2の(f)のように、外周部を研削された第二の窒化物半導体層24を、ワイヤーソー等を用いて第四の下地基板23から分離する。詳細は第一の分離工程に準ずる。分離された第二の窒化物半導体層は、最終基板25として半導体素子構造を形成するために用いる。
[2-5. Second separation step]
As shown in FIG. 2F, the second nitride semiconductor layer 24 whose outer peripheral portion is ground is separated from the fourth base substrate 23 using a wire saw or the like. Details follow the first separation step. The separated second nitride semiconductor layer is used to form a semiconductor element structure as the final substrate 25.

[2−6.下地基板の再利用]
第二の分離工程で最終基板(第二の窒化物半導体層)を除いた残部26は、第四の下地基板23の上面辺りの高さまで研磨して平坦化し、新たな第四の下地基板として用いても良い。このように再利用される下地基板を用いた新たな第二の基板製造工程を経ても、同等の品質を有する大面積の窒化物半導体基板を得ることができる。研磨については新たな第一の下地基板を得る場合に準ずる。
[2-6. Reuse of base substrate]
The remaining portion 26 excluding the final substrate (second nitride semiconductor layer) in the second separation step is polished and flattened to a height around the upper surface of the fourth base substrate 23, and used as a new fourth base substrate. It may be used. A large-area nitride semiconductor substrate having the same quality can be obtained even through a new second substrate manufacturing process using the base substrate that is reused in this way. Polishing conforms to the case of obtaining a new first base substrate.

[追加の工程]
最終基板25を新たに下地基板として用い、より新しい世代の自立基板を製造しても良い。
[Additional steps]
The final substrate 25 may be newly used as a base substrate to produce a newer generation free-standing substrate.

[最終基板の選択]
最終基板25の特性は、その上に形成する半導体素子構造等に応じて適宜制御しても良い。例えば特定元素をドープして導電性を付与しても良い。あるいは特定の大きさの空隙(ボイド)が存在する領域を設けても良い。
[Select final board]
The characteristics of the final substrate 25 may be appropriately controlled according to the semiconductor element structure formed thereon. For example, a specific element may be doped to impart conductivity. Or you may provide the area | region where the space | gap (void) of a specific magnitude | size exists.

以下、実施例を用いてより具体的に説明する。なお、実施例等における転位密度はカソードルミネッセンス法(CL法)によって求めた。   Hereinafter, it demonstrates more concretely using an Example. In addition, the dislocation density in an Example etc. was calculated | required by the cathodoluminescence method (CL method).

アモノサーマル法により得られ、直径25mm、厚さ500〜800μmでC面を主面とする窒化ガリウムからなる第一の元結晶を準備した。   A first original crystal obtained by an ammonothermal method and made of gallium nitride having a diameter of 25 mm and a thickness of 500 to 800 μm and having a C-plane as a main surface was prepared.

第一の元結晶を研削加工し、一辺が17.5mmの正方形である第二の元結晶を得た。それぞれの元結晶の接合面として用いる面は、酸素雰囲気下でプラズマ処理し、水酸基修飾を施した。   The first original crystal was ground to obtain a second original crystal having a 17.5 mm square side. The surface used as the bonding surface of each original crystal was subjected to plasma treatment in an oxygen atmosphere and subjected to hydroxyl modification.

水酸基修飾が施された第二の元結晶を4枚を並べ、水素結合によって仮接合した。その後加熱して接合面を脱水、接合し、一辺が35mmの正方形である第一の下地基板を得た。   Four pieces of the second original crystal subjected to hydroxyl modification were arranged and temporarily joined by hydrogen bonding. Thereafter, the bonded surfaces were dehydrated and bonded by heating to obtain a first base substrate having a square with a side of 35 mm.

得られた第一の下地基板上に、ハイドライド気相成長法(HPVE法)で膜厚1.0〜1.5mmの第一の窒化ガリウム層を成長させた。   A first gallium nitride layer having a thickness of 1.0 to 1.5 mm was grown on the obtained first base substrate by a hydride vapor phase growth method (HPVE method).

得られた第一の窒化ガリウム層の外周部をハンドグラインダを用いて研削、除去した。ハンドグラインダは第一の下地基板の上面から0.2mm以上の領域にのみ当て、外周部の鏡面が失われるまで外周部を研削、除去した。砥石は番手が180でメタルボンドのものを用いた。   The outer periphery of the obtained first gallium nitride layer was ground and removed using a hand grinder. The hand grinder was applied only to an area of 0.2 mm or more from the upper surface of the first base substrate, and the outer peripheral portion was ground and removed until the mirror surface of the outer peripheral portion was lost. A grindstone with a count of 180 and a metal bond was used.

研削、除去後、ワイヤーソーを用いて第一の窒化ガリウム層を第一の下地基板から分離し、一辺が30mmの正方形である第二の下地基板を得た。ワイヤーソーは第一の下地基板の上面から0.5mm近辺の高さを通過させた。   After grinding and removal, the first gallium nitride layer was separated from the first base substrate using a wire saw to obtain a second base substrate having a square with a side of 30 mm. The wire saw was passed through a height of about 0.5 mm from the upper surface of the first base substrate.

得られた第二の下地基板の接合面として用いる面に、第二の元結晶同様にプラズマ処理し、水酸基修飾を施した。   The surface to be used as the bonding surface of the obtained second base substrate was subjected to plasma treatment in the same manner as the second original crystal, and subjected to hydroxyl modification.

水酸基修飾が施された第二の下地基板を4枚並べ、第二の元結晶同様に接合し、一辺が60mmの正方形である第三の下地基板を得た。   Four second base substrates modified with a hydroxyl group were arranged and joined in the same manner as the second original crystal to obtain a third base substrate having a square with a side of 60 mm.

得られた第三の下地基板を研削加工し、直径58mmの円である第四の下地基板を得た。   The obtained 3rd base substrate was ground and the 4th base substrate which is a circle of diameter 58mm was obtained.

得られた第四の下地基板上に、HVPE法で膜厚1.5〜2.0mmの第二の窒化ガリウム層を成長させた。   A second gallium nitride layer having a thickness of 1.5 to 2.0 mm was grown on the obtained fourth base substrate by HVPE.

得られた第二の窒化ガリウム層の外周部を円筒研削盤を用いて研削、除去した。円筒研削盤は第四の下地基板の上面から0.1mm以上の領域にのみ当て、その外周部は中心方向に1mmだけ研削、除去した。砥石は番手が400〜500でメタルボンドのものを用いた。   The outer peripheral portion of the obtained second gallium nitride layer was ground and removed using a cylindrical grinder. The cylindrical grinder was applied only to an area of 0.1 mm or more from the upper surface of the fourth base substrate, and its outer peripheral portion was ground and removed by 1 mm in the central direction. A grindstone with a count of 400 to 500 and a metal bond was used.

研削、除去後、ワイヤーソーを用いて第二の窒化ガリウム層を第四の下地基板から分離し、直径56mmの円である最終基板を得た。ワイヤーソーは第四の下地基板の上面から0.2〜0.3mm近辺の高さを通過させた。   After grinding and removal, the second gallium nitride layer was separated from the fourth base substrate using a wire saw to obtain a final substrate having a diameter of 56 mm. The wire saw was passed through a height of about 0.2 to 0.3 mm from the upper surface of the fourth base substrate.

得られた最終基板上に、HVPE法で膜厚1.0〜1.5mmのシリコンドープされた窒化ガリウムからなる、第三の窒化ガリウム層を成長させた。得られた第三の窒化ガリウム層の外周2.5mmを円筒研削盤を用いて研削、除去した後、ワイヤーソーを用いて第三の窒化ガリウム層を最終基板から分離し、直径51mmの円である最終基板IIを得た。ワイヤーソーは最終基板の上面から0.2〜0.3mm近辺の高さを通過させた。   A third gallium nitride layer made of silicon-doped gallium nitride having a thickness of 1.0 to 1.5 mm was grown on the obtained final substrate by the HVPE method. After grinding and removing the outer periphery 2.5 mm of the obtained third gallium nitride layer using a cylindrical grinder, the third gallium nitride layer was separated from the final substrate using a wire saw, and the circle was 51 mm in diameter. A final substrate II was obtained. The wire saw was passed through a height of about 0.2 to 0.3 mm from the upper surface of the final substrate.

実施例1を複数回繰り返したところ、最終基板IIのクラック発生率は約10%、転位密度は1.0×10個/cm〜1.0×10個/cmであった。 When Example 1 was repeated a plurality of times, the crack generation rate of the final substrate II was about 10%, and the dislocation density was 1.0 × 10 4 pieces / cm 2 to 1.0 × 10 5 pieces / cm 2 .

実施例1において第二の下地基板(第一の窒化ガリウム層)を分離した残部(第一の下地基板を含む部分)の上面を研磨し、一辺が35mmの正方形である第一の下地基板(新たな第一の下地基板)とした。研磨は、第一の窒化ガリウム層が厚み方向に0.1〜0.2mm程残る程度に行った。   The upper surface of the remaining portion (the portion including the first base substrate) from which the second base substrate (first gallium nitride layer) is separated in Example 1 is polished, and a first base substrate (35 mm square on one side) A new first base substrate) was obtained. Polishing was performed so that the first gallium nitride layer remained in the thickness direction by about 0.1 to 0.2 mm.

以降、実施例1と同様にして直径51mmの円である最終基板IIを得た。   Thereafter, in the same manner as in Example 1, a final substrate II having a circle with a diameter of 51 mm was obtained.

最終基板IIのクラック発生率及び転位密度は実施例1と同様であった。   The crack generation rate and dislocation density of the final substrate II were the same as in Example 1.

実施例1において最終基板(第二の窒化ガリウム層)を分離した残部(第四の下地基板を含む部分)を研磨し、直径が58mmの円である第四の下地基板(新たな第四の下地基板)とした。以降実施例1と同様にして直径51mmの円である最終基板IIを得た。研磨は、第二の窒化ガリウム層が厚み方向に0.05〜0.1mm程残る程度に行った。   The remaining portion (the portion including the fourth base substrate) from which the final substrate (second gallium nitride layer) is separated in Example 1 is polished, and a fourth base substrate (new fourth base) having a circle having a diameter of 58 mm is polished. A base substrate). Thereafter, in the same manner as in Example 1, a final substrate II having a diameter of 51 mm was obtained. Polishing was performed so that the second gallium nitride layer remained in the thickness direction by about 0.05 to 0.1 mm.

最終基板IIのクラック発生率及び転位密度は実施例1と同様であった。   The crack generation rate and dislocation density of the final substrate II were the same as in Example 1.

実施例1において最終基板II(第三の窒化ガリウム層)を分離した残部(最終基板を含む部分)の上面を研磨し、直径が56mmの円である第五の下地基板(新たな最終基板)とした。以降実施例1と同様にして直径51mmの円である最終基板IIを得た。研磨は、第三の窒化ガリウム層が厚み方向に0.05〜0.1mm程残る程度に行った。   The upper surface of the remaining part (the part including the final substrate) from which the final substrate II (third gallium nitride layer) is separated in Example 1 is polished, and a fifth base substrate (new final substrate) having a diameter of 56 mm is obtained. It was. Thereafter, in the same manner as in Example 1, a final substrate II having a diameter of 51 mm was obtained. Polishing was performed so that the third gallium nitride layer remained in the thickness direction by about 0.05 to 0.1 mm.

最終基板IIのクラック発生率及び転位密度は実施例1と同様であった。   The crack generation rate and dislocation density of the final substrate II were the same as in Example 1.

実施例1において、得られた第二の窒化ガリウム層の外周1mmをハンドグラインダを用いて研削、除去した以外実施例1と同様に行い、直径51mmの円である最終基板IIを得た。   In Example 1, except that the outer periphery 1 mm of the obtained second gallium nitride layer was ground and removed using a hand grinder, the same procedure as in Example 1 was performed to obtain a final substrate II which was a circle having a diameter of 51 mm.

最終基板IIの転位密度は実施例1と同様であった。   The dislocation density of the final substrate II was the same as in Example 1.

実施例1において、得られた第三の窒化ガリウム層の外周2.5mmをハンドグラインダを用いて研削、除去した以外実施例1と同様に行い、直径51mmの円である最終基板IIを得た。   In Example 1, the same process as in Example 1 was performed except that the outer periphery of the obtained third gallium nitride layer was ground and removed by using a hand grinder to obtain a final substrate II which was a circle having a diameter of 51 mm. .

最終基板IIの転位密度は実施例1と同様であった。   The dislocation density of the final substrate II was the same as in Example 1.

[比較例]
直径が76mmの円であり、その上面がC面であるサファイア基板を第一の下地基板として用意した。第一の下地基板上に、MOCVD法で膜厚0.055〜0.1mmの第一の窒化ガリウム層を成長させた。
[Comparative example]
A sapphire substrate having a circle with a diameter of 76 mm and an upper surface being a C-plane was prepared as a first base substrate. A first gallium nitride layer having a thickness of 0.055 to 0.1 mm was grown on the first base substrate by MOCVD.

得られた第一の窒化ガリウム層をレーザーリフトオフによって下地基板から剥離し、第二の下地基板を得た。   The obtained first gallium nitride layer was peeled off from the base substrate by laser lift-off to obtain a second base substrate.

得られた第二の下地基板上に、HVPE法で膜厚1mmの第二の窒化ガリウム層を成長させた。   A second gallium nitride layer having a thickness of 1 mm was grown on the obtained second base substrate by HVPE.

得られた第二の窒化ガリウム層の外周約20mmを円筒研削盤を用いて研削、除去した後、ワイヤーソーを用いて第二の窒化ガリウム層を第二の下地基板から分離し、直径56mmの円である最終基板を得た。ワイヤーソーは第二の下地基板の上面から0.1〜0.2mm近辺の高さを通過させた。   After grinding and removing about 20 mm of the outer periphery of the obtained second gallium nitride layer using a cylindrical grinder, the second gallium nitride layer was separated from the second base substrate using a wire saw, and the diameter was 56 mm. A final substrate that was a circle was obtained. The wire saw was passed through a height of about 0.1 to 0.2 mm from the upper surface of the second base substrate.

得られた最終基板上に、HVPE法で膜厚1.0〜1.5mmのシリコンドープされた窒化ガリウムからなる、第三の窒化ガリウム層を成長させた。得られた第三の窒化ガリウム層の外周2.5mmを円筒研削盤を用いて研削、除去した後、ワイヤーソーを用いて第三の窒化ガリウム層を最終基板から分離し、直径51mmの円である最終基板IIを得た。ワイヤーソーは最終基板の上面から0.2〜0.3mm近辺の高さを通過させた。   A third gallium nitride layer made of silicon-doped gallium nitride having a thickness of 1.0 to 1.5 mm was grown on the obtained final substrate by the HVPE method. After grinding and removing the outer periphery 2.5 mm of the obtained third gallium nitride layer using a cylindrical grinder, the third gallium nitride layer was separated from the final substrate using a wire saw, and the circle was 51 mm in diameter. A final substrate II was obtained. The wire saw was passed through a height of about 0.2 to 0.3 mm from the upper surface of the final substrate.

最終基板IIの転位密度は6.0×10個/cm〜8.0×10個/cmであった。 The dislocation density of the final substrate II was 6.0 × 10 6 pieces / cm 2 to 8.0 × 10 6 pieces / cm 2 .

本発明の製造方法を用いて得られる自立基板は低転位密度と大面積を両立出来ていることが分かる。また、分離された下地基板は新たな下地基板として再利用しても同等な品質の自立基板が得られることが分かる。   It can be seen that the free-standing substrate obtained by using the manufacturing method of the present invention can achieve both a low dislocation density and a large area. In addition, it can be seen that even if the separated base substrate is reused as a new base substrate, a self-supporting substrate having the same quality can be obtained.

本願発明の製造方法を用いると、低転位密度且つ大面積の自立基板を歩留まり良く製造することができる。そのため、低転位密度の窒化物半導体発光素子を安価に且つ効率良く製造することが可能になる。このようにして得られる窒化物半導体発光素子は、例えば固体レーザーに好適に利用できる。   By using the manufacturing method of the present invention, a free-standing substrate having a low dislocation density and a large area can be manufactured with a high yield. Therefore, a nitride semiconductor light emitting device having a low dislocation density can be manufactured at low cost and efficiently. The nitride semiconductor light emitting device thus obtained can be suitably used for a solid laser, for example.

11 第一の元結晶
12 第二の元結晶
13 第一の下地基板
14 第一の窒化物半導体層
15 第二の下地基板
16 残部(新たな第一の下地基板)
21 第二の下地基板
22 第三の下地基板
23 第四の下地基板
24 第二の窒化物半導体層
25 最終基板
26 残部(新たな第四の下地基板)
DESCRIPTION OF SYMBOLS 11 1st original crystal 12 2nd original crystal 13 1st base substrate 14 1st nitride semiconductor layer 15 2nd base substrate 16 The remainder (new 1st base substrate)
21 Second base substrate 22 Third base substrate 23 Fourth base substrate 24 Second nitride semiconductor layer 25 Final substrate 26 Remaining (new fourth base substrate)

Claims (9)

アモノサーマル法により得られ、窒化物半導体からなる第一の元結晶を準備する元結晶準備工程と、
前記第一の元結晶を矩形状に研削加工し、第二の元結晶を得る第一の研削加工工程と、
複数の前記第二の元結晶を全体として矩形状に接合し、第一の下地基板を得る第一の接合工程と、
前記第一の下地基板上に第一の窒化物半導体層を形成する第一の成長工程と、
前記第一の窒化物半導体層の外周部を研削、除去する第一の除去工程と、
前記外周部を研削、除去された前記第一の窒化物半導体層を前記第一の下地基板から分離し、第二の下地基板を得る第一の分離工程と、
を含む第一の基板製造工程と、
複数の前記第二の下地基板を全体として矩形状に接合し、第三の下地基板を得る第二の接合工程と、
前記第三の下地基板を略円形に研削加工し、第四の下地基板を得る第二の研削加工工程と、
前記第四の下地基板上に第二の窒化物半導体層を形成する第二の成長工程と、
前記第二の窒化物半導体層の外周部を研削、除去する第二の除去工程と、
前記外周部を研削、除去された前記第二の窒化物半導体層を前記第四の下地基板から分離し、最終基板を得る第二の分離工程と、
を含む第二の基板製造工程と、
を含む窒化物半導体基板の製造方法。
An original crystal preparation step for preparing a first original crystal obtained by an ammonothermal method and made of a nitride semiconductor;
Grinding the first original crystal into a rectangular shape, and a first grinding step for obtaining a second original crystal;
A plurality of the second original crystals are bonded in a rectangular shape as a whole, and a first bonding step for obtaining a first base substrate;
A first growth step of forming a first nitride semiconductor layer on the first base substrate;
A first removing step of grinding and removing the outer periphery of the first nitride semiconductor layer;
A first separation step of separating the first nitride semiconductor layer from which the outer peripheral portion has been ground and removed from the first base substrate to obtain a second base substrate;
A first substrate manufacturing process including:
A plurality of second base substrates bonded together in a rectangular shape as a whole, a second bonding step to obtain a third base substrate;
Grinding the third base substrate into a substantially circular shape to obtain a fourth base substrate, and a second grinding step,
A second growth step of forming a second nitride semiconductor layer on the fourth base substrate;
A second removal step of grinding and removing the outer periphery of the second nitride semiconductor layer;
A second separation step of separating the second nitride semiconductor layer from which the outer peripheral portion has been ground and removed from the fourth base substrate to obtain a final substrate;
A second substrate manufacturing process including:
A method for manufacturing a nitride semiconductor substrate comprising:
前記第一の分離工程において前記第二の下地基板を除いた残部を研磨加工し、新たな第一の下地基板を得る第一の下地基板再生工程と、
前記新たな第一の下地基板を前記第一の下地基板として用い、前記第一の基板製造工程における前記第一の成長工程、前記第一の除去工程及び前記第一の分離工程を行う、新たな第一の基板製造工程と、
をさらに含む、請求項1に記載の製造方法。
In the first separation step, the remaining portion excluding the second base substrate is polished, a first base substrate regeneration step to obtain a new first base substrate,
The new first base substrate is used as the first base substrate, and the first growth step, the first removal step, and the first separation step in the first substrate manufacturing step are performed. The first substrate manufacturing process,
The manufacturing method according to claim 1, further comprising:
前記第二の分離工程において前記最終基板を除いた残部を研磨加工し、新たな第四の下地基板を得る第二の下地基板再生工程と、
前記新たな第四の下地基板を前記第四の下地基板として用い、前記第二の基板製造工程における前記第二の成長工程、前記第二の除去工程及び前記第二の分離工程を行う、新たな第二の基板製造工程と、
をさらに含む、請求項1又は2に記載の製造方法。
Polishing the remaining part excluding the final substrate in the second separation step, a second base substrate regeneration step to obtain a new fourth base substrate;
The new fourth base substrate is used as the fourth base substrate, and the second growth step, the second removal step, and the second separation step in the second substrate manufacturing step are performed. A second substrate manufacturing process,
The manufacturing method according to claim 1, further comprising:
前記第一の成長工程が気相成長法によってなされる、請求項1乃至3のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the first growth step is performed by a vapor deposition method. 前記第二の成長工程が気相成長法によってなされる、請求項1乃至4のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the second growth step is performed by a vapor deposition method. 前記気相成長法がハイドライド気相成長法である、請求項4又は5に記載の製造方法。   The manufacturing method according to claim 4 or 5, wherein the vapor phase growth method is a hydride vapor phase growth method. 前記第一の窒化物半導体層が窒化ガリウムからなる、請求項1乃至6のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the first nitride semiconductor layer is made of gallium nitride. 前記第二の窒化物半導体層が窒化ガリウムからなる、請求項1乃至7のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the second nitride semiconductor layer is made of gallium nitride. 前記第一の元結晶が窒化ガリウムからなる、請求項1乃至8のいずれか一項に記載の製造方法。   The manufacturing method according to claim 1, wherein the first original crystal is made of gallium nitride.
JP2014064413A 2014-03-26 2014-03-26 Manufacturing method of nitride semiconductor substrate Active JP6264990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014064413A JP6264990B2 (en) 2014-03-26 2014-03-26 Manufacturing method of nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064413A JP6264990B2 (en) 2014-03-26 2014-03-26 Manufacturing method of nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2015187043A JP2015187043A (en) 2015-10-29
JP6264990B2 true JP6264990B2 (en) 2018-01-24

Family

ID=54429550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064413A Active JP6264990B2 (en) 2014-03-26 2014-03-26 Manufacturing method of nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP6264990B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405889B2 (en) * 2014-10-29 2018-10-17 三菱ケミカル株式会社 GaN substrate manufacturing method
JP6327136B2 (en) * 2014-12-05 2018-05-23 三菱ケミカル株式会社 Method for producing seamed GaN crystal and method for producing GaN crystal
JP6604205B2 (en) * 2016-01-05 2019-11-13 国立大学法人大阪大学 Nitride crystal substrate manufacturing method and crystal growth substrate
JP6735647B2 (en) * 2016-09-29 2020-08-05 株式会社サイオクス Method for manufacturing nitride crystal substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860927B2 (en) * 2002-12-11 2012-01-25 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン Epitaxy substrate and manufacturing method thereof
JP5509680B2 (en) * 2009-06-01 2014-06-04 三菱化学株式会社 Group III nitride crystal and method for producing the same
JP4835749B2 (en) * 2009-12-18 2011-12-14 住友電気工業株式会社 Group III nitride crystal substrate, group III nitride crystal substrate with epi layer, and semiconductor device and method for manufacturing the same
JP5757068B2 (en) * 2010-08-02 2015-07-29 住友電気工業株式会社 GaN crystal growth method
JP5789929B2 (en) * 2010-08-03 2015-10-07 住友電気工業株式会社 Group III nitride crystal growth method
JP5808208B2 (en) * 2011-09-15 2015-11-10 株式会社サイオクス Manufacturing method of nitride semiconductor substrate
JP2013170096A (en) * 2012-02-21 2013-09-02 Mitsubishi Chemicals Corp Method for producing group 13 nitride crystal

Also Published As

Publication number Publication date
JP2015187043A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
KR102312812B1 (en) Bonded soi wafer manufacturing method
JP6572694B2 (en) Method for manufacturing SiC composite substrate and method for manufacturing semiconductor substrate
JP6264990B2 (en) Manufacturing method of nitride semiconductor substrate
JP2005064188A (en) Method for collecting and reproducing substrate and manufacture of semiconductor wafer
JP2018514498A (en) Method for manufacturing diamond-semiconductor composite substrate
CN1549357A (en) Nitride semiconductor wafer and method of processing nitride semiconductor wafer
JP2009117533A (en) Manufacturing method of silicon carbide substrate
JP6279619B2 (en) Manufacturing method of semiconductor substrate
JP6365992B2 (en) Group III nitride crystal manufacturing method and RAMO4 substrate
JP2018027893A (en) Production method of group iii nitride semiconductor single crystal
JP6450086B2 (en) Method for manufacturing compound semiconductor substrate
JP6167984B2 (en) Wafer processing method
TWI397618B (en) Nitride semiconductor template and method of manufacturing the same
US20160189954A1 (en) Methods of performing semiconductor growth using reusable carrier substrates and related carrier substrates
JP2007284283A (en) PROCESSING METHOD FOR GaN SINGLE CRYSTAL SUBSTRATE AND GaN SINGLE CRYSTAL SUBSTRATE
JP2008115074A (en) Gallium nitride single crystal substrate and surface treatment method
CN111509095B (en) Composite substrate and manufacturing method thereof
JP2021160971A (en) Method for manufacturing silicon carbide wafer, method for manufacturing semiconductor substrate, and method for manufacturing silicon carbide semiconductor device
US20220223476A1 (en) Crystal efficient sic device wafer production
TW201530757A (en) Engineered substrates for use in crystalline-nitride based devices
JP2011124578A (en) Method of producing semiconductor wafer
WO2020095610A1 (en) Method for manufacturing semiconductor substrate for light-emitting element, and method for manufacturing light-emitting element
CN110663096A (en) Compound semiconductor substrate and method for manufacturing same
WO2017022647A1 (en) Diamond substrate and method for producing diamond substrate
JP4440810B2 (en) Manufacturing method of bonded wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6264990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250