JP6200594B2 - 超音波撮像装置 - Google Patents

超音波撮像装置 Download PDF

Info

Publication number
JP6200594B2
JP6200594B2 JP2016534060A JP2016534060A JP6200594B2 JP 6200594 B2 JP6200594 B2 JP 6200594B2 JP 2016534060 A JP2016534060 A JP 2016534060A JP 2016534060 A JP2016534060 A JP 2016534060A JP 6200594 B2 JP6200594 B2 JP 6200594B2
Authority
JP
Japan
Prior art keywords
reception
ultrasonic
transmission
scanning lines
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016534060A
Other languages
English (en)
Other versions
JPWO2016009544A1 (ja
Inventor
慎太 高野
慎太 高野
鱒沢 裕
裕 鱒沢
田中 宏樹
宏樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2016009544A1 publication Critical patent/JPWO2016009544A1/ja
Application granted granted Critical
Publication of JP6200594B2 publication Critical patent/JP6200594B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/465Displaying means of special interest adapted to display user selection data, e.g. icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52095Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/52084Constructional features related to particular user interfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、被検体に超音波探触子から超音波を送信し、被検体内で反射した超音波を超音波探触子により受信し、被検体内の内部構造を画像化する超音波撮像技術に関し、特に、1つの送信走査線に対して複数の受信走査線を設定する多方向並列同時受信の技術に関する。
超音波撮像技術とは、超音波(聞くことを意図しない音波、一般的には20kHz以上の高周波数の音波)を用いて人体をはじめとする被検体の内部を非侵襲的に画像化する技術である。例えば、医用超音波撮像装置は、超音波探触子から送信走査線に沿って超音波ビームを被検体の体内に向けて送信し、体内からのエコー信号を受信する。受信ビームフォーマは、受信走査線上の複数の受信焦点ごとに、複数の超音波素子の受信信号を整相加算した信号を生成する。この整相出力を画像処理部が処理することによって超音波画像が生成される。
超音波撮像装置で高速撮像をしたい場合、受信ビームフォーマによる整相加算の演算速度を高めるのには限界があるため、一定時間内に行う送信回数を少なくする方法が用いられる。この場合、同じ撮像範囲(視野角、視野深度)を保つためには、撮像範囲における送信走査線の間隔を粗くする必要がある。送信走査線の間隔が広くなっても空間分解能を極端に劣化させないようにするために、1本の送信走査線に対して、多方向の受信走査線を並列に設定する技術が知られている(一方向送信多方向並列同時受信)。
しかしながら特許文献1〜4に記載されているように、多方向並列同時受信を行った場合、受信焦点の整相出力の信号レベルが隣合う受信走査線間で異なることにより、超音波画像に縞模様が生じることが知られている。この縞模様を低減するため、特許文献1は、受信走査線間で整相出力を重み付け加算する手法を開示している。また、特許文献2は、受信走査線の信号のゲインを調整し、縞模様を除去する技術を開示しいている。特許文献3は、超音波画像のフレーム毎に送信ビーム位置をシフトさせ、画像フレーム間での平均を計算することにより縞模様を除去する技術を開示している。特許文献4の技術では、超音波画像において方位方向におけるノッチフィルタリング処理を施すことにより縞模様を除去している。
一方、特許文献5には、超音波素子の一部を駆動して1回目の送信および受信を行い、2回目の送信では、同一の方向に、他の超音波素子を駆動して送信および受信を行い、1回目の受信で得た受信信号と2回目の受信で得た受信信号とを合わせて受信フォーカス処理(整相加算)を行うことが開示されている。これにより、超音波撮像装置の回路規模を低減しても、回路規模が大きい装置と同等の画質を確保できる。
特開昭61−135641号公報 特開平6−225883号公報 特開平10−118063号公報 特開2005−323894号公報 特開2010−29374号公報
特許文献1〜4の技術は、縞模様をある程度低減することは可能であるが、さらなる高速化のために、1枚の画像を得るための送信回数をある程度以上減らすと、縞模様を消すことはできない。また、特許文献5は、縞模様については何ら記載がなく、特許文献5の技術では縞模様を消すことはできない。
例えば、図1(A)は、一方向送信一方向受信を説明する図であり、一つの送信ビーム10に対して、その送信ビーム10とほぼ同じ方向に一つの受信走査線(以下、受信ビームとも呼ぶ)11を生成している。図1(B)は、送信間隔を粗くした場合の一方向送信一方向受信の送信ビーム10と、受信ビーム11を説明する図である。図1(B)の場合は、1枚の超音波画像を得るための送信ビーム10の送信回数が少ないので高速撮像となるが、受信ビーム11の密度も粗くなるため、超音波画像の方位分解能が劣化する。図1(C)は、一方向送信多方向並列同時受信を説明する図である。図1(C)の場合、1枚の超音波画像を得るための送信ビーム10の送信回数が少ないため、高速撮像を実現でき、しかも受信ビーム11の密度は図1(A)と同等になるため解像度を維持することができる。しかしながら、図1(C)のような、一方向送信多方向並列同時受信は、超音波画像において縦模様アーチファクトが発生する。
発明者らは、一方向送信多方向並列同時受信において縞模様が発生する原因を種々検討した。縞模様の原因の一つは、送信ビームの音場分布が考えられる。送信ビームの超音波の振幅は、送信焦点の付近で大きく、送信焦点から方位方向外側へ離れると小さくなる。その結果、この送信ビームの反射波も同様の振幅分布を持ち、生成される並列同時受信ビームの振幅も、送信焦点付近において比較的大きく、方位方向外側に離れると小さくなる。そのため、例えば、送信焦点を中心に4本の受信ビームを形成した場合、その受信ビームの感度は、中央の2本で強く、両外側の2本で弱くなるため、4本の受信ビームの左から順に、弱強強弱の分布となる。これが、隣の送信ビームに対する4本の受信ビームについても発生するため、超音波画像全体で、受信ビーム(受信走査線)ごとに、弱強強弱、弱強強弱、・・・と感度の変化を繰り返し発生することになる。この分布が、超音波画像において縦縞模様となって現れる。
他の原因としては、隣接送信ビーム間の輝度値(超音波の振幅)の違いが考えられる。同じ送信ビームから得られる複数の受信ビーム同士は、近い輝度値を持つが、隣接する送信ビームに輝度値の差があるため、ある送信ビームに対して設定した複数の受信ビームと、その送信ビームに隣接する複数の受信ビームとの間には輝度値に差が生じる。そのため、送信ビームの異なる受信ビームの間で、輝度値の強弱が生じ、超音波画像において縞模様となって現れる。
上述の縞模様の原因のうち、送信ビームの音場分布が支配的であると仮定すると、送信焦点付近のみに縞模様が観察されると考えられる。しかしながら、一方向送信多方向並列同時受信で高速撮像した超音波画像をよく観察すると、画像全体にわたって縞模様が見られるため、縞模様の主な原因は、送信ビーム音場分布ではなく、隣接送信ビーム間の輝度値の違いであると考えられる。
そこで、発明者らは、隣接送信ビーム間の輝度値に違いが発生する理由について検討した。これを図2と図3を用いて説明する。図2(A)は、送信間隔が密な通常撮像であり、図2(B)は高速撮像であり送信間隔が疎な場合の概要図である。送信間隔が密な図2(A)では反射体30を通過する送信ビーム10は5本あるのに対して、送信間隔が疎になる高速撮像では、図2(B)のように送信ビーム10が1本しか反射体30を通過しない。つまり、図2(B)は、隣り合う送信ビーム10の音波伝搬経路の音波反射状態が、反射体30を通過するか否かにより大きく異なり、輝度値に違いが生じる。反射体30の存在だけでなく、伝搬経路中にある物質の超音波の吸収や、送信指向性なども、音波伝搬経路の輝度値の違いを生む要因となる。
次に発明者らは、隣接する送信ビーム間の輝度の差により、縞模様が発生する位置を検討した。これを図3を用いて説明する。図3の例では、左側の送信ビーム20に対して4本の受信ビーム24を生成し、中央の送信ビーム21に対して4本の受信ビーム25を生成し、右側の送信ビーム22に対して、4本の受信ビーム26を生成している。図3のように、中央の送信ビーム21の音波伝搬経路上にのみ反射体30がある場合、反射体通過後の送信ビーム21は、両側の送信ビーム20、22と比較して輝度値が小さくなる。このため、中央の4本の受信ビーム25の輝度値は、両脇の受信ビーム24、26に対して小さくなり、中央の4本の受信ビーム25と左右の受信ビーム24、26との間(図3の受信ビーム25−1と24−4の間、ならびに、受信ビーム25−4と26−1の間)である境界27に縦縞模様が現れる。
本発明は、送信間隔を粗くして高速撮像を行った場合でも、縦縞模様を抑制できる超音波撮像装置を提供することを目的としている。
上記の目的を達成するため、本発明の超音波撮像装置では、受け付け部が高速撮像モードの指示を受け付けた場合、開口合成部が、同一の受信焦点について、異なる送信ビームの反射超音波から得た、所定の数(N個)の整相出力を加算し、画像に縞模様が生じるのを抑制する。制御部は、受信焦点ごとに、N個の整相出力を生じさせるために、受信ビームフォーマが設定すべき受信走査線の必要数(M)を求め、受信ビームフォーマに指示する。
本発明の超音波撮像装置によれば、送信間隔を粗くして高速撮像を行った場合でも、縦縞模様を抑制でき、高精細な超音波画像を得ることができる。
(A)通常撮像の1方向送信1方向受信を説明する図、(B)高速撮像の1方向送信1方向受信を説明する図、(C)高速撮像の1方向送信多方向同時受信を説明する図 (A)通常撮像の送信の空間間隔と反射体30との関係を説明する図、(B)高速撮像の送信の空間間隔と反射体30との関係を説明する図 複数の送信ビーム間の輝度差により、縞模様が発生する位置27を示す説明図 第1の実施形態の超音波撮像装置の構成を示すブロック図 第1の実施形態の超音波撮像装置で設定される、送信走査線と受信走査線の位置を示す説明図 第1の実施形態の超音波撮像装置の動作を示すフローチャート (a)図6のステップ100で表示される撮像モード選択の画面例を示す説明図、(b)図6のステップ101で表示される撮像速度の受付のための画面例を示す説明図 図6のステップ103で表示される縞模様除去の度合いの選択のための画面例を示す説明図 図6のステップ108で表示される解像度低下を表示する画面例を示す説明図 超音波素子の選択の比較例を示す説明図 超音波素子の選択の比較例を示す説明図 第2の実施形態の超音波診断装置の構成を示すブロック図 第2の実施形態の超音波撮像装置の動作を示すフローチャート 第2の実施形態のステップ208で表示する素子の選択パターン(一定間隔)を示す説明図 第2の実施形態のステップ208で表示する素子の選択パターン(ランダム)を示す説明図 第2の実施形態のステップ208で表示する素子の選択パターンの別の例を示す説明図 第2の実施形態のステップ208で表示する素子の選択パターンのさらに別の例を示す説明図 本実施形態で使用可能な2次元配列の超音波素子アレイと、素子の選択パターンの一例を示す説明図
以下、本発明の一実施形態の超音波撮像装置について説明する。
(第1の実施形態)
本実施形態の超音波撮像装置は、図4に示すように、超音波素子アレイ100と、送信ビームフォーマ602と、受信ビームフォーマ603と、開口合成部1300と、高速撮像モードの実行指示を操作者から受け付ける受け付け部(1201)と、制御部401とを有する。
超音波素子アレイ100は、被検体の撮像領域に超音波を送信し、被検体で反射した超音波を受信する複数の超音波素子600を所定の方向に沿って配列した構成である。送信ビームフォーマ602は、被検体の撮像領域に設定した複数の送信走査線に沿って超音波素子アレイ100から送信ビームを所定の送信タイミングで順次送信させる。受信ビームフォーマ603は、送信ビームごとに複数の受信走査線を設定する。そして、受信ビームフォーマ603は、それぞれの受信走査線上の複数の受信焦点について、複数の超音波素子600の受信出力を整相および加算した整相出力(受信ビーム)を生成する。開口合成部1300は、異なる送信ビームの反射超音波からそれぞれ得た複数の整相出力を同一の受信焦点について加算して撮像領域の画像を生成する。
受け付け部1201が高速撮像モードの指示を操作者から受け付けた場合、送信ビームフォーマ602、開口合成部1300、および、制御部401は、以下のように動作する。送信ビームフォーマ602は、高速撮像モードの撮像速度に対応した間隔の送信走査線に沿って送信ビームを順次送信する。例えば、図5のように、高速撮像モードの撮像速度が、通常撮像(一送信に対しての1本の受信走査線を設定)の4倍速である場合、通常撮像で用いられる間隔の走査線の4本に1本の割合で送信走査線を設定し、送信走査線に沿って順次送信ビームを送信する。
開口合成部1300は、受信焦点ごとに加算する整相出力の数を、画像に縞模様が生じるのを抑制する所定の加算数(N)に設定する。加算数(N)は、予め求めておいた、縞模様を抑制可能な数(例えば、N=4)に設定する。
制御部401は、受信焦点ごとに、加算数(N)の整相出力を生じさせるために、受信ビームフォーマ603が設定すべき受信走査線の必要数(M)を求め、求めた受信走査線の必要数(M)を受信ビームフォーマ603に指示する。受信ビームフォーマ603は、M本の受信走査線を受信ごとに設定する。例えば、図5の例では、1回の送信に対する受信ごとにM(=16)本の受信走査線を設定することにより、走査線番号13以降で、受信走査線をN(=4)本ずつ重ねている。
具体的には、図5の例では、撮像速度は4倍速の場合であり、送信ビームフォーマ602は、送信走査線を、走査線番号が4ずつ離れた位置に送信走査線を設定する。制御部401は、加算数N(=4)を実現するため、受信走査線がM(=16)本必要であることを求め、受信ビームフォーマ603に設定する。よって、送信ビームフォーマ602は、1回目の送信では、走査線番号8と9の間の位置に送信走査線を設定して送信を行い、2回目の送信では、1回目の送信走査線の位置から4走査線分離れた位置である走査線番号12と13の間に送信走査線を設定し、3回目の送信では、さらに4走査線分離れた走査線番号16と17の間の位置に、4回目の送信では、さらに4走査線分離れた走査線番号20と21の間の位置に送信する。これにより、走査線番号ごとに一送信ずつ行う場合の4倍の高速撮像が実現できる。受信ビームフォーマ603は、それぞれの送信に対して、走査線番号ごとにM(=16)本ずつの受信走査線を設定するため、1回目の受信では走査線番号1〜16に、2回目の受信では走査線番号5〜20に、3回目の受信では走査線番号9〜24に、4回目の受信では走査線番号13〜28に、それぞれ受信走査線を設定する。これにより、走査線番号13以降で、4本の受信走査線が同じ走査線番号に重ねて形成されるため、重なった受信走査線上の各受信焦点について、異なる送信で得たN(=4)個の整相出力を開口合成部1300により加算することができる。よって、高速撮像でありながら、縞を抑制するために必要な数の受信走査線を確保でき、必要な加算数N個の整相出力を加算して合成することができる。したがって、縞を抑制することができる。
また、上で述べた説明では、縞模様を低減するために開口合成部1300が加算する整相出力の加算数Nを、予め定めた数(例えばN=4)とする場合について説明したが、加算数Nの値によって、縞模様の抑制度合いが変化するため、受け付け部(1201)が、操作者が所望する縞模様の抑制度合いを、操作者から受け付ける構成にすることも可能である。この場合、制御部401は、受け付け部(1201)が受け付けた抑制度合いに応じて、加算数Nを設定する。さらに制御部401は、設定した加算数Nに応じて、前記受信走査線の必要数Mを求める。例えば、複数種類の加算数Nと、その時の縞模様の抑制度合いの関係を予め求めてテーブル等にしておき、この関係(テーブル)に基づいて、制御部401は、操作者が設定した縞模様の抑制度合いに対応する加算数Nを求める構成することができる。
一方、本実施形態の超音波撮像装置では、高速撮像を実現するため、送信ビームと送信ビームの送信の時間間隔は、従来の送信時間間隔と同様とし、送信ビームの送信ビームの空間間隔を広げる。そのため、受信ビームフォーマ603は、送信ビームと送信ビームの送信の時間間隔内で、必要数(M本)の受信走査線上の各受信焦点について整相出力を算出する演算を完了させる必要がある。そのため、受信ビームフォーマ603の演算回路の規模によって決まる演算速度に応じて、送信の時間間隔内で演算可能な受信走査線の数には限界が生じる。これにより、設定可能な高速撮像の撮像速度の範囲は、演算速度によって上限がある。
制御部401は、以下のような制御を行うことにより、さらなる高速撮像を実現することが可能である。すなわち、全ての超音波素子600の出力を用いて演算した場合に送信時間間隔内で演算可能な受信走査線の最大数(K)を予め計算や実験により求めておく。制御部401は、受信走査線の必要数(M)が数(K)以下である場合には、受信ビームフォーマ603に超音波素子アレイ100の全ての超音波素子600の出力を用いて整相出力を生成させる。これに対し、受信走査線の必要数(M)が予め定めた数(K)を超えている場合には、全超音波素子600を用いて演算すると送信時間間隔内で、全ての受信走査線について整相出力を演算することができない。そのため、制御部401は、受信ビームフォーマの演算能力に基づいて、送信ビームの送信間隔の時間内において必要数(M)の受信走査線の受信焦点について整相出力を生成するために使用可能な超音波素子600の数を求める。そして、制御部401は、求めた数の超音波素子600の受信出力を用いて受信ビームフォーマ603に整相出力を生成させる。これにより、整相出力の演算に用いる超音波素子600の数を低減することができるため、受信ビームフォーマ603の演算負荷が低減し、演算能力を超えた高速撮像が設定された場合にも、送信間隔の時間内において、必要数(M)の受信走査線について整相出力を演算し、高速撮像を実現することが可能になる。
例えば、制御部401は、予め求めておいた、受信走査線の必要数(M)と、送信ビームの送信間隔と、使用可能な超音波素子の数との関係を示すテーブルを有し、このテーブルを参照して、使用可能な前記超音波素子の数を求めることができる。
なお、受信走査線の必要数(M)が、上述の予め定めた数(K)を超えていて、整相出力の演算に用いる超音波素子600の数を低減する場合、生成される超音波画像の解像度は、超音波素子600の全てを用いて生成される超音波画像よりも低減する可能性がある。よって、制御部401は、操作者に解像度の低下の可能性を報知する表示を表示装置に表示させるようにしてもよい。
以下、本実施形態の超音波撮像装置についてさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
実施形態の超音波撮像装置50は、図4に示すように、上述の超音波素子アレイ(探触子アレイ)100と、送信ビームフォーマ602と、受信ビームフォーマ603と、開口合成部1300と、制御部401と、受け付け部(ここでは、入出力ポート1201)に加え、画像処理部605と、ビームメモリ1301と、フレームメモリ1302と、送受切り替え部(T/R)604とを備えている。
受け付け部である入出力ポート1201は、コンソール608が接続され、高速撮像モードか通常撮像モードかの選択、高速撮像モードの場合の撮像速度(何倍速か)、ならびに、縞模様の抑制の度合いの選択、を操作者から受け付ける。
送信ビームフォーマ602は、送信走査線制御部400を備えている。送信回数制御部400は、入出力ポート1201がコンソール608から高速撮像モードか通常撮像モードか、ならびに、撮像速度を受け付けたならば、撮像速度に実現するための送信走査線の間隔を、予め求めておいた数式またはテーブルに基づいて定める。また、送信走査線制御部400は、送信焦点も設定する。送信ビームフォーマ602は、送信走査線制御部400が定めた送信走査線に沿って送信ビームを送信する。
受信ビームフォーマ603は、遅延加算計算部609を備えている。遅延加算計算部609は、被検体内で反射した超音波を超音波素子アレイ100の複数の超音波素子600で受波した受信信号をそれぞれ遅延させて整相した後加算する遅延加算計算部609を備えている。遅延加算計算部609は、時分割演算処理が可能な演算回路を備え、1回の送信につきほぼ同時刻で複数の受信走査線上の受信焦点について遅延加算演算を行って、整相出力を生成することが可能である。1回の送信について設定する受信走査線の数は、制御部401により設定される。受信ビームフォーマ603が生成した受信走査線ごとの整相出力は、ビームメモリ1301に格納される。
開口合成部1300は、一つの送信で得られた受信走査線の整相出力と、他の送信で得られた受信走査線の整相出力(合計N個)を、ビームメモリ1301から読み出して、同一の受信焦点ごとに加算して合成する。加算する数Nは、制御部401により設定される。
開口合成部1300により合成された整相出力は、フレームメモリ1302に格納される。画像処理部605は、フレームメモリ1302に格納された合成後の整相出力を読み出して、画像(超音波画像)を生成する。画像は、画像表示部607に表示される。
以下、図6のフローチャートを用いて、各部の動作をさらに説明する。
制御部401は、図7(a)のようにまず、撮像モードの設定を受け付けるための画面を入出力ポート1201から画像表示部607に表示させ、操作者がコンソール608により高速撮像モードを選択した場合には、図7(b)のように撮像速度を受け付けるための画面を設定し、撮像速度を受け付ける(ステップ100〜102)。撮像速度の受け付け方法は図7(b)の画面のように、1送信走査線ごとに1本の受信走査線を設定する通常の撮像速度の何倍速かを数字により操作者から受け付けてもよいし、他の種々の方法を用いることも可能である。例えば、選択可能な撮像速度を表示して操作者がそのうちの一つを選択するようにしてもよいし、1枚の画像を生成するのに、何送信を行うかを受け付けてもよい。
なお、ステップ100で、操作者が高解像度モードを選択した場合には、従来の低速の撮像動作を実行する(ステップ200)。
つぎに、制御部401は、図8のように、縞模様の抑制度合い(縞模様除去の度合い)の設定を操作者から受け付ける画面を画像表示部607に表示させ、操作者の選択を受け付ける(ステップ103)。図8の例では、縞の抑制度合いを、強、中、弱の3段階から操作者が選択する。この3段階は、開口合成部1300が加算する整相出力の加算数(N個)に対応しており、「強」はN=5、「中」はN=4、「弱」はN=3である。Nの値は、予め実験により求められた値である。Nの値と縞の抑制度合いとを対応付けた第1のテーブルが制御部401内の記憶部に予め格納されている。
また、制御部401内の記憶部には、予め計算により求めておいた、撮像速度と、整相出力の加算数(N)と、送信ごとの受信走査線の必要数(M)との関係を示す第2のテーブルが格納されている。
制御部401は、ステップ103で受け付けた縞除去の度合いに対応する整相出力の加算数(N)の値を、第1のテーブルを参照して求める。さらに、制御部401は、求めた整相出力の加算数(N)と、ステップ102で受け付けた撮像速度とを実現するために、必要な受信走査線の数(M本)を第2のテーブルを参照して求める(ステップ104)。
さらに制御部401は、ステップ104で求めた受信走査線の必要数(M本)が、予め求めておいた設定可能な受信走査線の数(K)以下であるかどうかを判定する(ステップ105)。Kは、受信ビームフォーマ603の演算速度(演算回路規模)に応じて予め設定された、送信ビームフォーマ102の送信間隔の時間内で算出可能な受信走査線の最大数である。
制御部401は、ステップ104で求めた必要な受信走査線の数(M本)が、K以下である場合には、ステップ106に進み、超音波素子アレイ100の全ての超音波素子600を使って整相出力を生成することを受信ビームフォーマ603に設定する(ステップ106)。
そして、ステップ110に進み、送信ビームフォーマ602と受信ビームフォーマ603に送受信を行わせる。具体的には、送信ビームフォーマ602内の送信走査線制御部400は、ステップ102において受け付けた撮像速度を実現するための送信走査線の本数(または送信走査線の空間間隔)を算出し、送信走査線を設定する。一例としては、送信走査線制御部400内の格納部には、予め計算により求めておいた、撮像速度と送信走査線の空間間隔との関係を定めるテーブルが格納されており、送信走査線制御部400は、ステップ102で操作者が設定した撮像速度に対応する送信走査線の空間間隔をテーブルを参照して求める。この間隔で送信走査線を設定する。例えば、図5のように、4倍速撮像を実現するために、所定の走査線の4本分づつ離れるように送信走査線を設定する。一方、制御部401は、受信ビームフォーマ603にステップ104で求めた受信走査線の数(M本)を設定する。受信ビームフォーマ603は、図5のように、所定の位置(例えば、送信走査線)を中心に、M(=16)本の受信走査線を設定する。そして、送信ビームフォーマ602は、設定した送信走査線に沿って送信ビームを超音波素子アレイ100から予め定めた時間間隔で送信する。送信ごとの被検体の反射超音波を全超音波素子600は受信する。受信ビームフォーマ603の遅延加算計算部609は、全ての超音波素子600の出力を用いて、M本の受信走査線上の受信焦点について、整相出力を生成する(ステップ110)。これにより、1送信に対して、M本の受信走査線の整相出力がほぼ同時に生成される。生成された整相出力は、ビームメモリ1301に格納される。これを全ての送信が終了するまで繰り返す。
開口合成部1300は、制御部401からステップ103で受け付けた縞抑制度合いに対応する加算数(N)を受け取る。そして、開口合成部1300は、同一の受信焦点について、N個の整相出力をビームメモリ1301から読み出して加算する。加算後の整相出力は、フレームメモリ1302に格納する(ステップ111)。
画像処理部605は、フレームメモリ1302からすべての受信焦点について、加算後の整相出力を読み出して、画像を生成し、画像表示部607に表示させる(ステップ112)。
このように、本実施形態では、縞を抑制するために必要な加算数(N)の開口合成を実現するために必要な受信走査線の数を、操作者が設定した撮像速度に応じて求めることができる。よって、高速撮像でありながら、縞を抑制することができる。
なお、ステップ105において、ステップ104で求めた受信走査線の数(M)が、設定可能な受信走査線の数(K)を超えている場合、全ての超音波素子600の出力を用いて整相出力を生成すると、受信ビームフォーマ603の演算能力では、送信ビームの送信時間間隔内に演算が終了しない。そこで、本実施形態では、整相出力の生成に用いる超音波素子600の数を低減して演算量を減らし、送信ビームの送信時間間隔内で整相出力を生成する。
すなわち、ステップ105で求めた受信走査線の数(M)が設定可能な数(K)を超えている場合、ステップ107に進み、ステップ104で求めた受信走査線の数(M)に応じて、送信時間間隔内で整相出力を生成するために使用可能な超音波素子600の数(S)を求める。具体的には、制御部401内の記憶部には、受信ビームフォーマ603の演算速度を考慮して予め求め計算や実験により求めておいた、受信走査線の数(M(>K))と、使用可能な超音波素子600の数(S)との関係を表す第3のテーブルが格納されている。制御部401は、第3のテーブルを参照して、ステップ104で求めた受信走査線の数(M)に対応する、使用可能な超音波素子600の数(S)を求める。
ステップ108では、制御部401は、整相出力の演算に使用する超音波素子600の数を低減した場合、全ての超音波素子600を使用した場合よりも解像度が低下するため、それを許容できるかどうかを操作者に尋ねる表示を図9のように画像表示部607に表示する。操作者がコンソール608を介して「Yes(許容できる)」を選択した場合には、ステップ109に進む。ステップ109では、受信ビームフォーマ603は、制御部401から低減した超音波素子600の数(S)を受け取り、予め定めたパターンに基づいて、使用する超音波素子600の配置を決定する。
そして、ステップ100に進み、遅延加算計算部609は、決定された超音波素子600の出力を用いて整相出力を各受信走査線について生成する。超音波素子600の数(S)が低減されているため、受信走査線の数(M)がKを超えていても、送信時間間隔内ですべての受信走査線について整相出力を演算することができる。これをすべての送信が終了するまで繰り返す。そして、ステップ111、112に進み、すでに説明したように、各受信焦点についてN個の整相出力を加算し、画像生成して、表示させる。
なお、ステップ108において、操作者がコンソール608を介して「No(許容できない)」を選択した場合は、ステップ101に戻る。撮像速度または縞模様抑制の度合いの再設定を受け付け(ステップ102,103)、再度受信走査線の必要数(M)を求める。このように、撮像速度または縞抑制度合いの再設定を受け付けることにより、解像度を低下させることのない、撮像速度や縞抑制度合いで撮像を行うことが可能でなる。
上述してきたように、本実施形態の超音波撮像装置は、縞を抑制するために必要な加算数(N)の開口合成を実現するために必要な受信走査線の数(M)を、操作者が設定した撮像速度に応じて求めることにより、高速撮像でありながら、縞を抑制することができる。また、撮像速度と縞抑制を優先して、整相出力の生成に用いる超音波素子の数(S)を低減することができるため、受信ビームフォーマ603の演算速度を変えることなく、より高速な撮像を実現することもできる。
なお、上述の実施形態において、ステップ104、107では、予め定めたテーブルを参照して、受信走査線の必要数(M本)および整相時に使用可能な超音波素子の数(S)を求めたが、本実施形態はテーブルに限定されるものではない。予め定めた数式に基づいて演算によりMやSを算出することももちろん可能である。
(第2の実施形態)
本発明の第2の実施形態について説明する。第2の実施形態では、第1の実施系チアのステップ105において受信走査線の必要数(M)がKを超えていてステップ107で整相出力の演算に使用する超音波素子数をSに低減する場合に、制御部401は、加算数(N)と等しいN回の送信における受信において、受信ビームフォーマ603によって超音波素子アレイ100の全ての超音波素子が1回以上使用されるように、受信ビームフォーマ603が使用する超音波素子600の配置を受信ごとに決定する。縞抑制のために開口合成により加算されるN個の整相出力の生成の際に、すべての超音波素子600が受信ビームフォーマ603により1回以上使用されるようにすることにより、アーチファクトを抑制することができる。
もしくは、制御部401は、加算数(N)と等しいN回の送信における受信において、超音波素子アレイの全ての超音波素子のうち予め定めた数の超音波素子が1回以上受信ビームフォーマによって使用されるように、使用する超音波素子の配置を決定することも可能である。これにより、使用する超音波素子600の数をさらに低減しながら、アーチファクトを抑制することが可能である。
第1の実施形態では、ステップ109において、整相出力の生成に用いる、S個の超音波素子600の配置を、予め定めたパターンに基づいて決定したが、超音波素子600の配置は、アーチファクトを防ぐためには重要である。例えば、図10のように、超音波素子600の大きさを変えないまま、超音波素子アレイ100の端からS個(図10ではS=4)の超音波素子を選択すると、超音波素子例100の受信開口が狭くなるため、方位分解能が劣化し、SN比も低下する。一方、図11のように、一定の間隔(図10では、4個おき)でS個の超音波素子600を選択すると、受信開口は変わらないため方位分解能は劣化しないが、素子ピッチが4倍となるため、グレーティングローブが発生する。
そこで、第2の実施形態では、加算数Nと等しいN回の受信を実行することにより、超音波素子アレイ100の全ての超音波素子が、1回以上整相出力の生成に使用されるように、受信ビームフォーマ603が出力を使用する超音波素子の配置を受信ごとに決定する。もしくは、全ての送信に対する受信を実行すると、超音波素子アレイ100の予め定めた範囲の超音波素子が1回以上使用されるようにする。
これにより、撮像速度と縞抑制を優先して、整相出力の生成に用いる超音波素子の数(S)を低減した場合であっても、グレーティングローブの発生を防ぎ、解像度の低下を抑制することができる。
図12を用いて本発明の第2の実施形態の超音波撮像装置についてさらに説明する。
第2の実施形態の超音波撮像装置は、図12に示すように、第1の実施形態の超音波診断装置(図4)と同様の構成であるが、制御部401内に素子パターン選択部402が配置されている点で第1の実施形態とは異なっている。素子パターン選択部402は、整相時に使用する超音波素子の配置パターンを選択する。
第2の実施形態の超音波撮像装置の動作を図13のフローチャートを用いて説明する。図13のフローは、第1の実施形態の図6のフローと同様であるが、図6のステップ108、109に代わりにステップ208、209が配置されている点で、図6とは異なっている。ステップ100〜107は、第1の実施形態と同様に行う。ステップ105において受信走査線の必要数Mが設定可能な数(K)を超えている場合、ステップ107において整相時に使用可能な超音波素子の数(S)を求める。これにより、整相出力生成に用いる超音波素子の数を低減し、演算量を低減し、送信の時間間隔内で必要数Mの送信走査線の整相出力を演算できるようにする。このとき、超音波素子アレイ100における、S個の超音波素子の配置によってはグレーティングローブが発生するため、第2の実施形態では、超音波素子アレイ100の超音波素子の全て、もしくは、予め定めた範囲の超音波素子が、1回以上整相出力の生成に使用されるように、整相出力の生成に使用する超音波素子の配置を受信ごとに決定する。これによりグレーティングローブの発生を抑制する。
具体的には、制御部401の素子パターン選択部402は、グレーティングローブ抑制のための超音波素子パターンを複数種類画像表示部607に表示し、ユーザからの選択を受け付ける。ここでは、素子パターン選択部は、図14〜図17の計4種類のパターンを選択可能なパターンとして表示する。
図14のパターンは、整相出力の生成に使用する超音波素子600を一定の間隔で選択し、選択する超音波素子600の位置を受信ごとに1素子分ずつずらしていくパターンである。例えば、ステップ107で求めた、整相時に使用可能な超音波素子600の数(S)が、全超音波素子600の25%である場合には、4個に1個の割合で、超音波素子600を選択する。これにより、ステップ103で選択された縞抑制度合いに対応する加算数(N)が4個以上の場合、ステップ111で加算されるN個の整相出力を整相する際に、すべての超音波素子600が1回以上使用される。よって、ステップ111で開口合成した後の整相出力は、全超音波素子600を使用して得られたものであるため、グレーティングローブ発生を抑制することができる。
図14の素子選択パターンについてさらに説明する。ユーザが、ステップ208で図14のパターンを選択した場合、素子パターン選択部402は、ステップ209において、ステップ107で求めた超音波素子600の数(S)の超音波素子600を等分に配置し、受信ごとに1素子ずつずらすように配置を決定する。例えば、図14のように、全超音波素子600が16個で、S個が全超音波素子600の25%にあたる場合、1回目の送信に対する受信においては、左から1、5、9、13番目の超音波素子600(口径A)のみを整相出力の演算に用いることを決定する。2回目の送信に対する受信では、1素子ずらして、左から2、6、10、14番目の超音波素子600(口径B)のみを用いることを決定する。同様に、3回目は、左から3、7、11、15番目(口径C)を、4回目は、左から4、8、12、16番目(口径D)の超音波素子600のみを用いることをそれぞれ決定する。5回目以降も同様に、順次1超音波素子600ずつずらす配置とする。なお、図14の例では、ステップ107で求めた超音波素子600の数(S個)がちょうど、全超音波素子の1/4であったため、超音波素子4個に1個の割合で素子を選択したが、全超音波素子600の数が、S個の整数場合ではなく、全素子に対して何個かに1個という割合で選択できないこともある。その場合は、ステップ209において、何個かに1個を選択したうえで、超音波素子アレイ100の任意の位置の超音波素子を追加で選択すればよい。選択される超音波素子は、1個でも多い方が画像の解像度向上やアーチファクト低減には好ましい。
そして、ステップ110では、設定された送信と受信を繰り返し、受信ごとにステップ209で選択された超音波素子600のみを用いてM本の受信走査線の整相出力を得てビームメモリ1301に格納する。ビームメモリ1301に格納された整相出力は、選択された超音波素子600のピッチが粗いため、このままで画像を生成するとグレーティングローブが発生するが、本実施形態では、縞抑制のためにステップ111でN個の整相出力を加算(合成)することにより、全超音波素子(全口径=口径A+口径B+口径C+口径D)の整相出力を生成に用いることになり、グレーティングローブを打消し合わせて、グレーティングローブを生じさせないことができる。
これにより、縞を抑制するために、N個の整相出力を合成しながら、整相出力演算に使用する超音波素子600の数を抑制して、撮像速度を高速に維持し、しかも、解像度を低下させない(グレーティングローブを発生させない)という効果が得られる。
一方、図15のパターンは、整相出力の生成に使用する超音波素子600を、受信ごとにS個ずつランダムに選択するように決定するパターンである。ただし、N回の受信で、全超音波素子600が1回以上選択されるようにする。
図16のパターンは、整相出力の生成に使用する超音波素子600を、1回目の受信では、超音波素子アレイ100の左端からS個選択し、2回目の受信では、右端からS個選択するというように、受信のたびに左右交互にS個の超音波素子を配置していくパターンである。このパターンは、S個が全超音波素子の1/2以上である場合、N回の受信で全超音波素子600が必ず1回以上選択され、好適である。また、S個が全超音波素子の1/2未満である場合には、1回目の受信では、超音波素子アレイ100の左端からS個選択し、2回目の受信では、1回目に選択したS個の素子の右端の位置からS個選択するというように、順次選択位置をずらしていくパターンを採用することにより、全超音波素子をN回の順で1回以上選択することができる。
図17のパターンは、予め定めた範囲117の超音波素子が、1回以上整相出力の生成に使用されるように、整相出力の生成に使用する超音波素子600の配置を受信ごとに決定するパターンである。予め定めた範囲117としては、S個をN倍した範囲以下になるように設定することが望ましい。これにより、範囲117内の超音波素子600をS個ずつN回の受信で順次選択していくことにより、範囲117内の全超音波素子を1回以上選択することができる。範囲117内の超音波素子600の選択方法は、図17のように、1回目の受信では範囲117の左端からS個選択し、2回目の受信では、1回目で選択したS個の超音波素子の右端からS個選択するというように、順次選択位置をずらしていくパターンを採用することが可能である。また、これ以外にも、範囲117内で、図14〜16のパターンで超音波素子を選択することも可能である。
図15〜図17のパターンのいずれかがステップ208で操作者に選択された場合、図14のパターンと同様に、ステップ209で素子パターン選択部402が、受信ごとの超音波素子を図15〜17のように選択する。ステップ110では、受信のたびに、受信ビームフォーマ603が、ステップ209で選択された超音波素子の出力を用いて、整相出力を生成し、ビームメモリ1301に格納する。開口合成部1300は、ビームメモリ1301から受信焦点ごとにN個の整相出力を読み出して加算する。
これにより、図15〜16のパターンでは、ステップ111で開口合成部1300が、N個の整相出力を加算することにより、全超音波素子600の出力が用いられる。よって、図14のパターンと同様に、整相出力演算に使用する超音波素子600の数を抑制して撮像速度を高速に維持しながら、解像度を低下させない(グレーティングローブを発生させない)という効果が得られる。一方、図17のパターンでは、全超音波素子の範囲117内の全超音波素子の出力を用いているため、解像度は図14のパターンよりも多少低下する(グレーティングが発生を完全に抑制できない)ものの、整相出力演算に使用する超音波素子600の数を抑制しながら撮像速度を高速に維持できる。
以上、本発明の二つの実施形態を説明したが、上述した実施形態は、あらゆる点で単なる例示にすぎず、本発明の範囲を限定するものではない。
さらに、本実施形態は、1次元に超音波素子600が配列された超音波素子アレイ100のみに適用されるものではなく、2次元に超音波素子600が配列された超音波素子アレイを用いることも可能もちろん可能である。例えば、図13のパターンを、2次元の超音波素子アレイに適用した場合の、超音波素子の選択パターンを図18に示す。図18のように、短軸方向についても長軸方向についても、図13のパターンが適用されている。これにより、短軸および長軸の両方向について、解像度を低下させない(グレーティングローブの発生させない)という効果が得られる。
10…送信ビーム、11…受信ビーム、30…反射体、27…超音波画像において縦縞模様が現れる位置、50…超音波撮像装置、100…超音波素子アレイ、400…送信走査線制御部、401…制御部、600…超音波素子、602…送信ビームフォーマ、603…受信ビームフォーマ、604…送受切り替え部(T/R)、605…画像処理部、607…画像表示部、608…コンソール、609…遅延加算計算部、1201…入出力ポート(受け付け部)、1300…開口合成部、1301…ビームメモリ、1302…フレームメモリ

Claims (14)

  1. 被検体の撮像領域に超音波を送信し、前記被検体で反射した超音波を受信する複数の超音波素子を所定の方向に沿って配列した超音波素子アレイと、被検体の撮像領域に設定した複数の送信走査線に沿って前記超音波素子アレイから送信ビームを順次送信させる送信ビームフォーマと、前記送信ビームごとに複数の受信走査線を設定し、それぞれの前記受信走査線上の複数の受信焦点について前記超音波素子の受信出力を整相および加算した信号を生成する受信ビームフォーマと、異なる前記送信ビームの反射超音波からそれぞれ得た複数の整相出力を同一の前記受信焦点について加算して前記撮像領域の画像を生成する開口合成部と、高速撮像モードの実行の指示を操作者から受け付ける受け付け部と、制御部とを有し、
    前記受け付け部が高速撮像モードの指示を受け付けた場合、前記送信ビームフォーマは、前記高速撮像モードの撮像速度に対応した間隔の送信走査線に沿って送信ビームを順次送信し、前記開口合成部は、前記受信焦点ごとに加算する前記整相出力の数を、前記画像に縞模様が生じるのを抑制する所定の加算数(N)に設定し、前記制御部は、前記受信焦点ごとに前記加算数(N)の前記整相出力を生じさせるために、前記受信ビームフォーマが設定すべき前記受信走査線の必要数(M)を求め、求めた前記受信走査線の必要数(M)を前記受信ビームフォーマに指示する
    ことを特徴とする超音波撮像装置。
  2. 請求項1に記載の超音波撮像装置において、前記制御部は、前記受信走査線の前記必要数(M)が予め定めた数(K)以下である場合、前記受信ビームフォーマに前記超音波素子アレイの全ての前記超音波素子の出力を用いて前記整相出力を生成させることを特徴とする超音波撮像装置。
  3. 請求項1に記載の超音波撮像装置において、前記制御部は、前記受信走査線の必要数(M)が予め定めた数(K)を超えている場合、前記受信ビームフォーマの演算能力に基づいて、前記送信ビームの送信の時間間隔において前記必要数(M)の前記受信走査線の前記受信焦点について前記整相出力を生成するために使用可能な前記超音波素子の数(S)を求め、当該求めた数の前記超音波素子の受信出力を用いて前記受信ビームフォーマに前記整相出力を生成させることを特徴とする超音波撮像装置。
  4. 請求項1に記載の超音波撮像装置において、前記受け付け部は、前記縞模様の抑制度合いを操作者から受け付け可能であり、
    前記制御部は、前記受け付け部が受け付けた前記抑制度合いに応じて前記加算数(N)を設定し、設定した前記加算数(N)に応じて、前記受信走査線の必要数(M)を求めることを特徴とする超音波撮像装置。
  5. 請求項1に記載の超音波撮像装置において、前記制御部は、予め求めておいた、前記撮像速度と、前記整相出力の加算数(N)と、前記受信走査線の前記必要数(M)との関係を示すテーブルを有し、当該テーブルを参照して、前記撮像速度と前記加算数(N)に対応する前記受信走査線の前記必要数(M)を求めることを特徴とする超音波撮像装置。
  6. 請求項3に記載の超音波撮像装置において、前記制御部は、前記受信走査線の前記必要数(M)が予め定めた数(K)を超えている場合、操作者に解像度の低下の可能性を報知する表示を表示装置に表示させることを特徴とする超音波撮像装置。
  7. 請求項3に記載の超音波撮像装置において、前記制御部は、前記超音波素子アレイに配列された前記超音波素子のうち、前記受信ビームフォーマが受信出力を使用する前記数(S)の前記超音波素子の配置を、予め定めたパターンに基づいて決定することを特徴とする超音波撮像装置。
  8. 請求項7に記載の超音波撮像装置において、前記制御部は、前記加算数(N)と等しいN回の送信における受信において、前記受信ビームフォーマによって前記超音波素子アレイの全ての超音波素子が1回以上整相出力の生成に使用されるように、前記受信ビームフォーマが出力を使用する前記超音波素子の配置を受信ごとに決定することを特徴とする超音波撮像装置。
  9. 請求項7に記載の超音波撮像装置において、前記制御部は、前記加算数(N)と等しいN回の送信における受信において、前記受信ビームフォーマによって前記超音波素子アレイの全ての超音波素子のうち予め定めた数の超音波素子が1回以上整相出力の生成に使用されるように、前記受信ビームフォーマが出力を使用する前記超音波素子の配置を決定することを特徴とする超音波撮像装置。
  10. 請求項7に記載の超音波撮像装置において、前記制御部は、予め定めておいた複数種類のパターンを表示し、前記操作者によるパターンの選択を前記受け付け部を介して受け付け、受け付けたパターンを前記予め定めたパターンとして用いて、前記超音波素子の配置を決定することを特徴とする超音波撮像装置。
  11. 請求項7に記載の超音波撮像装置において、前記予め定めたパターンとは、前記受信ビームフォーマが出力を使用する前記超音波素子を、前記超音波素子の配列方向に沿って一定の間隔でS個配置し、受信のたびに超音波素子の配置を前記超音波素子1つ分ずつずらすパターンであることを特徴とする超音波撮像装置。
  12. 請求項7に記載の超音波撮像装置において、前記予め定めたパターンとは、前記受信ビームフォーマが出力を使用する前記超音波素子を、前記超音波素子の配列方向に沿ってランダムにS個配置するパターンであることを特徴とする超音波撮像装置。
  13. 被検体の撮像領域に超音波を送信し、前記被検体で反射した超音波を受信する複数の超音波素子を所定の方向に沿って配列した超音波素子アレイと、被検体の撮像領域に設定した複数の送信走査線に沿って前記超音波素子アレイから送信ビームを順次送信させる送信ビームフォーマと、前記送信ビームごとに複数の受信走査線を設定し、それぞれの前記受信走査線上の複数の受信焦点について前記超音波素子の受信出力を整相および加算した信号を生成する受信ビームフォーマと、異なる前記送信ビームの反射超音波からそれぞれ得た複数の整相出力を同一の前記受信焦点について加算して前記撮像領域の画像を生成する開口合成部と、高速撮像モードの実行の指示を操作者から受け付ける受け付け部と、制御部とを有し、
    前記受け付け部が高速撮像モードの指示を受け付けた場合、前記開口合成部は、前記受信焦点ごとに加算する前記整相出力の数を、前記画像に縞模様が生じるのを抑制する所定の加算数(N)に設定し、前記制御部は、前記加算数(N)と等しいN回の送信における受信において、前記受信ビームフォーマによって前記超音波素子アレイの全部または予め定めた範囲の超音波素子が1回以上整相出力の生成に使用されるように、前記受信ビームフォーマが出力を使用する前記超音波素子の配置を受信ごとに決定することを特徴とする超音波撮像装置。
  14. 請求項13に記載の超音波撮像装置において、前記受け付け部が高速撮像モードの指示を受け付けた場合、前記送信ビームフォーマは、前記高速撮像モードの撮像速度に対応した間隔の送信走査線に沿って送信ビームを順次送信し、前記制御部は、前記受信焦点ごとに前記加算数(N)の前記整相出力を生じさせるために、前記受信ビームフォーマが設定すべき前記受信走査線の必要数(M)を求め、求めた前記受信走査線の必要数(M)を前記受信ビームフォーマに指示する
    ことを特徴とする超音波撮像装置。
JP2016534060A 2014-07-17 2014-07-17 超音波撮像装置 Active JP6200594B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069110 WO2016009544A1 (ja) 2014-07-17 2014-07-17 超音波撮像装置

Publications (2)

Publication Number Publication Date
JPWO2016009544A1 JPWO2016009544A1 (ja) 2017-04-27
JP6200594B2 true JP6200594B2 (ja) 2017-09-20

Family

ID=55078061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016534060A Active JP6200594B2 (ja) 2014-07-17 2014-07-17 超音波撮像装置

Country Status (3)

Country Link
US (1) US10456110B2 (ja)
JP (1) JP6200594B2 (ja)
WO (1) WO2016009544A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595360B2 (ja) * 2016-02-04 2019-10-23 株式会社日立製作所 超音波撮像装置および超音波撮像方法
JP6863817B2 (ja) * 2017-05-01 2021-04-21 株式会社日立製作所 超音波撮像装置
JP7099162B2 (ja) 2018-08-10 2022-07-12 コニカミノルタ株式会社 超音波信号処理方法、及び超音波信号処理装置
JP7488710B2 (ja) 2020-07-21 2024-05-22 富士フイルムヘルスケア株式会社 超音波撮像装置
JP7500366B2 (ja) 2020-09-14 2024-06-17 キヤノンメディカルシステムズ株式会社 超音波診断装置およびスキャン条件決定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135641A (ja) 1984-12-04 1986-06-23 株式会社日立メデイコ 並列受波型超音波装置
JP3413229B2 (ja) 1993-01-29 2003-06-03 株式会社日立メディコ 超音波撮像装置
JPH10118063A (ja) 1996-10-24 1998-05-12 Aloka Co Ltd 超音波診断装置
JP4257259B2 (ja) 2004-05-17 2009-04-22 アロカ株式会社 超音波診断装置
JP4881112B2 (ja) * 2006-09-19 2012-02-22 株式会社東芝 超音波診断装置及び画像データ生成方法
JP2010029374A (ja) 2008-07-28 2010-02-12 Fujifilm Corp 超音波診断装置
JP2012105959A (ja) 2010-10-20 2012-06-07 Toshiba Corp 超音波診断装置及び超音波送受信方法

Also Published As

Publication number Publication date
US20170209123A1 (en) 2017-07-27
JPWO2016009544A1 (ja) 2017-04-27
US10456110B2 (en) 2019-10-29
WO2016009544A1 (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6200594B2 (ja) 超音波撮像装置
JP6014643B2 (ja) 超音波診断装置
JP5919311B2 (ja) 超音波診断装置および超音波画像生成方法
JP5913557B2 (ja) 超音波撮像装置
US9364152B2 (en) Object information acquiring apparatus
US10588598B2 (en) Ultrasonic inspection apparatus
US8279705B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmission/reception method
JP2004283490A (ja) 超音波送受信装置
US20150196280A1 (en) Ultrasound diagnostic apparatus, ultrasound image generating method, and recording medium
US10231709B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
US10786228B2 (en) Ultrasound diagnostic apparatus, sound velocity determining method, and recording medium
JP6189867B2 (ja) 超音波撮像装置
JP2020005804A (ja) 超音波撮像装置、および、画像処理装置
US10980515B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
US10299762B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP6378370B2 (ja) 超音波撮像装置、および、超音波信号の処理方法
JP6634331B2 (ja) 超音波撮像装置および超音波送受信方法
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP2008220652A (ja) 超音波診断装置、及び超音波画像生成プログラム
JP2019521753A (ja) 大型線形アレイを備える高速合成集束超音波イメージング
JP2016198119A (ja) 超音波撮像装置
JP6761767B2 (ja) 超音波撮像装置
JP7422099B2 (ja) 超音波撮像装置、信号処理装置、および、信号処理方法
JP5709958B2 (ja) 装置
JP2004248837A (ja) 超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170825

R150 Certificate of patent or registration of utility model

Ref document number: 6200594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111