JP6191098B2 - Structure support structure and method - Google Patents

Structure support structure and method Download PDF

Info

Publication number
JP6191098B2
JP6191098B2 JP2012155732A JP2012155732A JP6191098B2 JP 6191098 B2 JP6191098 B2 JP 6191098B2 JP 2012155732 A JP2012155732 A JP 2012155732A JP 2012155732 A JP2012155732 A JP 2012155732A JP 6191098 B2 JP6191098 B2 JP 6191098B2
Authority
JP
Japan
Prior art keywords
fluid
horizontal displacement
fluid chamber
fluid container
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012155732A
Other languages
Japanese (ja)
Other versions
JP2014015811A (en
Inventor
山本 忠久
忠久 山本
福田 智之
智之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012155732A priority Critical patent/JP6191098B2/en
Publication of JP2014015811A publication Critical patent/JP2014015811A/en
Application granted granted Critical
Publication of JP6191098B2 publication Critical patent/JP6191098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、構造物を位置調整可能に支持する構造物の支持構造及び方法に関する。   The present invention relates to a support structure and method for a structure that supports the structure in a position-adjustable manner.

既設の構造物の下にトンネルを建設する場合等に実施するアンダーピニング工法が知られている(例えば、非特許文献1参照)。このアンダーピニング工法では、上構造物を支持する受替え構造物の沈下や***等により上構造物に変位が生じ、構造物の位置調整が必要になることがあるため、上構造物の荷重を仮受けジャッキで受けるようにし、該仮受けジャッキにより上構造物の位置調整をしている。   An underpinning method that is performed when a tunnel is constructed under an existing structure is known (for example, see Non-Patent Document 1). In this underpinning method, displacement of the upper structure may occur due to subsidence or rise of the replacement structure that supports the upper structure, and the position of the structure may need to be adjusted. The temporary structure is received by a temporary receiving jack, and the position of the upper structure is adjusted by the temporary receiving jack.

「アンダーピニング工法 設計・施工マニュアル」,2007年5月25日1版1刷発行,編者 新アンダーピニング工法等研究会,発行者 長 滋彦,発行所 技報堂出版株式会社,125〜129頁"Underpinning Method Design / Construction Manual", published on May 25, 2007, 1st edition, 1st edition, New Underpinning Method Study Group, publisher Shigehiko Cho, publisher, Gihodo Publishing Co., Ltd., pages 125-129

上述のアンダーピニング工法では、地震等による上構造物と下構造物との相対的な水平変位を抑制する必要があり、そのために、上構造物の下面から突出する凸部と、受替え構造物の上面から突出する凸部とを互いに水平方向に対向するように設け、これらを当接させることにより上構造物と下構造物との相対的な水平変位を制限することが考えられる。しかしながら、この構造では、上構造物、下構造物に熱膨張等の外部からの作用による水平変位が生じた場合、互いに当接する凸部間の接触圧が高くなることにより、仮受けジャッキによる上構造物の位置調整が困難になる。また、上構造物、下構造物に過分な内部応力が発生し、ひび割れの要因にもなる。さらに、地震等により構造物に急激な水平力が作用した場合、凸部同士が激しく衝突することになる。   In the above-described underpinning method, it is necessary to suppress the relative horizontal displacement between the upper structure and the lower structure due to an earthquake or the like. For this purpose, a convex portion protruding from the lower surface of the upper structure, and the replacement structure It is conceivable that the convex portions protruding from the upper surface of the upper and lower structures are provided so as to face each other in the horizontal direction, and the horizontal displacement between the upper structure and the lower structure is limited by bringing them into contact with each other. However, in this structure, when a horizontal displacement due to an external action such as thermal expansion occurs in the upper structure and the lower structure, the contact pressure between the projecting parts that are in contact with each other increases. It becomes difficult to adjust the position of the structure. In addition, excessive internal stress is generated in the upper structure and the lower structure, which may cause cracks. Furthermore, when a sudden horizontal force acts on the structure due to an earthquake or the like, the convex portions collide violently.

本発明は、上記事情に鑑みてなされたものであり、位置調整可能に支持された上構造物の水平変位を、位置調整機能を損なうことなく抑制し、かつ、地震等により上下の構造物に急激な水平力が作用した場合に上下の構造物の相対的な水平変位を押えるうえに水平変位制限部に加わる衝撃を緩和することを課題とするものである。   The present invention has been made in view of the above circumstances, and suppresses the horizontal displacement of the upper structure supported so as to be position-adjustable without impairing the position-adjustment function. It is an object of the present invention to reduce the impact applied to the horizontal displacement limiting portion while suppressing the relative horizontal displacement of the upper and lower structures when an abrupt horizontal force is applied.

上記課題を解決するために、本発明に係る構造物の支持構造は、上構造物が下構造物により位置調整可能に支持された構造物の支持構造であって、互いに水平方向に隙間を空けて対向するように前記上構造物側と前記下構造物側とに夫々設けられ、前記上構造物と前記下構造物との相対的な水平変位を制限する上構造物側の水平変位制限部及び下構造物側の水平変位制限部と、前記上構造物側の水平変位制限部と前記下構造物側の水平変位制限部との隙間に嵌め込まれ、液体又は粘性流体を収容する流体室を備え、水平方向に伸縮可能且つその伸縮動作により前記流体室の容積が増減するように構成された第一の流体収容体と、開口部が上向きに配されたシリンダと、該シリンダ内に嵌め込まれるピストンとにより構成され、容積が可変であり、液体又は粘性流体を収容する流体室を備える第二の流体収容体と、前記第一の流体収容体の前記流体室と前記第二の流体収容体の前記流体室とを接続する流路管と、を備え、該流路管と前記第一の流体収容体と前記第二の流体収容体とにより閉回路が形成され、該閉回路に収容される前記液体又は粘性流体が、前記ピストンの荷重もしくは該ピストンに載荷される荷重により加圧されるとともに、前記流路管と前記第一の流体収容体の前記流体室との接続部が、該流体室から前記流路管にかけて流路面積が絞られるように構成されている。 In order to solve the above-mentioned problems, the structure support structure according to the present invention is a structure support structure in which the upper structure is supported by the lower structure so that the position of the structure can be adjusted, and a gap is formed between each other in the horizontal direction. Are provided on the upper structure side and the lower structure side so as to oppose each other, and restrict the relative horizontal displacement between the upper structure and the lower structure. And a fluid displacement chamber that is fitted in a gap between the horizontal displacement restriction portion on the lower structure side, the horizontal displacement restriction portion on the upper structure side, and the horizontal displacement restriction portion on the lower structure side, and stores liquid or viscous fluid. A first fluid container configured to expand and contract in the horizontal direction and to increase or decrease the volume of the fluid chamber by the expansion and contraction operation; a cylinder having an opening portion disposed upward; and a fit in the cylinder And the volume is variable. A second fluid container having a fluid chamber for containing a liquid or viscous fluid, and a flow channel pipe connecting the fluid chamber of the first fluid container and the fluid chamber of the second fluid container A closed circuit is formed by the flow path tube, the first fluid container, and the second fluid container, and the liquid or viscous fluid contained in the closed circuit is Pressurized by a load or a load loaded on the piston, and a connection portion between the flow path pipe and the fluid chamber of the first fluid container is connected to the flow path pipe from the fluid chamber to the flow path area. Is configured to be narrowed down.

また、本発明に係る構造物の支持方法は、上構造物を下構造物により位置調整可能に支持する構造物の支持方法であって、互いに水平方向に隙間を空けて対向するように前記上構造物側と前記下構造物側とに夫々、前記上構造物と前記下構造物との相対的な水平変位を制限する水平変位制限部を設け、液体又は粘性流体を収容する流体室を備え、伸縮可能且つその伸縮動作により前記流体室の容積が増減するように構成された第一の流体収容体を、前記上構造物側の前記水平変位制限部と前記下構造物側の前記水平変位制限部との隙間に、水平方向に伸縮するように嵌め込み、開口部が上向きに配されたシリンダと、該シリンダ内に嵌め込まれるピストンとにより構成され、容積が可変であり、液体又は粘性流体を収容する流体室を備える第二の流体収容体を設置し、前記第一の流体収容体の前記流体室と前記第二の流体収容体の前記流体室とを流路管で接続し、該流路管と前記第一の流体収容体と前記第二の流体収容体とにより形成された閉回路に収容される前記液体又は粘性流体を、前記ピストンの荷重もしくは該ピストンに載荷される荷重により加圧されるとともに、前記流路管と前記第一の流体収容体の前記流体室との接続部を、該流体室から前記流路管にかけて流路面積が絞られるように構成する。
The structure supporting method according to the present invention is a structure supporting method for supporting the upper structure with the lower structure so that the position of the upper structure can be adjusted, and the upper structure is opposed to each other with a gap in the horizontal direction. The structure side and the lower structure side are each provided with a horizontal displacement limiting portion for limiting the relative horizontal displacement between the upper structure and the lower structure, and provided with a fluid chamber for storing a liquid or a viscous fluid. The first fluid container configured to expand and contract and to increase or decrease the volume of the fluid chamber by the expansion and contraction operation includes the horizontal displacement limiting portion on the upper structure side and the horizontal displacement on the lower structure side. It is composed of a cylinder fitted into the gap with the restricting part so as to expand and contract in the horizontal direction, and an opening is arranged upward, and a piston fitted into the cylinder. A fluid chamber containing a fluid chamber And the fluid chamber of the first fluid container and the fluid chamber of the second fluid container are connected by a channel tube, and the channel tube and the first fluid The liquid or viscous fluid stored in a closed circuit formed by the storage body and the second fluid storage body is pressurized by a load of the piston or a load loaded on the piston, and the flow path A connection portion between the pipe and the fluid chamber of the first fluid container is configured so that the flow area is reduced from the fluid chamber to the flow pipe.

本発明によれば、位置調整可能に支持された上構造物の水平変位を、位置調整機能を損なうことなく抑制し、かつ、地震等により上下の構造物に急激な水平力が作用した場合に上下の構造物の相対的な水平変位を押えるうえに水平変位制限部に加わる衝撃を緩和することができる。   According to the present invention, when the horizontal displacement of the upper structure supported so as to be position-adjustable is suppressed without impairing the position adjustment function, and when a sudden horizontal force acts on the upper and lower structures due to an earthquake or the like. In addition to suppressing the relative horizontal displacement of the upper and lower structures, the impact applied to the horizontal displacement limiting portion can be reduced.

一実施形態に係るアンダーピニング工法を実施する際における既設構造物の支持構造を示す立面図である。It is an elevation view which shows the support structure of the existing structure in the case of implementing the underpinning construction method which concerns on one Embodiment. 片側の水平変位抑制部を拡大して示す立断面図である。It is an elevational sectional view showing an enlarged horizontal displacement suppression part on one side. 水平変位抑制部の作用を説明するための立断面図である。It is an elevation sectional view for explaining operation of a horizontal displacement control part. 水平変位抑制部の作用を説明するための立断面図である。It is an elevation sectional view for explaining operation of a horizontal displacement control part. 地震時の水平変位抑制部の作用を説明するための立断面図である。It is an elevation sectional view for explaining an operation of a horizontal displacement control part at the time of an earthquake. 他の実施形態に係る既設構造物の支持構造の水平変位抑制部を拡大して示す立面図である。It is an elevation view which expands and shows the horizontal displacement suppression part of the support structure of the existing structure which concerns on other embodiment. 他の実施形態に係る水平変位抑制部の作用を説明するための立断面図である。It is an elevation sectional view for explaining an operation of a horizontal displacement control part concerning other embodiments. 他の実施形態に係る地震時の水平変位抑制部の作用を説明するための立断面図である。It is an elevation sectional view for explaining operation of a horizontal displacement control part at the time of an earthquake concerning other embodiments.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、一実施形態に係るアンダーピニング工法を実施する際における既設構造物1の支持構造10を示す立面図である。この図に示すように、本実施形態に係る既設構造物1の支持構造10は、既設構造物1の下に構築された受替え版又は受替え梁等の受替え構造物2と、受替え構造物2の上面に設置されて既設構造物1の荷重を受ける複数の仮受けジャッキ3と、既設構造物1の水平変位を抑制する水平変位抑制部20とを備えている。水平変位抑制部20は、既設構造物1の底面から下方に突出した一対の凸部22と、受替え構造物2の上面から突出した一対の凸部24と、一対の緩衝機構30とを備えている。一対の凸部22の間にさらに複数の凸部22が設けられており、これらの下面と受替え構造物2の上面との間に仮受けジャッキ3が配されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an elevation view showing a support structure 10 for an existing structure 1 when an underpinning method according to an embodiment is performed. As shown in this figure, the support structure 10 of the existing structure 1 according to the present embodiment is replaced with a replacement structure 2 such as a replacement plate or a replacement beam constructed under the existing structure 1. A plurality of temporary receiving jacks 3 that are installed on the upper surface of the structure 2 and receive the load of the existing structure 1, and a horizontal displacement suppression unit 20 that suppresses the horizontal displacement of the existing structure 1 are provided. The horizontal displacement suppression unit 20 includes a pair of convex portions 22 projecting downward from the bottom surface of the existing structure 1, a pair of convex portions 24 projecting from the top surface of the replacement structure 2, and a pair of buffer mechanisms 30. ing. A plurality of convex portions 22 are further provided between the pair of convex portions 22, and the temporary receiving jack 3 is disposed between these lower surfaces and the upper surface of the replacement structure 2.

図2は、片側の水平変位抑制部20を拡大して示す立断面図である。この図に示すように、凸部22は、水平な下面22Aと鉛直な側面22Bとを備える立断面形状が矩形状の部位である。また、凸部24は、水平な上面24Aと鉛直な側面24Bとを備える立断面形状が矩形状の部位である。   FIG. 2 is an enlarged sectional view showing the horizontal displacement suppressing portion 20 on one side. As shown in this figure, the convex portion 22 is a portion having a rectangular vertical cross-sectional shape including a horizontal lower surface 22A and a vertical side surface 22B. Moreover, the convex part 24 is a site | part whose vertical cross-sectional shape provided with the horizontal upper surface 24A and the vertical side surface 24B is a rectangular shape.

凸部22と凸部24とは、側面22Bと側面24Bとが任意の隙間を空けて水平方向に対向するように配されている。ここで、側面22Bと側面24Bとの隙間は、温度変化等による既設構造物1と受替え構造物2との相対的な水平変位量として想定される量より大きく設定されている。   The convex portion 22 and the convex portion 24 are arranged such that the side surface 22B and the side surface 24B are opposed to each other in the horizontal direction with an arbitrary gap. Here, the gap between the side surface 22B and the side surface 24B is set to be larger than an amount assumed as a relative horizontal displacement amount between the existing structure 1 and the replacement structure 2 due to a temperature change or the like.

緩衝機構30は、側面22Bと側面24Bとの隙間に配された油圧伸縮装置31と、ホース34で油圧伸縮装置31と接続された加圧機構35とを備えている。油圧伸縮装置31は、凸部24の側面24Bに固定されたシリンダ32と、該シリンダ32と組み合わされるピストン33とを備えている。シリンダ32の閉口面32Aが凸部24の側面24Bに固定され、シリンダ32の開口部が凸部22の側面22Bに面している。また、ピストン33は、水平方向に摺動可能にシリンダ32内に嵌め込まれており、シリンダ32に対して相対的に水平方向に変位してシリンダ32内の油圧室32Bの容積を増減させる。   The buffer mechanism 30 includes a hydraulic expansion / contraction device 31 disposed in a gap between the side surface 22B and the side surface 24B, and a pressurization mechanism 35 connected to the hydraulic expansion / contraction device 31 by a hose 34. The hydraulic telescopic device 31 includes a cylinder 32 fixed to the side surface 24 </ b> B of the convex portion 24 and a piston 33 combined with the cylinder 32. The closed surface 32 </ b> A of the cylinder 32 is fixed to the side surface 24 </ b> B of the convex portion 24, and the opening portion of the cylinder 32 faces the side surface 22 </ b> B of the convex portion 22. The piston 33 is fitted in the cylinder 32 so as to be slidable in the horizontal direction, and is displaced in the horizontal direction relative to the cylinder 32 to increase or decrease the volume of the hydraulic chamber 32B in the cylinder 32.

また、シリンダ32の周壁には、ホース34が接続される接続部32Cが設けられている。ここで、シリンダ32の閉口面32Aと該閉口面32Aと対向するピストン33の面33Aとの間隔Dの最小値は、ホース34の直径dよりも大きく設定されており、接続部32Cは、油圧室32Bからホース34にかけて流路面積が減少する絞り部として構成されている。   Further, a connection portion 32 </ b> C to which the hose 34 is connected is provided on the peripheral wall of the cylinder 32. Here, the minimum value of the distance D between the closed surface 32A of the cylinder 32 and the surface 33A of the piston 33 facing the closed surface 32A is set larger than the diameter d of the hose 34, and the connecting portion 32C It is configured as a throttle portion in which the flow path area decreases from the chamber 32B to the hose 34.

加圧機構35は、受替え構造物2の上面に固定されたシリンダ36と、該シリンダ36と組み合わされるピストン37とを備えている。シリンダ36の閉口面36Aが受替え構造物2の上面に固定され、シリンダ36の開口部が上向きに配されている。また、ピストン37は、鉛直方向に摺動可能にシリンダ36内に嵌め込まれており、シリンダ36に対して相対的に鉛直方向に変位してシリンダ36内の油圧室36Bの容積を増減させる。   The pressurizing mechanism 35 includes a cylinder 36 fixed to the upper surface of the replacement structure 2, and a piston 37 combined with the cylinder 36. The closed surface 36A of the cylinder 36 is fixed to the upper surface of the replacement structure 2, and the opening of the cylinder 36 is arranged upward. The piston 37 is fitted in the cylinder 36 so as to be slidable in the vertical direction, and is displaced in the vertical direction relative to the cylinder 36 to increase or decrease the volume of the hydraulic chamber 36B in the cylinder 36.

また、シリンダ36の周壁には、ホース34が接続される接続部36Cが設けられている。ここで、油圧伸縮装置31の油圧室32Bと加圧機構35の油圧室36Bとこれらを接続するホース34とにより、油圧閉回路Cが形成されている。この油圧閉回路C内には、水に比して粘性が高い流体である油が空所が無いように充填されており、油圧閉回路C内の油は、加圧機構35のピストン37の荷重もしくはピストン37に載荷されている荷重で加圧されている。   Further, a connection portion 36 </ b> C to which the hose 34 is connected is provided on the peripheral wall of the cylinder 36. Here, a hydraulic closed circuit C is formed by the hydraulic chamber 32B of the hydraulic expansion / contraction device 31, the hydraulic chamber 36B of the pressurizing mechanism 35, and the hose 34 connecting them. The hydraulic closed circuit C is filled with oil, which is a fluid having a higher viscosity than water, so that there is no empty space. The oil in the hydraulic closed circuit C is supplied to the piston 37 of the pressurizing mechanism 35. It is pressurized with a load or a load loaded on the piston 37.

図3及び図4は、水平変位抑制部20の作用を説明するための立断面図である。図3に示すように、既設構造物1と受替え構造物2とが熱膨張等により水平方向に相対的に変位して凸部22が凸部24に接近すると、油圧伸縮装置31のピストン33がシリンダ32の閉口面32A側へ変位し、油圧閉回路C内に空所が無いように充填された粘性流体である油が、油圧伸縮装置31の油圧室32Bから加圧機構35の油圧室36Bへ流れる。   3 and 4 are elevational sectional views for explaining the operation of the horizontal displacement suppression unit 20. As shown in FIG. 3, when the existing structure 1 and the replacement structure 2 are relatively displaced in the horizontal direction due to thermal expansion or the like and the convex portion 22 approaches the convex portion 24, the piston 33 of the hydraulic telescopic device 31. Is displaced to the closed surface 32A side of the cylinder 32, and the oil, which is a viscous fluid filled so that there is no void in the hydraulic closed circuit C, is transferred from the hydraulic chamber 32B of the hydraulic telescopic device 31 to the hydraulic chamber of the pressurizing mechanism 35. It flows to 36B.

ここで、油圧閉回路C内の圧力及び体積は一定である。このため、油圧伸縮装置31の油圧室32Bの容積は減少し、該油圧室32Bの容積の減少分だけ、加圧機構35の油圧室36Bの容積が増大するが、油圧伸縮装置31の油圧室32Bの圧力は一定に維持される。これにより、凸部22が凸部24に接近する方向に変位して、凸部22の側面22Bと凸部24の側面24Bとの間隔が減少した場合でも、凸部22の側面22Bと凸部24の側面24Bとの押圧力が一定に維持され、これらの間に油圧伸縮装置31を介して生じる上下方向の摩擦力が一定に維持される。従って、既設構造物1と受替え構造物2とが熱膨張等により水平方向に相対的に変位した場合に、凸部22の側面22Bと凸部24の側面24Bとの間に生じる上下方向の摩擦力の増大によって仮受けジャッキ3による既設構造物1の位置調整機能が損なわれることを防止できる。また、この場合において、既設構造物1及び受替え構造物2に過分な内部応力が発生することを防止でき、これらにひび割れが発生することを抑制できる。   Here, the pressure and volume in the hydraulic closed circuit C are constant. For this reason, the volume of the hydraulic chamber 32B of the hydraulic expansion / contraction device 31 decreases, and the volume of the hydraulic chamber 36B of the pressurizing mechanism 35 increases by the decrease in the volume of the hydraulic chamber 32B. The pressure of 32B is kept constant. Thereby, even when the convex portion 22 is displaced in the direction approaching the convex portion 24 and the distance between the side surface 22B of the convex portion 22 and the side surface 24B of the convex portion 24 is reduced, the side surface 22B and the convex portion of the convex portion 22 are reduced. The pressing force with the side surface 24B of the 24 is maintained constant, and the frictional force in the vertical direction generated via the hydraulic telescopic device 31 is maintained constant between them. Therefore, when the existing structure 1 and the replacement structure 2 are relatively displaced in the horizontal direction due to thermal expansion or the like, the vertical structure generated between the side surface 22B of the convex portion 22 and the side surface 24B of the convex portion 24 is generated. It can prevent that the position adjustment function of the existing structure 1 by the temporary receiving jack 3 is impaired by the increase in frictional force. In this case, excessive internal stress can be prevented from occurring in the existing structure 1 and the replacement structure 2, and the occurrence of cracks in these can be suppressed.

また、図4に示すように、既設構造物1と受替え構造物2とに熱膨張等により水平方向に相対的に変位して凸部22が凸部24から離れる方向へ変位すると、油圧伸縮装置31のピストン33がシリンダ32の閉口面32Aから離れる方向へ変位し、油圧閉回路C内に空所が無いように充填された油が、加圧機構35の油圧室36Bから油圧伸縮装置31の油圧室32Bへ流れる。   As shown in FIG. 4, when the existing structure 1 and the replacement structure 2 are relatively displaced in the horizontal direction due to thermal expansion or the like and the convex portion 22 is displaced in a direction away from the convex portion 24, the hydraulic expansion and contraction occurs. The piston 33 of the device 31 is displaced in a direction away from the closing surface 32A of the cylinder 32, and the oil filled so that there is no space in the hydraulic closed circuit C is supplied from the hydraulic chamber 36B of the pressurizing mechanism 35 to the hydraulic telescopic device 31. To the hydraulic chamber 32B.

これにより、加圧機構35の油圧室36Bの容積は減少し、該油圧室36Bの容積の減少分だけ、油圧伸縮装置31の油圧室32Bの容積は増大するが、油圧伸縮装置31の油圧室32Bの圧力は一定に維持される。従って、凸部22が凸部24から離れる方向に変位して、凸部22の側面22Bと凸部24の側面24Bとの間隔が増加した場合でも、凸部22の側面22Bと凸部24の側面24Bとの押圧力が一定に維持され、これらの間に油圧伸縮装置31を介して生じる上下方向の摩擦力が一定に維持される。   As a result, the volume of the hydraulic chamber 36B of the pressurizing mechanism 35 decreases, and the volume of the hydraulic chamber 32B of the hydraulic expansion / contraction device 31 increases by the decrease in the volume of the hydraulic chamber 36B, but the hydraulic chamber of the hydraulic expansion / contraction device 31 increases. The pressure of 32B is kept constant. Therefore, even when the convex portion 22 is displaced in a direction away from the convex portion 24 and the distance between the side surface 22B of the convex portion 22 and the side surface 24B of the convex portion 24 is increased, the side surface 22B of the convex portion 22 and the convex portion 24 The pressing force with the side surface 24B is kept constant, and the frictional force in the vertical direction generated via the hydraulic telescopic device 31 is kept constant between them.

図5は、地震時の水平変位抑制部20の作用を説明するための立断面図である。この図に示すように、地震により既設構造物1に対して凸部22が凸部24に接近する方向への急激な水平力が作用した場合、凸部22と凸部24とにより油圧伸縮装置31の油圧室32Bが加圧される。   FIG. 5 is an elevational cross-sectional view for explaining the operation of the horizontal displacement suppression unit 20 during an earthquake. As shown in this figure, when an abrupt horizontal force is applied to the existing structure 1 in the direction in which the convex portion 22 approaches the convex portion 24 due to an earthquake, the convex portion 22 and the convex portion 24 cause the hydraulic expansion and contraction device. The hydraulic chamber 32B of 31 is pressurized.

ここで、ホース34と油圧伸縮装置31の油圧室32Bとの接続部32Cが、油圧室32Bからホース34にかけて流路面積が減少する絞り部として機能することにより、油圧室32Bから接続部32Cを通ってホース34に流れる油に対する流路抵抗を増大させ、油圧室32Bから加圧機構35の油圧室36Bへの油の流動速度を低下させている。これにより、既設構造物1に対して凸部22が凸部24に接近する方向への急激な水平力が作用した際に、油が油圧伸縮装置31の油圧室32Bから加圧機構35の油圧室36Bへ急激に流出するのを防止して油圧伸縮装置31の油圧室32Bに油を留まらせ、既設構造物1に対して作用した急激な水平力を油圧伸縮装置31で受けることが可能になる。特に、本実施形態では、油圧閉回路C内に充填する流体を、水に比して粘性が高く流動性が低い油としたことによって、より高いダンパー性能を得ることができる。また、ホース34と油圧室36Bとの接続部36Cにも、油圧室36Bからホース34にかけて流路面積が減少する絞り部の機能を持たせていることにより、凸部22が凸部24から離れる方向への急激な水平力が作用した場合に、前述の作用効果を生じさせることができる。   Here, the connection portion 32C between the hose 34 and the hydraulic chamber 32B of the hydraulic expansion / contraction device 31 functions as a throttle portion that reduces the flow passage area from the hydraulic chamber 32B to the hose 34, thereby connecting the connection portion 32C from the hydraulic chamber 32B. The flow resistance to the oil flowing through the hose 34 is increased, and the flow rate of the oil from the hydraulic chamber 32B to the hydraulic chamber 36B of the pressurizing mechanism 35 is decreased. Thereby, when a sudden horizontal force is applied to the existing structure 1 in the direction in which the convex portion 22 approaches the convex portion 24, the oil is supplied from the hydraulic chamber 32 </ b> B of the hydraulic expansion / contraction device 31 to the hydraulic pressure of the pressure mechanism 35. The oil can stay in the hydraulic chamber 32B of the hydraulic expansion / contraction device 31 by preventing the oil from suddenly flowing out into the chamber 36B, and can receive the sudden horizontal force acting on the existing structure 1 by the hydraulic expansion / contraction device 31. Become. In particular, in the present embodiment, the fluid filled in the hydraulic closed circuit C is oil that has higher viscosity and lower fluidity than water, so that higher damper performance can be obtained. Further, the connecting portion 36C between the hose 34 and the hydraulic chamber 36B also has a function of a throttle portion that reduces the flow path area from the hydraulic chamber 36B to the hose 34, so that the convex portion 22 is separated from the convex portion 24. When a sudden horizontal force in the direction acts, the above-described effects can be produced.

このように、地震による急激な水平力が既設構造物1及び受替え構造物2に作用した場合、凸部22の側面22Bと凸部24の側面24Bとが油圧伸縮装置31を介して密着しているため、凸部22と凸部24とが衝突することを防止すると共に、水平変位抑制部20はダンパーとして機能し、地震による急激な水平力を緩和する。さらに、地震の終結時において、その変位が緩やかになった場合、即ち、既設構造物1及び受替え構造物2に作用する水平力が弱くなった場合には、上述したように、油は、油圧室32Bから油圧室36Bへ、あるいはその逆に流れることにより、凸部22と凸部24との間隔が変化しても、油圧伸縮装置31を介して生じる上下方向の摩擦力は一定に維持されるため、仮受けジャッキ3による既設構造物1の位置調整機能は損なわれない。   Thus, when a sudden horizontal force due to an earthquake acts on the existing structure 1 and the replacement structure 2, the side surface 22B of the convex portion 22 and the side surface 24B of the convex portion 24 are in close contact with each other via the hydraulic telescopic device 31. Therefore, while preventing the convex part 22 and the convex part 24 from colliding, the horizontal displacement suppression part 20 functions as a damper and relieves rapid horizontal force by an earthquake. Furthermore, when the displacement becomes moderate at the end of the earthquake, that is, when the horizontal force acting on the existing structure 1 and the replacement structure 2 becomes weak, as described above, By flowing from the hydraulic chamber 32 </ b> B to the hydraulic chamber 36 </ b> B or vice versa, the vertical frictional force generated through the hydraulic telescopic device 31 is kept constant even if the distance between the convex portion 22 and the convex portion 24 changes. Therefore, the position adjustment function of the existing structure 1 by the temporary receiving jack 3 is not impaired.

なお、内面の摩擦抵抗が大きなホース34を使用した場合、ホース34内で流れる油に対する流路抵抗を増大させることができることにより、油圧室32Bから流出する油に対する流路抵抗をより一層増大させることができ、油圧室32Bから流出する油の流動速度が低下するという上述の効果をより一層高めることができる。また、ホース34に流量調整バルブを設ければ、同様に、ホース34内で流れる油に対する流路抵抗を増減させることができることにより、油圧室32Bから流出する油に対する流路抵抗を調整することができ、油圧室32Bから流出する油の流動速度を調整することができる。   In addition, when the hose 34 having a large frictional resistance on the inner surface is used, the flow path resistance against the oil flowing in the hose 34 can be increased, thereby further increasing the flow path resistance against the oil flowing out from the hydraulic chamber 32B. The above-mentioned effect that the flow rate of the oil flowing out from the hydraulic chamber 32B decreases can be further enhanced. Similarly, if the hose 34 is provided with a flow rate adjusting valve, the flow resistance against the oil flowing in the hose 34 can be increased or decreased to adjust the flow resistance against the oil flowing out from the hydraulic chamber 32B. The flow rate of the oil flowing out from the hydraulic chamber 32B can be adjusted.

図6は、他の実施形態に係る既設構造物1の支持構造の水平変位抑制部120を拡大して示す立面図である。この図に示すように、本実施形態に係る水平変位抑制部120は、既設構造物1の底面から下方に突出した凸部22と、受替え構造物2の上面から突出した一対の凸部24と、緩衝機構130とを備えている。なお、上述の実施形態に係る水平変位抑制部20と同様の構成には同一の符号を付し、説明は省略する。   FIG. 6 is an elevation view illustrating the horizontal displacement suppressing portion 120 of the support structure of the existing structure 1 according to another embodiment in an enlarged manner. As shown in this figure, the horizontal displacement suppression part 120 according to the present embodiment includes a convex part 22 projecting downward from the bottom surface of the existing structure 1 and a pair of convex parts 24 projecting from the top surface of the replacement structure 2. And a buffer mechanism 130. In addition, the same code | symbol is attached | subjected to the structure similar to the horizontal displacement suppression part 20 which concerns on the above-mentioned embodiment, and description is abbreviate | omitted.

一対の凸部24は、凸部22を水平方向に挟むように配されており、凸部22と凸部24とは、側面22Bと側面24Bとが任意の隙間を空けて対向するように配されている。ここで、本実施形態においても、側面22Bと側面24Bとの隙間は、温度変化等による既設構造物1と受替え構造物2との相対的な水平変位量として想定される量より大きく設定されている。   The pair of convex portions 24 are arranged so as to sandwich the convex portion 22 in the horizontal direction, and the convex portions 22 and the convex portions 24 are arranged so that the side surface 22B and the side surface 24B face each other with an arbitrary gap. Has been. Here, also in the present embodiment, the gap between the side surface 22B and the side surface 24B is set to be larger than an amount assumed as a relative horizontal displacement amount between the existing structure 1 and the replacement structure 2 due to a temperature change or the like. ing.

緩衝機構130は、ホース134により接続された一対の油圧伸縮装置31と、ホース134及び該ホース134に接続されたホース135により一対の油圧伸縮装置31に接続された加圧機構35とを備えている。各油圧伸縮装置31は、凸部22の一方の側面22Bと一方の凸部24の側面24Bとの間と、凸部22の他方の側面22Bと他方の凸部24の側面24Bとの間に夫々配されている。   The buffer mechanism 130 includes a pair of hydraulic expansion / contraction devices 31 connected by a hose 134, and a pressure mechanism 35 connected to the pair of hydraulic expansion / contraction devices 31 by a hose 134 and a hose 135 connected to the hose 134. Yes. Each hydraulic expansion / contraction device 31 is provided between one side surface 22B of the convex portion 22 and the side surface 24B of the one convex portion 24, and between the other side surface 22B of the convex portion 22 and the side surface 24B of the other convex portion 24. Each is arranged.

各油圧伸縮装置31のシリンダ32は凸部24の側面24Bに固定され、各油圧伸縮装置31のピストン33は、水平方向に摺動可能にシリンダ32内に嵌め込まれている。 また、シリンダ32の周壁には、ホース134の一端又は他端が接続される接続部32Cが設けられている。ここで、シリンダ32の閉口面32Aと該閉口面32Aと対向するピストン33の面33Aとの間隔Dの最小値は、ホース134の直径dより大きく設定されており、接続部32Cは、油圧室32Bからホース134にかけて流路面積が減少する絞り部として構成されている。   The cylinder 32 of each hydraulic expansion / contraction device 31 is fixed to the side surface 24B of the convex portion 24, and the piston 33 of each hydraulic expansion / contraction device 31 is fitted in the cylinder 32 so as to be slidable in the horizontal direction. In addition, a connection portion 32 </ b> C to which one end or the other end of the hose 134 is connected is provided on the peripheral wall of the cylinder 32. Here, the minimum value of the distance D between the closed surface 32A of the cylinder 32 and the surface 33A of the piston 33 facing the closed surface 32A is set to be larger than the diameter d of the hose 134, and the connecting portion 32C is connected to the hydraulic chamber. It is configured as a throttle portion where the flow path area decreases from 32B to the hose 134.

また、加圧機構35のシリンダ36の周壁には、ホース135が接続される接続部36Cが設けられている。ここで、一対の油圧伸縮装置31の油圧室32Bと加圧機構35の油圧室36Bとこれらを接続するホース134、135とにより、油圧閉回路Cが形成されている。この油圧閉回路C内には、水に比して粘性が高い流体である油が空所が無いように充填されている。   A connection portion 36 </ b> C to which the hose 135 is connected is provided on the peripheral wall of the cylinder 36 of the pressurizing mechanism 35. Here, a hydraulic closed circuit C is formed by the hydraulic chamber 32B of the pair of hydraulic expansion and contraction devices 31, the hydraulic chamber 36B of the pressurizing mechanism 35, and the hoses 134 and 135 connecting them. The hydraulic closed circuit C is filled with oil, which is a fluid having a higher viscosity than water, so that there is no void.

また、ホース134には流量調整バルブ136が設けられ、ホース135には開閉バルブ137が設けられている。ここで、緩衝機構130の設置時には、開閉バルブ137を開いた状態で、加圧機構35により油圧閉回路C内の油を加圧し、その後、開閉バルブ137を閉じて、油圧閉回路C内の圧力を一定に保持する。また、流量調整バルブ136によりホース134内での油の流量を調整することにより、一方の油圧伸縮装置31と他方の油圧伸縮装置31との間での油の流動速度を調整することができる。   The hose 134 is provided with a flow rate adjusting valve 136, and the hose 135 is provided with an opening / closing valve 137. Here, when the buffer mechanism 130 is installed, the oil in the hydraulic closed circuit C is pressurized by the pressurizing mechanism 35 with the open / close valve 137 opened, and then the open / close valve 137 is closed to close the hydraulic closed circuit C. Keep the pressure constant. Further, by adjusting the flow rate of oil in the hose 134 by the flow rate adjusting valve 136, the flow rate of oil between one hydraulic expansion / contraction device 31 and the other hydraulic expansion / contraction device 31 can be adjusted.

図7は、水平変位抑制部20の作用を説明するための立断面図である。この図に示すように、既設構造物1及び受替え構造物2が熱膨張等により水平方向に相対的に変位して凸部22が一方の凸部24に接近すると、一方の油圧伸縮装置31において、ピストン33がシリンダ32の閉口面32A側へ変位し、油圧閉回路C内に空所が無いように充填された粘性流体である油が、一方の油圧伸縮装置31の油圧室32Bから他方の油圧伸縮装置31の油圧室32Bへ流れる。   FIG. 7 is an elevational cross-sectional view for explaining the operation of the horizontal displacement suppression unit 20. As shown in this figure, when the existing structure 1 and the replacement structure 2 are relatively displaced in the horizontal direction due to thermal expansion or the like and the convex portion 22 approaches one convex portion 24, one hydraulic expansion / contraction device 31 is provided. In this case, the piston 33 is displaced toward the closed surface 32A of the cylinder 32, and the oil, which is a viscous fluid filled so that there is no space in the hydraulic closed circuit C, is transferred from the hydraulic chamber 32B of one hydraulic expansion / contraction device 31 to the other. Flows into the hydraulic chamber 32B of the hydraulic expansion / contraction device 31.

ここで、油圧閉回路C内の圧力及び体積は一定である。このため、一方の油圧伸縮装置31の油圧室32Bの容積は減少し、該油圧室32Bの容積の減少分だけ、他方の油圧伸縮装置31の油圧室32Bの容積が増大するが、双方の油圧伸縮装置31の油圧室32Bの圧力は一定に維持される。これにより、凸部22が一方の凸部24に接近する方向に変位して、凸部22の側面22Bと一方の凸部24の側面24Bとの間隔が減少した場合でも、凸部22の側面22Bと一方の凸部24の側面24Bとの押圧力が一定に維持され、これらの間に油圧伸縮装置31を介して生じる上下方向の摩擦力が一定に維持される。従って、既設構造物1及び受替え構造物2が熱膨張等により水平方向に相対的に変位した場合に、凸部22の側面22Bと一方の凸部24の側面24Bとの間に生じる上下方向の摩擦力の増大によって仮受けジャッキ3による既設構造物1の位置調整機能が損なわれることを防止できる。また、この場合において、既設構造物1及び受替え構造物2に過分な内部応力が発生することを防止でき、これらにひび割れが発生することを抑制できる。   Here, the pressure and volume in the hydraulic closed circuit C are constant. For this reason, the volume of the hydraulic chamber 32B of one hydraulic expansion / contraction device 31 decreases, and the volume of the hydraulic chamber 32B of the other hydraulic expansion / contraction device 31 increases by the decrease in the volume of the hydraulic chamber 32B. The pressure in the hydraulic chamber 32B of the telescopic device 31 is kept constant. Thereby, even when the convex portion 22 is displaced in a direction approaching the one convex portion 24 and the distance between the side surface 22B of the convex portion 22 and the side surface 24B of the one convex portion 24 is reduced, the side surface of the convex portion 22 is reduced. The pressing force between 22B and the side surface 24B of one convex portion 24 is kept constant, and the frictional force in the vertical direction generated via the hydraulic telescopic device 31 is kept constant between them. Therefore, when the existing structure 1 and the replacement structure 2 are relatively displaced in the horizontal direction due to thermal expansion or the like, the vertical direction generated between the side surface 22B of the convex portion 22 and the side surface 24B of one convex portion 24. It can prevent that the position adjustment function of the existing structure 1 by the temporary receiving jack 3 is impaired by the increase in the frictional force. In this case, excessive internal stress can be prevented from occurring in the existing structure 1 and the replacement structure 2, and the occurrence of cracks in these can be suppressed.

また、凸部22が一方の凸部24に接近する方向に変位すると、凸部22の側面22Bと他方の凸部24の側面24Bとの間隔が増加するが、凸部22の側面22Bと他方の凸部24の側面24Bとの押圧力は一定に維持され、これらの間に油圧伸縮装置31を介して生じる上下方向の摩擦力は一定に維持される。   Further, when the convex portion 22 is displaced in a direction approaching one convex portion 24, the interval between the side surface 22B of the convex portion 22 and the side surface 24B of the other convex portion 24 increases, but the side surface 22B of the convex portion 22 and the other side are increased. The pressing force with the side surface 24B of the convex portion 24 is kept constant, and the frictional force in the vertical direction generated through the hydraulic telescopic device 31 between them is kept constant.

図8は、地震時の水平変位抑制部120の作用を説明するための立断面図である。この図に示すように、地震により既設構造物1に対して凸部22が一方の凸部24に接近する方向への急激な水平力が作用した場合、凸部22と一方の凸部24とによりこれらの間の油圧伸縮装置31の油圧室32Bが加圧される。   FIG. 8 is an elevational cross-sectional view for explaining the operation of the horizontal displacement suppression unit 120 during an earthquake. As shown in this figure, when an abrupt horizontal force is applied to the existing structure 1 in a direction in which the convex portion 22 approaches one convex portion 24 due to an earthquake, the convex portion 22 and the one convex portion 24 As a result, the hydraulic chamber 32B of the hydraulic telescopic device 31 between them is pressurized.

ここで、ホース134と油圧伸縮装置31の油圧室32Bとの接続部32Cが、油圧室32Bからホース134にかけて流路面積が減少する絞り部として機能することにより、油圧室32Bから接続部32Cを通ってホース134に流れる油に対する流路抵抗を増大させ、一方の油圧伸縮装置31の油圧室32Bから他方の油圧伸縮装置31の油圧室32Bへの油の流動速度を低下させている。これにより、既設構造物1に対して凸部22が一方の凸部24に接近する方向への急激な水平力が作用した際に、これらの間の油圧伸縮装置31の油圧室32Bから急激に油が流出するのを防止して当該油圧室32Bに油を留まらせ、油圧伸縮装置31で既設構造物1に対して作用した急激な水平力を受けることが可能になる。   Here, the connection portion 32C between the hose 134 and the hydraulic chamber 32B of the hydraulic expansion / contraction device 31 functions as a throttle portion that reduces the flow passage area from the hydraulic chamber 32B to the hose 134, thereby connecting the connection portion 32C from the hydraulic chamber 32B. The flow resistance to the oil flowing through the hose 134 is increased, and the flow rate of the oil from the hydraulic chamber 32B of one hydraulic expansion / contraction device 31 to the hydraulic chamber 32B of the other hydraulic expansion / contraction device 31 is decreased. As a result, when a sudden horizontal force is applied to the existing structure 1 in the direction in which the convex portion 22 approaches the one convex portion 24, the hydraulic chamber 32B of the hydraulic telescopic device 31 between them suddenly The oil can be prevented from flowing out and can remain in the hydraulic chamber 32 </ b> B, so that the hydraulic telescopic device 31 can receive a sudden horizontal force acting on the existing structure 1.

このように、地震による急激な水平力が既設構造物1及び受替え構造物2に作用した場合、凸部22の側面22Bと凸部24の側面24Bとが油圧伸縮装置31を介して密着しているため、凸部22と凸部24とが衝突することを防止すると共に、水平変位抑制部120はダンパーとして機能し、地震による急激な水平力を緩和する。さらに、地震の終結時において、その変位が緩やかになった場合、即ち、既設構造物1及び受替え構造物2に作用する水平力が弱くなった場合には、上述したように、油は、一方の油圧室32Bから他方の油圧室32Bへ、あるいはその逆に流れることにより、凸部22と凸部24との間隔が変化しても、油圧伸縮装置31を介して生じる上下方向の摩擦力は一定に維持されるため、仮受けジャッキ3による既設構造物1の位置調整機能は損なわれない。   Thus, when a sudden horizontal force due to an earthquake acts on the existing structure 1 and the replacement structure 2, the side surface 22B of the convex portion 22 and the side surface 24B of the convex portion 24 are in close contact with each other via the hydraulic telescopic device 31. Therefore, while preventing the convex part 22 and the convex part 24 from colliding, the horizontal displacement suppression part 120 functions as a damper and relieves the rapid horizontal force by an earthquake. Furthermore, when the displacement becomes moderate at the end of the earthquake, that is, when the horizontal force acting on the existing structure 1 and the replacement structure 2 becomes weak, as described above, Even if the distance between the convex portion 22 and the convex portion 24 changes due to the flow from one hydraulic chamber 32B to the other hydraulic chamber 32B or vice versa, the vertical frictional force generated via the hydraulic telescopic device 31 is generated. Is maintained constant, the position adjustment function of the existing structure 1 by the temporary receiving jack 3 is not impaired.

なお、内面の摩擦抵抗が大きなホース134を使用した場合、ホース134内で流れる油に対する流路抵抗を増大させることができることにより、油圧室32Bから流出する油に対する流路抵抗をより一層増大させることができ、油圧室32Bから流出する油の流動速度が低下するという上述の効果をより一層高めることができる。また、ホース134に設けた流量調整バルブ136を使用してホース134内での油の流量を絞ることにより、同様に、ホース134内で流れる油に対する流路抵抗を増減させることができることにより、油圧室32Bから流出する油に対する流路抵抗を調整することができ、油圧室32Bから流出する油の流動速度を調整することができる。   In addition, when the hose 134 having a large frictional resistance on the inner surface is used, the flow path resistance against the oil flowing in the hose 134 can be increased, thereby further increasing the flow path resistance against the oil flowing out from the hydraulic chamber 32B. The above-mentioned effect that the flow rate of the oil flowing out from the hydraulic chamber 32B decreases can be further enhanced. Further, by reducing the flow rate of the oil in the hose 134 using the flow rate adjusting valve 136 provided in the hose 134, similarly, the flow resistance against the oil flowing in the hose 134 can be increased or decreased. The flow resistance against the oil flowing out from the chamber 32B can be adjusted, and the flow rate of the oil flowing out from the hydraulic chamber 32B can be adjusted.

なお、上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。例えば、上述の実施形態では、アンダーピニング工法における受替え構造を例に挙げて本発明を説明したが、既設構造物の免震化工法における上構造物の受替え構造等の他の位置調整可能に上構造物を支持する構造物の支持構造にも本発明を適用することができる。   In addition, the above-mentioned embodiment is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof. For example, in the above-described embodiment, the present invention has been described by taking the replacement structure in the underpinning method as an example, but other position adjustments such as the replacement structure of the upper structure in the seismic isolation method of the existing structure are possible. The present invention can also be applied to a support structure for a structure that supports the upper structure.

また、上述の実施形態では、上構造物の水平変位を制限する上構造物側水平変位制限部と下構造物側水平変位制限部とを夫々、既設構造物1の下面から下方に突出する凸部22と、受替え構造物2の上面から上方に突出する凸部24とした。しかしながら、例えば、上構造物側水平変位制限部を、既設構造物1の外周の側面とし、下構造物側水平変位制限部を、既設構造物1の外周の側面と水平方向に隙間を空けて対向する凸部としたり、下構造物側水平変位制限部を、受替え構造物2の外周の側面とし、上構造物側水平変位制限部を、受替え構造物2の外周の側面と水平方向に隙間を空けて対向する凸部としたりする等、上構造物の水平変位を制限する上構造物側水平変位制限部と下構造物側水平変位制限部との構成は様々な構成に変更可能である。   Further, in the above-described embodiment, the upper structure side horizontal displacement limiting portion and the lower structure side horizontal displacement limiting portion that limit the horizontal displacement of the upper structure are respectively protruded downward from the lower surface of the existing structure 1. A portion 22 and a convex portion 24 projecting upward from the upper surface of the replacement structure 2 are provided. However, for example, the upper structure side horizontal displacement limiting portion is used as the outer peripheral side surface of the existing structure 1 and the lower structure side horizontal displacement limiting portion is spaced apart from the outer peripheral side surface of the existing structure 1 in the horizontal direction. The lower structure side horizontal displacement limiting portion is the outer peripheral side surface of the replacement structure 2, and the upper structure side horizontal displacement limiting portion is horizontal with the outer peripheral side surface of the replacement structure 2. The structure of the upper structure side horizontal displacement limiting section and the lower structure side horizontal displacement limiting section that limit the horizontal displacement of the upper structure can be changed to various configurations, such as by forming convex portions facing each other with a gap in between It is.

また、上述の他の実施形態に係る水平変位抑制部120では、既設構造物1から下方へ突出する凸部22と、受替え構造物2から上方へ突出し凸部22を挟む一対の凸部24とを設けた。しかしながら、受替え構造物2等の下構造物から上方へ突出する第一の凸部と、既設構造物1等の上構造物から下方へ突出し第一の凸部を挟む一対の第二の凸部とを設ける等してもよい。また、上構造物もしくは下構造物の一方に凹部を設け、他方に凹部に挿入される凸部を設ける等してもよい。   Moreover, in the horizontal displacement suppression part 120 which concerns on other embodiment mentioned above, the convex part 22 which protrudes below from the existing structure 1, and a pair of convex part 24 which protrudes upward from the replacement structure 2, and pinches | interposes the convex part 22 And provided. However, a first protrusion protruding upward from the lower structure such as the replacement structure 2 and a pair of second protrusions protruding downward from the upper structure such as the existing structure 1 and sandwiching the first protrusion. A portion may be provided. Further, a concave portion may be provided on one of the upper structure and the lower structure, and a convex portion inserted into the concave portion may be provided on the other.

また、上述の一実施形態では、第一の流体収容体を、他の実施形態では、第一及び第二の流体収容体を、シリンダ32とピストン33とが組み合わされた油圧伸縮装置31としたが、例えば、蛇腹構造のダンパー等の他の構成の物も第一の流体収容体として適用可能である。さらに、上述の実施形態では、流体室及び流路管に収容する液体又は粘性流体を油としたが、水等の液体や油よりも粘性が高く流動性が低いゲル等の粘性流体も適用可能である。   Further, in the above-described embodiment, the first fluid container is the hydraulic expansion / contraction device 31 in which the cylinder 32 and the piston 33 are combined, in the other embodiments, the first and second fluid containers. However, for example, other configurations such as a bellows-shaped damper can also be applied as the first fluid container. Furthermore, in the above-described embodiment, the liquid or viscous fluid stored in the fluid chamber and the flow path pipe is oil, but a liquid such as water or a viscous fluid such as a gel having higher viscosity and lower fluidity than oil is also applicable. It is.

1 既設構造物(上構造物)、2 受替え構造物(下構造物)、3 仮受けジャッキ、10 支持構造、20 水平変位抑制部、22 凸部(上構造物側の水平変位制限部)、22A 下面、22B 側面、24 凸部(下構造物側の水平変位制限部)、24A 上面、24B 側面、30 緩衝機構、31 油圧伸縮装置(第一の流体収容体)、32 シリンダ、32A 閉口面、32B 油圧室、32C 接続部、33 ピストン、33A 面、34 ホース(流路管)、35 加圧機構(第二の流体収容体)、36 シリンダ、36A 閉口面、36B 油圧室、36C 接続部、37 ピストン、120 水平変位抑制部、130 緩衝機構、134、135 ホース(流路管)、136 流量調整バルブ、137 開閉バルブ、C 油圧閉回路 DESCRIPTION OF SYMBOLS 1 Existing structure (upper structure), 2 Replacement structure (lower structure), 3 Temporary receiving jack, 10 Support structure, 20 Horizontal displacement suppression part, 22 Convex part (Horizontal displacement restriction part on the upper structure side) , 22A lower surface, 22B side surface, 24 convex portion (horizontal displacement limiting portion on the lower structure side), 24A upper surface, 24B side surface, 30 shock absorbing mechanism, 31 hydraulic expansion / contraction device (first fluid container), 32 cylinder, 32A closing Surface, 32B hydraulic chamber, 32C connecting portion, 33 piston, 33A surface, 34 hose (flow pipe), 35 pressurizing mechanism (second fluid container), 36 cylinder, 36A closing surface, 36B hydraulic chamber, 36C connection Part, 37 piston, 120 horizontal displacement suppression part, 130 buffer mechanism, 134, 135 hose (flow pipe), 136 flow rate adjustment valve, 137 opening / closing valve, C hydraulic closed circuit

Claims (2)

上構造物が下構造物により位置調整可能に支持された構造物の支持構造であって、
互いに水平方向に隙間を空けて対向するように前記上構造物側と前記下構造物側とに夫々設けられ、前記上構造物と前記下構造物との相対的な水平変位を制限する上構造物側の水平変位制限部及び下構造物側の水平変位制限部と、
前記上構造物側の水平変位制限部と前記下構造物側の水平変位制限部との隙間に嵌め込まれ、液体又は粘性流体を収容する流体室を備え、水平方向に伸縮可能且つその伸縮動作により前記流体室の容積が増減するように構成された第一の流体収容体と、
開口部が上向きに配されたシリンダと、該シリンダ内に嵌め込まれるピストンとにより構成され、容積が可変であり、液体又は粘性流体を収容する流体室を備える第二の流体収容体と、
前記第一の流体収容体の前記流体室と前記第二の流体収容体の前記流体室とを接続する流路管と、
を備え、
該流路管と前記第一の流体収容体と前記第二の流体収容体とにより閉回路が形成され、該閉回路に収容される前記液体又は粘性流体が、前記ピストンの荷重もしくは該ピストンに載荷される荷重により加圧されるとともに、
前記流路管と前記第一の流体収容体の前記流体室との接続部が、該流体室から前記流路管にかけて流路面積が絞られるように構成されている構造物の支持構造。
A support structure of a structure in which the upper structure is supported by the lower structure so that the position thereof can be adjusted;
An upper structure that is provided on each of the upper structure side and the lower structure side so as to face each other with a gap in the horizontal direction, and restricts a relative horizontal displacement between the upper structure and the lower structure. A horizontal displacement limiting portion on the object side and a horizontal displacement limiting portion on the lower structure side;
A fluid chamber is provided in the gap between the horizontal displacement limiting portion on the upper structure side and the horizontal displacement limiting portion on the lower structure side, and contains a fluid or viscous fluid. A first fluid container configured to increase or decrease the volume of the fluid chamber;
A second fluid container including a cylinder in which an opening portion is disposed upward and a piston fitted in the cylinder, the volume of which is variable, and a fluid chamber that houses a liquid or a viscous fluid;
A flow path pipe connecting the fluid chamber of the first fluid container and the fluid chamber of the second fluid container;
With
A closed circuit is formed by the flow path tube, the first fluid container, and the second fluid container, and the liquid or viscous fluid stored in the closed circuit is applied to the load of the piston or the piston. While being pressurized by the loaded load,
A structure support structure in which a connection portion between the flow channel pipe and the fluid chamber of the first fluid container is configured to reduce a flow channel area from the fluid chamber to the flow channel tube.
上構造物を下構造物により位置調整可能に支持する構造物の支持方法であって、
互いに水平方向に隙間を空けて対向するように前記上構造物側と前記下構造物側とに夫々、前記上構造物と前記下構造物との相対的な水平変位を制限する水平変位制限部を設け、
液体又は粘性流体を収容する流体室を備え、伸縮可能且つその伸縮動作により前記流体室の容積が増減するように構成された第一の流体収容体を、前記上構造物側の前記水平変位制限部と前記下構造物側の前記水平変位制限部との隙間に、水平方向に伸縮するように嵌め込み、
開口部が上向きに配されたシリンダと、該シリンダ内に嵌め込まれるピストンとにより構成され、容積が可変であり、液体又は粘性流体を収容する流体室を備える第二の流体収容体を設置し、
前記第一の流体収容体の前記流体室と前記第二の流体収容体の前記流体室とを流路管で接続し、
該流路管と前記第一の流体収容体と前記第二の流体収容体とにより形成された閉回路に収容される前記液体又は粘性流体を、前記ピストンの荷重もしくは該ピストンに載荷される荷重により加圧されるとともに、
前記流路管と前記第一の流体収容体の前記流体室との接続部を、該流体室から前記流路管にかけて流路面積が絞られるように構成する構造物の支持方法。
A method of supporting a structure in which the upper structure is supported by the lower structure so that the position of the upper structure can be adjusted.
A horizontal displacement limiting unit that limits the relative horizontal displacement of the upper structure and the lower structure on the upper structure side and the lower structure side so as to face each other with a gap in the horizontal direction. Provided,
A first fluid container having a fluid chamber for storing a liquid or a viscous fluid and configured to expand and contract and to increase / decrease the volume of the fluid chamber by the expansion / contraction operation is provided with the horizontal displacement limit on the upper structure side. Fitting in the gap between the portion and the horizontal displacement limiting portion on the lower structure side so as to expand and contract in the horizontal direction,
A second fluid container comprising a cylinder with an opening facing upward and a piston fitted into the cylinder, having a variable volume, and having a fluid chamber for storing a liquid or a viscous fluid;
Connecting the fluid chamber of the first fluid container and the fluid chamber of the second fluid container with a flow path pipe;
The liquid or viscous fluid stored in a closed circuit formed by the flow channel pipe, the first fluid container, and the second fluid container is used to load the piston or the load loaded on the piston. And is pressurized by
A method for supporting a structure in which a connection portion between the flow path pipe and the fluid chamber of the first fluid container is configured so that a flow path area is reduced from the fluid chamber to the flow path pipe.
JP2012155732A 2012-07-11 2012-07-11 Structure support structure and method Active JP6191098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155732A JP6191098B2 (en) 2012-07-11 2012-07-11 Structure support structure and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155732A JP6191098B2 (en) 2012-07-11 2012-07-11 Structure support structure and method

Publications (2)

Publication Number Publication Date
JP2014015811A JP2014015811A (en) 2014-01-30
JP6191098B2 true JP6191098B2 (en) 2017-09-06

Family

ID=50110732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155732A Active JP6191098B2 (en) 2012-07-11 2012-07-11 Structure support structure and method

Country Status (1)

Country Link
JP (1) JP6191098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6619626B2 (en) * 2015-11-19 2019-12-11 鹿島建設株式会社 Structure support structure, structure support method, and connecting member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102512A (en) * 1996-09-30 1998-04-21 Shimadzu Corp Base isolation device for house
JPH11256873A (en) * 1998-03-10 1999-09-21 Yokohama Rubber Co Ltd:The Displacement control device in base isolation device for general residence
JP3735593B2 (en) * 2002-06-20 2006-01-18 多摩エンジニアリング株式会社 Seismic isolation device for buildings
JP5520156B2 (en) * 2010-07-23 2014-06-11 鹿島建設株式会社 Temporary receiving structure of structure and temporary receiving method

Also Published As

Publication number Publication date
JP2014015811A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5731453B2 (en) damper
US9163693B2 (en) Adjustable damping valve for a vibration damper
EP2348227B1 (en) Stiff damper
CA2941878C (en) Cylinder device
US20070084687A1 (en) Vibration damper with adjustable damping force
JP2011158019A (en) Shock absorber
JP2011506874A (en) Shock absorber with increased damping force
JP5368917B2 (en) Damping valve
JP2018511751A (en) Energy transmission device and method of use
JP6191098B2 (en) Structure support structure and method
JP6214227B2 (en) Hydraulic shock absorber
JP6774234B2 (en) Seismic isolation damper
JP2011032849A (en) Brake damper for base isolator
JP6565442B2 (en) Cylinder device
JP7022951B2 (en) damper
CN102388233A (en) Multi-cylinder shock absorber
JP6657688B2 (en) Pressure regulating valve and oil damper
JP5246495B2 (en) Hydraulic buffer
JP6109789B2 (en) Hydraulic support device
CN220667962U (en) Piston type accumulator
JP2008261421A (en) Hydraulic damper
JP6499049B2 (en) Vibration control device
KR101833989B1 (en) Linear type one-way damper
JP5926666B2 (en) Damper device
JP6335667B2 (en) shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6191098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150