JP6281991B2 - Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same - Google Patents

Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same Download PDF

Info

Publication number
JP6281991B2
JP6281991B2 JP2016512786A JP2016512786A JP6281991B2 JP 6281991 B2 JP6281991 B2 JP 6281991B2 JP 2016512786 A JP2016512786 A JP 2016512786A JP 2016512786 A JP2016512786 A JP 2016512786A JP 6281991 B2 JP6281991 B2 JP 6281991B2
Authority
JP
Japan
Prior art keywords
cnh
carbon nanohorn
boron
plpeg
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016512786A
Other languages
Japanese (ja)
Other versions
JPWO2015156385A1 (en
Inventor
陽子 飯泉
陽子 飯泉
俊也 岡崎
俊也 岡崎
湯田坂 雅子
雅子 湯田坂
譲 池原
譲 池原
民芳 張
民芳 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2015156385A1 publication Critical patent/JPWO2015156385A1/en
Application granted granted Critical
Publication of JP6281991B2 publication Critical patent/JP6281991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0092Hollow drug-filled fibres, tubes of the core-shell type, coated fibres, coated rods, microtubules or nanotubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Description

本発明は、ホウ素化合物を内包および外壁に担持するカーボンナノホーン及びその製造方法に関し、特に、ホウ素中性子捕捉療法(BNCT:Boron Neutron Capture Therapy)に用いるホウ素化合物を内包および外壁に担持するカーボンナノホーン及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a carbon nanohorn that supports a boron compound on an inner wall and an outer wall, and a method for producing the same. It relates to a manufacturing method.

ホウ素中性子捕捉療法は、正常組織よりもがん組織に集合しやすいホウ素化合物を、あらかじめ癌細胞内に取り込ませておき、外部からエネルギーの低い熱中性子線を照射すると、ホウ素の原子核が低速の熱中性子を好んで捕捉し、捕捉と同時に核***を起こし、α粒子を発生し、このα粒子で近傍のがん細胞を殺傷させる手法である。   In boron neutron capture therapy, boron compounds that are more likely to collect in cancer tissues than normal tissues are taken into cancer cells in advance and irradiated with thermal neutrons with low energy from the outside. This is a technique that favors neutron capture, causes fission at the same time as capture, generates alpha particles, and kills nearby cancer cells with the alpha particles.

ホウ素中性子捕捉療法では、腫瘍に対して高い親和性と選択性を持ち、かつ正常組織に対する蓄積・損傷を最小限にすることが可能なホウ素製剤が必須であるが、現在使われている、ホウ素フェニルアラニンやオルトデカボランなどでは、化学的安定性が十分でないことや腫瘍への蓄積量を上げることが困難であるなどの問題があり、ホウ素中性子捕捉療法の効果を高めることができない。   Boron neutron capture therapy requires a boron preparation that has high affinity and selectivity for tumors and that can minimize accumulation and damage to normal tissues. Phenylalanine, orthodecaborane, and the like have problems such as insufficient chemical stability and difficulty in increasing the amount accumulated in the tumor, and the effect of boron neutron capture therapy cannot be enhanced.

近年、ホウ素中性子捕捉療法用製剤の性能向上を目指して多くの研究が進められるようになり、ポルフィリンやフラーレン(特許文献1参照)、あるいはヘテロポリ酸(特許文献2参照)などの化合物中にホウ素を導入した例、リポソーム中にBSHやBPAを導入したもの(特許文献3および4参照)、カルボランのような無機系ホウ素化合物(特許文献5参照)の利用、ポリマーにBPA等を含む化合物を反応させたもの(特許文献6参照)などの複合系を利用しようとする試みも行われている。しかし、これらのいずれの手法も、ホウ素の量を飛躍的に向上することは不可能である。   In recent years, a lot of research has been promoted with the aim of improving the performance of preparations for boron neutron capture therapy, and boron is contained in compounds such as porphyrin, fullerene (see Patent Document 1), or heteropolyacid (see Patent Document 2). Examples of introduction, those in which BSH or BPA is introduced into liposomes (see Patent Documents 3 and 4), use of inorganic boron compounds such as carborane (see Patent Document 5), and reaction of a compound containing BPA or the like with a polymer Attempts have also been made to use composite systems such as those (see Patent Document 6). However, none of these methods can dramatically increase the amount of boron.

一方、BNナノチューブを内包したカーボンナノチューブが報告されている(非特許文献1参照)。しかしながら、該非特許文献1には、ホウ素中性子捕捉療法用製剤としての利用については、触れられていない。
また、カーボンナノチューブでは、直径が細いために内包量を上げることが困難である。また、カーボンナノチューブは、チューブ同士がファンデルワールス力で凝集し、分散させることが困難であるという欠点を有する。
On the other hand, carbon nanotubes containing BN nanotubes have been reported (see Non-Patent Document 1). However, the non-patent document 1 does not mention use as a preparation for boron neutron capture therapy.
Further, since the diameter of the carbon nanotube is small, it is difficult to increase the amount of inclusion. Carbon nanotubes also have the disadvantage that the tubes are agglomerated by van der Waals forces and difficult to disperse.

特開2005−53904号公報JP 2005-53904 A 特開2004−256370号公報JP 2004-256370 A 特開2006−63008号公報JP 2006-630008 A 特開2006−63009号公報JP 2006-63009 A 特開2002−348381号公報JP 2002-348281 A 特開2006−502993号公報JP 2006-50993 A

Nakanishiet al. Scientific Report, Vol.3, Article No.1385, 2013Nakanishiet al. Scientific Report, Vol.3, Article No.1385, 2013

前述のとおり、これまでの、ホウ素中性子捕捉療法に使われているホウ素製剤は、腫瘍蓄積量が少ないという欠点を有する。
本発明は、こうした現状を鑑みてなされたものであって、ホウ素の腫瘍蓄積量が多いホウ素製剤を提供することを目的とするものである。
As described above, conventional boron preparations used for boron neutron capture therapy have the disadvantage that the tumor accumulation is small.
This invention is made | formed in view of such the present condition, Comprising: It aims at providing the boron formulation with many tumor accumulation amounts of boron.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、中性子捕捉療法用製剤として、ホウ素化合物を内包および外壁に担持するカーボンナノホーンを用いることにより、ホウ素化合物を腫瘍細胞へ選択的に送達し、ホウ素の腫瘍蓄積量を上げることが可能になるという知見を得た。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have selected boron compounds as tumor cells by using carbon nanohorns carrying boron compounds on the inner and outer walls as neutron capture therapy preparations. We have obtained the knowledge that it is possible to increase the tumor accumulation amount of boron.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]ホウ素化合物が内包及びおよび外壁に担持されていることを特徴とするカーボンナノホーン。
[2]前記ホウ素化合物が、窒化ホウ素であることを特徴とする[1]に記載のカーボンナノホーン。
[3]ホウ素化合物の原料にアンモニアボランを用い、カーボンナノホーンとともに加熱することを特徴とする、ホウ素化合物が内包および外壁に担持されているカーボンナノホーンの製造方法。
[4]750℃以上に加熱することを特徴とする[3]に記載の、ホウ素化合物が内包および外壁に担持されているカーボンナノホーンの製造方法。
[5][1]又は[2]に記載のカーボンナノホーンの表面に、抗体または葉酸を付加させたリン脂質PEGが物理的に付着して表面修飾されていることを特徴とするカーボンナノホーン複合体。
[6][1]又は[2]に記載のカーボンナノホーンに導入された官能基に、抗体付加ポリエチレングリコールが化学結合されていることを特徴とするカーボンナノホーン複合体。
[7][1]又は[2]に記載のカーボンナノホーン或いは[5]又は[6]に記載のカーボンナノホーン複合体を有効成分として含有することを特徴とするホウ素中性子捕捉療法用製剤。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A carbon nanohorn characterized in that a boron compound is supported on the inner and outer walls.
[2] The carbon nanohorn according to [1], wherein the boron compound is boron nitride.
[3] A method for producing a carbon nanohorn having a boron compound supported on an inner wall and an outer wall, wherein ammonia borane is used as a raw material for the boron compound and heated together with the carbon nanohorn.
[4] The method for producing carbon nanohorns according to [3], wherein the boron compound is supported on the inner wall and the outer wall, which is heated to 750 ° C. or higher.
[5] A carbon nanohorn complex, wherein the surface of the carbon nanohorn according to [1] or [2] is modified by physically attaching a phospholipid PEG to which an antibody or folic acid is added. .
[6] A carbon nanohorn complex characterized in that antibody-added polyethylene glycol is chemically bonded to the functional group introduced into the carbon nanohorn according to [1] or [2].
[7] A boron neutron capture therapy preparation comprising the carbon nanohorn according to [1] or [2] or the carbon nanohorn complex according to [5] or [6] as an active ingredient.

本発明のホウ素化合物を内包および外壁に担持しているカーボンナノホーン(以下、「BN−CNH」ということもある。)は、カーボンナノホーン(以下、「CNH」ということもある。)の直径が2〜5nmと大きいために、大量のホウ素化合物を内包しており、ホウ素の腫瘍蓄積量を上げることが可能になる。また、比表面積が300−400m/gであるため、外壁にも大量のホウ素化合物を担持できる。特に、原料としてアンモニアボラン(HN−BH)を用いた場合、加熱によりアンモニアボランからBNへ変化し、その際にBNがCNH内部や外壁にとどまることで、BN−CNHをえることができる。
また、CNHは化学的に安定であって、その外壁を修飾することが容易であるので、本発明のBN−CNHを化学的にあるいは物理的に修飾することにより、血中投与した際の腫瘍での蓄積量を上げることが可能となる。
さらに、本発明に用いるCNHは、100nm程度の球状構造をとっていて、しかも表面は凹凸に富んだ構造をしているため、強く凝集することはなく、溶液中にて孤立分散する。したがって、適切に表面修飾したBN−CNHは、生体内投与した際に、腫瘍への蓄積を実現させ、ホウ素中性子捕捉療法の効果を高めることができる。
The carbon nanohorn (hereinafter also referred to as “BN-CNH”) carrying the boron compound of the present invention on the inner wall and the outer wall has a carbon nanohorn (hereinafter also referred to as “CNH”) diameter of 2. Since it is as large as ˜5 nm, a large amount of boron compound is included, and the tumor accumulation amount of boron can be increased. Moreover, since a specific surface area is 300-400 m < 2 > / g, a large amount of boron compounds can be carry | supported also on an outer wall. In particular, when ammonia borane (H 3 N—BH 3 ) is used as a raw material, BN-CNH can be obtained by changing from ammonia borane to BN by heating, and at that time BN stays inside or outside the CNH. it can.
Moreover, since CNH is chemically stable and it is easy to modify its outer wall, the tumor when administered in blood by chemically or physically modifying the BN-CNH of the present invention It is possible to increase the amount of storage in
Furthermore, CNH used in the present invention has a spherical structure of about 100 nm, and the surface is rich in unevenness, so that it does not agglomerate strongly and is isolated and dispersed in the solution. Accordingly, appropriately surface-modified BN-CNH can realize accumulation in a tumor and enhance the effect of boron neutron capture therapy when administered in vivo.

異なる温度で合成したBN−CNHの炭素原子1個あたりのホウ素原子数を示す図(a)、BN−CNHを、リン酸緩衝生理食塩水及び細胞培養液のそれぞれに3日間浸したのちに、BN−CNHに残ったホウ素の量を浸漬前のホウ素量の%で表した図(b、c)、及びPBS中への浸漬を10日間まで延長したときのBN−CNHのホウ素量を%で表した図(d)Figure (a) showing the number of boron atoms per carbon atom of BN-CNH synthesized at different temperatures, after immersing BN-CNH in phosphate buffered saline and cell culture medium for 3 days, Figures (b, c) showing the amount of boron remaining in BN-CNH as a percentage of the amount of boron before immersion, and the amount of boron in BN-CNH in% when the immersion in PBS was extended to 10 days Figure (d) BN−CNHの透過電子顕微鏡写真(a−d)、及びBN−CNHの電子エネルギー損失スペクトルを示す図(e)であり、図(e)中の○は、BN−CNHの電子顕微鏡写真を挿入し電子エネルギー損失スペクトルを測定した場所を示す。It is a transmission electron micrograph (ad) of BN-CNH, and a figure (e) showing an electron energy loss spectrum of BN-CNH. A circle in FIG. (E) inserts an electron micrograph of BN-CNH. The location where the electron energy loss spectrum was measured is shown. BN−CNHのXPS測定結果を示す図。The figure which shows the XPS measurement result of BN-CNH. BN−CNHをリン酸緩衝生理食塩水中に分散させた際の粒径分布を示す図。The figure which shows the particle size distribution at the time of disperse | distributing BN-CNH in phosphate buffered saline. KB細胞にBN−CNH/PLPEG(a)、BN−CNH/PLPEG−FA(b)、CNH/PLPEG(c)、CNH/PLPEG−FA(d)を添加し、24時間培養した後の共焦点レーザー顕微鏡写真(a〜d)と、タンパク質量で規格化したCNH取り込み量を示す図(e)。Confocal after adding BN-CNH / PLPEG (a), BN-CNH / PLPEG-FA (b), CNH / PLPEG (c), CNH / PLPEG-FA (d) to KB cells and culturing for 24 hours Laser micrographs (ad) and a diagram (e) showing the amount of CNH uptake normalized by the amount of protein. 正常細胞にBN−CNH/PLPEG(a)、BN−CNH/PLPEG−FA(b)、CNH/PLPEG(c)、CNH/PLPEG−FA(d)を添加し、24時間培養した後の共焦点レーザー顕微鏡写真(a〜d)と、タンパク質量で規格化したCNH取り込み量を示す図(e)。Confocal after adding BN-CNH / PLPEG (a), BN-CNH / PLPEG-FA (b), CNH / PLPEG (c), CNH / PLPEG-FA (d) to normal cells and culturing for 24 hours Laser micrographs (ad) and a diagram (e) showing the amount of CNH uptake normalized by the amount of protein.

本発明は、カーボンナノホーンにホウ素化合物が内包および外壁に担持されていることを特徴とするものである。   The present invention is characterized in that a boron compound is supported on an inner wall and an outer wall of a carbon nanohorn.

本発明におけるカーボンナノホーンの製造方法は、特に限定されず、CVD法、レーザーアブレーション法、アーク放電法など、いずれの方法であっても構わない。   The method for producing the carbon nanohorn in the present invention is not particularly limited, and any method such as a CVD method, a laser ablation method, or an arc discharge method may be used.

本発明において、カーボンナノホーンに内包および外壁に担持させるホウ素化合物及びその方法は、特に限定されないが、たとえば、原料にアンモニアボランを用い、CNHとともに加熱する方法があげられる。該方法によれば、加熱によりアンモニアボランからBNへ変化し、その際にBNがCNH内部や外壁にとどまることで、BN−CNHを得ることができる。
ちなみに、化学反応式は、以下のとおりである。
NH3BH3 → BN+3H2
In the present invention, the boron compound to be supported on the inner wall and the outer wall of the carbon nanohorn and the method thereof are not particularly limited, and examples thereof include a method in which ammonia borane is used as a raw material and heated together with CNH. According to this method, BN-CNH can be obtained by changing from ammonia borane to BN by heating, and at that time BN stays inside or outside the CNH.
Incidentally, the chemical reaction formula is as follows.
NH 3 BH 3 → BN + 3H 2

カーボンナノホーンは化学的に安定であって、その外壁を化学修飾することが容易であるので、血中投与した際に腫瘍での蓄積量を上げるために、本発明のBN−CNHを化学的にあるいは物理的に修飾することができる。   Since carbon nanohorn is chemically stable and it is easy to chemically modify its outer wall, the BN-CNH of the present invention is chemically added to increase the amount of accumulation in the tumor when administered in blood. Alternatively, it can be physically modified.

化学的な修飾の一例として、例えば、本発明のBN−CNHに、PEGを介して、がん細胞にその受容体が多数形成されている上皮成長因子(EGF:Epidermal Growth Factor)を結合させることで、BN−CNHをがん細胞に特異的に集積させることができる。
具体的には、本発明のBN−CNHを酸化処理してカルボキシル基を導入した後、得られたBN−CNHのカルボキシル基にアミド結合によりPEG−COOHを付加して、BN−CNH-PEG−COOHを得、得られたBN−CNH−PEG−COOHに、N−ヒドロキシコハク酸イミド(NHS)とEDCを少量加えて、BN−CNH−PEG−NHSを得た後、トリエチルアミンとEGFを加えて、BN−CNH−PEG−EGFを得ることができる。
As an example of chemical modification, for example, epidermal growth factor (EGF) in which a large number of receptors are formed in cancer cells is bound to BN-CNH of the present invention via PEG. Thus, BN-CNH can be accumulated specifically in cancer cells.
Specifically, the BN-CNH of the present invention was oxidized to introduce a carboxyl group, PEG-COOH was added to the carboxyl group of the obtained BN-CNH by an amide bond, and BN-CNH-PEG- COOH was obtained, and a small amount of N-hydroxysuccinimide (NHS) and EDC was added to the obtained BN-CNH-PEG-COOH to obtain BN-CNH-PEG-NHS, and then triethylamine and EGF were added. BN-CNH-PEG-EGF can be obtained.

また、物理的な修飾の一例として、例えば、本発明のBN−CNHの表面に、PLPEG−FAを物理的に結合させることで、BN−CNHをがん細胞に特異的に集積させることができる。
すなわち、がん細胞には葉酸受容体が多数形成されているため、リン脂質PEG(PLPEG)と葉酸(FA)を反応さて、得られたPLPEG−FAをカーボンナノチューブにファンデルワールス力により物理的に付着させるとカーボンナノチューブががん細胞に集積しやすくなることが示されており(飯泉陽子、博士学理論文、筑波大学、2012年参照)、同様な手法により、PLPEG−FAを、本発明のBN−CNHの表面に物理的に結合させると、BN−CNHをがん細胞に特異的に集積させることが可能となる。
In addition, as an example of physical modification, for example, BN-CNH can be specifically accumulated in cancer cells by physically binding PLPEG-FA to the surface of BN-CNH of the present invention. .
That is, since many folate receptors are formed in cancer cells, phospholipid PEG (PLPEG) and folic acid (FA) are reacted, and the resulting PLPEG-FA is physically converted into carbon nanotubes by van der Waals force. It has been shown that carbon nanotubes are likely to accumulate in cancer cells when attached to (see Yoko Iizumi, Ph.D. theory, University of Tsukuba, 2012). When physically bound to the surface of BN-CNH, BN-CNH can be specifically accumulated in cancer cells.

以下に、リン脂質PEG(ポリ(エチレングリコール)誘導体化ジステアロイルホスファチジルエタノールアミン、以下、「PLPEG」とする。)、葉酸(FA)、及びその化合物(PLPEG−FA)の分子構造と反応式を示す(前掲論文、図5−9参照)。   The molecular structures and reaction formulas of phospholipid PEG (poly (ethylene glycol) derivatized distearoylphosphatidylethanolamine, hereinafter referred to as “PLPEG”), folic acid (FA), and its compound (PLPEG-FA) are shown below. This is shown (see the above paper, Fig. 5-9).

Figure 0006281991
Figure 0006281991

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(BN−CNHの作製)
CNHは乾燥空気中で室温から500℃まで1℃/minで昇温し、その後放冷して開孔させた。アンモニアボラン1mgと開孔CNH1mgをガラス容器にいれて、4×10-4Paにて2時間真空排気後、ガラス容器の一端を封じ切ってアンプルを得た。
得られた試料入りアンプルを電気炉に入れ、24時間かけて所定の温度(550℃から850℃までの、50℃毎に異なる温度)まで昇温し、24時間保った後、放冷させた。この処理により、BN−CNHを得た。
アンプルを開封して、BN−CNHを取り出し、エタノールで遊離している余剰なホウ素化合物をフィルターろ過することで洗い流した後、構造評価に用いた。
(Production of BN-CNH)
CNH was heated at 1 ° C./min from room temperature to 500 ° C. in dry air, and then allowed to cool to open holes. Ammonia borane (1 mg) and open-hole CNH (1 mg) were placed in a glass container, evacuated at 4 × 10 −4 Pa for 2 hours, and then one end of the glass container was sealed to obtain an ampoule.
The obtained ampule with sample was put in an electric furnace, heated to a predetermined temperature (a temperature varying from 550 ° C. to 850 ° C. every 50 ° C.) over 24 hours, kept for 24 hours, and then allowed to cool. . By this treatment, BN-CNH was obtained.
The ampoule was opened, BN-CNH was taken out, and the excess boron compound liberated with ethanol was washed away by filtering, and then used for structural evaluation.

(誘導結合プラズマ(ICP)発光測定)
各温度で合成したBN−CNHを、それぞれ、1%ドデシルベンゼンスルホン酸ナトリウム水溶液中に0.05mg/mLになるように加え、チップ型ソニケーションで5分間処理し、BN−CNH分散溶液を得た。これをICP発光測定することにより、BN−CNH中のホウ素含有量を定量した。その結果を図1aに示す。
また、BN−CNH(1mg)を、リン酸緩衝生理食塩水(PBS)(2mL)及び細胞培養液(Cell Culture Meddium)(2mL)にそれぞれ加え、超音波洗浄機を用いて5分間分散させた後、3日間静置させた。3日間静置後、濾過によりBN−CNHを回収し、BN−CNHに残っていたホウ素量を上述の方法でICPにて測定して見積もった。BN−CNH中のホウ素量は、浸漬前のホウ素量に対する%で示すと、それぞれ図1b、cのようになった。
図1b、cに示すとおり、750℃以上で加熱処理したBN−CNHが安定した構造をとると考えられたため、以後は、800℃で加熱処理したBN−CNHを構造評価に用いた。
800℃で作製したBN−CNH(1mg)を細胞培養液(2mL)に加え、超音波洗浄機にて5分間分散させた後、0〜10日間静置させた。静置後、濾過によりBN−CNHを回収し、BN−CNHに残っていたホウ素量を上述の方法でICPにて測定して見積もった。BN−CNH中のホウ素量は、浸漬前のホウ素量に対する%で示すと図1dのようになった。BN−CNH中のホウ素量は、10日間浸漬でも浸漬前のホウ素量の75−80%に保たれることが分かった。
(Inductively coupled plasma (ICP) emission measurement)
Add BN-CNH synthesized at each temperature to 0.05 mg / mL in 1% sodium dodecylbenzenesulfonate aqueous solution and treat with chip-type sonication for 5 minutes to obtain a BN-CNH dispersion. It was. By measuring this with ICP luminescence, the boron content in BN-CNH was quantified. The result is shown in FIG.
BN-CNH (1 mg) was added to phosphate buffered saline (PBS) (2 mL) and cell culture medium (2 mL), respectively, and dispersed for 5 minutes using an ultrasonic cleaner. Thereafter, it was allowed to stand for 3 days. After standing for 3 days, BN-CNH was recovered by filtration, and the amount of boron remaining in BN-CNH was measured by ICP by the above method and estimated. When the boron content in BN-CNH is expressed as a percentage of the boron content before immersion, the results are as shown in FIGS. 1b and 1c, respectively.
As shown in FIGS. 1b and 1c, since it was considered that BN-CNH heat-treated at 750 ° C. or higher had a stable structure, BN-CNH heat-treated at 800 ° C. was used for structural evaluation.
BN-CNH (1 mg) prepared at 800 ° C. was added to the cell culture medium (2 mL), dispersed for 5 minutes with an ultrasonic washer, and allowed to stand for 0 to 10 days. After standing, BN-CNH was recovered by filtration, and the amount of boron remaining in BN-CNH was measured and estimated by ICP using the method described above. The amount of boron in BN-CNH was as shown in FIG. 1d as a percentage of the amount of boron before immersion. It was found that the boron content in BN-CNH was maintained at 75-80% of the boron content before immersion even after 10 days immersion.

(透過型電子顕微鏡観察(TEM)と電子エネルギー損失分光(EELS)測定)
得られた前記BN−CNHをエタノールに分散させ、TEM観察とEELS測定を行った。
TEM測定の結果を、図2a−dに示す。図2a−dに示すとおり、BN−CNHはCNH個々の擬円筒状構造とその球状集合体形状を維持していた。さらに高倍率で観察してみると、CNHの壁に沿って、壁の内側と外側に層状にBNが合成されていることがわかった。また、CNH内部空間にもBNが存在していることを確認した。BNは六方晶BNとして存在していると推知される。図2eに示すEELSスペクトルには、B、N、及びCによるピークが観察され、B及びNのピーク形状は六方晶BNのものと一致した。
(Transmission electron microscope observation (TEM) and electron energy loss spectroscopy (EELS) measurement)
The obtained BN-CNH was dispersed in ethanol, and TEM observation and EELS measurement were performed.
The results of TEM measurement are shown in FIGS. 2a-d. As shown in FIGS. 2a to 2d, BN-CNH maintained the pseudo-cylindrical structure of each CNH and its spherical aggregate shape. When observed at a higher magnification, it was found that BN was synthesized in layers on the inside and outside of the wall along the CNH wall. It was also confirmed that BN was present in the CNH internal space. It is presumed that BN exists as hexagonal BN. In the EELS spectrum shown in FIG. 2e, peaks due to B, N, and C were observed, and the peak shapes of B and N coincided with those of hexagonal BN.

(X線光電子分光(XPS)測定)
前記のBN−CNH(1mg)とエタノール(5mL)を混合し、5分間バスソニケーションして得た分散液をSiウエハー上に滴下し、乾燥させた後に、XPS測定を行った。結果を図3に示す。
図3に示すとおり、BN−CNHは、B、C、及びNに帰属されるピークが観察され、それぞれの強度から、B(22%)、C(55%)、N(22%)であることが分かった(%は原子数%)。酸素のピークも見られたが、これは、基盤に用いたSiウエハーの表面のSi酸化物による。
(X-ray photoelectron spectroscopy (XPS) measurement)
The dispersion obtained by mixing BN-CNH (1 mg) and ethanol (5 mL) and bath sonicating for 5 minutes was dropped on a Si wafer and dried, and then XPS measurement was performed. The results are shown in FIG.
As shown in FIG. 3, in BN-CNH, peaks attributed to B, C, and N are observed, and from the respective intensities, they are B (22%), C (55%), and N (22%). (% Is atomic%). An oxygen peak was also observed, but this was due to the Si oxide on the surface of the Si wafer used for the substrate.

(動的光散乱測定(DLS))
前記のBN−CNH(1mg)をPLPEGのリン酸緩衝生理食塩水(PBS)(5mL)に加え、バスソニケーションで、5分間ソニケーションしてBN−CNHを分散させた後に、粒子径をDLSにて測定した。比較のため、同様にして前記の開孔したCNH(1mg)を分散させた後に、粒子径をDLSにて測定した。それぞれの結果を、図4のb、aに示す。
bに示すBN−CNHの平均粒子径は約130nmであり、aに示すもとのCNHの平均粒子径約120nmとほぼ一致し、ホウ素化合物を内包および外壁に担持する操作により構造が大きく変わらなかったことを示唆している。電子顕微鏡観察によりCNHの平均直径が約100nmであることが知られているので、PLPEGでPBS中に分散したBN−CNHはほぼ孤立に分散していることが分かる。また、この分散状態は少なくとも数日間は安定であった。
(Dynamic light scattering measurement (DLS))
After adding BN-CNH (1 mg) to PLPEG phosphate buffered saline (PBS) (5 mL) and sonicating with bath sonication for 5 minutes to disperse BN-CNH, the particle size was changed to DLS. Measured. For comparison, the above-mentioned CNH (1 mg) having the pores was dispersed in the same manner, and then the particle size was measured by DLS. Each result is shown in FIG.
The average particle size of BN-CNH shown in b is about 130 nm, which is almost the same as the average particle size of about 120 nm of the original CNH shown in a, and the structure is not greatly changed by the operation of supporting the boron compound on the inner wall and the outer wall. It suggests that. Since the average diameter of CNH is known to be about 100 nm by electron microscope observation, it can be seen that BN-CNH dispersed in PBS with PLPEG is almost isolated. This dispersion state was stable for at least several days.

(BN−CNHの表面修飾)
腫瘍へBN−CNHを高濃度蓄積させるために、BN−CNH表面をポリエチレングリコール(PEG)によりコーティングしてマクロファージによる貪食を避け、さらに、葉酸(FA)をBN−CNHに付加して、BN−CNHをがん細胞選択的に取り込ませるようにする。
そのためにまず、FA(1mg)をDMSO(4mL)に溶解させ、この溶液に、PLPEG(200mg)、ピリジン(2mL)、EDC(38mg)を加え、4時間室温にて撹拌した。ロータリーエバポレーターでピリジンを蒸発させた後に水50mLを加えた。得られた液を透析膜(MWCO3500)に入れ、水2L中に浸したのちに室温にて放置した。約1日後に、水2Lを入れ替えるという操作を5回行い、未反応PLPEG分子を除去した。得られた液を凍結乾燥させ、PLPEG−FAの粉末を得た。PLPEG−FAの構造は1H NMRにて確認した。
(Surface modification of BN-CNH)
In order to accumulate high concentrations of BN-CNH in the tumor, the surface of BN-CNH is coated with polyethylene glycol (PEG) to avoid phagocytosis by macrophages, and folic acid (FA) is added to BN-CNH to add BN- CNH is selectively taken up by cancer cells.
For that purpose, FA (1 mg) was first dissolved in DMSO (4 mL), PLPEG (200 mg), pyridine (2 mL), EDC (38 mg) were added to this solution, and the mixture was stirred at room temperature for 4 hours. After evaporating pyridine on a rotary evaporator, 50 mL of water was added. The obtained liquid was put into a dialysis membrane (MWCO 3500), immersed in 2 L of water, and allowed to stand at room temperature. About 1 day later, 2 L of water was replaced five times to remove unreacted PLPEG molecules. The obtained liquid was freeze-dried to obtain a PLPEG-FA powder. The structure of PLPEG-FA was confirmed by 1 H NMR.

得られたPLPEG−FAでBN−CNH表面を修飾するため、PLPEG−FA(4mg)と、前記BN−CNH(3mg)をリン酸緩衝生理食塩水(PBS)(2mL)中にて混合させ、PLPEG−FAの脂質基(アルキル鎖)をBN−CNHの表面にワンデルワール力で結合させ、がん細胞選択的に取り込まれるBN−CNH/PLPEG−FAを合成した。   In order to modify the BN-CNH surface with the obtained PLPEG-FA, PLPEG-FA (4 mg) and the BN-CNH (3 mg) were mixed in phosphate buffered saline (PBS) (2 mL), The lipid group (alkyl chain) of PLPEG-FA was bonded to the surface of BN-CNH with a one-delwar force to synthesize BN-CNH / PLPEG-FA that is selectively taken up by cancer cells.

CNHをPLPEG−FAを用いてPBS中に分散させたもの(CNH/PLPEG−FA)と、[0028]で得られたBN−CNH/PLPEG−FAのPBS分散液における粒子サイズをDLSにて測定した。その結果をそれぞれ、図4のd、cに示す。
dに示すBN−CNH/PLPEG−FAの平均粒子サイズは約130nmであり、上記[0026]と同様、cに示すもとのCNHのサイズとほぼ一致し、FA付加後においても、表面修飾したCNHは単一分散していることがわかる。
Particle size in PBS dispersion of CNH dispersed in PBS using PLPEG-FA (CNH / PLPEG-FA) and BN-CNH / PLPEG-FA obtained in [0028] was measured with DLS. did. The results are shown in FIG. 4 d and c, respectively.
The average particle size of BN-CNH / PLPEG-FA shown in d is about 130 nm, and almost the same as the size of the original CNH shown in c, as in the above [0026], and surface modification was performed even after the addition of FA. It can be seen that CNH is monodispersed.

(がん細胞のBN−CNH/PLPEG−FA選択的取り込み実験)
ヒト口腔類上皮がん由来の細胞株(KB細胞)を培養し、そこに、PBSに分散させたBN−CNH/PLPEG−FA溶液を、最終濃度10μg/mLになるように添加した。24時間培養後、細胞に取り込まれなかったBN−CNH/PLPEG−FAをPBSで洗い流したあと、共焦点レーザー顕微鏡にて、細胞を観察した。結果を図5a−dに示す。
図5a−dに示すとおり、BN−CNH/PLPEG(a)とCNH/PLPEG(c)は、KB細胞に取り込まれる量が少なかったが、BN−CNH/PLPEG―FA(b)とCNH/PLPEG―FA(d)は、KB細胞に大量に取り込まれていた。
(Selective uptake experiment of BN-CNH / PLPEG-FA of cancer cells)
A cell line (KB cells) derived from human oral epithelial cancer was cultured, and a BN-CNH / PLPEG-FA solution dispersed in PBS was added thereto to a final concentration of 10 μg / mL. After culturing for 24 hours, BN-CNH / PLPEG-FA that was not taken up by the cells was washed away with PBS, and then the cells were observed with a confocal laser microscope. The results are shown in FIGS. 5a-d.
As shown in FIGS. 5a-d, BN-CNH / PLPEG (a) and CNH / PLPEG (c) were less uptaken into KB cells, but BN-CNH / PLPEG-FA (b) and CNH / PLPEG -FA (d) was taken up in large quantities by KB cells.

また、BN−CNH/PLPEG−FAのがん細胞による取り込み量を定量的に評価するため、細胞溶解試薬によって、細胞溶解液を作成し、この溶液中のタンパク質量とCNH量を測定した。タンパク質量は、ブラッドフォード法にて定量するため、遠心分離機(1800xg,50分)によって、細胞片を取り除き、また、CNHから分離した。上澄みの細胞溶解液(10μL)に、ブラッドフォード液(250μL)を加えて、595nmの波長での吸収強度を測定した。さらに、細胞が取り込んだBN−CNH量は、細胞溶解液をチップ型ソニケーションに10分間かけた後、700nmの波長での吸収強度を測定することで濃度を見積もった。以上の操作によるタンパク質量とCNH量から、がん細胞でのBN−CNH/PLPEG−FA取り込み量を算出した。結果を図5eに示す。
その結果、BN−CNHは、CNHと同様に、PLPEG−FAを修飾することによって、がん細胞に取り込まれやすくなることがわかった。
Further, in order to quantitatively evaluate the amount of BN-CNH / PLPEG-FA taken up by cancer cells, a cell lysis solution was prepared with a cell lysis reagent, and the amount of protein and the amount of CNH in this solution were measured. In order to quantify the amount of protein by the Bradford method, cell debris was removed and separated from CNH by a centrifuge (1800 × g, 50 minutes). Bradford solution (250 μL) was added to the supernatant cell lysate (10 μL), and the absorption intensity at a wavelength of 595 nm was measured. Further, the amount of BN-CNH taken up by the cells was estimated by measuring the absorption intensity at a wavelength of 700 nm after applying the cell lysate to chip-type sonication for 10 minutes. The amount of BN-CNH / PLPEG-FA uptake in cancer cells was calculated from the amount of protein and the amount of CNH by the above operation. The result is shown in FIG.
As a result, it was found that BN-CNH can be easily taken up by cancer cells by modifying PLPEG-FA in the same manner as CNH.

[0030]と[0031]に記載と同様の実験を、正常細胞FHs173Weを用いて行った。結果を図6a−eに示す。
図6a−eに示すとおり、FAを付加したことによる細胞取り込み量に差は見られず、FAがない場合と同様取り込み量は少なかった。BN−CNH/PLPEG(a)、BN−CNH/PLPEG−FA(b)、CNH/PLPEG(c)、CNH/PLPEG―FA(d)のいずれの場合も、顕微鏡でみた細胞内取り込み量は少なく、また、これら試料の細胞内取り込み量測定結果にも優位な差は認められなかった(e)。
上記[0030]、[0031]に記載の結果と合わせて考察することにより、BN−CNH/PLPEG−FAは、がん細胞選択的に取り込まれるといえる。
Experiments similar to those described in [0030] and [0031] were performed using normal cells FHs173We. The results are shown in FIGS. 6a-e.
As shown in FIGS. 6a-e, there was no difference in the amount of cellular uptake due to the addition of FA, and the amount of uptake was small as in the case without FA. In any case of BN-CNH / PLPEG (a), BN-CNH / PLPEG-FA (b), CNH / PLPEG (c), CNH / PLPEG-FA (d), the amount of cellular uptake observed with a microscope is small. In addition, no significant difference was observed in the measurement results of the amount of cellular uptake of these samples (e).
When considered together with the results described in [0030] and [0031] above, it can be said that BN-CNH / PLPEG-FA is selectively taken up by cancer cells.

本発明のBN−CNHは、大量のホウ素化合物を内包および外壁に担持しており、特に、適切に表面修飾したBN−CNHは、生体内投与した際に、腫瘍への蓄積を実現させ、ホウ素中性子捕捉療法の効果を高めることができるので、ホウ素中性子捕捉療法に有用な成分を提供する医薬製造業において利用できる。   The BN-CNH of the present invention carries a large amount of boron compound on the inner wall and the outer wall, and particularly, appropriately surface-modified BN-CNH realizes accumulation in a tumor when administered in vivo, and boron Since the effect of neutron capture therapy can be enhanced, it can be used in the pharmaceutical manufacturing industry that provides components useful for boron neutron capture therapy.

Claims (6)

窒化ホウ素が、カーボンナノホーンの壁に沿っておよび外壁に層状に担持されているとともに内部空間にも内包されていることを特徴とするカーボンナノホーン。 Boron nitride, carbon nanohorn, characterized in that it is enclosed in the internal space the catalyst being supported on a layer on the inner wall and the outer wall along the walls of the carbon nanohorn. 原料にアンモニアボランを用い、カーボンナノホーンとともに加熱してアンモニアボランを窒化ホウ素に変化させることにより、窒化ホウ素が内包および外壁に担持されているカーボンナノホーン製造する方法。 A method for producing carbon nanohorn in which boron nitride is supported on the inner wall and the outer wall by using ammonia borane as a raw material and heating it together with carbon nanohorn to change ammonia borane to boron nitride. 750℃以上に加熱することを特徴とする請求項2に記載の、窒化ホウ素が内包および外壁に担持されているカーボンナノホーン製造する方法。 According to claim 2, characterized in that heating to 750 ° C. or higher, a method of manufacturing a carbon nano horn boron nitride is carried on inclusion and the outer wall. 請求項1に記載のカーボンナノホーンの表面に、抗体または葉酸を付加させたリン脂質PEGが物理的に付着して表面修飾されていることを特徴とするカーボンナノホーン複合体。 A carbon nanohorn complex, wherein the surface of the carbon nanohorn according to claim 1 is modified by physically attaching a phospholipid PEG to which an antibody or folic acid is added. 請求項1に記載のカーボンナノホーンに導入された官能基に、抗体付加ポリエチレングリコールが化学結合されていることを特徴とするカーボンナノホーン複合体。 A carbon nanohorn complex, wherein antibody-added polyethylene glycol is chemically bonded to the functional group introduced into the carbon nanohorn according to claim 1 . 請求項1に記載のカーボンナノホーン或いは請求項4又は5に記載のカーボンナノホーン複合体を有効成分として含有することを特徴とするホウ素中性子捕捉療法用製剤。 Carbon nanohorn or boron neutron capture therapy for preparation characterized by containing as an active ingredient carbon nanohorn complex according to claim 4 or 5 according to claim 1.
JP2016512786A 2014-04-11 2015-04-10 Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same Active JP6281991B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2014082154 2014-04-11
JP2014082154 2014-04-11
JP2014215682 2014-10-22
JP2014215682 2014-10-22
JP2015011605 2015-01-23
JP2015011605 2015-01-23
PCT/JP2015/061209 WO2015156385A1 (en) 2014-04-11 2015-04-10 Carbon nanohorn for encapsulating and carrying boron compound on outer wall, and method for producing carbon nanohorn

Publications (2)

Publication Number Publication Date
JPWO2015156385A1 JPWO2015156385A1 (en) 2017-04-13
JP6281991B2 true JP6281991B2 (en) 2018-02-21

Family

ID=54287956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016512786A Active JP6281991B2 (en) 2014-04-11 2015-04-10 Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same

Country Status (2)

Country Link
JP (1) JP6281991B2 (en)
WO (1) WO2015156385A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107224580B (en) * 2016-03-25 2020-10-16 南京中硼联康医疗科技有限公司 Application of alpha-amino acid-like boron trifluoride in boron neutron capture therapy
WO2017162093A1 (en) * 2016-03-25 2017-09-28 南京中硼联康医疗科技有限公司 Boron neutron capture treatingsystem and application of α-amino acid-like boron trifluoride inmanufacturing medicament for treating tumors
JP6844773B2 (en) * 2017-03-01 2021-03-17 国立大学法人 岡山大学 Boron-containing dendrimer with intracellular transfer function
WO2022260136A1 (en) * 2021-06-11 2022-12-15 国立大学法人京都大学 Surface-modified nanoparticle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534347B1 (en) * 2002-07-22 2009-12-02 Psimei Pharmaceuticals Plc Conjugates of n-hydroxypropymethacrylamide-methacrylate copolymer with nuclide activation agent and/or anti-cancer compounds
JP2004256370A (en) * 2003-02-27 2004-09-16 Toshihiro Yamase Boron atom-containing heteropolyacid and boron compound
JP2005053904A (en) * 2003-07-24 2005-03-03 Ideal Star Inc Fullerene and anticancer therapeutic agent
JP2013057577A (en) * 2011-09-08 2013-03-28 Shinshu Univ Identification method using radiation and identification material used for the same

Also Published As

Publication number Publication date
JPWO2015156385A1 (en) 2017-04-13
WO2015156385A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
Geng et al. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic cancer therapy in the NIR-II window
Wang et al. Cyanine-assisted exfoliation of covalent organic frameworks in nanocomposites for highly efficient chemo-photothermal tumor therapy
Li et al. Technical synthesis and biomedical applications of graphene quantum dots
Dong et al. Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy
Zhang et al. Highly photoluminescent carbon dots derived from egg white: facile and green synthesis, photoluminescence properties, and multiple applications
Fan et al. Group IV nanoparticles: synthesis, properties, and biological applications
Hu et al. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery
Karousis et al. Current progress on the chemical modification of carbon nanotubes
Akhavan et al. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy
Makharza et al. Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation
Hu et al. Low-dimensional nanomaterials for antibacterial applications
Zheng et al. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery
JP6281991B2 (en) Carbon nanohorn carrying boron compound on inner and outer walls and method for producing the same
Wang et al. Mesoporous carbon nanoshells for high hydrophobic drug loading, multimodal optical imaging, controlled drug release, and synergistic therapy
Liu et al. Synthesis of mesoporous silica/reduced graphene oxide sandwich-like sheets with enlarged and “funneling” mesochannels
Yallappa et al. Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells
Zhang et al. Graphene oxide and adenosine triphosphate as a source for functionalized carbon dots with applications in pH-triggered drug delivery and cell imaging
Zhang et al. Aptamer-mediated nanocomposites of semiconductor quantum dots and graphene oxide as well as their applications in intracellular imaging and targeted drug delivery
Ren et al. Multifunctional hierarchical mesoporous silica and black phosphorus nanohybrids as chemo-photothermal synergistic agents for enhanced cancer therapy
Sui et al. Incorporation of cisplatin into PEG-wrapped ultrapurified large-inner-diameter MWCNTs for enhanced loading efficiency and release profile
Duong et al. Biocompatible chitosan-functionalized upconverting nanocomposites
Yang et al. Synthesis of boron carbonitride nanosheets using for delivering paclitaxel and their antitumor activity
Tufano et al. Methods to scale down graphene oxide size and size implication in anti-cancer applications
Ranasinghe et al. Engineered 2D materials for optical bioimaging and path toward therapy and tissue engineering
Chen et al. Chemo-photothermal effects of doxorubicin/silica–carbon hollow spheres on liver cancer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6281991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250