JP6260997B2 - Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method - Google Patents

Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method Download PDF

Info

Publication number
JP6260997B2
JP6260997B2 JP2014038668A JP2014038668A JP6260997B2 JP 6260997 B2 JP6260997 B2 JP 6260997B2 JP 2014038668 A JP2014038668 A JP 2014038668A JP 2014038668 A JP2014038668 A JP 2014038668A JP 6260997 B2 JP6260997 B2 JP 6260997B2
Authority
JP
Japan
Prior art keywords
nanocarbon
cnh
polymer
pda
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014038668A
Other languages
Japanese (ja)
Other versions
JP2015147718A (en
Inventor
民芳 張
民芳 張
梅 楊
梅 楊
湯田坂 雅子
雅子 湯田坂
英次郎 都
英次郎 都
正雄 国岡
正雄 国岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014038668A priority Critical patent/JP6260997B2/en
Publication of JP2015147718A publication Critical patent/JP2015147718A/en
Application granted granted Critical
Publication of JP6260997B2 publication Critical patent/JP6260997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ナノカーボン複合体の製造方法及び該方法で製造されたナノカーボン複合体に関するものであり、特に、ナノカーボンの特性を活かして、光熱変換により、ポリマーをナノカーボンの表面に選択的に合成する方法に関する。   The present invention relates to a method for producing a nanocarbon composite and a nanocarbon composite produced by the method, and in particular, a polymer is selectively applied to the surface of nanocarbon by photothermal conversion utilizing the characteristics of nanocarbon. It relates to the method of synthesis.

ナノチューブや、カーボンナノホーン等のナノカーボンは、ナノメートルサイズの高機能材料として知られており、ナノカーボンの応用研究の中で、ナノカーボンと高分子との複合体(以下、「ナノカーボン高分子複合体」という。)は、ナノカーボンの化学的安定性、機械的強度、電気熱良導体といった特性を活かせるものとして期待されている。
従来、ナノカーボン高分子複合体は、ナノカーボンの表面を前処理修飾した後、高分子との共有結合による化学反応を行うか、あるいは直接混合する等の方法で製造されている(非特許文献1−3、特許文献1)。
Nanocarbons such as nanotubes and carbon nanohorns are known as highly functional materials of nanometer size, and in the application research of nanocarbon, composites of nanocarbon and polymer (hereinafter referred to as `` nanocarbon polymer “Composite” is expected to utilize the properties of nanocarbon such as chemical stability, mechanical strength, and good electrical heat conductor.
Conventionally, nanocarbon polymer composites have been manufactured by a method such as pretreatment modification of the surface of nanocarbon, followed by chemical reaction by covalent bond with the polymer, or direct mixing (non-patent literature). 1-3, Patent Document 1).

これらの方法で製造されたナノカーボンの応用例としては、すでに、ナノカーボン含有導電性ポリマーが実用化されており、高温耐性ゴムの研究も進んでいる。こうしたナノカーボン高分子複合体のマクロスコピック用途での成功例が増えているのに対して、ナノスケール用途では、ナノカーボン高分子複合体の製造研究はほとんど行われていない。
ナノスケール用途の代表的なものが、ナノカーボンを体内での薬剤キャリアーやがんイメージングに用いる場合であって、現在、ナノカーボンの生体親和性を高めるために行われている化学修飾やリン脂質ポリエチレングリコール吸着は、生体親和性獲得にある程度成功している(非特許文献4−6)。しかし、化学修飾では被覆率が低く、吸着させた場合は脱離が欠点となっており、生体親和性あるいは生分解性高分子がナノカーボンの表面を完全被覆した複合体が望まれている。
As examples of applications of nanocarbons produced by these methods, nanocarbon-containing conductive polymers have already been put into practical use, and research on high-temperature resistant rubbers is also progressing. While the success of macroscopic applications of such nanocarbon polymer composites has increased, there has been little research on production of nanocarbon polymer composites in nanoscale applications.
Typical examples of nanoscale applications are when nanocarbons are used for drug carriers and cancer imaging in the body. Currently, chemical modifications and phospholipids are being carried out to increase the biocompatibility of nanocarbons. Polyethylene glycol adsorption has succeeded to some extent in obtaining biocompatibility (Non-Patent Documents 4-6). However, the chemical modification has a low coating rate, and desorption is a disadvantage when adsorbed, and a composite in which a biocompatible or biodegradable polymer completely covers the surface of nanocarbon is desired.

この生体親和性高分子あるいは生分解性高分子を用いた複合体が合成されると、細胞内酵素により選択的に高分子が生分解されるため、ナノカーボン内部に内包した薬剤分子などが高分子の生分解に伴い徐放できる可能性がある。これまで、薬剤キャリアーからの薬剤徐放を能動的に遅くすることはできておらず、これが可能になることは、薬剤キャリアー開発にとって大きな成果となる。   When a complex using this biocompatible polymer or biodegradable polymer is synthesized, the polymer is selectively biodegraded by intracellular enzymes, resulting in high drug molecules encapsulated inside the nanocarbon. There is a possibility of sustained release as the molecule biodegrades. Until now, sustained drug release from drug carriers has not been able to be actively delayed, and the fact that this is possible is a great achievement for drug carrier development.

特開2006−241248号公報JP 2006-241248 A

R.Andrews,M.C.Weisenberger,Carbon nanotube polymer composites,Current Opinion in Solid State and Materials Science 8 (2004) 31-37R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites, Current Opinion in Solid State and Materials Science 8 (2004) 31-37 J.Coleman,U.Khan,W.Blau,Y.Gun’ko,Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44 (2006) 1624-1652J. Coleman, U. Khan, W. Blau, Y. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon 44 (2006) 1624-1652 Z.Spitalsky,D.Tasis,K.Papagelis,C.Galiotis,Carbon nanotube-polymer composites:Chemistry,processing,mechanical and electrical properties,Progress in Polymer Science 35 (2010) 357-401Z.Spitalsky, D.Tasis, K.Papagelis, C.Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science 35 (2010) 357-401 Y.Sun,K.Fu,Y.W.Huang,Functionalized Carbon Nanotubes:Properties and Applications,Acc.Chem.Res.35 (2002),1096-1104.Y. Sun, K. Fu, Y. W. Huang, Functionalized Carbon Nanotubes: Properties and Applications, Acc. Chem. Res. 35 (2002), 1096-1104. Z.Liu, X.Sun, N.Nakayama-Ratchford, H.Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Delivery Loading and Delivery, ACS Nano 1 (2007) 50-56.Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Delivery Loading and Delivery, ACS Nano 1 (2007) 50-56. Massimo Bottini, Nicola Rosato, and Nunzio Bottini, PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead, Biomacromolecules 12 (2011), 3381-3393.Massimo Bottini, Nicola Rosato, and Nunzio Bottini, PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead, Biomacromolecules 12 (2011), 3381-3393. N.W.S.Kam, M.O'Connell, J.A.Wisdom and H. Dai, Proc. Natl. Acad. Sci. U.S.A.,102 (2005), 11600-11605.N.W.S.Kam, M.O'Connell, J.A.Wisdom and H. Dai, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 11600-11605. M.Zhang, T.Murakami, K.Ajima, K.Tsuchida, A.S.D.Sandanayaka, O.Ito, S.Iijima, M.Yudasaka, Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy, Proc. Natl. Acad. Sci. U.S.A.,105 (2008) 14773-14778M.Zhang, T.Murakami, K.Ajima, K.Tsuchida, ASDSandanayaka, O.Ito, S.Iijima, M.Yudasaka, Fabrication of ZnPc / protein nanohorns for double photodynamic and hyperthermic cancer phototherapy, Proc. Natl. Acad Sci. USA, 105 (2008) 14773-14778

前述のとおり、ナノカーボンと高分子を直接混合するか、あるいはナノカーボンの表面に化学反応により、ナノカーボン高分子複合体を作成して、マクロスコピック用途に用いることは可能である。
しかしながら、ナノスケール用途には、ナノカーボンの表面を高分子で被覆する技術が必要であり、特に、生体親和性あるいは生分解性高分子がナノカーボンの表面を完全被覆したナノカーボン高分子複合体が望まれているのに対して、生分解性高分子とナノカーボンとの複合体についてはほとんど研究されていないのが現状である。
As described above, it is possible to create a nanocarbon polymer composite by directly mixing nanocarbon and polymer or by chemical reaction on the surface of nanocarbon and use it for macroscopic applications.
However, nanoscale applications require technology to coat the surface of nanocarbon with a polymer, and in particular, a nanocarbon polymer composite in which a biocompatible or biodegradable polymer completely coats the surface of nanocarbon. However, there has been little research on composites of biodegradable polymers and nanocarbons.

本発明は、こうした現状を鑑みてなされたものであって、ナノカーボンの表面が高分子で完全被覆され、且つ被覆した高分子が容易に脱離しないナノカーボン高分子複合体を製造する方法を提供することを目的とするものである。   The present invention has been made in view of these circumstances, and a method for producing a nanocarbon polymer composite in which the surface of nanocarbon is completely coated with a polymer and the coated polymer is not easily detached. It is intended to provide.

ナノカーボンが近赤外から可視光まで広い波長範囲に渡って光吸収し、吸収した光エネルギーを熱として放出でき、腫瘍の光温熱治療に利用可能という特性がある(非特許文献7、8)。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、このナノカーボンの光吸収・熱放出の特性を利用して、ナノカーボン表面局所的に高分子を熱重合合成することができるという知見を得た。
Nanocarbon absorbs light over a wide wavelength range from near infrared to visible light, and the absorbed light energy can be released as heat, and can be used for photothermal treatment of tumors (Non-Patent Documents 7 and 8). .
As a result of intensive research to achieve the above object, the present inventors have made it possible to thermally polymerize a polymer locally on the nanocarbon surface by utilizing the light absorption / heat release characteristics of the nanocarbon. I got the knowledge that I can do it.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]熱重合性モノマー又は熱重合性モノマーの溶液にナノカーボンを分散させた分散液に光を照射し、ナノカーボンの表面に、該モノマーが熱重合してなる高分子被覆を生成させることを特徴とするナノカーボン高分子複合体の製造方法。
[2]前記分散液に、重合開始剤及び/又は熱重合触媒を含有させること特徴とする[1]に記載のナノカーボン高分子複合体の製造方法。
[3]前記光の波長が、ナノカーボンの光吸収波長領域において、前記熱重合性モノマー又は熱重合性モノマーの溶液が吸収しない波長であることを特徴とする[1]又は[2]に記載のナノカーボン高分子複合体の製造方法。
[4]ナノカーボンの表面に、熱重合性モノマーが光照射により熱重合してなる高分子被覆を有することを特徴とするナノカーボン高分子複合体。
[5]前記高分子被覆が、生体親和性高分子、生分解性高分子又は機能性高分子からなることを特徴とする[4]に記載のナノカーボン高分子複合体。
[6]前記高分子被覆が、ポリカプロラクトンからなることを特徴とする[4]に記載のナノカーボン高分子複合体。
[7]前記高分子被覆が、ポリドーパミンからなることを特徴とする[4]に記載のナノカーボン高分子複合体。
[8]前記高分子被覆が、ポリカプロラクトンからなり、前記ナノカーボンの内部にシスプラチンを内包していることを特徴とする[4]に記載のナノカーボン高分子複合体。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] Irradiating light to a dispersion of nanocarbon in a thermopolymerizable monomer or a solution of thermopolymerizable monomer to form a polymer coating on the surface of the nanocarbon by thermal polymerization of the monomer. A method for producing a nanocarbon polymer composite characterized by the above.
[2] The method for producing a nanocarbon polymer composite according to [1], wherein the dispersion liquid contains a polymerization initiator and / or a thermal polymerization catalyst.
[3] The wavelength of the light is a wavelength that the thermopolymerizable monomer or the solution of the thermopolymerizable monomer does not absorb in the light absorption wavelength region of nanocarbon. [1] or [2] A method for producing a nanocarbon polymer composite.
[4] A nanocarbon polymer composite, characterized in that the surface of nanocarbon has a polymer coating formed by thermally polymerizing a thermopolymerizable monomer by light irradiation.
[5] The nanocarbon polymer composite according to [4], wherein the polymer coating is composed of a biocompatible polymer, a biodegradable polymer, or a functional polymer.
[6] The nanocarbon polymer composite as described in [4], wherein the polymer coating is made of polycaprolactone.
[7] The nanocarbon polymer composite as described in [4], wherein the polymer coating is made of polydopamine.
[8] The nanocarbon polymer composite according to [4], wherein the polymer coating is made of polycaprolactone, and cisplatin is encapsulated inside the nanocarbon.

本発明によれば、ナノカーボンの光吸収波長領域(赤外から可視・紫外光)において、分散媒や原料モノマーが吸収しない光の波長を選択し、ナノカーボン分散液に照射することにより、ナノカーボン表面及びその周囲において場所限定的に温度を上昇させ、ナノカーボンに表面選択的に高分子を重合することができ、光照射時間をかえることで重合度や被覆率などの制御が可能となる。
また、本発明の光熱変換を利用したナノカーボン表面選択的高分子熱重合による表面被覆は、高分子とナノカーボンの複合材開発においては、より高強度、高性質な新機能材料の創出に期待できる。
また、現在ナノカーボンの高分子複合材の研究においてもっとも技術的に困難点の一つは、カーボンナノチューブと高分子材の親和性の制御であり、例えば、親和性が低ければナノチューブの機械的強度を使った補強には効果が望めない。本発明の、光熱変換を用いたナノチューブの表面選択的な高分子被覆は、カーボンナノチューブと高分子との複合材作成の際の表面処理法として有用であり、複合材の機能アップをもたらす。
さらに、本発明を、ドラッグデリバリーに応用した場合には、抗がん剤内包ナノカーボンを生分解高分子で被覆し、内包薬物分子のがん細胞への徐放の効果を期待できる。
According to the present invention, in the light absorption wavelength region of nanocarbon (infrared to visible / ultraviolet light), the wavelength of light that is not absorbed by the dispersion medium or the raw material monomer is selected, and the nanocarbon dispersion is irradiated with the nanocarbon, The polymer can be polymerized surface-selectively on nanocarbon by raising the temperature in a limited manner on the carbon surface and its surroundings, and the degree of polymerization and coverage can be controlled by changing the light irradiation time. .
In addition, the surface coating by polymer thermal polymerization of nanocarbon surfaces using photothermal conversion of the present invention is expected to create new functional materials with higher strength and higher properties in the development of composite materials of polymers and nanocarbons. it can.
In addition, one of the most technical difficulties in research on nanocarbon polymer composites is the control of the affinity between carbon nanotubes and polymer materials. For example, if the affinity is low, the mechanical strength of the nanotubes We cannot expect effect for reinforcement using. The surface-selective polymer coating of nanotubes using photothermal conversion of the present invention is useful as a surface treatment method for producing a composite material of carbon nanotubes and a polymer, and brings about an increase in function of the composite material.
Furthermore, when the present invention is applied to drug delivery, the anticancer drug-encapsulating nanocarbon is coated with a biodegradable polymer, and the effect of sustained release of the encapsulated drug molecule to cancer cells can be expected.

ナノカーボンの光変換熱による表面局所的高分子熱重合の概念図。The conceptual diagram of the surface local polymer thermal polymerization by the light conversion heat of nanocarbon. カーボンナノホーン(CNH)とカプロラクトンの混合物から、CNHによる光交換熱エネルギーを使って、ポリカプロラクトンをCNH表面に生成する方法を示す概念図。The conceptual diagram which shows the method of producing | generating polycaprolactone on the CNH surface from the mixture of carbon nanohorn (CNH) and caprolactone using the photo-exchange heat energy by CNH. 赤外線(IR)吸収スペクトルであり、(a)は、ポリカプロラクトン(PCL)を、(b)CNHによる光変換熱エネルギーにてCNH表面に作成したPCLをCH2Cl2にて溶解させたものを、(c)は、カプロラクトン(CL)を、それぞれ示す。It is an infrared (IR) absorption spectrum, and (a) is obtained by dissolving polycaprolactone (PCL), (b) PCL prepared on the CNH surface by photoconversion thermal energy by CNH, in CH 2 Cl 2 . , (C) represents caprolactone (CL), respectively. 光熱合成法より高分子被覆したCNHの電子顕微鏡(TEM)写真であり、(a)は、開孔したCNHを、(b)は、高分子PCL被覆したCNHを、(c)は、Cd(OAc)3を内包したCNHを高分子PCL被覆した複合物(Cd(OAc)3@CNH−PCL)を、それぞれ示す。It is an electron microscope (TEM) photograph of CNH coated with a polymer by photothermal synthesis method, (a) is CNH with an opening, (b) is CNH with polymer PCL, (c) is Cd ( A composite (Cd (OAc) 3 @ CNH-PCL) in which CNH containing OAc) 3 is coated with a polymer PCL is shown. 前記複合物Cd(OAc)3@CNH−PCLのエネルギー分散型X線分析(EDX)スペクトル。Energy dispersive X-ray analysis (EDX) spectrum of the composite Cd (OAc) 3 @ CNH-PCL. 実施例3で得られた電子顕微鏡(TEM)写真であり、(a)は、光照射なしで作製したPDA−CNHを、(b)は、光照射して作製したPDA−CNHを、それぞれ示す。It is the electron microscope (TEM) photograph obtained in Example 3, (a) shows PDA-CNH produced without light irradiation, (b) shows PDA-CNH produced by light irradiation, respectively. . 実施例3で得られた熱重量分析(TGA)結果を示す図であり、実線は、光照射して作製したPDA−CNHを、点線は、光照射なしで作製したPDA−CNHを、それぞれ示している。It is a figure which shows the thermogravimetric analysis (TGA) result obtained in Example 3, A solid line shows PDA-CNH produced by light irradiation, and a dotted line shows PDA-CNH produced without light irradiation, respectively. ing. 光照射の有りと無しの条件下、反応時間を変えて作製したPDA−CNHのPDA量をTGAで計測した結果を示す図であり、実線は、光照射して作製したPDA−CNHを、点線は、光照射なしで作製したPDA−CNHを、それぞれ示している。It is a figure which shows the result of having measured the PDA amount of PDA-CNH produced by changing reaction time on condition with and without light irradiation by TGA, and a continuous line shows PDA-CNH produced by light irradiation as a dotted line Respectively show PDA-CNH produced without light irradiation. (a)は、シスプラチン(CDDP)内包CNH(CDDP@CNH)のTEM写真であり、(b)は、PDA被覆CDDP−CNH(PDA-CDDP-CNH)のTEM写真である。(a) is a TEM photograph of cisplatin (CDDP) -encapsulating CNH (CDDP @ CNH), and (b) is a TEM photograph of PDA-coated CDDP-CNH (PDA-CDDP-CNH). 時間経過にともない、CDDP@CNH及びPDA-CDDP-CNHから水中に放出されたCDDP量を示す図。The figure which shows the amount of CDDP released | released in water from CDDP @ CNH and PDA-CDDP-CNH with progress of time.

本発明は、ナノカーボンが赤外から可視・紫外光まで広い波長範囲に渡って光吸収し、吸収した光エネルギーを熱として放出する特性を活かして、光照射によりナノカーボンから放出された熱を利用して、ナノカーボン表面選択的に高分子を合成することを特徴とするものである。特に、ナノカーボン表面の生分解ポリマー被覆することで、ナノカーボンドラッグデリバリの応用における内包薬物の放出を制御することも可能である。   The present invention takes advantage of the property that nanocarbon absorbs light over a wide wavelength range from infrared to visible / ultraviolet light, and releases the absorbed light energy as heat, thereby reducing the heat released from nanocarbon by light irradiation. It is characterized by synthesizing a polymer selectively using a nanocarbon surface. In particular, the biodegradable polymer coating on the nanocarbon surface can control the release of the encapsulated drug in the application of nanocarbon drug delivery.

図1は、本発明における、ナノカーボンの光変換熱による表面局所的高分子熱重合の概念図であり、左の図は、ナノカーボンに光照射すると、光エネルギーが熱に変換し、周囲を温めることを示している。右の図は、高分子のモノマーがナノカーボンの近傍にある場合、モノマーがナノカーボン表面で熱重合し、高分子被覆されることを示している。   FIG. 1 is a conceptual diagram of surface local polymer thermopolymerization by photoconversion heat of nanocarbon in the present invention, and the left figure shows that when nanocarbon is irradiated with light, light energy is converted into heat, Indicates warming. The figure on the right shows that when the polymer monomer is in the vicinity of the nanocarbon, the monomer is thermally polymerized on the nanocarbon surface and is coated with the polymer.

本発明における、ナノカーボンとしては、特に限定されず、例えば、単層のカーボンナノチューブ、多層のカーボンナノチューブ、単層のカーボンナノホーン、多層のカーボンナノホーンのいずれであっても構わない。
また、その製造方法も特に限定されず、CVD法、レーザーアブレーション法、アーク放電法など、いずれの方法であっても構わない。
The nanocarbon in the present invention is not particularly limited, and may be, for example, a single-walled carbon nanotube, a multi-walled carbon nanotube, a single-walled carbon nanohorn, or a multi-walled carbon nanohorn.
The manufacturing method is not particularly limited, and any method such as a CVD method, a laser ablation method, an arc discharge method, or the like may be used.

また、本発明において、ナノカーボンは、その内部空間に、金属や酸化物の原子又は分子、あるいは機能性分子などを内包させたものを用いることができ、例えば、抗がん剤シスプラチン(CDDP)を内包したナノカーボン、MRI診断用の造影剤であるGd(OAc)3クラスターを内包したナノカーボン等が挙げられる。 Further, in the present invention, nanocarbon can be used in which the internal space contains metal or oxide atoms or molecules, or functional molecules, for example, the anticancer drug cisplatin (CDDP). And nanocarbon encapsulating Gd (OAc) 3 cluster, which is a contrast agent for MRI diagnosis.

本発明において、ナノカーボンに被覆される高分子は、そのモノマーが熱重合するものであれば特に限定されないが、生体親和性あるいは生分解性高分子、又は機能性高分子であることが好ましい。
生体親和性あるいは生分解性高分子の例としては、ポリカプロラクトン(PCL)、ポリ乳酸(PLA)等が例示され、機能性高分子としては、接着性を有するポリドーパミン等が例示される。
In the present invention, the polymer coated on the nanocarbon is not particularly limited as long as the monomer is thermally polymerized, but is preferably a biocompatible or biodegradable polymer or a functional polymer.
Examples of the biocompatible or biodegradable polymer include polycaprolactone (PCL) and polylactic acid (PLA), and the functional polymer includes polydopamine having adhesiveness.

図2は、カーボンナノホーン(CNH)とカプロラクトンの混合物から、CNHによる光交換熱エネルギーを使って、ポリカプロラクトン(PCL)をCNH表面に生成する方法を示す概念図である。   FIG. 2 is a conceptual diagram showing a method for producing polycaprolactone (PCL) on the CNH surface from a mixture of carbon nanohorn (CNH) and caprolactone using photo-exchange heat energy by CNH.

ポリカプロラクトン、ポリ乳酸などのエステル系高分子は、加水分解酵素などで生分解されるので、ナノカーボンを被覆すると、患部で細胞内に取り込まれ、リソソームに移動し、そこにある加水分解酵素により生分解がおこり、それに伴い、ナノカーボンに内包されたドラッグを徐放することができると期待される。これが実現すると、患部以外での薬剤垂れ流しを抑制し、少量の薬剤で治療でき、副作用の軽減が期待できる。   Ester polymers such as polycaprolactone and polylactic acid are biodegraded by hydrolase, etc., so when they are coated with nanocarbon, they are taken into cells at the affected area and migrate to lysosomes, where they are hydrolyzed by hydrolase. As biodegradation occurs, it is expected that drugs encapsulated in nanocarbon can be released slowly. If this is realized, it is possible to suppress the dripping of the drug outside the affected area, to treat with a small amount of drug, and to expect reduction of side effects.

本発明の方法においては、熱重合性モノマー或いは熱重合性モノマーの溶液に、超音波処理などの方法でナノカーボンを分散させ、得られたナノカーボン分散液に、室温で光照射により反応させる。
熱重合反応には、重合開始剤及び熱重合触媒等が用いられが、これらは、熱重合性モノマー或いは熱重合性モノマーの溶液に添加しても、或いは、ナノカーボンを分散された後の分散液に添加しても良い。また、用いる重合開始剤や触媒は、特に限定されず、製造される高分子に応じて、適宜、公知のものから選択して用いることができる。
In the method of the present invention, nanocarbon is dispersed in a thermopolymerizable monomer or a solution of a thermopolymerizable monomer by a method such as ultrasonic treatment, and the resulting nanocarbon dispersion is reacted by light irradiation at room temperature.
In the thermal polymerization reaction, a polymerization initiator and a thermal polymerization catalyst are used. These may be added to the thermal polymerizable monomer or the solution of the thermal polymerizable monomer, or dispersed after the nanocarbon is dispersed. It may be added to the liquid. Moreover, the polymerization initiator and catalyst to be used are not specifically limited, According to the polymer manufactured, it can select from a well-known thing suitably and can be used.

例えば、前述のポリカプロラクトン(PCL)を生成させる場合であれば、直接モノマー(カプロラクトン)の溶液に重合開始剤及びCNHを添加して、CNHを超音波処理により分散させた後、該分散液に、重合触媒を添加して、室温で光を照射する。
用いる重合開始剤及び触媒は、ポリカプロラクトンの製造に用いられる公知のものを用いることができ、例えば、重合開始剤として、アルコール、グリコール等の水酸基を有する化合物が、触媒として、トリフルオロメタンスルホン酸アルミニウム(Aluminum Triflate)等が用いられる。
For example, in the case of generating the above-mentioned polycaprolactone (PCL), a polymerization initiator and CNH are added directly to a monomer (caprolactone) solution, and CNH is dispersed by ultrasonic treatment, and then the dispersion is added to the dispersion. Then, a polymerization catalyst is added and light is irradiated at room temperature.
As the polymerization initiator and catalyst to be used, known ones used for the production of polycaprolactone can be used. For example, a compound having a hydroxyl group such as alcohol or glycol as a polymerization initiator is used as a catalyst, and aluminum trifluoromethanesulfonate as a catalyst. (Aluminum Triflate) or the like is used.

本発明において、ナノカーボンに照射する光は、後述する実施例では、赤外のレーザー光を選択してあるが、ナノカーボンが赤外から可視・紫外光まで広い波長範囲に渡って光吸収するため、この波長を限られなく、分散媒及び熱重合性モノマーが吸収しない波長の光であれば利用可能である。
また、照射手段も特に限定されないが、例えば、小型ファイバーカップルレーザー装置を用いて、400mWのレーザー光を、分散液の入ったガラス試薬瓶の上部から分散液に1〜2時間照射する。
In the present invention, as the light irradiated to the nanocarbon, infrared laser light is selected in the examples described later, but the nanocarbon absorbs light over a wide wavelength range from infrared to visible / ultraviolet light. Therefore, the wavelength is not limited, and any light having a wavelength that is not absorbed by the dispersion medium and the thermopolymerizable monomer can be used.
Also, the irradiation means is not particularly limited. For example, using a small fiber coupled laser device, 400 mW laser light is irradiated to the dispersion liquid from the upper part of the glass reagent bottle containing the dispersion liquid for 1 to 2 hours.

照射後、未反応のモノマーと触媒を除去するため、得られた試料を濾過し、エタノールなどで洗浄してから、室温で乾燥させる。   After irradiation, in order to remove unreacted monomers and catalyst, the obtained sample is filtered, washed with ethanol, and then dried at room temperature.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
本実施例においては、ポリカプロラクトン(PCL)で被覆されたカーボンナノホーン(CNH)を、以下のようにして作製した。
アルゴンガス雰囲気、101kPaの圧力のチャンバー内でグラファイト原料にCO2レーザーを照射し、グラファイト原料を蒸発させ、カーボンナノホーン集合体(CNH)を作製した。各カーボンナノホーンは単層であり、集合体粒子のサイズは80〜100nmである。
Example 1
In this example, carbon nanohorn (CNH) coated with polycaprolactone (PCL) was produced as follows.
The graphite raw material was irradiated with a CO 2 laser in an argon gas atmosphere and a pressure chamber of 101 kPa to evaporate the graphite raw material, thereby producing a carbon nanohorn aggregate (CNH). Each carbon nanohorn is a single layer, and the size of the aggregate particle is 80 to 100 nm.

ガラス試薬瓶に、カプロラクトン液体(98%,6-ヘキサノラクトン, Wako)1ml、上記CNH 10mg、及びグリセロール(99% GC, Sigma-Aldrich)1μLを加え、超音波処理(具体的に)により、分散液を得た。
得られた分散液に、熱重合触媒(Aluminum Triflate)(99.9%、Sigma-Aldrich)2mgを加え、小型ファイバーカップルレーザー装置(BWF-808-300E, B&W TEK社)を用いて、400mWのレーザー光(波長808nm)を、室温で、ガラス試薬瓶の上部からナノカーボンの分散液に1〜2時間照射した後、CNH表面にポリカプロラクトン(PCL)が生成したことを、赤外(IR)光吸収スペクトル(Spectrum One, Perkin-Elmer)により確認した。
To a glass reagent bottle, add 1 ml of caprolactone liquid (98%, 6-hexanolactone, Wako), 10 mg of the above CNH, and 1 μL of glycerol (99% GC, Sigma-Aldrich), and by sonication (specifically), A dispersion was obtained.
Add 2 mg of thermal polymerization catalyst (Aluminum Triflate) (99.9%, Sigma-Aldrich) to the resulting dispersion and use a small fiber-coupled laser device (BWF-808-300E, B & W TEK) for 400 mW laser light. (Wavelength 808 nm) is irradiated at room temperature from the top of the glass reagent bottle onto the nanocarbon dispersion for 1 to 2 hours. After that, polycaprolactone (PCL) is generated on the CNH surface. It was confirmed by spectrum (Spectrum One, Perkin-Elmer).

図2は、得られた赤外(IR)光吸収スペクトルであり、(a)は、ポリカプロラクトン(PCL)を、(b)は、CNHによる光変換熱エネルギーにてCNH表面に作成したPCL CH2Cl2にて溶解させたものを、(c)は、カプロラクトン(CL)を、それぞれを示している。 FIG. 2 is an infrared (IR) light absorption spectrum obtained, (a) is polycaprolactone (PCL), and (b) is PCL CH prepared on the CNH surface by light conversion thermal energy by CNH. those dissolved at 2 Cl 2, (c), the caprolactone (CL), are shown, respectively.

該図に示すとおり、PCL−CNHからCH2Cl2で溶出したPCLのスペクトルが通常法で作製したPCLと一致し、CLモノマーとは異なっていた。CNHがないとPCL生成は行われなかったことから、CNHの光吸収−熱放出によりPCL生成が起こり、生成したPCLがCNH表面にあることが確認できる。
また、PCLをCNHからCH2Cl2を使って溶出させ、分子量をGPCにて測定すると8,000あった、これは、PCLの長さ約85nmに相当し、CNH球状集合体の直径100nmと同程度のものが得られた。
As shown in the figure, the spectrum of PCL eluted from PCL-CNH with CH 2 Cl 2 coincided with the PCL prepared by the usual method and was different from the CL monomer. Since PCL generation was not performed without CNH, it was confirmed that PCL generation occurred due to light absorption-heat release of CNH, and the generated PCL was on the CNH surface.
Further, when PCL was eluted from CNH using CH 2 Cl 2 and the molecular weight was measured by GPC, it was 8,000, which corresponds to a PCL length of about 85 nm and a diameter of CNH spherical aggregate of 100 nm. The same level was obtained.

(実施例2)
本実施例では、以下のようにして、開孔されたCNHの内部に、MRI診断用の造影剤であるGd(OAc)3クラスターを内包した後、光熱変換法でPCLをその表面に合成した。
実施例1と同様にして得られたカーボンナノホーン集合体に対し、個々のカーボンナノホーンの側壁に開口部を形成するため、乾燥空気中で、1℃/分にて500℃まで昇温し、自然降温を行い、部分酸化を行った。
次に、酸化されたカーボンナノホーン集合体(CNHoxと記す)50mgと酢酸ガドリニウム・4水和物(Gd(OAc)3・4H2O(シグマアルドリッチ社製;純度99.9%以上))50mgを、三角フラスコに入れたエタノール20cm3中で混合し、室温で24時間攪拌した後、孔径0.2μmのメンブレンフィルターで濾過した。そして、濾過して得た粉末を、再びエタノール(20cm3)中に分散し、20秒間超音波処理した後、再び濾過し、その後真空中(1kPa)で12時間乾燥し、酢酸ガドリニウムを内包したカーボンナノホーン集合体(GdOAc3@CNHと記す)を得た。
得られたGdOAc3@CNHに、実施例1と同様にして、その表面にポリカプロラクトン(PCL)を被覆した複合物(GdOAc3@CNH−PCL)を生成した。
(Example 2)
In this example, the Gd (OAc) 3 cluster, which is a contrast agent for MRI diagnosis, was encapsulated in the opened CNH as described below, and then PCL was synthesized on the surface by a photothermal conversion method. .
For the carbon nanohorn aggregate obtained in the same manner as in Example 1, in order to form an opening on the side wall of each carbon nanohorn, the temperature was raised to 500 ° C. at 1 ° C./min in dry air. The temperature was lowered and partial oxidation was performed.
Next, 50 mg of oxidized carbon nanohorn aggregate (referred to as CNHox) and 50 mg of gadolinium acetate tetrahydrate (Gd (OAc) 3 .4H 2 O (manufactured by Sigma-Aldrich; purity 99.9% or more)) The mixture was mixed in 20 cm 3 of ethanol placed in an Erlenmeyer flask, stirred at room temperature for 24 hours, and filtered through a membrane filter having a pore size of 0.2 μm. The powder obtained by filtration was dispersed again in ethanol (20 cm 3 ), subjected to ultrasonic treatment for 20 seconds, filtered again, and then dried in vacuum (1 kPa) for 12 hours to enclose gadolinium acetate. A carbon nanohorn aggregate (referred to as GdOAc 3 @CNH) was obtained.
A composite (GdOAc 3 @ CNH-PCL) having the surface coated with polycaprolactone (PCL) was produced on the obtained GdOAc 3 @CNH in the same manner as in Example 1.

図4は、光熱合成法より高分子被覆したCNHの電子顕微鏡(TEM)写真と元素分析結果を示す図であり、(a)は、開孔したCNHのTEM像を、(b)は、高分子PCL被覆したCNHのTEM像を、(c)は、Gd(OAc)3を内包したCNHを高分子PCL被覆した複合物(GdOAc3@CNH−PCL)のTEM像を、それぞれ示している。
また、図5は、上記複合物(GdOAc3@CNH−PCL)のエネルギー分散型X線分析(EDX)スペクトルを示している。
結果、作製プロセスにおいて、溶出することもなく、医療応用薬剤内包CNHをPCLで包んだものが作製できる可能性があることが分かった。
FIG. 4 is a view showing an electron microscope (TEM) photograph and elemental analysis result of polymer-coated CNH by a photothermal synthesis method. (A) is a TEM image of CNH having a hole, and (b) is a high image. A TEM image of CNH coated with molecular PCL and (c) shows a TEM image of a composite (GdOAc 3 @ CNH-PCL) coated with polymer PCL of CNH encapsulating Gd (OAc) 3 .
FIG. 5 shows an energy dispersive X-ray analysis (EDX) spectrum of the composite (GdOAc 3 @ CNH-PCL).
As a result, it has been found that there is a possibility that a product encapsulating medical application drug-containing CNH in PCL may be produced without elution in the production process.

(実施例3)
本実施例においては、ポリドーパミン(PDA)で被覆されたカーボンナノホーン(CNH)を、以下のようにして作製した。
(Example 3)
In this example, carbon nanohorns (CNH) coated with polydopamine (PDA) were produced as follows.

ガラス試薬瓶を用いて、ドーパミン(Dopamine Hydrochloride、99.3%、LKTLaboratories)20mgをTris(Trizma base、Sigma、99.9%)の10mM水溶液(pH8.5)5mLに溶解させたのち、上記[0025]に記載のCNH10mgを加え、超音波処理(0℃にて1分間)により分散させ、その後、0℃または室温(20℃)にて、キセノンランプ光(波長250−2000nm、2W,ビーム系1cm、Hamamatsu, LIGHTNINGCURETMLC5)を照射し(30分、1時間、2時間、4時間、及び6時間)、CNH表面にポリドーパミンを合成した。
CNH表面にPDAが生成したことを、透過電子顕微鏡(TEM)により確認し、熱重量分析(TGA)にて定量分析した。
Described in [0025] above after dissolving 20 mg of dopamine (Dopamine Hydrochloride, 99.3%, LKT Laboratories) in 5 mL of 10 mM aqueous solution (pH 8.5) of Tris (Trizma base, Sigma, 99.9%) using a glass reagent bottle. 10 mg of CNH was added and dispersed by sonication (at 0 ° C. for 1 minute), and then at 0 ° C. or room temperature (20 ° C.), a xenon lamp light (wavelength 250-2000 nm, 2 W, beam system 1 cm, Hamamatsu, LIGHTNINGCURE LC5) was irradiated (30 minutes, 1 hour, 2 hours, 4 hours, and 6 hours) to synthesize polydopamine on the CNH surface.
The formation of PDA on the CNH surface was confirmed by a transmission electron microscope (TEM) and quantitatively analyzed by thermogravimetric analysis (TGA).

図6は、得られたTEM像であり、(a)は、光照射せずに室温にて30分作成した場合のCNHを、(b)は、室温(20℃)にて30分間光照射し、CNHによる光変換熱エネルギーにてCNH表面にPDAを作成したCNHを、それぞれを示している。
図7は、PDA−CNHに含まれるPDA量計測のための熱重量分析(TGA)結果であり、室温にて30分間、光照射ありと無しの条件で反応させて得られたPDA−CNHの測定結果を示している。
図8は、反応温度0℃にて、反応時間を30分、1時間、2時間、4時間、6時間に変えて、光照射なしとありの場合のPDA量をTGAにて測定した結果を示している。
FIG. 6 is a TEM image obtained, (a) is CNH when prepared for 30 minutes at room temperature without light irradiation, and (b) is light irradiated for 30 minutes at room temperature (20 ° C.). Each of the CNHs in which a PDA was created on the surface of the CNH by light conversion thermal energy by CNH is shown.
FIG. 7 shows the results of thermogravimetric analysis (TGA) for measuring the amount of PDA contained in PDA-CNH. The results of PDA-CNH obtained by reacting at room temperature for 30 minutes with and without light irradiation. The measurement results are shown.
FIG. 8 shows the result of measuring the amount of PDA with TGA when the reaction temperature is 0 ° C., the reaction time is changed to 30 minutes, 1 hour, 2 hours, 4 hours, and 6 hours, and there is no light irradiation. Show.

図6に示すとおり、PDA−CNHのTEM写真((b))では、CNHをPDA重合体が表面被覆していることがわかる。光照射せずに作成した場合には、PDAは作製されずCNHの表面にはPDA被覆が見られなかった(図6(a))。
また、図7のTGAの結果から、PDA生成量は、室温キセノン光照射30分では、PDA生成量0.11g/g(PDA/CNH)であり、光照射なしの場合は、0.9g/g(PDA/CNH)であった。
さらに、温度0℃において、キセノン光照射有りまたは無しの条件下における生成PDA量を、反応時間を変えて調べた結果(図8)から、光照射したほうが、PDA生成量がやや高かった。光照射の有無によるPDA生成量には大きな差がない(図7、8)ものの、光照射するとCNH表面選択的にPDAが生成することが分かった(図6)。
このCNH表面選択的PDA被覆は、CNH内部に内包した薬剤の閉じ込めに有利であることを次の実施例4により示す。
As shown in FIG. 6, in the TEM photograph ((b)) of PDA-CNH, it can be seen that the PDA polymer covers the surface of CNH. When prepared without light irradiation, no PDA was prepared, and no PDA coating was seen on the surface of CNH (FIG. 6A).
From the results of TGA in FIG. 7, the PDA production amount is 0.11 g / g (PDA / CNH) at 30 minutes of room temperature xenon light irradiation, and 0.9 g / g in the case of no light irradiation. g (PDA / CNH).
Furthermore, from the result of examining the amount of produced PDA under the conditions of 0 ° C. with or without xenon light irradiation while changing the reaction time (FIG. 8), the amount of PDA produced was slightly higher when irradiated with light. Although there was no significant difference in the amount of PDA produced depending on the presence or absence of light irradiation (FIGS. 7 and 8), it was found that PDA was selectively generated on the CNH surface when irradiated with light (FIG. 6).
The following Example 4 demonstrates that this CNH surface selective PDA coating is advantageous for confinement of drugs encapsulated within CNH.

(実施例4)
本実施例では、以下のようにして、開孔されたCNHの内部に、抗がん剤シスプラチン(Pt(NH2)2Cl2、CDDPと記す)クラスターを内包した後、光熱変換法でPDAをその表面に合成した。
Example 4
In this example, the encapsulated anticancer drug cisplatin (Pt (NH 2 ) 2 Cl 2 , CDDP) cluster was encapsulated in the opened CNH as follows, and then the PDA was subjected to photothermal conversion. Was synthesized on its surface.

上記[0025]に記載のCNH集合体に対し、個々のカーボンナノホーンの側壁に開口部を形成するため、乾燥空気中で、1℃/分にて500℃まで昇温し、自然降温を行い、部分酸化を行った。
次に、酸化されたカーボンナノホーン集合体(CNHoxと記す)33mgとCDDP(Wako、97.0%)34.4mgを、三角フラスコに入れたエタノール20mLと水10mLの混合溶液に加えて5分間バス型ソニケーターを使って混合し、室温で12時間攪拌した後、2時間静置させた。孔径0.1μmのメンブレンフィルター(waterman)で濾過し、10mLのエタノールで洗浄した。濾過して得られた粉末を、窒素気流中乾燥させ、CDDPを内包したカーボンナノホーン集合体(CDDP@CNHと記す)を得た。
For the CNH aggregate described in [0025] above, in order to form openings on the side walls of the individual carbon nanohorns, the temperature is raised to 500 ° C. at 1 ° C./min in dry air, and the natural temperature is lowered. Partial oxidation was performed.
Next, 33 mg of oxidized carbon nanohorn aggregate (referred to as CNHox) and 34.4 mg of CDDP (Wako, 97.0%) were added to a mixed solution of 20 mL of ethanol and 10 mL of water in an Erlenmeyer flask, and a bath-type sonicator for 5 minutes. The mixture was stirred for 12 hours at room temperature and allowed to stand for 2 hours. The solution was filtered through a membrane filter (waterman) having a pore size of 0.1 μm and washed with 10 mL of ethanol. The powder obtained by filtration was dried in a nitrogen stream to obtain a carbon nanohorn aggregate (indicated as CDDP @ CNH) containing CDDP.

図9(a)が、シスプラチン(CDDP)内包CNH(CDDP@CNH)のTEM写真であり、CDDP@CNHのTEM写真では、黒い点がCDDPクラスターであり、それらはCNH内に入っていることがわかる。CDDP@CNHではCDDPが15%であることを原子吸光測定によるPt量測定から確認した。   FIG. 9 (a) is a TEM photograph of cisplatin (CDDP) -encapsulating CNH (CDDP @ CNH). In the TEM photograph of CDDP @ CNH, the black dots are CDDP clusters, and they are contained in CNH. Recognize. In CDDP @ CNH, it was confirmed from the measurement of Pt amount by atomic absorption measurement that CDDP was 15%.

得られたCDDP@CNHに、実施例1と同様にして、その表面にPDAを被覆した複合物(PDA−CDDP@CNH)を作製した。
図9(b)が、PDA被覆CDDP−CNH(PDA-CDDP-CNH)のTEM写真であり、PDA−CDDP@CNHのTEM写真では、表面がPDAにより被覆されていることがわかる。このTEM写真では、表面がPDAで被覆されているために、CDDPクラスターははっきり見えていない。PDA−CDDP@CNH中のCDDP含有量は原子吸光測定のより8%であった。
A composite (PDA-CDDP @ CNH) in which PDA was coated on the surface of the obtained CDDP @ CNH was prepared in the same manner as in Example 1.
FIG. 9B is a TEM photograph of PDA-coated CDDP-CNH (PDA-CDDP-CNH), and the TEM photograph of PDA-CDDP @ CNH shows that the surface is coated with PDA. In this TEM photograph, the CDDP cluster is not clearly seen because the surface is coated with PDA. The CDDP content in PDA-CDDP @ CNH was 8% from the atomic absorption measurement.

PDAが表面を覆うためPDA−CDDP@CNHからは水中においてCDDPが溶出しないことを、以下に示す。
PDA−CDDP−CNH(5mg)を透析膜(Float A Lyzer, MWCO 50000, Diameter 5 mm, Volume 1mL: Spectra/Por CE)中にいれ、水(500cc)に浸した(室温)。浸漬後、0.5時間、1時間、6時間、73時間、118時間、及び143時間経過するごとに、透析膜外の水溶液を5mL採取し、原子吸光によりCDDPのPt量を計測した。
It is shown below that CDDP does not elute in water from PDA-CDDP @ CNH because PDA covers the surface.
PDA-CDDP-CNH (5 mg) was placed in a dialysis membrane (Float A Lyzer, MWCO 50000, Diameter 5 mm, Volume 1 mL: Spectra / Por CE) and immersed in water (500 cc) (room temperature). Every time 0.5 hour, 1 hour, 6 hours, 73 hours, 118 hours, and 143 hours passed after immersion, 5 mL of the aqueous solution outside the dialysis membrane was sampled, and the amount of Pt of CDDP was measured by atomic absorption.

図10は、その結果を示す図であり、図中、積算放出量(Acumulated release)の100%は内包CDDP量全量に相当する。
図から明らかなように、CDDP−CNHを用いた時(―●−)には、時間経過にともないCDDPがCNHから漏出したが、PDA−CDDP−CNHでは(−■−)、CDDPのCNHからの漏出はほとんどないことが明らかとなった。
結果、作製プロセスにおいて、CDDPが溶出することもなく、医療応用薬剤CDDP内包CNHをPDAで包んだものが作製できることが分かった。
FIG. 10 is a diagram showing the results. In the figure, 100% of the accumulated release amount corresponds to the total amount of encapsulated CDDP.
As is clear from the figure, when CDDP-CNH was used (-●-), CDDP leaked from CNH over time, but in PDA-CDDP-CNH (-■-), from CDDP CNH It became clear that there was almost no leakage.
As a result, it was found that in the production process, CDDP encapsulated in medical application drug CDDP encapsulated with PDA could be produced without elution of CDDP.

Claims (6)

熱重合性モノマー又は熱重合性モノマーの溶液にナノカーボンを分散させた分散液に光を照射し、ナノカーボンの表面に、該モノマーが熱重合してなる高分子被覆を生成させることを特徴とするナノカーボン高分子複合体の製造方法であって、
前記光の波長が、ナノカーボンの光吸収波長領域において、前記熱重合性モノマー又は熱重合性モノマーの溶液が吸収しない波長であることを特徴とする方法。
Irradiating light to a dispersion of nanocarbon in a thermopolymerizable monomer or a solution of a thermopolymerizable monomer, and generating a polymer coating formed by thermal polymerization of the monomer on the surface of the nanocarbon A method for producing a nanocarbon polymer composite comprising:
The method according to claim 1, wherein the wavelength of the light is a wavelength that is not absorbed by the thermopolymerizable monomer or the solution of the thermopolymerizable monomer in a light absorption wavelength region of nanocarbon.
前記分散液に、重合開始剤及び/又は熱重合触媒を含有させること特徴とする請求項1に記載のナノカーボン高分子複合体の製造方法。   The method for producing a nanocarbon polymer composite according to claim 1, wherein the dispersion liquid contains a polymerization initiator and / or a thermal polymerization catalyst. 前記高分子被覆が、生体親和性高分子、生分解性高分子又は機能性高分子からなることを特徴とする請求項1又は2に記載のナノカーボン高分子複合体の製造方法The method for producing a nanocarbon polymer composite according to claim 1 or 2 , wherein the polymer coating comprises a biocompatible polymer, a biodegradable polymer, or a functional polymer. ナノカーボンの表面に、ポリカプロラクトンからなる高分子被覆を有することを特徴とするナノカーボン高分子複合体。 On the surface of the nano-carbon, features and be Luna Roh carbon polymer composite to have a polymer coating of port Li caprolactone. ナノカーボンの表面に、ポリドーパミンからなる高分子被覆を有することを特徴とするナノカーボン高分子複合体。 On the surface of the nano-carbon, features and be Luna Roh carbon polymer composite to have a polymer coating of port Li dopamine. 記ナノカーボンの内部にシスプラチンを内包していることを特徴とする請求項に記載のナノカーボン高分子複合体。 Nanocarbon polymer composite according to claim 4, characterized in that the enclosing cisplatin inside before Symbol nanocarbon.
JP2014038668A 2014-01-10 2014-02-28 Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method Active JP6260997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038668A JP6260997B2 (en) 2014-01-10 2014-02-28 Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014003358 2014-01-10
JP2014003358 2014-01-10
JP2014038668A JP6260997B2 (en) 2014-01-10 2014-02-28 Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method

Publications (2)

Publication Number Publication Date
JP2015147718A JP2015147718A (en) 2015-08-20
JP6260997B2 true JP6260997B2 (en) 2018-01-17

Family

ID=53891438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038668A Active JP6260997B2 (en) 2014-01-10 2014-02-28 Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method

Country Status (1)

Country Link
JP (1) JP6260997B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056061A (en) * 2019-11-08 2021-05-18 한국원자력연구원 Reduced graphene gel-complex and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113651315A (en) 2021-08-18 2021-11-16 成都富安纳新材料科技有限公司 Easily dispersed active nano carbon powder and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038251A1 (en) * 2002-03-04 2004-02-26 Smalley Richard E. Single-wall carbon nanotubes of precisely defined type and use thereof
EP1589079A4 (en) * 2003-01-20 2008-07-30 Teijin Ltd Carbon nanotube coated with aromatic condensation polymer
JP4134306B2 (en) * 2003-02-25 2008-08-20 独立行政法人科学技術振興機構 Carbon nanotube / polymer composite and production method thereof
JP2006112005A (en) * 2004-10-14 2006-04-27 Seiko Epson Corp Nano carbon composite and method for producing nano carbon composite
JP5405773B2 (en) * 2007-07-10 2014-02-05 独立行政法人科学技術振興機構 Release control method of carbon nanohorn inclusion material and carbon nanohorn inclusion material
JP5288351B2 (en) * 2009-03-31 2013-09-11 独立行政法人産業技術総合研究所 A photocurable resin composite in which carbon nanotubes are dispersed, and a laminate comprising the photocurable resin composite and an ionic liquid.
KR101598544B1 (en) * 2009-04-14 2016-03-02 삼성전자주식회사 - Dispersible carbonnanotube dispersible carbonnanotube-polymer composite and method for preparing the same
JP5328043B2 (en) * 2009-12-21 2013-10-30 日機装株式会社 Polymer-grafted carbon nanotube and method for producing the same
EP2547303B2 (en) * 2010-03-15 2018-06-06 Orfit Industries Immobilization device
JP2013159498A (en) * 2012-02-02 2013-08-19 Toyota Motor Corp Method for coating with coating material, and method for manufacturing fuel cell electrode
KR101498041B1 (en) * 2013-04-08 2015-03-04 한국수자원공사 Membrane for desalination and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210056061A (en) * 2019-11-08 2021-05-18 한국원자력연구원 Reduced graphene gel-complex and preparation method thereof
KR102317604B1 (en) 2019-11-08 2021-10-26 한국원자력연구원 Reduced graphene gel-complex and preparation method thereof

Also Published As

Publication number Publication date
JP2015147718A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
Baig et al. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges
He et al. Mechanistic insight into photocatalytic pathways of MIL-100 (Fe)/TiO2 composites
Giambastiani et al. Functionalization of multiwalled carbon nanotubes with cyclic nitrones for materials and composites: addressing the role of CNT sidewall defects
Zhang et al. Selective modification of halloysite nanotubes with 1-pyrenylboronic acid: A novel fluorescence probe with highly selective and sensitive response to hyperoxide
Bhattarai et al. Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy
Ozden et al. 3D macroporous solids from chemically cross‐linked carbon nanotubes
Mohammadnezhad et al. Thermal and mechanical properties of novel nanocomposites from modified ordered mesoporous carbon FDU-15 and poly (methyl methacrylate)
Mallakpour et al. The influence of bovine serum albumin-modified silica on the physicochemical properties of poly (vinyl alcohol) nanocomposites synthesized by ultrasonication technique
Zhu et al. In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery
Guo et al. Facile synthesis of magnetic carboxymethylcellulose nanocarriers for pH-responsive delivery of doxorubicin
Le et al. Covalent functionalization of multi-walled carbon nanotubes with imidazolium-based poly (ionic liquid) s by Diels–Alder “click” reaction
Parsamanesh et al. Supramolecular hydrogel based on cyclodextrin modified GO as a potent natural organic matter absorbent
Le et al. Facile covalent functionalization of carbon nanotubes via Diels-Alder reaction in deep eutectic solvents
Massaro et al. Effect of halloysite nanotubes filler on polydopamine properties
Fang et al. Zeolitic imidazole framework coated Au nanorods for enhanced photothermal therapy and stability
Habibi Functional biocompatible magnetite–cellulose nanocomposite fibrous networks: characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis
Arabbaghi et al. Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate
Liu et al. Surface modification of a polylactic acid nanofiber membrane by zeolitic imidazolate framework-8 from secondary growth for drug delivery
JP6260997B2 (en) Method for producing nanocarbon polymer composite and nanocarbon polymer composite produced by the method
Lei et al. Synthesis of silver nanoparticles on surface-functionalized multi-walled carbon nanotubes by ultraviolet initiated photo-reduction method
Mallakpour Fructose functionalized MWCNT as a filler for starch nanocomposites: Fabrication and characterizations
Panda et al. PEG–PEI-modified gated N-doped mesoporous carbon nanospheres for pH/NIR light-triggered drug release and cancer phototherapy
JP6281991B2 (en) Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same
Kumar et al. Is precarbonization necessary for effective laser graphitization?
Mallakpour et al. Preparation and characterization of starch nanocomposite embedded with functionalized MWCNT: Investigation of optical, morphological, thermal, and copper ions adsorption properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171206

R150 Certificate of patent or registration of utility model

Ref document number: 6260997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250