JP6217233B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP6217233B2
JP6217233B2 JP2013171239A JP2013171239A JP6217233B2 JP 6217233 B2 JP6217233 B2 JP 6217233B2 JP 2013171239 A JP2013171239 A JP 2013171239A JP 2013171239 A JP2013171239 A JP 2013171239A JP 6217233 B2 JP6217233 B2 JP 6217233B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
temperature
electrostatic chuck
electrostatic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013171239A
Other languages
English (en)
Other versions
JP2015041669A (ja
Inventor
良輔 久保田
良輔 久保田
田中 聡
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013171239A priority Critical patent/JP6217233B2/ja
Priority to US14/912,509 priority patent/US9887101B2/en
Priority to PCT/JP2014/068134 priority patent/WO2015025628A1/ja
Priority to DE112014003838.5T priority patent/DE112014003838T5/de
Publication of JP2015041669A publication Critical patent/JP2015041669A/ja
Application granted granted Critical
Publication of JP6217233B2 publication Critical patent/JP6217233B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/041Making n- or p-doped regions
    • H01L21/0415Making n- or p-doped regions using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

この発明は、半導体装置の製造方法に関し、より特定的には、大口径(特に100mmより大きい)の半導体基板を高温に加熱処理する工程を備えた、半導体装置の製造方法に関する。
従来より、シリコン(Si)等の半導体基板に不純物をドーピングする、あるいは、半導体基板に成膜する等の処理を行なう装置においては、静電吸着力によって半導体基板を吸着保持する静電チャックが広く用いられている。このような静電チャックとして、たとえば、特開2001−152335号公報(特許文献1)には、半導体基板の温度を調整するためのヒータと一体的に構成されたものが開示されている。
特許文献1では、ヒータに通電して静電チャックを所定の温度に加熱した状態で基板を静電チャックプレート上の所定の位置に載置する。そして、静電チャック電源を起動し、基板の温度が所定の基準温度に到達するまで、吸着電極に対する印加電圧を累積的に増加させる。
特開2001−152335号公報
近年、半導体装置の製造に用いられる半導体基板として、シリコンに比べて大きなバンドギャップを有するワイドバンドギャップ半導体基板の利用が進められつつある。このワイドバンドギャップ半導体は、代表的には、炭化珪素(SiC)結晶、窒化ガリウム(GaN)およびダイヤモンドなどがある。さらに、このようなワイドバンドギャップ半導体基板を用いた半導体装置を効率的に製造するために、半導体基板の大口径化が進められている。
しかしながら、半導体基板を大口径化した場合、半導体基板を高温に加熱処理する工程において、半導体基板に生じる反りの量が顕著に増大する。そして、この反りに起因して半導体基板の平坦性が損なわれるため、高温下でイオン注入を行なうドーピング等の処理において、半導体基板をイオン注入装置の静電チャックに吸着させることが困難となる。このため、半導体基板面内に温度ばらつきが生じてしまう。
さらに、平坦性の悪い半導体基板に対してイオン注入を行なうと、半導体基板に形成される不純物領域の形状にばらつきが生じる。これらのばらつきが半導体基板面内での素子特性のばらつきを増大させる要因となることにより、半導体装置の歩留まりの低下を招いてしまう。
この発明は、このような課題を解決するためになされたものであり、この発明の目的は、大口径の半導体基板を高温に加熱処理する工程における、半導体基板面内の製造ばらつきを低減可能な半導体装置の製造方法を提供することである。
この発明に従った半導体装置の製造方法は、半導体基板を準備する工程と、静電チャック上に半導体基板を載置する工程と、静電チャックを第1の温度に昇温した後、半導体基板をチャッキングする工程と、半導体基板をチャッキングした状態で、静電チャックを上記第1の温度より高い第2の温度に昇温する工程と、静電チャックを上記第2の温度に昇温した状態で、半導体基板に対する処理を実行する工程とを備え、第1の温度は、半導体基板の反り量が、静電チャックが半導体基板をチャッキングできる許容値以下となる基板温度の範囲内に設定される。
この発明によれば、大口径の半導体基板を高温に加熱処理する工程における、半導体基板面内の製造ばらつきを低減することができる。
本発明の実施形態による半導体装置の製造方法を実施するための製造装置であるイオン注入装置の概略構成図である。 本発明の実施の形態による半導体装置の製造方法を説明するためのフローチャートである。 半導体基板の反り量の定義を説明するための模式図である。 静電チャック上の半導体基板に働く力を模式的に示す図である。 静電チャックの静電吸着力の評価手法を説明する図である。 第1の実施の形態による半導体装置の製造方法を説明する図である。 第2の実施の形態による半導体装置の製造方法を説明する図である。
[本願発明の実施形態の説明]
最初に、本願発明の実施形態の内容を列記して説明する。
(1) この発明に従った半導体装置の製造方法は、半導体基板を準備する工程と、静電チャック上に半導体基板を載置する工程と、静電チャックを第1の温度に昇温した後、半導体基板をチャッキングする工程と、半導体基板をチャッキングした状態で、静電チャックを第1の温度より高い第2の温度に昇温する工程と、静電チャックを第2の温度に昇温した状態で、半導体基板に対する処理を実行する工程とを備える。
この構成によれば、半導体基板の処理温度(第2の温度)よりも低い温度(第1の温度)に静電チャックを昇温した状態では、静電チャック上の半導体基板の反りが抑制されているため、半導体基板を静電チャックに確実に吸着させることができる。したがって、この状態で静電チャックを第2の温度に昇温することにより、半導体基板を均一に第2の温度まで昇温することができる。また、半導体基板の平坦性が保たれているため、半導体基板面内の加工ばらつきを低減できる。この結果、半導体装置の歩留まりを向上することができる。
(2) 上記半導体装置の製造方法において、第2の温度に昇温する工程は、半導体基板が第1の温度に昇温した後、静電チャックの昇温を開始する。
この場合、半導体基板を一様に第1の温度に昇温するのを待って、静電チャックを第2の温度へ昇温させるため、半導体基板を一様に第2の温度に昇温することができる。
(3) 上記半導体装置の製造方法において、静電チャックは、印加される電圧に応じた静電吸着力を半導体基板に対して発生可能な電極を含む。半導体基板をチャッキングする工程では、電極へ第1の電圧を印加する。第2の温度に昇温する工程では、電極への印加電圧を第1の電圧より高い第2の電圧に増加させる。
半導体基板と静電チャックとの接着面には、半導体基板の熱膨張を抑制するように応力が働くところ、基板温度の上昇に応じて静電吸着力を増加させることでこの応力が緩和される。これにより、静電チャックのステージが傷つくのを防止できる。
なお、半導体基板をチャッキングする工程では、電極へ第1の電圧を印加し、第2の温度に昇温する工程では、電極への印加電圧を上記第1の電圧より低い電圧に低下させるようにしてもよい。このように静電チャック上の半導体基板に反りが発生するときの静電吸着力を低下させることで、半導体基板の割れを防止できる。
あるいは、半導体基板をチャッキングする工程と第2の温度に昇温する工程とで、電極への印加電圧を同じとしてもよい。この場合、静電チャックへの印加電圧の制御機構が簡素化されるため、製造コストを低減できる。なお、上記のいずれの場合においても、第2の電圧は半導体基板の割れが生じるのを抑制することが可能な電圧に設定される。
(4) 上記半導体装置の製造方法は、半導体基板に対する処理を実行する工程の後において、静電チャックを第1の温度に降温した後、半導体基板のチャッキングを解除する工程をさらに備える。
このようにすれば、静電チャックを第1の温度に降温してから半導体基板のチャッキングを解除するため、チャッキング解除後の半導体基板の反りが抑えられ、半導体基板の搬出を容易に行なうことができる。また、半導体基板を搬出した後に続けて次の半導体基板を静電チャックに載置できるため、製造工程のスループットを高めることができる。
(5) 上記半導体装置の製造方法は、半導体基板に対する処理を実行する工程の後において、静電チャックを、第2の温度以下で第1の温度以上となる第3の温度に降温した後、半導体基板のチャッキングを解除する工程をさらに備える。
この場合、半導体基板が第3の温度となった状態で静電チャックの静電吸着力を減少させると、半導体基板に反りが発生する。これにより、静電チャックと半導体基板の間の距離が大きくなるため、静電チャックから半導体基板が剥がれやすくなる。
(6) 上記半導体装置の製造方法において、第1の温度は、半導体基板の反り量が、静電チャックが半導体基板をチャッキングできる許容値以下となる基板温度の範囲内に設定される。
このようにすれば、静電チャックを第1の温度に昇温した状態では静電チャック上の半導体基板の反りが抑制されているため、半導体基板を静電チャックに確実に吸着させることができる。
(7) 上記半導体装置の製造方法において、第1の温度は、半導体基板をチャッキングする工程の前後における、静電チャックの静電容量の変化率が閾値以下となる温度範囲内に設定される。
静電チャックの静電容量は、静電チャックの静電吸着力の有無に応じて変化する。そこで、半導体基板をチャッキングする工程の前後における静電容量の変化率に閾値を設けるとともに、この変化率が閾値以下となる基板温度の範囲を、静電チャックが半導体基板をチャッキングできる基板温度の範囲に設定する。これにより、静電チャックを第1の温度に昇温した状態では静電チャック上の半導体基板の反りが抑制されているため、半導体基板を静電チャックに確実に吸着させることができる。
(8) 上記半導体装置の製造方法において、第1の温度は、半導体基板をチャッキングする工程の前後における、半導体基板の温度の変化量が閾値以上となる温度範囲内に設定される。
静電チャック上の半導体基板の温度は、静電チャックの静電吸着力の有無に応じて変化する。そこで、半導体基板をチャッキングする工程の前後における基板温度の変化量に閾値を設けるとともに、この変化量が閾値以上となる基板温度の範囲を、静電チャックが半導体基板をチャッキングできる基板温度の範囲に設定する。これにより、静電チャックを第1の温度に昇温した状態では静電チャック上の半導体基板の反りが抑制されているため、半導体基板を静電チャックに確実に吸着させることができる。
(9) 上記半導体装置の製造方法において、半導体基板に対する処理を実行する工程は、半導体基板に不純物イオンを注入する工程を含む。第2の温度は、100℃以上800℃以下の温度範囲内に設定される。第1の温度は、室温以上700℃以下の温度範囲内に設定される。
第2の温度は、100℃以上800℃以下の温度範囲内であって、好ましくは200℃以上600℃以下の温度範囲内に設定される。このようにすれば、半導体基板に不純物イオンを注入する工程における、半導体基板面内のばらつき(温度ばらつきおよび加工ばらつき)を低減できるため、半導体装置の歩留まりを向上することができる。
(10) 上記半導体装置の製造方法において、半導体基板は、100mmより大きい外径を有する化合物半導体基板である。
これによれば、大口径の化合物半導体基板を用いても、半導体基板を高温に加熱処理する工程における、半導体基板面内のばらつきを低減できる。よって、半導体装置を効率的かつ歩留まり良く製造することができる。
(11) 上記半導体装置の製造方法において、半導体基板は、100mmより大きい外径を有する炭化珪素半導体基板である。
この場合、炭化珪素半導体装置を、効率的かつ高い歩留まりで製造することができる。
[本願発明の実施形態の詳細]
以下、図面に基づいて本発明の実施の形態を説明する。なお以下の図面において同一または相当する部分には同一の参照符号を付し、その説明については繰り返さない。
図1および図2を参照して、本発明の実施形態に係る半導体装置の製造方法を説明する。本発明の実施形態に係る半導体装置の製造方法は、半導体基板を高温に加熱処理する工程を備える。本実施の形態では、この加熱処理する工程の代表例として、高温下で半導体基板に不純物イオンを注入する工程について説明する。ただし、半導体基板を加熱処理する工程には、真空蒸着法、スパッタ法およびCVD(Chemical Vapor Deposition)法などにより半導体基板に成膜する工程なども含まれる。また、本発明の実施形態に係る半導体装置の製造方法を実施するための製造装置には、後述するイオン注入装置の他、酸化膜(たとえばPSG酸化膜、SiO酸化膜など)を成膜するCVD装置や、ドライエッチャーなどが含まれる。
<半導体装置の製造装置の全体構成>
図1は、本発明の実施形態による半導体装置の製造方法を実施するための製造装置であるイオン注入装置の概略構成図である。
図1を参照して、イオン注入装置1は、真空チャンバ10と、静電チャック20と、直流電源30と、温度制御部40と、ソース50と、温度センサ60とを備える。真空チャンバ10は、その内部に半導体基板などの対象物を保持し、当該対象物の表面に不純物イオンを注入するための処理室である。
真空チャンバ10の内部には、互いに対向するようにソース50および静電チャック20が設置される。ソース50は、不純物イオンを生成するイオン源であり、生成した不純物イオンを静電チャック20上の対象物に向けて照射する。
静電チャック20は、誘電体を用いて円板形状に形成されたステージを有しており、このステージ上に半導体基板70が載置される。静電チャック20は、半導体基板70を吸着することにより、半導体基板70を真空チャンバ10の内部に保持する。
具体的には、静電チャック20は、一対の静電吸着電極21,22を備える。一対の静電吸着電極21,22は、静電チャック20の外部に配置された直流電源30に接続されている。直流電源30は、一対の静電吸着電極21,22の一方(静電吸着電極21とする)に対して正の電圧を印加するとともに、他方(静電吸着電極22とする)に対して負の電圧を印加する。
なお、図示は省略するが、静電チャック20は、単極の静電吸着電極を備える構成であってもよい。単極の静電吸着電極に正の電圧または負の電圧を印加することにより、静電チャック20内部の電荷と半導体基板70内で正または負の電荷に引き寄せられた電荷との間にクーロン力が作用する。これにより、静電チャック20および半導体基板70の間に静電吸着力が発生する。
静電吸着電極21,22に対してそれぞれ正負の電圧を印加することによって、図1に示すように、静電チャック20および半導体基板70の各々の表面に正および負の電荷が発生する。静電チャック20と半導体基板70との間に静電吸着力が働くことによって、半導体基板70が静電チャック20に吸着保持(チャッキング)される。
なお、直流電源30には、一対の静電吸着電極21,22に印加する電圧を変化させるための電圧制御回路(図示せず)が設けられる。静電吸着電極21,22への印加電圧が大きくなるほど、静電チャック20および半導体基板70の間に働く静電吸着力は大きくなる。すなわち、電圧制御回路が一対の静電吸着電極21,22への印加電圧を変化させることによって、静電吸着力の大きさが変化する。
また、電圧制御回路が一対の静電吸着電極21,22への印加電圧の極性を逆にすると、静電チャック20および半導体基板70の各々の表面には、上述した電荷とは逆極性の電荷が発生する。これによって正負の電荷が相殺され、静電チャック20および半導体基板70に蓄積された電荷が減少する。その結果、静電チャック20の吸着力が減少してチャッキングが解除される。
静電チャック20はさらに、半導体基板70を加熱するための加熱部材として、ヒータ25および温度センサ26を備える。ヒータ25は、静電チャック20に埋設されている。ヒータ25としては任意の加熱機構を用いることができるが、たとえば電熱ヒータを用いてもよい。温度センサ26は、静電チャック20の内部に設けられ、静電チャック20の温度(以下、「チャック温度」ともいう)を測定する。温度センサ26としては、たとえば熱電対を用いることができる。温度制御部40は、温度センサ26の測定値を検知して静電チャック20の温度を制御する。具体的には、ヒータ25が電熱ヒータである場合、温度制御部40は、温度センサ26の測定値が目標温度に一致するようにヒータ25に供給する電力を制御する。ヒータ25により加熱されて静電チャック20が昇温すると、静電チャック20から熱の供給を受けて半導体基板70が昇温する。このようにして、静電チャック20の温度制御を行なうことにより、半導体基板70の温度(以下、「基板温度」ともいう)を目標温度に制御することができる。温度センサ60は、真空チャンバ10の内部に設けられ、基板温度を測定する。温度センサ60としては、たとえば放射温度計を用いることができる。なお、放射温度計を用いる場合、温度センサ60を真空チャンバ60の外部に設けてもよい。
<半導体装置の製造方法>
図2は、本発明の実施の形態による半導体装置の製造方法を説明するためのフローチャートである。図1に示したイオン注入装置1を用いて、半導体基板70に不純物イオンを注入する工程を説明する。
図2を参照して、半導体装置の製造方法では、まず半導体基板70の準備工程(S10)を実施する。半導体基板70としては、外径が100mmより大きい大口径の化合物半導体基板を用いることができる。化合物半導体基板には、上述したワイドバンドギャップ半導体基板の他、ガリウム砒素(GaAs)基板などが含まれる。以下の説明では、半導体基板70として、100mmより大きい外径を有する炭化珪素半導体基板を用いるものとする。
ここで、本発明の実施の形態による半導体装置の製造方法に用いられる半導体基板70の形状について詳述する。半導体基板の形状を、半導体基板の厚みd[μm]と外径2R[mm]との比d/2R[μm/mm]によって表わすものとする。半導体基板70は、外径2Rが100mmより大きく、かつ、d/2Rが1以上5以下の範囲内であることが好ましい。より好ましくは、d/2Rは1.75以上5.0以下である。
次に、半導体基板70の載置工程(S20)を実施する。この工程では、イオン注入装置1の真空チャンバ10の内部に半導体基板70を搬入するとともに、図1に示すように、半導体基板70を静電チャック20のステージ上に載置する。
次に、半導体基板70のチャッキング工程(S30)を実施する。この工程では、静電チャック20内部の一対の静電吸着電極21,22に対してそれぞれ正負の電圧を印加して静電チャック20に静電吸着力を発生させる。これにより、静電チャック20に半導体基板70を吸着保持する。
次に、静電チャック20の昇温工程(S40)を実施する。この工程では、温度制御部40は、温度センサ26で静電チャック20の温度を測定しながらヒータ25への通電を制御することにより、静電チャック20を予め定められた目標温度まで加熱する。この目標温度は、イオン注入処理の温度に設定される。イオン注入処理の温度は、100℃以上800℃以下であり、好ましくは200℃以上600℃以下である。なお、炭化珪素半導体基板を用いる場合の目標温度は、好ましくは200℃以上600℃以下であり、たとえば440℃程度である。静電チャック20に吸着保持された半導体基板70は、静電チャック20からの熱伝搬によって加熱されることにより、目標温度(たとえば440℃)に昇温する。
次に、半導体基板70へのイオン注入工程(S50)を実施する。この工程では、静電チャック20の昇温工程(S40)によって目標温度に昇温した半導体基板70に対して、不純物イオンを注入する。具体的には、炭化珪素半導体基板のエピタキシャル層に、たとえばアルミニウム(Al)、ホウ素(B)などのp型不純物を注入することによってp型の導電型を有する領域が形成される。また、エピタキシャル層に、たとえばP(リン)などのn型不純物を導入することによってn型の導電型を有する領域が形成される。
次に、静電チャック20の降温工程(S60)を実施する。この工程では、温度制御部40は、ヒータ25の通電量を減らす、またはヒータ25の通電を停止することによって、静電チャック20を降温させる。静電チャック20の温度が下がるのに追従して半導体基板70の基板温度も低下する。
次に、半導体基板70のチャッキングの解除工程(S70)を実施する。この工程では、静電チャック20内部の一対の静電吸着電極21,22に印加する電圧の極性を逆にすることにより、静電チャック20の吸着力を減少させる。
最後に、半導体基板70の搬出工程(S80)を実施する。この工程では、半導体基板70をイオン注入装置1の真空チャンバ10の外部に搬出する。これにより、一連のイオン注入工程が完了する。
ここで、静電チャック20上に載置された半導体基板70には、静電チャック20(ヒータ25)によって加熱されることにより、熱膨張とともに反りが発生する。以下の説明では、半導体基板70の反り具合(以下、「反り量」という)を、図3に示すように、半導体基板70を静電チャック20上に載置したときの、半導体基板70の主面において静電チャック20のステージに対して最も高い位置と最も低い位置との高さの差hと定義する。なお、半導体基板70の反りには、半導体基板70の主面がステージ側に凸となる場合(図3の場合)と、半導体基板70の主面がステージと反対側に凸となる場合とが含まれるが、反り量hはこれら2つの場合における反りの大きさを表すものとする。
半導体基板70の反り量hは、一般的に、基板温度が上昇するに従って大きくなるが、基板温度と反り量hとの関係は半導体基板の材料や結晶構造などによって異なるものとなる。また、同一種類の半導体基板であっても、半導体基板の外径が大きいものほど、同一の基板温度における反り量hが大きくなる。なお、半導体基板70は、結晶面がSi面であってもC面であってもよい。また、室温での半導体基板70の反りは、半導体基板70の主面がステージ側に凸となる場合および半導体基板70の主面がステージと反対側に凸となる場合のどちらであってもよい。
図4は、静電チャック20上の半導体基板70に働く力を模式的に示す図である。図4を参照して、一対の静電吸着電極21,22に対してそれぞれ正負の電圧を印加することにより、静電チャック20および半導体基板70の各々の表面には正および負の電荷が発生する。これらの電荷は、静電チャック20および半導体基板70の間に静電吸着力を発生させる。具体的には、静電吸着力は、静電分極した静電チャック20内部の電荷と半導体基板70内で正または負の電荷に引き寄せられた電荷との間に作用するクーロン力FCと、半導体基板70と静電チャック20との間を微小な隙間を経由して流れる微小電流により発生するジョンソンラーベック力FJRとを足し合わせた大きさとなる。なお、クーロン力FCおよびジョンソンラーベック力FJRの大きさはともに、半導体基板70と静電チャック20との間の距離に反比例する。よって、半導体基板70と静電チャック20との間の距離が大きくなるほど、静電吸着力は小さくなる。
また、静電チャック20からの熱伝搬によって基板温度が昇温すると、半導体基板70には反ろうとする力FWが働く。この力FWは、基板温度が高くなるほど大きくなり、半導体基板70に対して、半導体基板70の中央部が凹んだお椀状の反り(図3)を付与する。
このため、基板温度が高い状態では、半導体基板70の反りによって半導体基板70と静電チャック20との間の距離が大きくなるために静電吸着力(=FC+FJR)がほとんど働かず、静電チャック20に半導体基板70を吸着させることが困難となる。したがって、静電チャック20に半導体基板70を吸着させるためには、半導体基板70に反りが発生していない基板温度の状態で、静電チャック20および半導体基板70の間に静電吸着力を発生させる必要がある。
そこで、本実施の形態による半導体装置の製造方法では、静電チャック20を、所定のスタンバイ温度まで昇温させた後、静電チャック20および半導体基板の間に静電吸着力を発生させる。そして、半導体基板70を静電チャック20に吸着保持した状態で、静電チャック20をイオン注入工程の目標温度までさらに昇温させる。
すなわち、本実施の形態では、少なくとも2段階の昇温動作によって静電チャック20を目標温度に昇温する。このとき、第1段階の昇温動作の実行後に半導体基板70を静電チャック20に吸着させるとともに、半導体基板70を静電チャック20に吸着させた状態で第2段階の昇温動作を実行する。
<スタンバイ温度の設定>
ここで、「スタンバイ温度」は、イオン注入工程の目標温度(たとえば440℃)よりも低い温度であって、静電チャック20および半導体基板70の間に静電吸着力を発生させることができる基板温度の範囲内に設定される。具体的には、スタンバイ温度は、半導体基板の反り量h(図3)が、静電チャック20が半導体基板70をチャッキングできる許容値以下となる基板温度の範囲内に設定される。この許容値は、これ以上半導体基板70が反ると、静電チャック20および半導体基板70の間に静電吸着力を発生させることができなくなる半導体基板70の反り量hの限界値に相当する。
この反り量hの許容値について例示すると、外径2R=150mm、厚みd=500μmの半導体基板において、基板温度が室温に等しい場合、反り量h=35μmであれば静電チャック20が半導体基板をチャッキングできるが、反り量h=40μmになると半導体基板をチャッキングできなくなる。一方、基板温度が440℃の場合、反り量h=480μmであれば半導体基板をチャッキングできるが、反り量h=500μmになると半導体基板をチャッキングできなくなる。
他の例として、外径2R=150mm、厚みd=350μmの半導体基板においては、基板温度が300℃の場合、反り量h=480μmであれば静電チャック20が半導体基板をチャッキングできるが、反り量h=500μmになると半導体基板をチャッキングできなくなる。一方、基板温度が150℃の場合、反り量h=80μmであれば半導体基板をチャッキングできるが、反り量h=100μmになると半導体基板をチャッキングできなくなる。
静電チャック20および半導体基板70の間に静電吸着力を発生させることができる基板温度の範囲は、半導体基板70の平坦性と静電チャック20の静電吸着力との関係についての評価結果などに応じて設定することができる。この半導体基板70の平坦性と静電チャック20の静電吸着力との関係については、以下に示す手法で評価することができる。
図5は、静電チャック20の静電吸着力の評価手法を説明する図である。図5(a)における領域RGNは、静電チャック20のステージを示している。この静電チャック20のステージは、半導体基板70が載せられていない状態において、直列接続され、かつその中点が接地された2つの静電容量C1,C2を含む等価回路によって表わされる(図5(b)参照)。
そして、静電チャック20上に半導体基板70が載置されると、図5(c)に示すように、等価回路上、半導体基板70の静電容量C3が静電容量C1,C2の直列回路に並列に接続されることになる。そのため、半導体基板70が載置される前後で、静電チャック20全体の静電容量が変化する。さらに、半導体基板70の静電容量C3は、半導体基板70の吸着性によって変化し、半導体基板70の吸着性が高くなるに従って大きくなる。したがって、静電チャック20全体の静電容量は、静電チャック20上の半導体基板70の有無、および、静電チャック20の静電吸着力の有無に応じて変化する。
そこで、本実施の形態では、静電チャック20全体の静電容量の変化率を算出し、算出した静電容量の変化率に基づいて静電チャック20の静電吸着力を評価する。具体的には、静電チャック20に交流電圧を印加したときの静電チャック20全体の静電容量を測定する。この静電容量の測定を、静電チャック20に半導体基板70が載せられていない状態、静電チャック20に半導体基板70が載せられているが静電吸着電極21,22に電圧が印加されていない状態、および静電チャック20に半導体基板70が載せられ、かつ、静電吸着電極21,22に電圧が印加されている状態のそれぞれについて行なう。そして、上記3つの状態にそれぞれ対応して3つの静電容量の測定値を取得すると、取得した測定値を用いて、半導体基板70が載せられていない状態での測定値からの静電容量の変化率を求める。
より詳細には、半導体基板70が載せられていない状態での静電チャック20全体の静電容量をCとすると、静電チャック20全体の静電容量Cの変化率ΔCは、下記(1)式で定義される。
ΔC=|C−C|/C ・・・(1)
さらに、半導体基板70が載せられているが静電吸着電極21,22に電圧が印加されていない状態での静電チャック20全体の静電容量をCOFFとすると、半導体基板70の載置による静電容量の変化率ΔCOFFは下記(2)式となる。また、半導体基板70が載せられ、かつ、静電吸着電極21,22に電圧が印加されている状態での静電チャック20全体の静電容量をCONとすると、静電チャック20への電圧印加による静電容量の変化率ΔCONは下記(3)式となる。
ΔCOFF=|C−COFF|/C ・・・(2)
ΔCON=|C−CON|/C ・・・(3)
静電容量の変化率ΔCの一例として、外径が100mmより大きい炭化珪素半導体基板の場合、ΔCOFFは80%となる。また、炭化珪素半導体基板に反りが発生していなければ(理想的には反り量hがほぼ零)、ΔCONはΔCOFFからほとんど変化せず、80%となる。すなわち、半導体基板70が静電チャック20に正常に吸着されている場合、静電チャック20への電圧印加の前後で静電容量Cはほぼ等しい値となる(CON≒COFF)。
これに対して、炭化珪素半導体基板に反りが発生している場合(反り量h≠0)には、ΔCONは50%となる。すなわち、半導体基板70が静電チャック20に正常に吸着されていない場合、静電チャック20への電圧印加の前後で静電容量Cは変化する(CON≠COFF)。
ここで、静電チャック20への電圧印加の前後における、静電チャック20全体の静電容量Cの変化率をΔCOFF→ONとすると、静電容量の変化率ΔCOFF→ONは下記(4)式となる。上記のように、静電容量の変化率ΔCOFF→ONは、静電チャック20の吸着性を評価するための指標となる。
ΔCOFF→ON=|COFF−CON|/COFF ・・・(4)
本実施の形態では、静電容量の変化率ΔCOFF→ONに閾値を設け、ΔCOFF→ONが当該閾値以下となる基板温度の範囲を、静電チャック20および半導体基板70の間に静電吸着力を発生させることができる基板温度の範囲に設定する。そして、その設定された基板温度の範囲内でスタンバイ温度を設定する。一例として、外径が100mmより大きい炭化珪素半導体基板の場合、閾値は10%に設定される。
スタンバイ温度は、室温以上700℃以下であり、好ましくは100℃以上500℃以下である。なお、炭化珪素半導体基板を用いる場合の目標温度は、好ましくは100℃以上500℃以下であり、たとえば340℃程度である。
このような構成とすることにより、静電チャック20をスタンバイ温度に昇温した状態では半導体基板の反りが抑制されているため、半導体基板70を静電チャック20に確実に吸着させることができる。その結果、半導体基板70を均一に目標温度まで昇温することができる。また、イオン注入によって半導体基板70に形成される不純物領域の形状を均一化できる。この結果、半導体装置の歩留まりを向上できる。
さらに、スタンバイ温度を、静電チャック20および半導体基板70の間に静電吸着力を発生させることができる基板温度の範囲の上限値に設定することによって、半導体基板70がスタンバイ温度から目標温度まで昇温するのに要する時間を短縮できる。これにより、イオン注入工程のスループットが向上する。
なお、本実施の形態では、静電チャック20への電圧印加の前後における、静電チャック20全体の静電容量の変化率ΔCOFF→ONに基づいてスタンバイ温度を設定する構成について説明したが、静電チャック20への電圧印加の前後における、基板温度の変化量に基づいてスタンバイ温度を設定する構成としてもよい。
たとえば、外径が100mmより大きい炭化珪素半導体基板の場合、半導体基板70が静電チャック20に正常に吸着されていれば、温度センサ60による基板温度の測定値は、静電チャック20への電圧印加の前後において100℃以上変化する。一方、半導体基板70が静電チャック20に正常に吸着されていない場合、温度センサ60による基板温度の測定値は、静電チャック20への電圧印加の前後において50℃程度変化する。すなわち、静電チャック20への電圧印加の前後における基板温度の変化量も、静電チャック20の吸着性するための指標となる。そこで、基板温度の変化量に閾値を設け、基板温度の変化量が当該閾値以上となる基板温度の範囲内にスタンバイ温度を設定することにより、半導体基板70を静電チャック20に確実に吸着させることができる。
<実施の形態1>
図6を参照して、本発明の実施の形態による半導体装置の製造方法の第1の実施の形態を説明する。
図6は、半導体基板70に不純物イオンを注入する工程(図2)における、静電チャック20への印加電圧、静電チャック20の温度、および基板温度の時間的変化を示す図である。図6の横軸は時間を示し、縦軸は温度または電圧を示す。図6の下段は、半導体基板70の載置工程(S20)から半導体基板70の搬出工程(S80)までの間に静電チャック20に印加される電圧の時間的変化を示し、図6の中段は、半導体基板70の載置工程(S20)から半導体基板70の搬出工程(S80)までの間における静電チャック20の温度(チャック温度)の時間的変化を示す。図6の上段は、静電チャック20から受熱する半導体基板70の温度(基板温度)の時間的変化を示す。この基板温度は、温度センサ60(図1)により測定される。なお、Tstbはスタンバイ温度を示し、Ttgtはイオン注入工程(S50)の目標温度を示す。
静電チャック20は、半導体基板70が載置される時点(時刻t1)において、ヒータ25により加熱されてスタンバイ温度Tstbに昇温している。この時点では、静電チャック20の一対の静電吸着電極21,22には未だ電圧が印加されておらず、静電チャック20および半導体基板70の間には静電吸着力が発生していない。
半導体基板70を載置した時点(時刻t1)以降、静電チャック20から熱伝搬を受けて半導体基板70が昇温する。ただし、基板温度はスタンバイ温度Tstbを超えないため、半導体基板70の反りが抑制されている。
次に、静電チャック20をスタンバイ温度Tstbに昇温させた状態で、静電チャック20の一対の静電吸着電極21,22に電圧を印加する(時刻t2)。このとき、図6に示すように、静電チャック20への印加電圧を一定速度で所定の目標電圧VESCに向けて一気に増加させてもよい。あるいは、後述するように、印加電圧を目標電圧VESCにより低い電圧としてもよい。
半導体基板70の反りが抑制されていることによって静電チャック20および半導体基板70の間には静電吸着力が発生し、半導体基板70が静電チャック20に吸着される。半導体基板70は、静電チャック20から熱伝搬を受けてさらに昇温し、静電チャック20と同じ温度(スタンバイ温度Tstb)に到達する。
基板温度がスタンバイ温度Tstbに達した状態で、静電チャック20の昇温工程(S40)を開始する(時刻t3)。静電チャック20内部の温度制御部40は、ヒータ25の通電を制御することにより、静電チャック20を目標温度Ttgtまで昇温する(時刻t4)。この静電チャック20の昇温に追従して基板温度も目標温度Ttgtまで昇温する。
基板温度が目標温度Ttgtに到達すると、半導体基板70へのイオン注入工程(S50)が行なわれる。このイオン注入工程の実行中、基板温度は目標温度Ttgtに保たれている。
イオン注入工程が終了すると(時刻t5)、静電チャック20の降温工程(S60)を開始する。温度制御部40は、ヒータ25の通電量を減らす、またはヒータ25の通電を停止することにより、静電チャック20をスタンバイ温度Tstbに降温する(時刻t6)。
静電チャック20の降温に追従して半導体基板70が降温し、基板温度がスタンバイ温度Tstbに達すると、半導体基板70のチャッキング解除工程(S70)を行なう(時刻t7)。この工程では、静電チャック20内部の一対の静電吸着電極21,22に印加する電圧の極性を逆にすることにより、静電吸着力を減衰させる。半導体基板70が静電チャック20に吸着されていない状態で、半導体基板70をイオン注入装置1の真空チャンバ10の外部に搬出する(時刻t8)。
第1の実施の形態において、静電チャック20への電圧印加を開始する時点(時刻t2)から静電チャック20の昇温を開始する時点(時刻t3)までの時間は、半導体基板70面内がスタンバイ温度Tstbに均一化するのに要する時間を含むように設定される。すなわち、半導体基板70が一様にスタンバイ温度Tstbに昇温するのを待って、第2段階の昇温動作が開始される。これにより、第2段階の昇温動作において、短時間で半導体基板70を一様に目標温度Ttgtに昇温することができる。
なお、第1の実施の形態では、静電チャック20をスタンバイ温度Tstbに保った状態で、静電チャック20の一対の静電吸着電極21,22に電圧を印加する構成について例示したが、静電チャック20の昇温中に静電チャック20に電圧を印加する構成としてもよい。この場合、静電チャック20をスタンバイ温度Tstbに昇温した後、静電チャック20に電圧を印加する。
また、第1の実施の形態では、静電チャック20をスタンバイ温度Tstbに降温してから半導体基板70のチャッキングを解除するため、チャッキング解除後の半導体基板70の反りが抑えられ、半導体基板70の搬出を容易に行なうことができる。また、半導体基板70を搬出した後に続けて次の半導体基板70を静電チャック20に載置できるため、イオン注入工程のスループットを高めることができる。
<実施の形態2>
図7を参照して、本発明の実施の形態による半導体装置の製造方法の第2の実施の形態を説明する。
図7は、半導体基板70に不純物イオンを注入する工程(図2)における、静電チャック20への印加電圧、静電チャック20の温度、および基板温度の時間的変化を示す図である。図7の横軸は時間を示し、縦軸は温度または電圧を示す。図6と同様に、図7の下段は、半導体基板70の載置工程(S20)から半導体基板70の搬出工程(S80)までの間に静電チャック20に印加される電圧の時間的変化を示し、図7の中段は、半導体基板70の載置工程(S20)から半導体基板70の搬出工程(S80)までの間における静電チャック20の温度(チャック温度)の時間的変化を示し、図7の上段は、静電チャック20から受熱する半導体基板70の温度(基板温度)の時間的変化を示す。
第2の実施の形態による半導体装置の製造方法は、図6に示す第1の実施の形態による半導体装置の製造方法と比較して、半導体基板70のチャッキング工程(S30)、静電チャック20の昇温工程(S40)、および静電チャック20の降温工程(S60)が異なっている。その他の工程については、実施例1と同様であるので詳細な説明は繰り返さない。
半導体基板70のチャッキング工程(S30)では、静電チャック20内部の一対の静電吸着電極21,22に対して、目標電圧VESCより低い電圧を印加する。そして、静電チャック20の昇温工程(S40)において、静電チャック20への印加電圧を目標電圧VESCへと増加させる。
このような構成とすることにより、静電チャック20および半導体基板70の間に発生する静電吸着力は、基板温度の上昇とともに大きくなる。半導体基板70と静電チャック20との接着面には、半導体基板70の熱膨張を抑制するように応力が働く。静電吸着力を徐々に増加させることで応力を緩和できるため、静電チャック20のステージが傷つくのを防止できる。
なお、静電チャック20への印加電圧を、半導体基板70のチャッキング工程(S30)での電圧から目標電圧VESCへと増加させるタイミングは、静電チャック20の昇温工程(S40)を開始するタイミングに一致させる必要はない。
静電チャック20の降温工程(S60)では、温度制御部40は、ヒータ25の通電量を減らす、またはヒータ25の通電を停止することにより、静電チャック20を所定のチャックオフ温度Tcoffに降温する(時刻t6)。静電チャック20の降温に追従して半導体基板70が降温し、基板温度がチャックオフ温度Tcoffになった後、半導体基板70のチャッキング解除工程(S70)を実行する(時刻t7)。
ここで、チャックオフ温度Tcoffは、目標温度Ttgt以下であって、スタンバイ温度Tstbよりも高い温度に設定される。したがって、半導体基板70がチャックオフ温度Tcoffとなった状態で静電チャック20の静電吸着力を減少させると、半導体基板70に反りが発生する。これにより、静電チャック20と半導体基板70の間の距離が大きくなるため、静電チャック20から半導体基板70が剥がれやすくなる。
<実施の形態1,2の変形例>
以下、図6および図7を参照しながら、上記の実施の形態1,2による半導体装置の製造方法の変形例について説明する。
(1)静電チャック20への電圧印加を開始する時点(時刻t2)については、半導体基板70を載置した時点(時刻t1)以降、半導体基板70が昇温している最中であってもよい。あるいは、半導体基板7を載置した時点(時刻t1)から一定時間を待って基板温度が安定したときであってもよい。
前者の場合は、静電チャック20から半導体基板70への熱伝達性が上がるため、短時間で半導体基板70を昇温することができる。一方、後者の場合は、半導体基板70面内の温度を均一化できる。また、半導体基板70と静電チャック20との接着面に働く応力が低減されるため、静電チャック20のステージが傷つくのを防止できる。
(2)静電チャック20の昇温を開始する時点(時刻t3)については、基板温度がスタンバイ温度Tstbに到達する前であってもよい。基板温度がスタンバイ温度Tstbに達した状態で静電チャック20の昇温を開始するのに比べて、より短時間で半導体基板70を目標温度Ttgtに昇温することができる。
(3)静電チャック20を目標温度Ttgtまで昇温する工程(時刻t3から時刻t4)については、静電チャック20を段階的に昇温するようにしてもよい。これによれば、半導体基板70の熱膨張を緩和しながら半導体基板70を静電チャック20に吸着させることができるため、静電チャック20のステージが傷つくのを防止できる。
(4)半導体基板70をチャッキングする工程について、静電チャック20への印加電圧が目標電圧VESCに到達するタイミングは、静電チャック20への電圧印加を開始する時点(時刻t2)から静電チャック20が目標温度Ttgtに達する時点(時刻t4)までの間であればどのタイミングであってもよい。したがって、時刻t2から時刻t4までの間で静電チャック20への印加電圧を目標電圧VESCまで段階的に増加させるようにしてもよい。静電吸着力を徐々に増加させることで、半導体基板70の熱膨張を緩和しながら半導体基板70を昇温することができる。
(5)半導体基板70のチャッキングを解除する時点(時刻t7)は、イオン注入工程の終了した時点(時刻t5)から静電チャック20をスタンバイ温度Tstbに降温する時点(時刻t6)までの間であってもよい。たとえばイオン注入工程の終了した時点(時刻t5)で半導体基板70のチャッキングを解除してもよい。半導体基板70をより短時間で降温できるようになるため、イオン注入処理工程のスループットが向上する。
あるいは、半導体基板70が所定のチャックオフ温度Toffに降温するのを待って半導体基板70のチャッキングを解除するようにしてもよい。これによれば、半導体基板70を真空チャンバの外部に搬出するための機構を、より耐熱性の低い材料で構成することができるため、製造設備のコストを削減できる。
(6)半導体基板70のチャッキングを解除する工程において、静電チャック20への印加電圧を,目標電圧VESCから所定のチャックオフ電圧Vcoffに向かって段階的に変化させるようにしてもよい。図6に示すように、静電チャック20への印加電圧を一気にチャックオフ電圧Vcoffに切換えると、半導体基板70に反りが生じて静電チャック20のステージから跳ね上がってしまう可能性がある。静電吸着力を徐々に減衰させることによって、このような現象を防ぐことができる。
なお、上述した本願発明の実施の形態では、静電チャックが半導体基板を吸着することによって半導体基板を真空チャンバの内部に保持する構成について説明したが、本願発明は、外部からの給電による静電吸着力で半導体基板を保持するように構成された基板ホルダについても適用することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明は、大口径(特に外径が100mmより大きい)の半導体基板を高温に加熱処理する工程を備えた、半導体装置の製造方法に特に有利に適用される。
1 イオン注入装置
10 真空チャンバ
20 静電チャック
21,22 静電吸着電極
25 ヒータ
26 温度センサ
30 直流電源
40 温度制御部
50 ソース
60 温度センサ
70 半導体基板

Claims (10)

  1. 半導体基板を準備する工程と、
    静電チャック上に前記半導体基板を載置する工程と、
    前記静電チャックを第1の温度に昇温した後、前記半導体基板をチャッキングする工程と、
    前記半導体基板をチャッキングした状態で、前記静電チャックを前記第1の温度より高い第2の温度に昇温する工程と、
    前記静電チャックを前記第2の温度に昇温した状態で、前記半導体基板に対する処理を実行する工程とを備え、
    前記第1の温度は、前記半導体基板の反り量が、前記静電チャックが前記半導体基板をチャッキングできる許容値以下となる基板温度の範囲内に設定される、半導体装置の製造方法。
  2. 前記第2の温度に昇温する工程は、前記半導体基板が前記第1の温度に昇温した後、前記静電チャックの昇温を開始する、請求項1に記載の半導体装置の製造方法。
  3. 前記静電チャックは、印加される電圧に応じた静電吸着力を前記半導体基板に対して発生可能な電極を含み、
    前記半導体基板をチャッキングする工程では、前記電極へ第1の電圧を印加し、
    前記第2の温度に昇温する工程では、前記電極への印加電圧を前記第1の電圧より高い第2の電圧に増加させる、請求項1または請求項2に記載の半導体装置の製造方法。
  4. 前記半導体基板に対する処理を実行する工程の後において、前記静電チャックを前記第1の温度に降温した後、前記半導体基板のチャッキングを解除する工程をさらに備える、請求項1から請求項3のいずれか1項に記載の半導体装置の製造方法。
  5. 前記半導体基板に対する処理を実行する工程の後において、前記静電チャックを、前記第2の温度以下で前記第1の温度以上となる第3の温度に降温した後、前記半導体基板のチャッキングを解除する工程をさらに備える、請求項1から請求項3のいずれか1項に記載の半導体装置の製造方法。
  6. 前記第1の温度は、前記半導体基板をチャッキングする工程の前後における、前記静電チャックの静電容量の変化率が閾値以下となる温度範囲内に設定される、請求項1から請求項5のいずれか1項に記載の半導体装置の製造方法。
  7. 前記第1の温度は、前記半導体基板をチャッキングする工程の前後における、前記半導体基板の温度の変化量が閾値以上となる温度範囲内に設定される、請求項1から請求項5のいずれか1項に記載の半導体装置の製造方法。
  8. 前記半導体基板に対する処理を実行する工程は、前記半導体基板に不純物イオンを注入する工程を含み、
    前記第2の温度は、100℃以上800℃以下の温度範囲内に設定され、
    前記第1の温度は、室温以上700℃以下の温度範囲内に設定される、請求項1から請求項のいずれか1項に記載の半導体装置の製造方法。
  9. 前記半導体基板は、100mmより大きい外径を有する化合物半導体基板である、請求項1から請求項のいずれか1項に記載の半導体装置の製造方法。
  10. 前記半導体基板は、100mmより大きい外径を有する炭化珪素半導体基板である、請求項に記載の半導体装置の製造方法。
JP2013171239A 2013-08-21 2013-08-21 半導体装置の製造方法 Active JP6217233B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013171239A JP6217233B2 (ja) 2013-08-21 2013-08-21 半導体装置の製造方法
US14/912,509 US9887101B2 (en) 2013-08-21 2014-07-08 Method for manufacturing semiconductor device
PCT/JP2014/068134 WO2015025628A1 (ja) 2013-08-21 2014-07-08 半導体装置の製造方法
DE112014003838.5T DE112014003838T5 (de) 2013-08-21 2014-07-08 Verfahren zur Herstellung einer Halbleitervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171239A JP6217233B2 (ja) 2013-08-21 2013-08-21 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2015041669A JP2015041669A (ja) 2015-03-02
JP6217233B2 true JP6217233B2 (ja) 2017-10-25

Family

ID=52483411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171239A Active JP6217233B2 (ja) 2013-08-21 2013-08-21 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US9887101B2 (ja)
JP (1) JP6217233B2 (ja)
DE (1) DE112014003838T5 (ja)
WO (1) WO2015025628A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159172B2 (ja) * 2013-06-26 2017-07-05 東京エレクトロン株式会社 温度制御方法及びプラズマ処理装置
WO2017127405A1 (en) * 2016-01-19 2017-07-27 Intevac, Inc. Patterned chuck for substrate processing
JP6472776B2 (ja) * 2016-02-01 2019-02-20 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US10732615B2 (en) * 2017-10-30 2020-08-04 Varian Semiconductor Equipment Associates, Inc. System and method for minimizing backside workpiece damage
US10903097B2 (en) * 2018-03-30 2021-01-26 Axcelis Technologies, Inc. In-situ wafer temperature measurement and control
JP7304188B2 (ja) * 2019-03-29 2023-07-06 東京エレクトロン株式会社 基板処理方法及び基板処理装置
CN115029672B (zh) * 2022-08-11 2022-11-04 广州粤芯半导体技术有限公司 溅射方法及半导体器件的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086967B2 (ja) * 1998-06-18 2008-05-14 日本碍子株式会社 静電チャックのパーティクル発生低減方法及び半導体製造装置
JP4159216B2 (ja) * 1999-11-22 2008-10-01 株式会社アルバック 静電吸着装置、真空処理装置、及び静電吸着方法
JP4330737B2 (ja) * 1999-11-24 2009-09-16 株式会社アルバック 真空処理方法
JP2002009140A (ja) * 2000-06-22 2002-01-11 Mitsubishi Electric Corp 静電チャック装置
US6921724B2 (en) * 2002-04-02 2005-07-26 Lam Research Corporation Variable temperature processes for tunable electrostatic chuck
US7993698B2 (en) * 2006-09-23 2011-08-09 Varian Semiconductor Equipment Associates, Inc. Techniques for temperature controlled ion implantation
WO2008120467A1 (ja) * 2007-03-29 2008-10-09 Panasonic Corporation 半導体装置の製造方法
JP2011084770A (ja) * 2009-10-15 2011-04-28 Canon Anelva Corp 静電チャックを備えた基板ホルダを用いた基板温度制御方法
US20110068084A1 (en) 2008-07-10 2011-03-24 Canon Anelva Corporation Substrate holder and substrate temperature control method
US8164879B2 (en) * 2009-04-02 2012-04-24 Advanced Ion Beam Technology, Inc. Step down dechucking
US8410393B2 (en) * 2010-05-24 2013-04-02 Lam Research Corporation Apparatus and method for temperature control of a semiconductor substrate support
JP2013191802A (ja) * 2012-03-15 2013-09-26 Fujitsu Semiconductor Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
DE112014003838T5 (de) 2016-04-28
JP2015041669A (ja) 2015-03-02
US20160204000A1 (en) 2016-07-14
WO2015025628A1 (ja) 2015-02-26
US9887101B2 (en) 2018-02-06

Similar Documents

Publication Publication Date Title
JP6217233B2 (ja) 半導体装置の製造方法
JP5705133B2 (ja) 静電チャックシステムおよび基板表面に亘って温度プロファイルを半径方向に調整するための方法
EP3364446B1 (en) Methods and system for holding an insulator-type substrate during plasma processing of the insulator-type substrate
US9892954B2 (en) Wafer processing system using multi-zone chuck
JP6075555B2 (ja) 静電チャックシステムおよび半導体製造装置
US8987639B2 (en) Electrostatic chuck with radiative heating
JP2006202939A (ja) 吸着方法、脱離方法、プラズマ処理方法、静電チャック及びプラズマ処理装置
US10128084B1 (en) Wafer temperature control with consideration to beam power input
JP7107972B2 (ja) チャック力制御を有する静電チャック基板支持体
WO2015174143A1 (ja) 半導体装置の製造方法
JP6461967B2 (ja) 静電チャック
JP2024507802A (ja) 異なるセラミックを用いた静電チャック
KR20130104738A (ko) 정전척 및 그 제조방법
JP2012204447A (ja) 静電チャック
JP5953012B2 (ja) 基板保持装置
KR102424374B1 (ko) 반도체 소자의 제조 방법 및 제조 장치
JP2016001641A (ja) 半導体装置の製造方法および半導体装置の製造装置
JP2014033045A (ja) 静電吸着方法及び静電吸着装置
TWI805618B (zh) 具有藉由考慮射束功率輸入的晶圓溫度控制的離子植入系統和方法
KR20100090560A (ko) 전류 억제구조를 구비한 존슨 라벡형 정전척 및 그 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R150 Certificate of patent or registration of utility model

Ref document number: 6217233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250