JP6196435B2 - チタン銅及びその製造方法 - Google Patents

チタン銅及びその製造方法 Download PDF

Info

Publication number
JP6196435B2
JP6196435B2 JP2012220659A JP2012220659A JP6196435B2 JP 6196435 B2 JP6196435 B2 JP 6196435B2 JP 2012220659 A JP2012220659 A JP 2012220659A JP 2012220659 A JP2012220659 A JP 2012220659A JP 6196435 B2 JP6196435 B2 JP 6196435B2
Authority
JP
Japan
Prior art keywords
young
modulus
degree
annealing
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012220659A
Other languages
English (en)
Other versions
JP2014074193A (ja
Inventor
波多野 隆紹
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012220659A priority Critical patent/JP6196435B2/ja
Publication of JP2014074193A publication Critical patent/JP2014074193A/ja
Application granted granted Critical
Publication of JP6196435B2 publication Critical patent/JP6196435B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、コネクタ、端子、リレー、スイッチ等の導電性ばね材やトランジスタ、集積回路(IC)等の半導体機器のリ−ドフレーム材として好適な、優れた強度、疲労特性、曲げ加工性、耐応力緩和特性、導電性等を備えたチタン銅及びその製造方法に関する。
電子機器の各種端子、コネクタ、リレー、スイッチ等の電気伝導性及びばね性が必要な材料として、製造コストを重視する場合には低廉な黄銅が用いられ、ばね性が重視される場合にはりん青銅が用いられ、ばね性及び耐食性が重視される場合には洋白が用いられてきた。しかしながら、近年の電子機器類及びその部品の軽量化、薄肉化および小型化に伴い、これらの材料では強度を十分に向上させることが難しいため、チタン銅等のいわゆる高級ばねの需要が増大している。
JIS合金番号C1990に規定されるチタン銅は、溶体化処理の後に時効処理を行うことにより製造される。溶体化処理では、鋳造や熱間圧延の際に生成した粗大なCu−Ti化合物をCu母地に固溶させると同時にCu母地を再結晶させ、再結晶粒の結晶粒径を調整する。時効処理においてはCu3TiまたはCu4Tiの微細粒子を析出させ、これらの微細粒子が引張り強さ、耐力、ばね限界値等の強度特性の向上に寄与する。
例えば、コネクタはメス端子及びオス端子から構成され、両端子を勘合することにより電気的接続が得られる。電気接点では、メス端子がそのばね力によりオス端子を保持し、所望の接触力を得ている。
メス端子材料の強度が低いと、オス端子を挿入した際にメス端子に永久変形(へたり)が発生する。へたりが生じると、電気接点部での接触力が低下し、電気抵抗が増大する。そこで、へたりの発生を抑制するため、耐力やばね限界値の高い銅合金材料が開発されてきた(例えば特許文献1等)。
また、特許文献2では、コネクタの設計を容易にするために、圧延方向の曲げたわみ係数を80〜110GPaに調整したチタン銅を提案している。しかしながら、この材料のへたり特性は、特にばねに繰り返したわみを与える場合において充分とはいえず、さらに、ばねの接触力の著しい低下を引き起こすという問題もあった。
特開2004−076091号公報 WO2012/029717号
銅合金材料のへたり特性を改善するためには、耐力、ばね限界値等の強度特性を高めることが有効である。しかしながら、高強度化に伴い曲げ加工性が悪化する等の理由により、高強度化だけによるへたり改善には限界があった。
そこで、本発明では、高強度化以外の手段も用いることにより、へたりの発生が著しく抑制されたチタン銅及びその製造方法を提供することを課題とする。
コネクタのばね部を片持ちはりとして単純化し、へたりが発生する原理を説明する。図1に示すように、一端を固定した板ばねの固定端から長さLの位置にたわみdを与えると、下記の式1で示される接触力Pが得られ、板ばねの固定端表面に下記の式2で示される最大応力Sが発生する。
P=dEwt3/4L3 (式1)
S=3tEd/2L2 (式2)
ここでEはヤング率、wは板幅、tは板厚である。
Sが板ばねの素材である銅合金の耐力を超えると、板ばねが永久変形し、板ばねにへたりが生じる。式2より、素材のヤング率が低いほど、へたりの発生が始まるたわみが大きい、すなわちへたりが発生し難いと考えられる。
通常、コネクタ等のばね部はその長手方向が、圧延平面において圧延方向と直交するように設計されている(図2の90度方向)。従って、圧延方向と90度の角度を成す方向のヤング率が低いことが重要といえる。
一方、コネクタ等のばね部に与えられるたわみは一回だけではなく、端子の挿抜等により数千回以上のたわみが与えられることが多い。特にリレー等ではたわみ回数が著しく多い。
本発明者は、圧延方向と90度の角度を成す方向に繰り返したわみを与えた場合のへたりに対しては、圧延方向と90度の角度を成す方向のヤング率だけではなく、圧延方向と45度の角度を成す方向のヤング率も大きな影響を及ぼすことを知見した。
以上の知見を基礎として完成した本発明は一側面において、1.5〜5.0質量%のTiを含有し、残部が銅及び不可避的不純物からなり、90度方向(度は銅箔の圧延平面における圧延方向と成す角度、以下同様)のヤング率(曲げたわみ係数)が100〜120GPaであり、45度方向のヤング率(曲げたわみ係数)が140GPa以下であるチタン銅である。
本発明に係るチタン銅の一実施形態においては、1.5〜5.0質量%のTiを含有し、残部が銅及び不可避的不純物からなり、90度方向のヤング率(曲げたわみ係数)が111〜120GPaであり、45度方向のヤング率(曲げたわみ係数)が111〜140GPaである。
本発明に係るチタン銅の別の一実施形態においては、Ag、B、Co、Cr、Fe、Mg、Mn、Mo、Ni、P、Si及びZrのうち1種以上を総量で0.005〜1.0質量%含有する。
本発明は別の一側面において、1.5〜5.0質量%のTiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを、800〜1000℃で厚み5〜20mmまで熱間圧延した後、加工度30〜99%の冷間圧延を行い、400〜500℃の平均昇温速度を1〜50℃/秒として500〜650℃の温度帯に5〜80秒間保持することにより軟化度0.25〜0.75の予備焼鈍を施し、加工度7〜50%の冷間圧延を行い、次いで、700〜900℃で5〜300秒間の溶体化処理、及び、350〜550℃で2〜20時間の時効処理を行う方法であり、
前記軟化度が次式のSで示される、チタン銅の製造方法である:
S=(σ0−σ)/(σ0−σ900
ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ900はそれぞれ予備焼鈍後及び900℃で焼鈍後の引張強さである。
本発明に係るチタン銅の製造方法の一実施形態においては、前記インゴットがAg、B、Co、Cr、Fe、Mg、Mn、Mo、Ni、P、Si及びZrのうち1種以上を総量で0.005〜1.0質量%含有する。
本発明は更に別の一側面において、本発明のチタン銅を備えた伸銅品である。
本発明は更に別の一側面において、本発明のチタン銅を備えた電子機器部品である。
本発明によれば、圧延平面において圧延方向と直交する方向にばねを設計するコネクタ等の電子部品として用いた際に、ばねの稼動に伴うへたりの発生が著しく抑制された、チタン銅及びその製造方法を提供することができる。
へたりが発生する原理の説明図である。 チタン銅の圧延銅箔の圧延平面における圧延方向、圧延方向と45度をなす方向、圧延方向と90度をなす方向をそれぞれ示す図である。 本発明に係る合金を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係図である。 実施例に係るたわみ試験の説明図である。
(Ti濃度)
Ti濃度は1.5〜5.0質量%とする。チタン銅では、溶体化処理によりCuマトリックス中へTiを固溶させ、時効処理により微細な析出物を合金中に分散させることにより、強度及び導電率を向上させる。Ti濃度が1.5質量%未満になると、析出物の析出が不充分となり所望の強度が得られない。Ti濃度が5.0質量%を超えると、曲げ性が著しく劣化する。より好ましいTi濃度は2.9〜3.4質量%である。
(その他の添加元素)
Ag、B、Co、Cr、Fe、Mg、Mn、Mo、Ni、P、Si及びZrのうち1種以上を総量で0.005〜1.0質量%含有させることにより、強度を更に向上させることができる。合計含有量が0.005質量%未満であると上記効果は得られず、合計含有量が1.0質量%を超えると、曲げ加工性が劣化する。より好ましくは、上記元素のうち1種以上を総量で0.01〜0.5質量%含有させる。
(ヤング率)
90度方向のヤング率を低く制御することにより、圧延直交方向に設計されたばねのへたりが小さくなる。通常のチタン銅の90度方向のヤング率は125〜130GPa程度である。このヤング率を120GPa以下に調整することにより、へたりが通常のチタン銅より著しく小さくなる。一方、ヤング率が低くなると、上記式1から明らかなように、電気接点における接触力が低下する。90度方向のヤング率が100GPa未満になると、接触力低下に伴う接触抵抗の増加が無視できなくなる。そこで、90度方向のヤング率を100〜120GPaに調整する。接触力の点からは、90度方向のヤング率は111GPa以上であることがより好ましい。さらに好ましいヤング率の範囲は、111〜115GPaである。
一方、90度方向のヤング率を100〜120GPaに調整したチタン銅では、45度方向のヤング率が140GPaを超え、150GPa以上にも達することがある。この45度方向のヤング率上昇を抑制し、45度方向のヤング率を140GPa以下、より好ましくは130GPa以下に調整することにより、一回のたわみを与えたときのへたりだけではなく、繰り返したわみを与えたときのへたりも改善される。
なお、90度方向のヤング率を100〜120GPaに調整したチタン銅では、その製造方法をいかに調整しても、45度方向のヤング率が111GPa未満になることは少なく、さらに120GPa未満になることも少ない。言い換えれば、90度方向のヤング率を100〜120GPa、45度方向のヤング率を140GPa以下に調整した本発明のチタン銅では、45度方向のヤング率は典型的には111GPa以上、より典型的には120GPa以上となる。なお、本発明のヤング率値は、片持ち梁による曲げたわみ係数として測定される値である。
(製造方法)
チタン銅の一般的な製造プロセスでは、まず溶解炉で電気銅、Ti等の原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。チタンの酸化損耗を防止するため、溶解及び鋳造は真空中又は不活性ガス雰囲気中で行うことが好ましい。その後、熱間圧延、冷間圧延、溶体化処理、時効処理の順で所望の厚み及び特性を有する条や箔に仕上げる。熱処理後には、時効時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。また、高強度化のために、溶体化処理と時効の間や時効後に冷間圧延を行ってもよい。
本発明では、上記ヤング率を得るために、溶体化処理の前に、熱処理(以下、予備焼鈍ともいう)及び比較的低加工度の冷間圧延(以下、軽圧延ともいう)を行う。
予備焼鈍では、材料を500〜650℃の温度帯、好ましくは500〜600℃の温度帯に、5〜80秒間保持することにより、熱間圧延後の冷間圧延により形成された圧延組織中に、部分的に再結晶粒を生成させる。圧延組織中の再結晶粒の割合には最適値があり、少なすぎてもまた多すぎても所望のヤング率が得られない。最適な割合の再結晶粒は、下記に定義する軟化度Sを0.25〜0.75に調整することで得られる。
図3に本発明合金に係る予備焼鈍前の材料を種々の温度で焼鈍したときの焼鈍温度と引張強さとの関係を例示する。熱電対を取り付けた試料を950℃の管状炉に挿入し、熱電対で測定される試料温度が所定温度に到達したときに、試料を炉から取り出して冷却し、引張強さを測定したものである。500〜700℃の間で再結晶が進行し、引張強さが急激に低下している。高温側での引張強さの緩やかな低下は、再結晶粒の成長によるものである。
予備焼鈍における軟化度Sを次式で定義する。
S=(σ0−σ)/(σ0−σ900
ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ900はそれぞれ予備焼鈍後及び900℃で焼鈍後の引張強さである。900℃という温度は、本発明に係る合金を900℃で焼鈍すると安定して完全再結晶することから、再結晶後の引張強さを知るための基準温度として採用している。
Sが0.25未満又は0.75超になると、90度方向のヤング率が120GPaを超える。
Sを0.25〜0.75に調整するために、材料の最高到達温度を500〜650℃の範囲、好ましくは500〜600℃の範囲に調整した上で、材料温度が500℃以上の状態にて材料を5〜80秒間保持する。材料温度が650℃を超えると、または保持時間が80秒を超えると、Sを0.75以下に調整することが難しくなる。保持時間が5秒未満になると、Sを0.25以上に調整することが難しくなる。材料到達温度が500℃未満になると、500〜650℃における材料保持時間がゼロとなるため、該保持時間が5秒未満の場合と同様、Sを0.25以上に調整することが難しくなる。
なお、Sの0.25〜0.75への調整は、次の手順により行うことができる。
(1)予備焼鈍前の材料の引張り試験強さ(σ0)を測定する。
(2)予備焼鈍前の材料を900℃で焼鈍する。具体的には、熱電対を取り付けた材料を950℃の管状炉に挿入し、熱電対で測定される試料温度が900℃に到達したときに、試料を炉から取り出して水冷する。
(3)上記900℃焼鈍後の材料の引張強さ(σ900)を求める。
(4)例えば、σ0が800MPa、σ900が300MPaの場合、軟化度0.25及び0.75に相当する引張強さは、それぞれ675MPa及び425MPaである。
(5)焼鈍後の引張強さが425〜675MPaとなるように、焼鈍条件を決定する。
Sの制御に加え、予備焼鈍における材料の昇温速度を制御する。所望のヤング率を得るためには、400℃から500℃までの平均昇温速度を1〜50℃/秒の範囲、より好ましくは1.5〜40℃/秒の範囲、さらに好ましくは2〜20℃/秒の範囲に調整する必要がある。
上記平均昇温速度が1℃/秒を下回っても、また50℃/秒を超えても、45度方向のヤング率が140GPaを超える。さらに、上記平均昇温速度が1℃/秒を下回ると90度方向のヤング率が100GPa未満になることがあり、50℃/秒を超えると90度方向のヤング率が120GPaを超えることがある。
伸銅品の製造で工業的に用いられている焼鈍方式として、条を炉中に走行させ加熱する連続焼鈍、及び、条を巻き取ったコイルを炉中で挿入して加熱するバッチ焼鈍炉の二種類がある。一般的に、連続焼鈍における条の400〜500℃の昇温速度は50℃/秒超、バッチ焼鈍における条の400〜500℃の昇温速度は1℃/秒未満である。1〜50℃/秒の昇温速度は、例えば連続焼鈍において、炉内の温度分布に傾斜を付けるなどの対策により可能となる。
なお、上記工程(2)における「熱電対で測定される試料温度が900℃に到達したときに、試料を炉から取り出して水冷する」は、具体的には、例えば試料を炉内でワイヤーに吊しておき、900℃に到達した時点でワイヤーを切断して下方に設けておいた水槽内に落とすことで水冷するものや、試料温度が900℃に到達した直後に手作業により炉内から素早く取り出して水槽に漬けること等により行う。
上記予備焼鈍の後、溶体化処理に先立ち、加工度7〜50%の軽圧延を行う。加工度R(%)は次式で定義する。
R=(t0−t)/t0×100(t0:圧延前の板厚、t:圧延後の板厚)
加工度がこの範囲から外れると、90度方向のヤング率が120GPaを超える。
本発明に係る合金の製造方法を工程順に列記すると次のようになる。
(1)インゴットの鋳造
(2)熱間圧延(温度800〜1000℃、厚み5〜20mm程度まで)
(3)冷間圧延(加工度30〜99%)
(4)予備焼鈍(軟化度:S=0.25〜0.75、400〜500℃の平均昇温速度:1〜50℃/秒)
(5)軽圧延(加工度7〜50%)
(6)溶体化処理(700〜900℃で5〜300秒間)
(7)冷間圧延(加工度1〜60%)
(8)時効処理(350〜550℃で2〜20時間)
(9)冷間圧延(加工度1〜50%)
(10)歪取り焼鈍(300〜700℃で5秒〜10時間)
ここで、熱間圧延(2)は一般的なチタン銅の条件で行うことが可能であるが、材料温度を350℃以上に保った状態で所定の厚みまでの圧延を終え、その後直ちに水冷することが好ましい。これにより、熱間圧延後の冷却中における粗大析出物(製品の高強度化に寄与しない)の形成が抑制される。
冷間圧延(3)の加工度は30〜99%とすることが好ましい。予備焼鈍(4)で部分的に再結晶粒を生成させるためには、冷間圧延(3)で歪を導入しておく必要があり、30%以上の加工度で有効な歪が得られる。一方、加工度が99%を超えると、圧延材のエッジ等に割れが発生し、圧延中の材料が破断することがある。
冷間圧延(7)及び(9)は高強度化のために任意に行うものであり、圧延加工度の増加とともに強度が増加する反面、曲げ性が低下する。冷間圧延(7)及び(9)の有無及びそれぞれの加工度によらず、ヤング率の制御によりへたりが抑制されるという本発明の効果は得られる。冷間圧延(7)及び(9)は行ってもよいし行わなくてもよい。ただし、冷間圧延(7)及び(9)におけるそれぞれの加工度が上記上限値を超えることは曲げ性の点から好ましくなく、それぞれの加工度が上記下限値を下回ることは高強度化の効果の点から好ましくない。
歪取り焼鈍(10)は、冷間圧延(9)を行う場合にこの冷間圧延で低下するばね限界値等を回復させるために任意に行うものである。歪取り焼鈍(10)の有無に関わらず、ヤング率の制御によりへたりが抑制されるという本発明の効果は得られる。歪取り焼鈍(10)は行ってもよいし行わなくてもよい。
なお、工程(6)及び(8)については、チタン銅の一般的な製造条件を選択すればよい。
本発明のチタン銅は種々の伸銅品、例えば板、条及び箔に加工することができ、更に、本発明のチタン銅は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子機器部品等に使用することができる。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
(実施例1)
3.2質量%のTiを含有し残部が銅及び不可避的不純物からなる合金を実験材料とし、予備焼鈍及び軽圧延条件とヤング率との関係、さらにヤング率が製品のへたり特性に及ぼす影響を検討した。
高周波溶解炉にてアルゴン雰囲気中で内径60mm、深さ200mmの黒鉛るつぼを用い電気銅2.5kgを溶解した。上記合金組成が得られるよう合金元素を添加し、溶湯温度を1300℃に調整した後、鋳鉄製の鋳型に鋳込み、厚さ30mm、幅60mm、長さ120mmのインゴットを製造した。このインゴットを熱間圧延として、950℃で3時間加熱後、材料温度を350℃以上に保ったまま厚さ10mmまで圧延し、その後直ちに水冷した。熱間圧延板表面の酸化スケールをグラインダーで研削して除去した。研削後の厚みは9mmであった。その後、次の工程順で圧延及び熱処理を施し、板厚0.15mmの製品試料を作製した。
(1)冷間圧延:軽圧延の圧延加工度に応じ、所定の厚みまで冷間圧延した。
(2)予備焼鈍:所定温度に調整した電気炉に試料を挿入し、所定時間保持した後、試料を大気中に放置し冷却した。その間、試料に溶接した熱電対を用いて試料温度を測定し、到達温度、400〜500℃の平均昇温速度及び500〜650℃の保持時間を求めた。
(3)軽圧延:種々の圧延加工度で、厚み0.18mmまで冷間圧延を行った。
(4)溶体化処理:800℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。
(5)時効処理:電気炉を用い450℃で5時間、Ar雰囲気中で加熱した。
(6)冷間圧延:0.18mmから0.15mmまで加工度17%で冷間圧延した。
(7)歪取り焼鈍:400℃に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
予備焼鈍後の試料及び製品試料(この場合は歪取り焼鈍上がり)について、次の評価を行った。
(予備焼鈍での軟化度評価)
予備焼鈍前及び予備焼鈍後の試料につき、引張試験機を用いてJIS Z 2241に準拠し、圧延方向と平行に引張強さを測定し、それぞれの値をσ0及びσとした。また、900℃で焼鈍試料を前記手順(950℃の炉に挿入し試料が900℃に到達したときに冷却)で作製し、圧延方向と平行に引張強さを同様に測定しσ900を求めた。σ0、σ、σ900から、下記式により軟化度Sを求めた。
S=(σ0−σ)/(σ0−σ900
(製品の引張り試験)
引張試験機を用いてJIS Z2241に準拠し、圧延方向と平行に0.2%耐力を測定した。
(ヤング率測定)
ヤング率は、日本伸銅協会(JACBA)技術標準「銅及び銅合金板条の片持ち梁による曲げたわみ係数測定方法」に準じて測定した。
板厚t、幅w(=10mm)、長さ100mmの短冊形状の試料を、図2に示す試料の長手方向が圧延方向と90度の角度を成す方向及び45度の角度を成す方向に、それぞれ採取した。この試料の片端を固定し、固定端からL(=100t)の位置にP(=0.15N)の荷重を加え、このときのたわみdから、次式を用いヤング率Eを求めた。
E=4・P・(L/t)3/(w・d)
(たわみ試験)
幅5mmの短冊形状の試料を、図2に示す試料の長手方向が圧延方向と90度の角度を成す方向に採取した。
次に、図4のように、試料の片端を固定し、この固定端から距離Lの位置に、先端をナイフエッジに加工したポンチを押し当て、試料にたわみdを与えた後、ポンチを初期の位置に戻し除荷した。ポンチの移動速度は1mm/分とした。
まず1回のたわみを与え接触力P(ポンチに作用する荷重)を測定し、除荷後へたりδを求めた。また、5000回のたわみを与え、除荷した後のへたりδを求めた。
表1に評価結果を示す。ここで、たわみ試験は、t(板厚)=0.15mm、w(板幅)=5mm、L(ばね長)=9.3mm、d(たわみ)=3mmの条件で行った。また、へたりδは0.01mmの分解能で測定し、へたりδが検出されなかった場合は<0.01mmと表記している。
発明例1〜16は、いずれも本発明が規定する条件で予備焼鈍及び軽圧延を行ったものであり、90度方向及び45度方向のヤング率が本発明の規定を満たし、たわみ1回後及び5000回後とも、へたりが検出されなかった。また、90度方向のヤング率の低下とともに接触力が低下する傾向があり、90度方向のヤング率が111GPa未満と低めであった発明例3、6、9、12、13は、他の発明例の接触力より若干低かったものの、全ての発明例において1.7Nを超える接触力を維持できた。
たわみ試験で得られる接触力(P)は、ヤング率(E)、耐力等の合金特性だけでなく、前記式1[P=dEwt3/4L3]から示唆されるように、試料形状(t,w)やたわみ条件(L,d)の影響も受ける。発明例で得られた上記接触力は、試料形状及びたわみ条件から期待される接触力に対し、充分なレベルといえた。
比較例1は、予備焼鈍及び軽圧延を行っていないものであり、一般的なチタン銅に相当する。90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じ、このへたりは5000回のたわみでやや増加した。
比較例2は、予備焼鈍及び軽圧延を行ったものの、予備焼鈍の際の到達温度が650℃を超え、軟化度が0.75を超えたものである。軟化度が過大であったため、90度方向のヤング率が120GPaを超えた。その結果、一回のたわみでへたりが生じ、このへたりは5000回のたわみでやや増加した。
比較例3は、予備焼鈍及び軽圧延を行ったものの、予備焼鈍の際の保持時間が5秒に満たず、軟化度が0.25を下回ったものである。軟化度が過小であったため、90度方向のヤング率が120GPaを超えた。その結果、一回のたわみでへたりが生じ、このへたりは5000回のたわみでやや増加した。
比較例4及び5では、予備焼鈍及び軽圧延を行ったものの、軽圧延の際の加工度がそれぞれ過小及び過大だったため、90度方向のヤング率が120GPaを超えた。その結果、一回のたわみでへたりが生じ、このへたりは5000回のたわみでやや増加した。
比較例6では、予備焼鈍の軟化度及び軽圧延の加工度が適正条件だったため、90度方向のヤング率が100〜120GPaに入った。しかし、予備焼鈍での400〜500℃の昇温速度が1℃/秒に満たなかったため、45度方向のヤング率が140GPaを超えた。その結果、1回のたわみではへたりが検出されなかったものの、5000回のたわみでへたりが発生した。
比較例7は、比較例6と同様、予備焼鈍での昇温速度が過小だったものだが、該昇温速度が特に遅かったため、45度方向のヤング率が140GPaを超え5000回のたわみでへたりが発生しただけでなく、90度方向のヤング率が100GPa未満になり、接触力が発明例の2/3程度まで低下した。このレベルまで接触力が低下すると、コネクタに加工し使用した際に、接点の接触電気抵抗が異常上昇する等の問題が生じる。
比較例8は、予備焼鈍の軟化度及び軽圧延の加工度が適正条件だったため、90度方向のヤング率が100〜120GPaに入った。しかし、予備焼鈍での400〜500℃の昇温速度が50℃/秒を超えたため、45度方向のヤング率が140GPaを超えた。その結果、1回のたわみではへたりが検出されなかったものの、5000回のたわみでへたりが発生した。
比較例9は、比較例8と同様、予備焼鈍での昇温速度が過大だったものであるが、該昇温速度が特に大きかったため、45度方向のヤング率が140GPaを超えただけでなく、90度方向のヤング率が120GPaを超えた。その結果、1回のたわみで既にへたりが生じ、このへたりは5000回のたわみで顕著に増加した。
比較例10は、予備焼鈍及び軽圧延を行ったものの、予備焼鈍の際の保持時間が80秒間を超え、軟化度が過大となり、また昇温速度が過小であったものである。90度方向のヤング率が120GPaを超え、一回のたわみでへたりが生じ、このへたりは5000回のたわみでやや増加した。
(実施例2)
実施例1で示した、へたり改善効果が、異なる成分及び製造条件のチタン銅で得られることを検証した。
実施例1と同様の方法で鋳造、熱間圧延及び表面研削を行い、表2の成分を有する厚み9mmの板を得た。この板に対し次の工程順で圧延及び熱処理を施し、表2に示す板厚の製品試料を得た。
(1)冷間圧延
(2)予備焼鈍:実施例1と同様の方法で実施。
(3)軽圧延
(4)溶体化処理:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を水槽に入れ冷却した。該温度は再結晶粒の平均直径が5〜25μmの範囲になる範囲で選択した。
(5)冷間圧延(圧延1)
(6)時効処理:電気炉を用い所定温度で5時間、Ar雰囲気中で加熱した。該温度は時効後の引張強さが最大になるように選択した。
(7)冷間圧延(圧延2)
(8)歪取り焼鈍:所定温度に調整した電気炉に試料を挿入し、10秒間保持した後、試料を大気中に放置し冷却した。
予備焼鈍後の試料及び製品試料について、実施例1と同様の評価を行った。なお、たわみ試験ではw=5mmとし、後述する合金群毎に、本発明の効果が発現しやすいようL及びdを設定した。
表2及び3に評価結果を示す。圧延1、圧延2、歪取り焼鈍のいずれかを行わなかった場合は、それぞれの加工度または温度の欄に「なし」と表記している。
(合金A)
合金Aは、合金成分としてTiのみを含んでおり、残部が銅及び不可避的不純物から構成される。また、圧延1、圧延2、歪取り焼鈍のいずれもが行われている。発明例A−1では、ヤング率が規定を満たしたため、たわみ1回後及び5000回後とも、へたりが検出されなかった。
比較例A−1では、予備焼鈍での軟化度が0.75を超え、90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じた。
比較例A−2では、予備焼鈍の昇温速度が1℃/秒に満たず、45度方向のヤング率が140GPaを超えたため、5000回のたわみでへたりが発生した。
比較例A−3では、Ti濃度が過小であったため、製品の耐力が低下し、1回のたわみでへたりが生じた。
接触力について見ると、発明例A−1、比較例A−1及び比較例A−2では、90度方向のヤング率が100GPa以上となったため、試料形状及びたわみ条件から期待されるレベルの接触力が得られた。これに対し、90度方向のヤング率が100GPaを超えたものの耐力が著しく低い比較例A−3では、発明例A−1、比較例A−1及び比較例A−2に対し、2/3程度の接触力しか得られなかった。
(合金B)
合金Bは、合金成分として、3.5%Ti及び0.2%Fe(%は質量%、以下同様)を含有し、残部が銅及び不可避的不純物から構成される。また、圧延1が行われている。
発明例B−1では、ヤング率が規定を満たしたため、たわみ1回後及び5000回後とも、へたりが検出されなかった。
比較例B−1では、予備焼鈍及び軽圧延が行われず、90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じた。
比較例B−2では、予備焼鈍の昇温速度が50℃/秒を超え、45度方向のヤング率が140GPaを超えたため、5000回のたわみでへたりが発生した。
なお、発明例B−1、比較例B−1、比較例B−2とも、90度方向のヤング率が100GPa以上となったため、試料形状及びたわみ条件から期待されるレベルの接触力が得られた。
(合金C)
合金Cは、合金成分として、2.0%Ti、0.1%Ag、0.1%Coおよび0.1%Niを含有し、残部が銅及び不可避的不純物から構成される。また、圧延2及び歪取り焼鈍が行われている。
発明例C−1では、ヤング率が規定を満たしたため、たわみ1回後及び5000回後とも、へたりが検出されなかった。
比較例C−1では、予備焼鈍での軟化度が0.75を超え、90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じた。
比較例C−2では、予備焼鈍での軟化度が0.25に満たず、90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じた。
比較例C−3では、予備焼鈍の昇温速度が1℃/秒に満たず、45度方向のヤング率が140GPaを超えたため、5000回のたわみでへたりが発生した。
なお、発明例C−1、比較例C−1、比較例C−2、比較例C−3とも、90度方向のヤング率が100GPa以上となったため、試料形状及びたわみ条件から期待されるレベルの接触力が得られた。
(合金D)
合金Dは、合金成分として、4.5%Ti、0.05%Si、0.1%Ni、0.1%Zr及び0.1%Crを含有し、残部が銅及び不可避的不純物から構成される。また、圧延1が行われている。
発明例D−1では、ヤング率が規定を満たしたため、たわみ1回後及び5000回後とも、へたりが検出されなかった。
比較例D−1では、軽圧延の加工度が50%を超え、90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じた。
比較例D−2では、予備焼鈍の昇温速度が50℃/秒を超え、45度方向のヤング率が140GPaを超えたため、5000回のたわみでへたりが発生した。
なお、発明例D−1、比較例D−1、比較例D−2とも、90度方向のヤング率が100GPa以上となったため、試料形状及びたわみ条件から期待されるレベルの接触力が得られた。
(合金E)
合金Eは、合金成分として、3.0%Ti、0.05%Mg、0.1%Mn及び0.1%Moを含有し、残部が銅及び不可避的不純物から構成される。また、圧延2と歪取り焼鈍が行われている。
発明例E−1では、ヤング率が規定を満たしたため、たわみ1回後及び5000回後とも、へたりが検出されなかった。
比較例E−1では、軽圧延の加工度が7%に満たず、90度方向のヤング率が120GPaを超えたため、一回のたわみでへたりが生じた。
発明例E−1、比較例E−1とも、90度方向のヤング率が100GPa以上となったため、試料形状及びたわみ条件から期待されるレベルの接触力が得られた。
比較例E−2では、予備焼鈍の昇温速度が非常に小さかった。このため、45度方向のヤング率が140GPaを超えて5000回のたわみでへたりが発生した。さらに、90度方向のヤング率が100GPa未満となり、接触力が発明例E−1及び比較例E−1の半分以下まで低下した。
(合金F)
合金Fは、合金成分として、2.2%Ti、0.05%Pおよび0.05%Bを含有し、残部が銅及び不可避的不純物から構成される。また、圧延2が行われている。
発明例F−1では、ヤング率が規定を満たしたため、たわみ1回後及び5000回後とも、へたりが検出されなかった。
比較例F−1では、予備焼鈍の昇温速度が非常に大きかったため、45度方向のヤング率が140GPaを超えると同時に、90度方向のヤング率が120GPaを超えた。その結果、1回のたわみでへたりが生じ、このへたりが5000回のたわみで増大した。
なお、発明例F−1、比較例F−1とも、90度方向のヤング率が100GPa以上となったため、試料形状及びたわみ条件から期待されるレベルの接触力が得られた。

Claims (7)

  1. 1.5〜5.0質量%のTiを含有し、残部が銅及び不可避的不純物からなり、90度方向(度は銅箔の圧延平面における圧延方向と成す角度、以下同様)のヤング率(曲げたわみ係数)が100〜120GPaであり、45度方向のヤング率(曲げたわみ係数)が140GPa以下であるチタン銅。
  2. 1.5〜5.0質量%のTiを含有し、残部が銅及び不可避的不純物からなり、90度方向のヤング率(曲げたわみ係数)が111〜120GPaであり、45度方向のヤング率(曲げたわみ係数)が111〜140GPaである請求項1に記載のチタン銅。
  3. Ag、B、Co、Cr、Fe、Mg、Mn、Mo、Ni、P、Si及びZrのうち1種以上を総量で0.005〜1.0質量%含有する請求項1又は2に記載のチタン銅。
  4. 1.5〜5.0質量%のTiを含有し、残部が銅及び不可避的不純物からなるインゴットを作製し、前記インゴットを、800〜1000℃で厚み5〜20mmまで熱間圧延した後、加工度30〜99%の冷間圧延を行い、400〜500℃の平均昇温速度を1〜50℃/秒として500〜650℃の温度帯に5〜80秒間保持することにより軟化度0.25〜0.75の予備焼鈍を施し、加工度7〜50%の冷間圧延を行い、次いで、700〜900℃で5〜300秒間の溶体化処理、加工度1〜60%の冷間圧延、350〜550℃で2〜20時間の時効処理、加工度1〜50%の冷間圧延、300〜700℃で5秒〜10時間の任意に行う歪取り焼鈍をこの順で行う方法であり、
    前記軟化度が次式のSで示される、請求項1に記載のチタン銅の製造方法:
    S=(σ0−σ)/(σ0−σ900
    ここで、σ0は予備焼鈍前の引張強さであり、σ及びσ900はそれぞれ予備焼鈍後及び900℃で焼鈍後の引張強さである。
  5. 前記インゴットがAg、B、Co、Cr、Fe、Mg、Mn、Mo、Ni、P、Si及びZrのうち1種以上を総量で0.005〜1.0質量%含有する請求項4に記載のチタン銅の製造方法。
  6. 請求項1〜3のいずれかに記載のチタン銅を備えた伸銅品。
  7. 請求項1〜3のいずれかに記載のチタン銅を備えた電子機器部品。
JP2012220659A 2012-10-02 2012-10-02 チタン銅及びその製造方法 Active JP6196435B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012220659A JP6196435B2 (ja) 2012-10-02 2012-10-02 チタン銅及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220659A JP6196435B2 (ja) 2012-10-02 2012-10-02 チタン銅及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016167164A Division JP2017020115A (ja) 2016-08-29 2016-08-29 チタン銅及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014074193A JP2014074193A (ja) 2014-04-24
JP6196435B2 true JP6196435B2 (ja) 2017-09-13

Family

ID=50748553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220659A Active JP6196435B2 (ja) 2012-10-02 2012-10-02 チタン銅及びその製造方法

Country Status (1)

Country Link
JP (1) JP6196435B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703878B2 (ja) 2016-03-31 2020-06-03 Jx金属株式会社 チタン銅箔および、その製造方法
JP2017020115A (ja) * 2016-08-29 2017-01-26 Jx金属株式会社 チタン銅及びその製造方法
JP6609589B2 (ja) 2017-03-30 2019-11-20 Jx金属株式会社 層状組織を有する高強度チタン銅条および箔
JP6609590B2 (ja) 2017-03-30 2019-11-20 Jx金属株式会社 層状組織を有する高強度チタン銅条および箔
JP6310131B1 (ja) * 2017-09-22 2018-04-11 Jx金属株式会社 電子部品用チタン銅
JP6310130B1 (ja) * 2017-09-22 2018-04-11 Jx金属株式会社 電子部品用チタン銅
JP6745859B2 (ja) 2018-11-09 2020-08-26 Jx金属株式会社 チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール
JP6650987B1 (ja) 2018-11-09 2020-02-19 Jx金属株式会社 チタン銅箔、伸銅品、電子機器部品及びオートフォーカスカメラモジュール
CN113802027B (zh) * 2021-09-18 2022-07-15 宁波博威合金板带有限公司 一种钛青铜及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114558A (ja) * 1983-11-22 1985-06-21 Ngk Insulators Ltd 時効硬化性チタニウム銅合金展伸材の製造法
JPS60114542A (ja) * 1983-11-22 1985-06-21 Ngk Insulators Ltd 時効硬化性チタニウム銅合金材料
JP2555070B2 (ja) * 1987-04-24 1996-11-20 古河電気工業株式会社 高力銅基合金の製造法
JPH0832935B2 (ja) * 1987-12-17 1996-03-29 三菱マテリアル株式会社 特性異方性の少ない高強度高靭性Cu合金
JPH06248375A (ja) * 1992-10-26 1994-09-06 Nikko Kinzoku Kk 高強度高導電銅合金
JPH06264202A (ja) * 1993-03-09 1994-09-20 Nikko Kinzoku Kk 高強度銅合金の製造方法
JP3729454B2 (ja) * 2002-11-29 2005-12-21 日鉱金属加工株式会社 銅合金およびその製造方法
JP5084106B2 (ja) * 2005-03-07 2012-11-28 Dowaメタニクス株式会社 銅チタン合金板材及びその製造方法
JP5479798B2 (ja) * 2009-07-22 2014-04-23 Dowaメタルテック株式会社 銅合金板材、銅合金板材の製造方法、および電気電子部品
JP4809935B2 (ja) * 2009-12-02 2011-11-09 古河電気工業株式会社 低ヤング率を有する銅合金板材およびその製造法
JP5143208B2 (ja) * 2010-10-25 2013-02-13 Jx日鉱日石金属株式会社 圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池
JP5039862B1 (ja) * 2011-07-15 2012-10-03 Jx日鉱日石金属株式会社 コルソン合金及びその製造方法

Also Published As

Publication number Publication date
JP2014074193A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
JP6196435B2 (ja) チタン銅及びその製造方法
JP5117604B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP5039862B1 (ja) コルソン合金及びその製造方法
JP4857395B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP5140045B2 (ja) 電子材料用Cu−Ni−Si系合金板又は条
WO2015004939A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
TWI521071B (zh) Conductive and stress relief characteristics of excellent copper alloy plate
KR101917416B1 (ko) 전자 재료용 Cu-Co-Si 계 합금
JP6228725B2 (ja) Cu−Co−Si系合金及びその製造方法
JP6214126B2 (ja) チタン銅及びその製造方法、並びにチタン銅を用いた伸銅品及び電子機器部品
JP2013104082A (ja) Cu−Co−Si系合金及びその製造方法
JP6155407B1 (ja) 電子・電気機器用銅合金、電子・電気機器用部品、端子、及びバスバー
TWI467035B (zh) Carbene alloy and its manufacturing method
WO2013069376A1 (ja) Cu-Co-Si系合金及びその製造方法
JP2016199808A (ja) Cu−Co−Si系合金及びその製造方法
TWI494450B (zh) Carbene alloy and its manufacturing method
WO2013121620A1 (ja) コルソン合金及びその製造方法
JP4987155B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP6246454B2 (ja) Cu−Ni−Si系合金及びその製造方法
JP2017020115A (ja) チタン銅及びその製造方法
JP2016211078A (ja) Cu−Ni−Si系合金及びその製造方法
JP2016084542A (ja) コルソン合金及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160905

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6196435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250