JP6177711B2 - Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device - Google Patents

Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device Download PDF

Info

Publication number
JP6177711B2
JP6177711B2 JP2014038995A JP2014038995A JP6177711B2 JP 6177711 B2 JP6177711 B2 JP 6177711B2 JP 2014038995 A JP2014038995 A JP 2014038995A JP 2014038995 A JP2014038995 A JP 2014038995A JP 6177711 B2 JP6177711 B2 JP 6177711B2
Authority
JP
Japan
Prior art keywords
metal oxide
oxide film
film
solution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014038995A
Other languages
Japanese (ja)
Other versions
JP2015162667A (en
Inventor
真宏 高田
真宏 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014038995A priority Critical patent/JP6177711B2/en
Priority to PCT/JP2014/079770 priority patent/WO2015129104A1/en
Priority to KR1020167014757A priority patent/KR101884100B1/en
Priority to TW103143397A priority patent/TWI648795B/en
Publication of JP2015162667A publication Critical patent/JP2015162667A/en
Application granted granted Critical
Publication of JP6177711B2 publication Critical patent/JP6177711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Description

本発明は、金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、及び電子デバイスに関する。   The present invention relates to a method for manufacturing a metal oxide film, a metal oxide film, a thin film transistor, and an electronic device.

酸化物半導体膜又は酸化物導体膜としての金属酸化物膜は真空成膜法による製造において実用化がなされ、現在注目を集めている。
一方で、簡便に、低温で、かつ大気圧下で高い半導体特性を有する酸化物半導体膜を形成することを目的とした、液相プロセスによる酸化物半導体膜の作製に関して研究開発が盛んに行われている。最近では、溶液を基板上に塗布し、紫外線を用いることで150℃以下の低温で高い輸送特性を有する薄膜トランジスタ(TFT:Thin Film Transistor)を製造する手法が報告されている(非特許文献1参照)。
A metal oxide film as an oxide semiconductor film or an oxide conductor film has been put into practical use in production by a vacuum film forming method, and is currently attracting attention.
On the other hand, research and development have been actively conducted on the production of oxide semiconductor films by a liquid phase process for the purpose of easily forming oxide semiconductor films having high semiconductor characteristics at low temperature and atmospheric pressure. ing. Recently, a method for manufacturing a thin film transistor (TFT) having high transport properties at a low temperature of 150 ° C. or lower by applying a solution on a substrate and using ultraviolet rays has been reported (see Non-Patent Document 1). ).

また、硝酸塩等を含む溶液を基材上に塗布した後、150℃程度で加熱して溶媒を揮発させることにより金属酸化物半導体の前駆体を含む薄膜を形成し、その後、酸素の存在下で紫外光(UV:Ultraviolet)を照射することにより、金属酸化物半導体を製造する方法が開示されている(特許文献1参照)。   In addition, after applying a solution containing nitrate or the like on the substrate, the thin film containing the precursor of the metal oxide semiconductor is formed by heating at about 150 ° C. to volatilize the solvent, and then in the presence of oxygen. A method of manufacturing a metal oxide semiconductor by irradiating with ultraviolet light (UV: Ultraviolet) has been disclosed (see Patent Document 1).

一方、安価な硝酸塩や酢酸塩等の溶液を用いて酸化物半導体前駆体膜を形成し、酸化物半導体前駆体膜に対して、熱処理、マイクロ波照射、又はUVオゾン法により半導体膜に変換する手法が開示されている(特許文献2参照)。   On the other hand, an oxide semiconductor precursor film is formed using an inexpensive solution such as nitrate or acetate, and the oxide semiconductor precursor film is converted into a semiconductor film by heat treatment, microwave irradiation, or UV ozone method. A technique is disclosed (see Patent Document 2).

また、硝酸インジウム等を出発原料として1000℃火炎による熱分解により金属酸化物半導体粒子を作製し、金属酸化物半導体粒子を分散させた分散液を用いて酸化物半導体膜を製造する方法が提案されている(特許文献3参照)。   Also proposed is a method for producing metal oxide semiconductor particles by thermal decomposition with a 1000 ° C. flame using indium nitrate or the like as a starting material, and using the dispersion liquid in which the metal oxide semiconductor particles are dispersed. (See Patent Document 3).

また、硝酸インジウム等を原料として塗布形成した金属酸化物ゲル膜に対し、大気中でUV照射により金属酸化物膜に転化する方法が提案されている(特許文献4参照)。   Further, a method has been proposed in which a metal oxide gel film formed by coating with indium nitrate or the like as a raw material is converted into a metal oxide film by UV irradiation in the air (see Patent Document 4).

また、酸化物半導体前駆体膜に対し、50〜200℃の環境下でUV照射後、プラズマ処理して酸化物半導体膜にする方法が提案されている(特許文献5参照)。   In addition, a method has been proposed in which an oxide semiconductor precursor film is subjected to plasma treatment after UV irradiation in an environment of 50 to 200 ° C. to form an oxide semiconductor film (see Patent Document 5).

国際公開WO2009/011224International Publication WO2009 / 011224 国際公開WO2009/081862International Publication WO2009 / 081862 特開2012−94841号公報JP 2012-94841 A 特開2000−247608号公報JP 2000-247608 A 特開2013−197539号公報JP 2013-197539 A

Nature, 489 (2012) 128.Nature, 489 (2012) 128.

上記の特許文献1〜5に記載の半導体膜の製造方法においては、大気雰囲気で半導体膜への転化処理が行なわれている。本発明の発明者は、酸化物半導体膜に転化する際の雰囲気を鋭意検討した結果、常識的には高い方が好適と予想される酸素濃度を低く調節することで、半導体膜の電気特性を改善できることを見出した。
本発明は、導体又は半導体特性を有する金属酸化物膜を容易に製造することができる金属酸化物膜の製造方法、並びに電気特性に優れた金属酸化物膜、薄膜トランジスタ、及び電子デバイスを提供することを目的とする。
In the method for manufacturing a semiconductor film described in Patent Documents 1 to 5, the conversion process to the semiconductor film is performed in an air atmosphere. As a result of intensive studies on the atmosphere at the time of conversion into an oxide semiconductor film, the inventor of the present invention has adjusted the electrical characteristics of the semiconductor film by adjusting the oxygen concentration, which is generally expected to be higher, according to common sense. I found that it can be improved.
The present invention provides a method for producing a metal oxide film capable of easily producing a metal oxide film having conductor or semiconductor characteristics, and a metal oxide film, a thin film transistor, and an electronic device having excellent electrical characteristics. With the goal.

上記目的を達成するため、以下の発明が提供される。
<1> 溶媒及び金属成分として少なくともインジウムを含む溶液を基板上に塗布して金属酸化物前駆体膜を形成する前駆体膜形成工程と、金属酸化物前駆体膜を加熱した状態で、酸素濃度が0000ppm以下の雰囲気下で波長が300nm以下の紫外線を20mW/cm 以上500mW/cm 以下の照度で紫外線照射を行うことにより金属酸化物前駆体膜を金属酸化物膜に転化させる転化工程と、を有し、前記転化工程における基板の温度を160℃以上200℃未満に保持する金属酸化物膜の製造方法。
In order to achieve the above object, the following invention is provided.
<1> A precursor film forming step of forming a metal oxide precursor film by applying a solution containing at least indium as a solvent and a metal component on a substrate, and in a state where the metal oxide precursor film is heated, the oxygen concentration the conversion process but the conversion of the metal oxide precursor film on the metal oxide film by the wavelength under the following atmosphere 3 0000Ppm is irradiated with ultraviolet light of the following UV 300nm at 20 mW / cm 2 or more 500 mW / cm 2 or less of illuminance If, it has a method for producing a metal oxide film to maintain the temperature of the substrate below 160 ° C. or higher 200 ° C. in the conversion process.

<2> 前記溶液に含まれるインジウムがインジウムイオンである<1>に記載の金属酸化物膜の製造方法。
> 溶液が、硝酸イオンを含む<1>又は2>に記載の金属酸化物膜の製造方法。
<4> 紫外線照射中の基板が昇温又は降温する速度を±0.5℃/min以内にする<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。
Method for producing a metal oxide film according to indium contained in <2> before Symbol solution is indium ions <1>.
< 3 > The method for producing a metal oxide film according to <1> or < 2>, wherein the solution contains nitrate ions.
<4 > The method for producing a metal oxide film according to any one of <1> to < 3 >, wherein the rate of temperature increase or decrease of the substrate under ultraviolet irradiation is within ± 0.5 ° C./min.

> 溶液に含まれる金属成分の50atom%以上がインジウムである<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。
> 溶液が、少なくとも硝酸インジウムを溶解させた溶液である<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。
> 溶液が、亜鉛、錫、ガリウム及びアルミニウムから選ばれる少なくとも1種の金属成分をさらに含む<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。
> 溶媒が、メタノール、メトキシエタノール、又は水である<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。
> 溶液中の金属成分の濃度が、0.01mol/L以上1.0mol/L以下である<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。
< 5 > The method for producing a metal oxide film according to any one of <1> to < 4 >, wherein 50 atom% or more of the metal component contained in the solution is indium.
< 6 > The method for producing a metal oxide film according to any one of <1> to < 5 >, wherein the solution is a solution in which at least indium nitrate is dissolved.
< 7 > The method for producing a metal oxide film according to any one of <1> to < 6 >, wherein the solution further contains at least one metal component selected from zinc, tin, gallium, and aluminum.
< 8 > The method for producing a metal oxide film according to any one of <1> to < 7 >, wherein the solvent is methanol, methoxyethanol, or water.
< 9 > The method for producing a metal oxide film according to any one of <1> to < 8 >, wherein the concentration of the metal component in the solution is 0.01 mol / L or more and 1.0 mol / L or less.

10> 紫外線照射に用いる光源が、低圧水銀ランプである<1>〜<>のいずれかに記載の金属酸化物膜の製造方法。 < 10 > The method for producing a metal oxide film according to any one of <1> to < 9 >, wherein the light source used for ultraviolet irradiation is a low-pressure mercury lamp.

<1> 前駆体膜形成工程は、溶液を基板上に塗布し、基板を35℃以上100℃以下に加熱して乾燥させることにより金属酸化物前駆体膜を形成する<1>〜<1>のいずれかに記載の金属酸化物膜の製造方法。 <1 1 > In the precursor film forming step, the solution is applied on a substrate, and the substrate is heated to 35 ° C. or more and 100 ° C. or less to form a metal oxide precursor film <1> to <1. 0 > The manufacturing method of the metal oxide film in any one of.

<1> 前駆体膜形成工程において、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも1種の塗布法により、溶液を基板上に塗布する<1>〜<1>のいずれかに記載の金属酸化物膜の製造方法。 <1 2 > In the precursor film forming step, the solution is applied onto the substrate by at least one application method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method <1> to <1 1 > The manufacturing method of the metal oxide film in any one of.

本発明によれば、導体又は半導体特性を有する金属酸化物膜を容易に製造することができる金属酸化物膜の製造方法、並びに電気特性に優れた金属酸化物膜、薄膜トランジスタ、及び電子デバイスが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the metal oxide film which can manufacture the metal oxide film which has a conductor or a semiconductor characteristic easily, and the metal oxide film, thin film transistor, and electronic device excellent in the electrical property are provided. Is done.

本発明により製造される薄膜トランジスタの一例(トップゲート−トップコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (top gate-top contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(トップゲート−ボトムコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (top gate-bottom contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(ボトムゲート−トップコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (bottom gate-top contact type) of the thin-film transistor manufactured by this invention. 本発明により製造される薄膜トランジスタの一例(ボトムゲート−ボトムコンタクト型)の構成を示す概略図である。It is the schematic which shows the structure of an example (bottom gate-bottom contact type) of the thin-film transistor manufactured by this invention. 実施形態の液晶表示装置の一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of liquid crystal display device of embodiment. 図5の液晶表示装置の電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the liquid crystal display device of FIG. 実施形態の有機EL表示装置の一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of organic EL display apparatus of embodiment. 図7の有機EL表示装置の電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the organic electroluminescent display apparatus of FIG. 実施形態のX線センサアレイの一部分を示す概略断面図である。It is a schematic sectional drawing which shows a part of X-ray sensor array of embodiment. 図9のX線センサアレイの電気配線の概略構成図である。It is a schematic block diagram of the electrical wiring of the X-ray sensor array of FIG. 実施例1〜3で作製した簡易型TFTのV−I特性を示す図である。Is a diagram showing, V g -I d characteristics of the simplified type TFT prepared in Example 1-3. 実施例1及び比較例1で作製した金属酸化物膜についてXPSスペクトル(酸素の1s電子に帰属する、結合エネルギーが525eV〜540eVの範囲)を示す図である。It is a figure which shows an XPS spectrum (The range of the binding energy which belongs to the 1s electron of oxygen is 525eV-540eV) about the metal oxide film produced in Example 1 and Comparative Example 1. FIG. 実施例7、8で作製した簡易型TFTのV−I特性を示す図である。Is a diagram showing, V g -I d characteristics of the simplified type TFT prepared in Example 7,8.

以下、添付の図面を参照しながら、本発明に係る金属酸化物膜の製造方法、並びに本発明により製造される金属酸化物膜、薄膜トランジスタ、及び電子デバイスについて具体的に説明する。
なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。また、本明細書において「〜」の記号により数値範囲を示す場合、下限値及び上限値が含まれる。
また、本発明は、導電膜又は半導体膜としての金属酸化物膜の製造に適用することができるが、代表例として、半導体膜の製造方法について主に説明する。
Hereinafter, a method for producing a metal oxide film according to the present invention and a metal oxide film, a thin film transistor, and an electronic device produced according to the present invention will be specifically described with reference to the accompanying drawings.
In the drawings, members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate. Further, in the present specification, when a numerical range is indicated by the symbol “to”, a lower limit value and an upper limit value are included.
Although the present invention can be applied to manufacture of a metal oxide film as a conductive film or a semiconductor film, as a representative example, a method for manufacturing a semiconductor film will be mainly described.

本発明者らは、金属成分としてインジウムを含む溶液を用いて金属酸化物前駆体膜を形成した後、加熱等によって金属酸化物膜に転化させる場合、雰囲気中の酸素濃度が高い方が緻密で導電性が高い金属酸化物膜が得られるとも考えたが、実験を重ねたところ、前駆体膜を加熱処理する条件下、紫外線照射を施して金属酸化物膜に転化させる場合、雰囲気中の酸素濃度が低いほど導電性が高い金属酸化物膜が得られることを見出した。   In the case where the metal oxide precursor film is formed using a solution containing indium as a metal component and then converted into a metal oxide film by heating or the like, the inventors have a higher oxygen concentration in the atmosphere. We thought that a highly conductive metal oxide film could be obtained, but as a result of repeated experiments, when the precursor film was converted to a metal oxide film by irradiation with ultraviolet rays under the conditions of heat treatment, oxygen in the atmosphere It has been found that a metal oxide film having higher conductivity can be obtained as the concentration is lower.

<金属酸化物膜の製造方法>
本発明に係る金属酸化物膜の製造方法は、溶媒及び金属成分として少なくともインジウムを含む溶液を基板上に塗布して金属酸化物前駆体膜を形成する前駆体膜形成工程と、金属酸化物前駆体膜を加熱した状態で、酸素濃度が80000ppm以下( 8%以下)の雰囲気下で紫外線照射を行うことにより金属酸化物前駆体膜を金属酸化物膜に転化させる転化工程と、を有する。
本発明の方法により、導電性が高い金属酸化物膜が得られる理由は不明であるが以下のように推測される。
金属成分として少なくともインジウムを含む溶液を用いて前駆体膜を形成した場合、加熱条件下で紫外線照射すると光化学的反応により膜中に活性酸素が発生し、In−Oの結合が生じて酸化インジウムが生成されると考えられる。一方、雰囲気中の酸素も紫外線照射によってオゾンが生成・分解し、酸素濃度が高いほど雰囲気中の活性酸素の濃度が高くなると考えられる。そのため、雰囲気中の酸素濃度が高いほど膜中では活性酸素の生成が抑制され、In−O結合以外の結合が生じ易くなり、逆に、雰囲気中の酸素濃度が薄いほど膜中では活性酸素が生成し易くなり、In−O結合が生じ易くなると考えられる。
<Method for producing metal oxide film>
The method for producing a metal oxide film according to the present invention includes a precursor film forming step of forming a metal oxide precursor film by applying a solution containing at least indium as a solvent and a metal component on a substrate, and a metal oxide precursor A conversion step of converting the metal oxide precursor film into a metal oxide film by irradiating ultraviolet rays in an atmosphere having an oxygen concentration of 80000 ppm or less (8% or less) in a state where the body film is heated.
The reason why a highly conductive metal oxide film can be obtained by the method of the present invention is unknown, but is presumed as follows.
When a precursor film is formed using a solution containing at least indium as a metal component, when irradiated with ultraviolet light under heating conditions, active oxygen is generated in the film by a photochemical reaction, and an In-O bond is generated, so that indium oxide is formed. It is thought that it is generated. On the other hand, it is considered that the oxygen in the atmosphere also generates and decomposes ozone by ultraviolet irradiation, and the higher the oxygen concentration, the higher the concentration of active oxygen in the atmosphere. Therefore, as the oxygen concentration in the atmosphere is higher, the generation of active oxygen is suppressed in the film, and bonds other than In-O bonds are more likely to occur. Conversely, as the oxygen concentration in the atmosphere is lower, active oxygen is present in the film. It is considered that it is easily generated and In—O bonds are likely to occur.

以下、各工程について具体的に説明する。   Hereinafter, each step will be specifically described.

[前駆体膜形成工程]
まず、溶媒及び金属成分として少なくともインジウムを含む溶液(金属酸化物前駆体溶液)を用意し、基板上に塗布して金属酸化物前駆体膜を形成する。
[Precursor film forming step]
First, a solution (metal oxide precursor solution) containing at least indium as a solvent and a metal component is prepared and applied on a substrate to form a metal oxide precursor film.

(基板)
基板の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができる。基板の構造は単層構造であってもよいし、積層構造であってもよい。
(substrate)
There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the objective. The structure of the substrate may be a single layer structure or a laminated structure.

基板を構成する材料としては特に限定はなく、ガラス、YSZ(Yttria−Stabilized Zirconia;イットリウム安定化ジルコニウム)等の無機基板、樹脂基板、その複合材料等を用いることができる。中でも軽量である点、可撓性を有する点から樹脂基板又はその複合材料が好ましい。具体的には、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミド・オレフィン、セルロース、エピスルフィド化合物等の合成樹脂基板、酸化珪素粒子との複合プラスチック材料、金属ナノ粒子、無機酸化物ナノ粒子、無機窒化物ナノ粒子等との複合プラスチック材料、カーボン繊維、カーボンナノチューブとの複合プラスチック材料、ガラスフレーク、ガラスファイバー、ガラスビーズとの複合プラスチック材料、粘土鉱物や雲母派生結晶構造を有する粒子との複合プラスチック材料、薄いガラスと上記単独有機材料との間に少なくとも1つの接合界面を有する積層プラスチック材料、無機層と有機層を交互に積層することで少なくとも1つ以上の接合界面を有するバリア性能を有する複合材料、ステンレス基板或いはステンレスと異種金属を積層した金属多層基板、アルミニウム基板或いは表面に酸化処理(例えば陽極酸化処理)を施すことで表面の絶縁性を向上させた酸化皮膜付きのアルミニウム基板、酸化膜付きシリコン基板等を用いることができる。
また、樹脂基板は耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、又は低吸湿性等に優れていることが好ましい。樹脂基板は、水分や酸素の透過を防止するためのガスバリア層や、樹脂基板の平坦性や下部電極との密着性を向上するためのアンダーコート層等を備えていてもよい。
The material constituting the substrate is not particularly limited, and glass, inorganic substrates such as YSZ (Yttria-Stabilized Zirconia), resin substrates, composite materials thereof, and the like can be used. Among these, a resin substrate or a composite material thereof is preferable from the viewpoint of light weight and flexibility. Specifically, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polystyrene, polycarbonate, polysulfone, polyethersulfone, polyarylate, allyl diglycol carbonate, polyamide, polyimide, polyamideimide, polyetherimide, Fluorine resin such as polybenzazole, polyphenylene sulfide, polycycloolefin, norbornene resin, polychlorotrifluoroethylene, liquid crystal polymer, acrylic resin, epoxy resin, silicone resin, ionomer resin, cyanate resin, crosslinked fumaric acid diester, cyclic polyolefin, Synthetic resin substrate such as aromatic ether, maleimide / olefin, cellulose, episulfide compound, silicon oxide Composite plastic material with metal, metal nanoparticle, inorganic oxide nanoparticle, composite plastic material with inorganic nitride nanoparticle, etc., carbon fiber, composite plastic material with carbon nanotube, glass flake, glass fiber, glass bead Composite plastic materials, composite plastic materials with clay minerals and particles with mica-derived crystal structure, laminated plastic materials having at least one bonding interface between thin glass and the above single organic material, alternating inorganic and organic layers Oxidation treatment (for example, anodic oxidation treatment) is performed on a composite material having barrier performance having at least one bonding interface by laminating, a stainless steel substrate, a metal multilayer substrate in which stainless steel and a dissimilar metal are laminated, an aluminum substrate, or the surface. With oxide film with improved surface insulation Aluminum substrate, a silicon substrate with an oxide film or the like.
The resin substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low moisture absorption, and the like. The resin substrate may include a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving the flatness of the resin substrate and adhesion with the lower electrode, and the like.

本発明で用いる基板の厚みに特に制限はないが、50μm以上500μm以下であることが好ましい。基板の厚みが50μm以上であると、基板自体の平坦性がより向上する。また、基板の厚みが500μm以下であると、基板自体の可撓性がより向上し、フレキシブルデバイス用基板としての使用がより容易となる。   Although there is no restriction | limiting in particular in the thickness of the board | substrate used by this invention, It is preferable that they are 50 micrometers or more and 500 micrometers or less. When the thickness of the substrate is 50 μm or more, the flatness of the substrate itself is further improved. Further, when the thickness of the substrate is 500 μm or less, the flexibility of the substrate itself is further improved, and the use as a substrate for a flexible device becomes easier.

(溶液)
本発明で用いる溶液は、溶媒と、金属成分としてインジウムを含有し、必要に応じてインジウム以外の他の金属成分も含有してもよい。
溶液に含まれるインジウムは、インジウムイオンとして含まれることが好ましい。なお、本発明におけるインジウムイオンは、溶媒分子等の配位子が配位したインジウム錯イオンであってもよい。また、溶液に含まれるインジウム以外の他の金属成分もイオンとして含まれることが好ましい。
(solution)
The solution used in the present invention contains indium as a solvent and a metal component, and may contain other metal components other than indium as necessary.
The indium contained in the solution is preferably contained as indium ions. The indium ion in the present invention may be an indium complex ion coordinated with a ligand such as a solvent molecule. Moreover, it is preferable that metal components other than the indium contained in the solution are also contained as ions.

本発明の溶液は、原料となる金属塩等の溶質を、溶液が所望の濃度となるように秤量し、溶媒中で攪拌、溶解させて得られる。攪拌を行う時間は溶質が十分に溶解されれば特に制限はない。   The solution of the present invention is obtained by weighing a solute such as a metal salt as a raw material so that the solution has a desired concentration, and stirring and dissolving in a solvent. The stirring time is not particularly limited as long as the solute is sufficiently dissolved.

溶液中のインジウムの含有量は、溶液中に含まれる金属成分の50atom%以上であることが好ましい。上記濃度範囲のインジウムを含む溶液を用いることで、膜中の金属成分の50atom%以上がインジウムとなる金属酸化物膜が得られ、電子伝達特性の高い金属酸化物膜を容易に製造することができる。   The indium content in the solution is preferably 50 atom% or more of the metal component contained in the solution. By using a solution containing indium in the above concentration range, a metal oxide film in which 50 atom% or more of the metal component in the film is indium can be obtained, and a metal oxide film having high electron transfer characteristics can be easily manufactured. it can.

本発明の溶液に含まれるインジウム及び必要に応じて含まれる他の金属成分の原料として金属原子含有化合物が用いられる。金属原子含有化合物としては金属塩、金属ハロゲン化物、有機金属化合物を挙げることができる。金属塩としては、硫酸塩、燐酸塩、炭酸塩、酢酸塩、蓚酸塩等、金属ハロゲン化物としては塩化物、ヨウ化物、臭化物等、有機金属化合物としては金属アルコキシド、有機酸塩、金属βジケトネート等が挙げられる。   A metal atom-containing compound is used as a raw material for indium contained in the solution of the present invention and other metal components contained as necessary. Examples of the metal atom-containing compound include metal salts, metal halides, and organometallic compounds. Metal salts include sulfates, phosphates, carbonates, acetates, oxalates, metal halides include chlorides, iodides, bromides, etc., and organometallic compounds include metal alkoxides, organic acid salts, metal β diketonates Etc.

本発明の溶液は、インジウムのほか、硝酸イオンを含むことが好ましく、少なくとも硝酸インジウムを溶解させた溶液であることがより好ましい。硝酸インジウムを溶解させた溶液を塗布して得られた金属酸化物前駆体膜は、紫外光を効率よく吸収することができ、容易にインジウム含有酸化物膜を形成することができる。尚、硝酸インジウムは水和物であってもよい。   The solution of the present invention preferably contains nitrate ions in addition to indium, and more preferably a solution in which at least indium nitrate is dissolved. A metal oxide precursor film obtained by applying a solution in which indium nitrate is dissolved can absorb ultraviolet light efficiently, and an indium-containing oxide film can be easily formed. Indium nitrate may be a hydrate.

溶液はインジウム以外の金属成分として、亜鉛、錫、ガリウム及びアルミニウムから選ばれる少なくとも1種の金属成分を含むことが好ましい。本発明の溶液が、インジウム以外の上記いずれかの金属成分を適量含むことにより、得られる金属酸化物膜の電気的安定性を向上させることができる。   The solution preferably contains at least one metal component selected from zinc, tin, gallium and aluminum as a metal component other than indium. When the solution of the present invention contains an appropriate amount of any of the above-described metal components other than indium, the electrical stability of the resulting metal oxide film can be improved.

また、本発明により製造される金属酸化物半導体膜においては、閾値電圧を所望の値に制御することも可能となる。
インジウムと他の金属元素を含む金属酸化物膜(導体膜又は半導体膜)として、In−Ga−Zn−O(IGZO)、In−Zn−O(IZO)、In−Ga−O(IGO)、In−Sn−O(ITO)、In−Sn−Zn−O(ITZO)等が挙げられる。
In the metal oxide semiconductor film manufactured according to the present invention, the threshold voltage can be controlled to a desired value.
As a metal oxide film (conductor film or semiconductor film) containing indium and another metal element, In—Ga—Zn—O (IGZO), In—Zn—O (IZO), In—Ga—O (IGO), In-Sn-O (ITO), In-Sn-Zn-O (ITZO), and the like can be given.

なお、本発明における溶液は、溶液中に金属酸化物半導体粒子等の不溶物を含まない溶液を用いることが好ましい。溶液中に金属酸化物半導体粒子等の不溶物を含まない溶液を用いることで金属酸化物膜を形成した際の表面ラフネスが小さくなり、面内均一性に優れた金属酸化物膜を形成することができる。   In addition, it is preferable that the solution in this invention uses the solution which does not contain insoluble matters, such as a metal oxide semiconductor particle, in a solution. By using a solution that does not contain insoluble materials such as metal oxide semiconductor particles in the solution, the surface roughness when the metal oxide film is formed is reduced, and a metal oxide film having excellent in-plane uniformity is formed. Can do.

本発明の溶液に用いる溶媒は、溶質として用いる金属原子含有化合物が溶解するものであれば特に制限されるところではなく、水、アルコール溶媒(メタノール、エタノール、プロパノール、エチレングリコール等)、アミド溶媒(N,N−ジメチルホルムアミド等)、ケトン溶媒(アセトン、N−メチルピロリドン、スルホラン、N,N−ジメチルイミダゾリジノン等)、エーテル溶媒(テトラヒドロフラン、メトキシエタノール等)、ニトリル溶媒(アセトニトリル等)、その他上記以外のヘテロ原子含有溶媒等が挙げられる。特に溶解性、塗れ性、コスト、環境負荷の観点からの観点からメタノール、メトキシエタノール、又は水を用いることが好ましい。   The solvent used in the solution of the present invention is not particularly limited as long as the metal atom-containing compound used as a solute dissolves, and water, alcohol solvents (methanol, ethanol, propanol, ethylene glycol, etc.), amide solvents ( N, N-dimethylformamide, etc.), ketone solvents (acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, etc.), ether solvents (tetrahydrofuran, methoxyethanol, etc.), nitrile solvents (acetonitrile, etc.), etc. Examples include heteroatom-containing solvents other than those described above. In particular, methanol, methoxyethanol, or water is preferably used from the viewpoints of solubility, paintability, cost, and environmental load.

溶液中の金属成分の濃度は、粘度や得たい膜厚に応じて任意に選択することができるが、薄膜の平坦性及び生産性の観点から、溶液中の金属成分の濃度が0.01mol/L以上1.0mol/L以下であることが好ましく、0.01mol/L以上0.5mol/L以下であることがより好ましい。   The concentration of the metal component in the solution can be arbitrarily selected according to the viscosity and the desired film thickness. From the viewpoint of the flatness and productivity of the thin film, the concentration of the metal component in the solution is 0.01 mol / L or more and 1.0 mol / L or less are preferable, and 0.01 mol / L or more and 0.5 mol / L or less are more preferable.

(塗布)
溶液を基板上に塗布する方法としては、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ミスト法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、及び凹版印刷法等が挙げられる。特に、微細パターンを容易に形成する観点から、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも1種の塗布法を用いることが好ましい。
(Application)
As a method of applying the solution on the substrate, spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method, mist method, inkjet method, dispenser method, Examples thereof include screen printing, letterpress printing, and intaglio printing. In particular, from the viewpoint of easily forming a fine pattern, it is preferable to use at least one coating method selected from an inkjet method, a dispenser method, a relief printing method, and an intaglio printing method.

(乾燥)
溶液を基板上に塗布した後、自然乾燥して金属酸化物前駆体膜としてもよいが、基板温度を35℃以上100℃以下にする加熱処理によって乾燥させて金属酸化物前駆体膜を得ることが好ましい。乾燥によって、塗布膜の流動性を低減させ、最終的に得られる金属酸化物膜の平坦性を向上させることができる。また、適切な乾燥温度(35℃以上100℃以下)の選択することにより、最終的により緻密な金属酸化物膜を得ることができる。加熱処理の方法は特に限定されず、ホットプレート加熱、電気炉加熱、赤外線加熱、マイクロ波加熱等から選択することができる。
(Dry)
After the solution is applied on the substrate, it may be naturally dried to obtain a metal oxide precursor film. However, the metal oxide precursor film is obtained by drying by a heat treatment in which the substrate temperature is 35 ° C. or more and 100 ° C. or less. Is preferred. By drying, the fluidity of the coating film can be reduced and the flatness of the finally obtained metal oxide film can be improved. Further, by selecting an appropriate drying temperature (35 ° C. or more and 100 ° C. or less), a final denser metal oxide film can be obtained. The method for the heat treatment is not particularly limited, and can be selected from hot plate heating, electric furnace heating, infrared heating, microwave heating, and the like.

乾燥は膜の平坦性を均一に保つ観点から、基板上に溶液を塗布後、5分以内に開始することが好ましい。
乾燥を行う時間は特に制限はないが、膜の均一性、生産性の観点から15秒以上10分以下であることが好ましい。
乾燥を行う雰囲気は特に制限はないが、製造コスト等の観点から大気圧下、大気中で行うことが好ましい。
Drying is preferably started within 5 minutes after applying the solution on the substrate from the viewpoint of keeping the flatness of the film uniform.
The drying time is not particularly limited, but is preferably 15 seconds or longer and 10 minutes or shorter from the viewpoint of film uniformity and productivity.
The atmosphere in which drying is performed is not particularly limited, but it is preferably performed in the air at atmospheric pressure from the viewpoint of manufacturing cost and the like.

[転化工程]
次いで、金属酸化物前駆体膜を加熱した状態で、酸素濃度が80000ppm以下の雰囲気下で紫外線照射を行うことにより金属酸化物前駆体膜を金属酸化物膜に転化させる。金属酸化物前駆体膜が加熱処理されている条件下で、紫外線照射を行うことで金属酸化物膜へと転化し、このとき、雰囲気中の酸素濃度を80000ppm以下に抑えることで電子伝達特性が高められる。
[Conversion process]
Next, with the metal oxide precursor film heated, the metal oxide precursor film is converted into a metal oxide film by performing ultraviolet irradiation in an atmosphere having an oxygen concentration of 80000 ppm or less. Under the condition that the metal oxide precursor film is heat-treated, it is converted into a metal oxide film by irradiating with ultraviolet rays. At this time, by suppressing the oxygen concentration in the atmosphere to 80000 ppm or less, the electron transfer characteristics are improved. Enhanced.

(加熱処理)
転化工程における基板温度は120℃超に保持することが好ましく、また、200℃未満に保持することが好ましい。転化工程における基板温度を120℃超に保持すれば、より短時間で高い電子伝達特性の金属酸化物膜を得ることができる。一方、転化工程における基板温度を200℃以下に保持すれば、熱エネルギーの増大を抑制して製造コストを低く抑えることができ、また、耐熱性の低い樹脂基板への適用が容易となる。
転化工程における基板に対する加熱手段は特に限定されず、ホットプレート加熱、電気炉加熱、赤外線加熱、マイクロ波加熱等から選択すればよい。
(Heat treatment)
The substrate temperature in the conversion step is preferably kept above 120 ° C., and preferably kept below 200 ° C. If the substrate temperature in the conversion step is kept above 120 ° C., a metal oxide film having high electron transfer characteristics can be obtained in a shorter time. On the other hand, if the substrate temperature in the conversion step is maintained at 200 ° C. or lower, an increase in thermal energy can be suppressed and the manufacturing cost can be reduced, and application to a resin substrate with low heat resistance is facilitated.
The heating means for the substrate in the conversion step is not particularly limited, and may be selected from hot plate heating, electric furnace heating, infrared heating, microwave heating, and the like.

紫外線照射前の加熱処理時間に特に制限はないが、生産性の観点から短時間であることが好ましく、具体的には5分以内であることが好ましい。   There is no particular limitation on the heat treatment time before the ultraviolet irradiation, but it is preferably a short time from the viewpoint of productivity, and specifically within 5 minutes.

(紫外線照射)
基板上の金属酸化物前駆体膜を加熱する条件の下、酸素濃度が80000ppm以下の雰囲気中で紫外線を照射する。
金属酸化物前駆体膜に対して加熱条件下で紫外線照射を行う雰囲気の酸素濃度が80000ppm以下であれば高い電子伝達特性の金属酸化物膜が得られる。電子伝達特性を高める観点から上記紫外線照射を行う雰囲気中の酸素濃度は30000ppm以下(3%以下)であることが好ましい。
(UV irradiation)
Under the condition of heating the metal oxide precursor film on the substrate, ultraviolet rays are irradiated in an atmosphere having an oxygen concentration of 80000 ppm or less.
When the oxygen concentration in the atmosphere in which the metal oxide precursor film is irradiated with ultraviolet rays under heating conditions is 80000 ppm or less, a metal oxide film having high electron transfer characteristics can be obtained. From the viewpoint of enhancing the electron transfer characteristics, the oxygen concentration in the atmosphere in which the ultraviolet irradiation is performed is preferably 30000 ppm or less (3% or less).

なお、紫外線照射時の雰囲気中の酸素濃度を80000ppm以下に調整する手段としては、例えば、基板上の金属酸化物前駆体膜に対して加熱及び紫外線照射を行う処理室内に供給する窒素ガス等の不活性ガスの流速を調整する方法、処理室内に供給するガス中の酸素濃度を調整する方法、事前に処理室内を真空引きし、そこに所望の酸素濃度のガスを充填する方法等が挙げられる。   In addition, as a means for adjusting the oxygen concentration in the atmosphere at the time of ultraviolet irradiation to 80000 ppm or less, for example, nitrogen gas supplied to the processing chamber for heating and ultraviolet irradiation of the metal oxide precursor film on the substrate or the like Examples include a method for adjusting the flow rate of the inert gas, a method for adjusting the oxygen concentration in the gas supplied to the processing chamber, and a method for evacuating the processing chamber in advance and filling the gas with a desired oxygen concentration therein. .

金属酸化物前駆体膜の膜面には波長300nm以下の紫外光を10mW/cm以上の照度で照射することが好ましい。金属酸化物前駆体膜に対し、波長300nm以下の紫外光を10mW/cm以上の照度で照射することでより短い時間で金属酸化物前駆体膜から金属酸化物膜への転化を行うことができる。金属酸化物前駆体膜の膜面に対する紫外光の照度は、10mW/cm以上が好ましく、100mW/cm以上がより好ましい。金属酸化物前駆体膜の膜面に対する紫外光の照度が10mW/cm以上であれば高い電子伝達特性の金属酸化物膜が得られ、100mW/cm以上であればより短時間で高い電子伝達特性の金属酸化物膜が得られる。なお、照度の上限は、装置コストの観点から500mW/cm以下であることが好ましい。 The film surface of the metal oxide precursor film is preferably irradiated with ultraviolet light having a wavelength of 300 nm or less at an illuminance of 10 mW / cm 2 or more. Conversion from a metal oxide precursor film to a metal oxide film can be performed in a shorter time by irradiating the metal oxide precursor film with ultraviolet light having a wavelength of 300 nm or less with an illuminance of 10 mW / cm 2 or more. it can. The illuminance of ultraviolet light with respect to the film surface of the metal oxide precursor film is preferably 10 mW / cm 2 or more, and more preferably 100 mW / cm 2 or more. If the illuminance of ultraviolet light with respect to the film surface of the metal oxide precursor film is 10 mW / cm 2 or more, a metal oxide film having high electron transfer characteristics can be obtained, and if it is 100 mW / cm 2 or more, high electrons can be obtained in a shorter time. A metal oxide film having transfer characteristics can be obtained. In addition, it is preferable that the upper limit of illumination intensity is 500 mW / cm < 2 > or less from a viewpoint of apparatus cost.

加熱処理中の紫外線照射の光源としては、UVランプ、UVレーザー等が挙げられるが、大面積に均一に、安価な設備で紫外線照射を行う観点からUVランプが好ましい。UVランプとしては、例えばエキシマランプ、重水素ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ヘリウムランプ、カーボンアークランプ、カドミウムランプ、無電極放電ランプ等が挙げられ、特に低圧水銀ランプを用いると容易に金属酸化物前駆体膜から金属酸化物膜への転化が行えることから好ましい。   Examples of the light source for ultraviolet irradiation during the heat treatment include a UV lamp, a UV laser, and the like, but a UV lamp is preferable from the viewpoint of performing ultraviolet irradiation with an inexpensive facility uniformly over a large area. Examples of UV lamps include excimer lamps, deuterium lamps, low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, helium lamps, carbon arc lamps, cadmium lamps, electrodeless discharge lamps, etc. It is preferable to use a mercury lamp because the metal oxide precursor film can be easily converted into the metal oxide film.

また、高い電子伝達特性を達成する観点から、紫外線照射中の基板が昇温又は降温する速度を±0.5℃/min以内にすることが好ましく、紫外線照射中の基板温度は一定にすることがより好ましい。
紫外線照射中の基板温度は、基板を加熱するホットプレート等の加熱手段によって調整することができる。
Also, from the viewpoint of achieving high electron transfer characteristics, it is preferable that the rate of temperature rise or fall of the substrate during ultraviolet irradiation is within ± 0.5 ° C / min, and the substrate temperature during ultraviolet irradiation is constant. Is more preferable.
The substrate temperature during the ultraviolet irradiation can be adjusted by a heating means such as a hot plate for heating the substrate.

転化工程における紫外線照射は、金属酸化物前駆体膜が金属酸化物膜に転化するまで行えばよい。前駆体膜の組成、加熱温度、紫外線照度等にもよるが、生産性の観点から、紫外線照射時間は、5分以上120分以下であることが好ましく、60分以下であることがより好ましい。   The ultraviolet irradiation in the conversion process may be performed until the metal oxide precursor film is converted into the metal oxide film. Although depending on the composition of the precursor film, heating temperature, ultraviolet illuminance, etc., from the viewpoint of productivity, the ultraviolet irradiation time is preferably 5 minutes or more and 120 minutes or less, more preferably 60 minutes or less.

<薄膜トランジスタ>
本発明の実施形態により作製される金属酸化物膜は導電性又は半導体性(好ましくは0.2cm/Vs以上、より好ましくは0.5cm/Vs以上、さらに好ましくは1cm/Vs以上)を示すことから、薄膜トランジスタ(TFT)の電極(ソース電極、ドレイン電極、若しくはゲート電極)又は活性層(酸化物半導体層)に好適に用いることができる。
以下、本発明の製造方法により作製された金属酸化物膜を薄膜トランジスタの活性層として用いる場合の実施形態について説明する。なお、本発明の金属酸化物膜の製造方法及びそれにより製造される金属酸化物膜はTFTの活性層に限定されるものではない。
<Thin film transistor>
The metal oxide film produced according to the embodiment of the present invention is conductive or semiconductive (preferably 0.2 cm 2 / Vs or more, more preferably 0.5 cm 2 / Vs or more, and further preferably 1 cm 2 / Vs or more). Therefore, it can be suitably used for an electrode (source electrode, drain electrode, or gate electrode) or active layer (oxide semiconductor layer) of a thin film transistor (TFT).
Hereinafter, an embodiment in which a metal oxide film produced by the production method of the present invention is used as an active layer of a thin film transistor will be described. In addition, the manufacturing method of the metal oxide film of this invention and the metal oxide film manufactured by it are not limited to the active layer of TFT.

本発明に係るTFTの素子構造は特に限定されず、ゲート電極の位置に基づいた、いわゆる逆スタガ構造(ボトムゲート型とも呼ばれる)及びスタガ構造(トップゲート型とも呼ばれる)のいずれの態様であってもよい。また、活性層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型、ボトムコンタクト型のいずれの態様であってもよい。
トップゲート型とは、TFTが形成されている基板を最下層としたときに、ゲート絶縁膜の上側にゲート電極が配置され、ゲート絶縁膜の下側に活性層が形成された形態であり、ボトムゲート型とは、ゲート絶縁膜の下側にゲート電極が配置され、ゲート絶縁膜の上側に活性層が形成された形態である。また、ボトムコンタクト型とは、ソース・ドレイン電極が活性層よりも先に形成されて活性層の下面がソース・ドレイン電極に接触する形態であり、トップコンタクト型とは、活性層がソース・ドレイン電極よりも先に形成されて活性層の上面がソース・ドレイン電極に接触する形態である。
The element structure of the TFT according to the present invention is not particularly limited, and is either a so-called reverse stagger structure (also referred to as a bottom gate type) or a stagger structure (also referred to as a top gate type) based on the position of the gate electrode. Also good. Further, based on the contact portion between the active layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate), either a so-called top contact type or bottom contact type may be used.
The top gate type is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowermost layer. The bottom gate type is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film. The bottom contact type is a mode in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes. The top contact type is the type in which the active layer is the source / drain. In this embodiment, the upper surface of the active layer is in contact with the source / drain electrodes.

図1は、トップゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図1に示すTFT10では、基板12の一方の主面上に活性層14として上述の酸化物半導体膜が積層されている。そして、この活性層14上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上にゲート絶縁膜20と、ゲート電極22とが順に積層されている。   FIG. 1 is a schematic diagram showing an example of a top contact type TFT according to the present invention having a top gate structure. In the TFT 10 shown in FIG. 1, the above-described oxide semiconductor film is stacked as an active layer 14 on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are disposed on the active layer 14 so as to be spaced apart from each other, and a gate insulating film 20 and a gate electrode 22 are sequentially stacked thereon.

図2は、トップゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図2に示すTFT30では、基板12の一方の主面上にソース電極16及びドレイン電極18が互いに離間して設置されている。そして、活性層14として上述の酸化物半導体膜と、ゲート絶縁膜20と、ゲート電極22と、が順に積層されている。   FIG. 2 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a top gate structure. In the TFT 30 shown in FIG. 2, the source electrode 16 and the drain electrode 18 are disposed on one main surface of the substrate 12 so as to be separated from each other. Then, the above-described oxide semiconductor film, the gate insulating film 20, and the gate electrode 22 are sequentially stacked as the active layer.

図3は、ボトムゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図3に示すTFT40では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、活性層14として上述の酸化物半導体膜と、が順に積層されている。そして、この活性層14の表面上にソース電極16及びドレイン電極18が互いに離間して設置されている。   FIG. 3 is a schematic diagram showing an example of a top contact type TFT according to the present invention having a bottom gate structure. In the TFT 40 illustrated in FIG. 3, the gate electrode 22, the gate insulating film 20, and the above-described oxide semiconductor film as the active layer 14 are sequentially stacked on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are spaced apart from each other on the surface of the active layer 14.

図4は、ボトムゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図4に示すTFT50では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、が順に積層されている。そして、このゲート絶縁膜20の表面上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上に、活性層14として上述の酸化物半導体膜が積層されている。   FIG. 4 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a bottom gate structure. In the TFT 50 shown in FIG. 4, the gate electrode 22 and the gate insulating film 20 are sequentially stacked on one main surface of the substrate 12. A source electrode 16 and a drain electrode 18 are disposed on the surface of the gate insulating film 20 so as to be spaced apart from each other, and the above-described oxide semiconductor film is stacked thereon as the active layer 14.

以下の実施形態としては図1に示すトップゲート型の薄膜トランジスタ10について主に説明するが、本発明の薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。   In the following embodiment, the top gate type thin film transistor 10 shown in FIG. 1 will be mainly described. However, the thin film transistor of the present invention is not limited to the top gate type and may be a bottom gate type thin film transistor.

(活性層)
本実施形態の薄膜トランジスタ10を製造する場合、まず、基板12上に、前述した前駆体膜形成工程及び転化工程を経て金属酸化物半導体膜を形成する。
(Active layer)
When manufacturing the thin film transistor 10 of this embodiment, first, a metal oxide semiconductor film is formed on the substrate 12 through the precursor film forming process and the conversion process described above.

金属酸化物半導体膜を活性層の形状にパターニングする。なお、パターンニングは前述したインクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法によって予め活性層のパターンを有する金属酸化物前駆体膜を形成して金属酸化物半導体膜に転化してもよいし、金属酸化物半導体膜をフォトリソグラフィー及びエッチングにより活性層の形状にパターニングしてもよい。フォトリソグラフィー及びエッチングによりパターン形成を行うには、例えば、金属酸化物半導体膜を活性層として残存させる部分にフォトリソグラフィーによりレジストパターンを形成し、塩酸、硝酸、希硫酸、又は燐酸、硝酸及び酢酸の混合液等の酸溶液によりエッチングすることにより活性層14のパターンを形成する。   The metal oxide semiconductor film is patterned into the shape of the active layer. The patterning may be converted into a metal oxide semiconductor film by forming a metal oxide precursor film having an active layer pattern in advance by the above-described ink jet method, dispenser method, letterpress printing method, and intaglio printing method. Then, the metal oxide semiconductor film may be patterned into the shape of the active layer by photolithography and etching. In order to perform pattern formation by photolithography and etching, for example, a resist pattern is formed by photolithography on a portion where the metal oxide semiconductor film remains as an active layer, and hydrochloric acid, nitric acid, dilute sulfuric acid, or phosphoric acid, nitric acid, and acetic acid are used. The pattern of the active layer 14 is formed by etching with an acid solution such as a mixed solution.

活性層14の厚みは、平坦性及び膜形成に要する時間の観点から5nm以上50nm以下であることが好ましい。   The thickness of the active layer 14 is preferably 5 nm or more and 50 nm or less from the viewpoint of flatness and time required for film formation.

また、高い移動度を得る観点から、活性層14におけるインジウムの含有量は、活性層14に含まれる金属成分の50atom%以上であることが好ましく、80atom%以上であることがより好ましい。   From the viewpoint of obtaining high mobility, the content of indium in the active layer 14 is preferably 50 atom% or more of the metal component contained in the active layer 14, and more preferably 80 atom% or more.

(保護層)
活性層14上にはソース・ドレイン電極16,18のエッチング時に活性層14を保護するための保護層(不図示)を形成することが好ましい。保護層の成膜方法に特に限定はなく、金属酸化物半導体膜に続けて成膜してもよいし、金属酸化物半導体膜のパターンニング後に形成してもよい。
保護層としては金属酸化物層であってもよく、樹脂のような有機材料であってもよい。なお、保護層はソース電極16及びドレイン電極18(適宜「ソース・ドレイン電極」と記す)の形成後に除去しても構わない。
(Protective layer)
A protective layer (not shown) for protecting the active layer 14 is preferably formed on the active layer 14 when the source / drain electrodes 16 and 18 are etched. There is no particular limitation on the method for forming the protective layer, and the protective layer may be formed after the metal oxide semiconductor film or after the patterning of the metal oxide semiconductor film.
The protective layer may be a metal oxide layer or an organic material such as a resin. The protective layer may be removed after the source electrode 16 and the drain electrode 18 (referred to as “source / drain electrodes” as appropriate) are formed.

(ソース・ドレイン電極)
活性層14上にソース・ドレイン電極16,18を形成する。ソース・ドレイン電極16,18はそれぞれ電極として機能するように高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Ag,Au等の金属、Al−Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In−Ga−Zn−O等の金属酸化物導電膜等を用いて形成することができる。
(Source / drain electrodes)
Source / drain electrodes 16 and 18 are formed on the active layer 14. The source / drain electrodes 16 and 18 have high conductivity so as to function as electrodes, respectively, and metals such as Al, Mo, Cr, Ta, Ti, Ag, Au, Al—Nd, Ag alloy, tin oxide , Zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), a metal oxide conductive film such as In—Ga—Zn—O, or the like can be used.

ソース・ドレイン電極16,18を形成する場合、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。   When the source / drain electrodes 16 and 18 are formed, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, a chemical method such as a CVD method and a plasma CVD method, etc. The film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.

ソース・ドレイン電極16,18の膜厚は、成膜性、エッチング又はリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上100nm以下とすることがより好ましい。   The film thickness of the source / drain electrodes 16 and 18 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 100 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferred.

ソース・ドレイン電極16,18は、導電膜を形成した後、例えば、エッチング又はリフトオフ法により所定の形状にパターンニングして形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ソース・ドレイン電極16,18及びこれらの電極に接続する配線(不図示)を同時にパターンニングすることが好ましい。   The source / drain electrodes 16 and 18 may be formed by patterning into a predetermined shape by, for example, etching or a lift-off method after forming a conductive film, or may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the source / drain electrodes 16 and 18 and wiring (not shown) connected to these electrodes simultaneously.

(ゲート絶縁膜)
ソース・ドレイン電極16,18及び配線(不図示)を形成した後、ゲート絶縁膜20を形成する。ゲート絶縁膜20は高い絶縁性を有するものが好ましく、例えばSiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁膜、又はこれらの化合物を2種以上含む絶縁膜としてもよい。
ゲート絶縁膜20の形成は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。
(Gate insulation film)
After the source / drain electrodes 16 and 18 and the wiring (not shown) are formed, the gate insulating film 20 is formed. The gate insulating film 20 preferably has a high insulating property. For example, an insulating film such as SiO 2 , SiN x , SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , or a compound thereof is used. An insulating film including two or more kinds may be used.
The gate insulating film 20 can be formed from a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method. The film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.

尚、ゲート絶縁膜20はリーク電流の低下及び電圧耐性の向上のための厚みを有する必要がある一方、ゲート絶縁膜20の厚みが大きすぎると駆動電圧の上昇を招いてしまう。ゲート絶縁膜20は材質にもよるが、ゲート絶縁膜20の厚みは10nm〜10μmが好ましく、50nm〜1000nmがより好ましく、100nm〜400nmが特に好ましい。   The gate insulating film 20 needs to have a thickness for reducing leakage current and improving voltage resistance. On the other hand, if the thickness of the gate insulating film 20 is too large, the driving voltage is increased. Although the gate insulating film 20 depends on the material, the thickness of the gate insulating film 20 is preferably 10 nm to 10 μm, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.

(ゲート電極)
ゲート絶縁膜20を形成した後、ゲート電極22を形成する。ゲート電極22は高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Ag,Au等の金属、Al−Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、IGZO等の金属酸化物導電膜等を用いて形成することができる。ゲート電極22としてはこれらの導電膜を単層構造又は2層以上の積層構造として用いることができる。
(Gate electrode)
After forming the gate insulating film 20, a gate electrode 22 is formed. The gate electrode 22 is made of a highly conductive metal such as Al, Mo, Cr, Ta, Ti, Ag, Au, Al-Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide ( It can be formed using a metal oxide conductive film such as ITO), zinc indium oxide (IZO), or IGZO. As the gate electrode 22, these conductive films can be used as a single layer structure or a stacked structure of two or more layers.

ゲート電極22は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜する。
ゲート電極22を形成するための金属膜の膜厚は、成膜性、エッチングやリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上200nm以下とすることがより好ましい。
成膜後、エッチング又はリフトオフ法により所定の形状にパターンニングすることにより、ゲート電極22を形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ゲート電極22及びゲート配線(不図示)を同時にパターンニングすることが好ましい。
The gate electrode 22 is made of a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method. The film is formed according to a method appropriately selected in consideration of the suitability of the above.
The film thickness of the metal film for forming the gate electrode 22 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 200 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferably.
After the film formation, the gate electrode 22 may be formed by patterning into a predetermined shape by an etching or lift-off method, or the pattern may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the gate electrode 22 and the gate wiring (not shown) at the same time.

以上で説明した本実施形態の薄膜トランジスタ10の用途には特に限定はないが、高い輸送特性を示すことから、各種電子デバイスに適用することができる。具体的には、液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等の表示装置における駆動素子、耐熱性の低い樹脂基板を用いたフレキシブルディスプレイの作製に好適である。
更に本発明により製造される薄膜トランジスタは、X線センサ、イメージセンサ等の各種センサ、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として好適に用いられる。
Although there is no limitation in particular in the use of the thin-film transistor 10 of this embodiment demonstrated above, Since it shows a high transport characteristic, it can apply to various electronic devices. Specifically, it is suitable for manufacturing a flexible display using a driving element in a display device such as a liquid crystal display device, an organic EL (Electro Luminescence) display device, and an inorganic EL display device, and a resin substrate having low heat resistance.
Further, the thin film transistor manufactured according to the present invention is suitably used as a driving element (driving circuit) in various electronic devices such as various sensors such as an X-ray sensor and an image sensor, and a micro electro mechanical system (MEMS).

<液晶表示装置>
本発明の一実施形態である液晶表示装置について、図5にその一部分の概略断面図を示し、図6に電気配線の概略構成図を示す。
<Liquid crystal display device>
FIG. 5 shows a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the present invention, and FIG. 6 shows a schematic configuration diagram of electrical wiring.

図5に示すように、本実施形態の液晶表示装置100は、図1に示したトップゲート構造でトップコンタクト型のTFT10と、TFT10のパッシベーション層102で保護されたゲート電極22上に画素下部電極104およびその対向上部電極106で挟まれた液晶層108と、各画素に対応させて異なる色を発色させるためのR(赤)G(緑)B(青)のカラーフィルタ110とを備え、TFT10の基板12側およびRGBカラーフィルタ110上にそれぞれ偏光板112a、112bを備えた構成である。   As shown in FIG. 5, the liquid crystal display device 100 according to the present embodiment includes a top contact type TFT 10 having the top gate structure shown in FIG. 1 and a pixel lower electrode on the gate electrode 22 protected by the passivation layer 102 of the TFT 10. 104 and a liquid crystal layer 108 sandwiched between the counter upper electrode 106 and an R (red) G (green) B (blue) color filter 110 for developing different colors corresponding to each pixel. The polarizing plate 112a and 112b are provided on the substrate 12 side and the RGB color filter 110, respectively.

また、図6に示すように、本実施形態の液晶表示装置100は、互いに平行な複数のゲート配線112と、該ゲート配線112と交差する、互いに平行なデータ配線114とを備えている。ここでゲート配線112とデータ配線114は電気的に絶縁されている。ゲート配線112とデータ配線114との交差部付近に、TFT10が備えられている。   As shown in FIG. 6, the liquid crystal display device 100 according to the present embodiment includes a plurality of gate lines 112 that are parallel to each other and data lines 114 that are parallel to each other and intersect the gate lines 112. Here, the gate wiring 112 and the data wiring 114 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.

TFT10のゲート電極22は、ゲート配線112に接続されており、TFT10のソース電極16はデータ配線114に接続されている。また、TFT10のドレイン電極18はゲート絶縁膜20に設けられたコンタクトホール116を介して(コンタクトホール116に導電体が埋め込まれて)画素下部電極104に接続されている。この画素下部電極104は、接地された対向上部電極106とともにキャパシタ118を構成している。   The gate electrode 22 of the TFT 10 is connected to the gate wiring 112, and the source electrode 16 of the TFT 10 is connected to the data wiring 114. The drain electrode 18 of the TFT 10 is connected to the pixel lower electrode 104 through a contact hole 116 provided in the gate insulating film 20 (a conductor is embedded in the contact hole 116). The pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.

<有機EL表示装置>
本発明の一実施形態に係るアクティブマトリックス方式の有機EL表示装置について、図7に一部分の概略断面図を示し、図8に電気配線の概略構成図を示す。
<Organic EL display device>
FIG. 7 shows a schematic sectional view of a part of an active matrix organic EL display device according to an embodiment of the present invention, and FIG. 8 shows a schematic configuration diagram of electrical wiring.

本実施形態のアクティブマトリックス方式の有機EL表示装置200は、図1に示したトップゲート構造のTFT10が、パッシベーション層202を備えた基板12上に、駆動用TFT10aおよびスイッチング用TFT10bとして備えられ、TFT10a,10b上に下部電極208および上部電極210に挟まれた有機発光層212からなる有機EL発光素子214を備え、上面もパッシベーション層216により保護された構成となっている。   The active-matrix organic EL display device 200 of the present embodiment includes the TFT 10 having the top gate structure shown in FIG. 1 as a driving TFT 10a and a switching TFT 10b on a substrate 12 having a passivation layer 202. , 10b is provided with an organic EL light emitting element 214 composed of an organic light emitting layer 212 sandwiched between a lower electrode 208 and an upper electrode 210, and the upper surface is also protected by a passivation layer 216.

また、図8に示すように、本実施形態の有機EL表示装置200は、互いに平行な複数のゲート配線220と、該ゲート配線220と交差する、互いに平行なデータ配線222および駆動配線224とを備えている。ここで、ゲート配線220とデータ配線222、駆動配線224とは電気的に絶縁されている。スイッチング用TFT10bのゲート電極22は、ゲート配線220に接続されており、スイッチング用TFT10bのソース電極16はデータ配線222に接続されている。また、スイッチング用TFT10bのドレイン電極18は駆動用TFT10aのゲート電極22に接続されるとともに、キャパシタ226を用いることで駆動用TFT10aをオン状態に保つ。駆動用TFT10aのソース電極16は駆動配線224に接続され、ドレイン電極18は有機EL発光素子214に接続される。   As shown in FIG. 8, the organic EL display device 200 according to the present embodiment includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220. I have. Here, the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated. The gate electrode 22 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 16 of the switching TFT 10 b is connected to the data wiring 222. The drain electrode 18 of the switching TFT 10b is connected to the gate electrode 22 of the driving TFT 10a, and the driving TFT 10a is kept on by using the capacitor 226. The source electrode 16 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 18 is connected to the organic EL light emitting element 214.

なお、図7に示した有機EL表示装置において、上部電極210を透明電極としてトップエミッション型としてもよいし、下部電極208およびTFTの各電極を透明電極とすることによりボトムエミッション型としてもよい。   In the organic EL display device shown in FIG. 7, the upper electrode 210 may be a top emission type using a transparent electrode, or the lower electrode 208 and each electrode of a TFT may be a bottom emission type using a transparent electrode.

<X線センサ>
本発明の一実施形態であるX線センサについて、図9にその一部分の概略断面図を示し、図10にその電気配線の概略構成図を示す。
<X-ray sensor>
FIG. 9 shows a schematic sectional view of a part of an X-ray sensor according to an embodiment of the present invention, and FIG. 10 shows a schematic configuration diagram of its electrical wiring.

本実施形態のX線センサ300は基板12上に形成されたTFT10およびキャパシタ310と、キャパシタ310上に形成された電荷収集用電極302と、X線変換層304と、上部電極306とを備えて構成される。TFT10上にはパッシベーション膜308が設けられている。   The X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed. A passivation film 308 is provided on the TFT 10.

キャパシタ310は、キャパシタ用下部電極312とキャパシタ用上部電極314とで絶縁膜316を挟んだ構造となっている。キャパシタ用上部電極314は絶縁膜316に設けられたコンタクトホール318を介し、TFT10のソース電極16およびドレイン電極18のいずれか一方(図9においてはドレイン電極18)と接続されている。   The capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314. The capacitor upper electrode 314 is connected to one of the source electrode 16 and the drain electrode 18 (the drain electrode 18 in FIG. 9) of the TFT 10 through a contact hole 318 provided in the insulating film 316.

電荷収集用電極302は、キャパシタ310におけるキャパシタ用上部電極314上に設けられており、キャパシタ用上部電極314に接している。
X線変換層304はアモルファスセレンからなる層であり、TFT10およびキャパシタ310を覆うように設けられている。
上部電極306はX線変換層304上に設けられており、X線変換層304に接している。
The charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
The X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
The upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.

図10に示すように、本実施形態のX線センサ300は、互いに平行な複数のゲート配線320と、ゲート配線320と交差する、互いに平行な複数のデータ配線322とを備えている。ここでゲート配線320とデータ配線322は電気的に絶縁されている。ゲート配線320とデータ配線322との交差部付近に、TFT10が備えられている。   As shown in FIG. 10, the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that intersect with the gate wirings 320 and are parallel to each other. Here, the gate wiring 320 and the data wiring 322 are electrically insulated. The TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.

TFT10のゲート電極22は、ゲート配線320に接続されており、TFT10のソース電極16はデータ配線322に接続されている。また、TFT10のドレイン電極18は電荷収集用電極302に接続されており、さらにこの電荷収集用電極302は、キャパシタ310に接続されている。   The gate electrode 22 of the TFT 10 is connected to the gate wiring 320, and the source electrode 16 of the TFT 10 is connected to the data wiring 322. The drain electrode 18 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.

本実施形態のX線センサ300において、X線は図9中、上部電極306側から入射してX線変換層304で電子−正孔対を生成する。X線変換層304に上部電極306によって高電界を印加しておくことにより、生成した電荷はキャパシタ310に蓄積され、TFT10を順次走査することによって読み出される。   In the X-ray sensor 300 of this embodiment, X-rays enter from the upper electrode 306 side in FIG. 9 and generate electron-hole pairs in the X-ray conversion layer 304. By applying a high electric field to the X-ray conversion layer 304 by the upper electrode 306, the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.

なお、上記実施形態の液晶表示装置100、有機EL表示装置200、及びX線センサ300においては、トップゲート構造のTFTを備えるものとしたが、TFTはこれに限定されず、図2〜図4に示す構造のTFTであってもよい。   In the liquid crystal display device 100, the organic EL display device 200, and the X-ray sensor 300 of the above embodiment, a TFT having a top gate structure is provided. However, the TFT is not limited to this, and FIGS. A TFT having the structure shown in FIG.

以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。尚、本実施例においては、実施例3、4を参考例3、4に読み替えるものとする。 Examples will be described below, but the present invention is not limited to these examples. In this embodiment, Embodiments 3 and 4 are replaced with Reference Examples 3 and 4.

<実施例1>
以下のような試料を作製し、評価を行った。
硝酸インジウム(In(NO)・xHO、4N,高純度化学研究所社製)を2−メトキシエタノール(試薬特級、和光純薬工業社製)中に溶解させ、0.1mol/Lの濃度の硝酸インジウム溶液を作製した。
<Example 1>
The following samples were prepared and evaluated.
Indium nitrate (In (NO 3 ) 3 ) · xH 2 O, 4N, manufactured by High Purity Chemical Laboratory Co., Ltd.) was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.), and 0.1 mol / An indium nitrate solution having a concentration of L was prepared.

基板として熱酸化膜付p型シリコン基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。
熱酸化膜付p型シリコン 1inch□基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。
A simple TFT using a p-type silicon substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated.
The prepared indium nitrate solution was spin-coated on a p-type silicon 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.

得られた金属酸化物前駆体膜を、下記条件で金属酸化物膜への転化を行った。
紫外線照射装置としては低圧水銀ランプを備えたVUVドライプロセッサ(オーク製作所社製、VUE−3400−F)を用いた。
The obtained metal oxide precursor film was converted into a metal oxide film under the following conditions.
As the ultraviolet irradiation device, a VUV dry processor (VUE-3400-F, manufactured by Oak Manufacturing Co., Ltd.) equipped with a low-pressure mercury lamp was used.

基板上に金属酸化物前駆体膜を形成した試料を、装置内の表面温度160℃に加熱されたホットプレート上にセットした後、5分間待機した。この間、装置処理室内に50L/minの窒素をフローさせることで、処理室内の酸素濃度を50ppm以下に保持した。
なお、装置処理室内の酸素濃度は酸素濃度計(横河電機社製、OX100)を使用して測定した。
The sample in which the metal oxide precursor film was formed on the substrate was set on a hot plate heated to a surface temperature of 160 ° C. in the apparatus, and then waited for 5 minutes. During this time, the oxygen concentration in the processing chamber was kept at 50 ppm or less by flowing 50 L / min of nitrogen into the apparatus processing chamber.
The oxygen concentration in the apparatus treatment chamber was measured using an oxygen concentration meter (Yokogawa Electric Corporation, OX100).

5分間の待機後、装置内のシャッターを開け、90分間、160℃の加熱処理下での紫外線照射処理を行うことで金属酸化物半導体膜を得た。加熱処理下での紫外線照射処理の間、50L/minの窒素を常にフローさせた。また、試料位置での波長254nmの紫外線照度を、紫外線光量計(オーク製作所社製、UV−M10、受光器UV−25)を用いて測定したところ、20mW/cmであった。 After waiting for 5 minutes, the shutter in the apparatus was opened, and a metal oxide semiconductor film was obtained by performing an ultraviolet irradiation treatment under a heat treatment at 160 ° C. for 90 minutes. During the ultraviolet irradiation treatment under the heat treatment, 50 L / min of nitrogen was always flowed. Moreover, it was 20 mW / cm < 2 > when the ultraviolet illuminance of wavelength 254nm in a sample position was measured using the ultraviolet light meter (Oak Manufacturing Co., Ltd. make, UV-M10, light receiver UV-25).

上記得られた金属酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極の成膜はメタルマスクを用いたパターン成膜により行い、Tiを50nmの厚さに成膜した。ソース・ドレイン電極サイズは各々1mm□とし、電極間距離は0.2mmとした。   A source / drain electrode was formed on the metal oxide semiconductor film obtained above by vapor deposition. The source / drain electrodes were formed by pattern formation using a metal mask, and Ti was formed to a thickness of 50 nm. The source / drain electrode size was 1 mm □, and the distance between the electrodes was 0.2 mm.

<実施例2,3、比較例1,2>
(紫外線照射時の酸素濃度を変更した実施例、比較例)
実施例1と同様の手法で、窒素の流量を変化させて簡易型TFTを作製した。
実施例2,3及び比較例1,2のいずれの条件においても、5分間の待機中に処理室内の酸素濃度は略一定となった。尚、酸素濃度によって膜面に照射されるUV光の照度が変化しないよう、UVランプと基板との間の距離を変化させ、雰囲気中の酸素濃度のみが異なる条件で各試料を作製した。
<Examples 2 and 3, Comparative Examples 1 and 2>
(Examples and comparative examples in which the oxygen concentration during UV irradiation was changed)
A simple TFT was manufactured by changing the flow rate of nitrogen in the same manner as in Example 1.
In any of the conditions of Examples 2 and 3 and Comparative Examples 1 and 2, the oxygen concentration in the processing chamber became substantially constant during the standby for 5 minutes. In addition, each sample was produced on the conditions from which only the oxygen concentration in atmosphere changed, changing the distance between a UV lamp and a board | substrate so that the illumination intensity of UV light irradiated to a film surface may not change with oxygen concentration.

表1に実施例1〜3、比較例1、2における紫外線照射時の窒素流量と処理室内の酸素濃度を示す。   Table 1 shows the nitrogen flow rate and the oxygen concentration in the processing chamber during ultraviolet irradiation in Examples 1 to 3 and Comparative Examples 1 and 2.

[評価]
(トランジスタ特性)
上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性V−Iの測定を行った。
−I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を−15V〜+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
図11に、実施例1〜3で作製した簡易型TFTのV−I特性を示す。また、表2に実施例、比較例におけるV−I特性から求めた線形移動度を示す。
[Evaluation]
(Transistor characteristics)
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics V g -I d.
Measurement of V g -I d characteristics, the drain voltage (V d) is fixed to + 1V, the gate voltage (V g) is changed within the range of -15V~ + 15V, the drain current at gate voltages (I d) It was performed by measuring.
Figure 11 shows, V g -I d characteristics of the simplified type TFT prepared in Example 1-3. Also, shown in Example in Table 2, the linear mobility was determined from the V g -I d characteristic in Comparative Example.

加熱処理下での紫外線照射処理において、酸素濃度が30000ppm以下であれば、移動度4cm/Vs以上の高い特性が得られ、80000ppm以下であれば移動度1cm/Vs以上の特性が得られた。 In the ultraviolet irradiation treatment under heat treatment, if the oxygen concentration is 30000 ppm or less, high characteristics with a mobility of 4 cm 2 / Vs or more can be obtained, and if it is 80000 ppm or less, characteristics with a mobility of 1 cm 2 / Vs or more can be obtained. It was.

(X線光電子分光分析)
実施例1及び比較例1でそれぞれ作製した金属酸化物膜について、X線光電子分光(XPS)分析を行った。測定装置はULVAC PHI製QUANTERA SXM、測定条件としては、X線源は単色化AlKα(100μmφ、25W、15kV)、分析径100μmφ、光電子取り出し角45℃とした。
(X-ray photoelectron spectroscopy)
X-ray photoelectron spectroscopy (XPS) analysis was performed on the metal oxide films produced in Example 1 and Comparative Example 1, respectively. The measurement apparatus was QUANTERA SXM manufactured by ULVAC PHI. The measurement conditions were an X-ray source of monochromatic AlKα (100 μmφ, 25 W, 15 kV), an analysis diameter of 100 μmφ, and a photoelectron extraction angle of 45 ° C.

図12に実施例1及び比較例1のXPSスペクトル(酸素の1s電子に帰属する、結合エネルギーが525eV〜540eVの範囲)を示す。実施例1に関しては低エネルギー側(530eV付近にピークトップを持つ成分)のピークが相対的に強くなっており、In−O―In結合が主として存在する、緻密な酸化物膜であることがわかる。一方、比較例1に関しては高エネルギー側(532eV付近にピークトップを持つ成分)のピークが相対的に強くなり、In−O−H等が主として存在する、疎な酸化物膜であることがわかる。   FIG. 12 shows XPS spectra of Example 1 and Comparative Example 1 (binding energy belonging to oxygen 1s electrons in a range of 525 eV to 540 eV). Regarding Example 1, the peak on the low energy side (the component having a peak top near 530 eV) is relatively strong, and it can be seen that this is a dense oxide film in which mainly In—O—In bonds exist. . On the other hand, it can be seen that Comparative Example 1 is a sparse oxide film in which the peak on the high energy side (the component having a peak top in the vicinity of 532 eV) is relatively strong and In—O—H or the like mainly exists. .

<実施例4>
(紫外線照射時の基板温度を120℃とした実施例)
以下のような試料を作製し、評価を行った。
硝酸インジウム(In(NO)・xHO、4N,高純度化学研究所社製)を2−メトキシエタノール(試薬特級、和光純薬工業製)中に溶解させ、0.1mol/Lの濃度の硝酸インジウム溶液を作製した。
<Example 4>
(Example in which the substrate temperature at the time of ultraviolet irradiation is 120 ° C.)
The following samples were prepared and evaluated.
Indium nitrate (In (NO 3 ) 3 ) · xH 2 O, 4N, manufactured by High Purity Chemical Laboratory Co., Ltd.) is dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.), 0.1 mol / L An indium nitrate solution having a concentration of 5 was prepared.

基板として熱酸化膜付p型シリコン基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型シリコン 1inch□基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。
得られた金属酸化物前駆体膜を、下記条件で金属酸化物膜への転化を行った。装置としては低圧水銀ランプを備えたVUVドライプロセッサ(オーク製作所社製、VUE−3400−F)を用いた。
A simple TFT using a p-type silicon substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated. The prepared indium nitrate solution was spin-coated on a p-type silicon 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.
The obtained metal oxide precursor film was converted into a metal oxide film under the following conditions. As a device, a VUV dry processor (VUE-3400-F, manufactured by Oak Manufacturing Co., Ltd.) equipped with a low-pressure mercury lamp was used.

試料は装置内の表面温度が120℃に加熱されたホットプレート上にセットした後、5分間待機した。この間、装置処理室内に50L/minの窒素をフローさせることで、処理室内の酸素濃度を50ppm以下にした。
5分間の待機後、装置内のシャッターを開け、90分間、120℃の加熱処理下での紫外線照射処理を行うことで金属酸化物半導体膜を得た。加熱処理下での紫外線照射処理の間、50L/minの窒素を常にフローさせた。試料位置での波長254nmの紫外線照度は、紫外線光量計(オーク製作所社製、UV−M10、受光器UV−25)を用いて測定し、20mW/cmであった。
The sample was set on a hot plate whose surface temperature in the apparatus was heated to 120 ° C., and then waited for 5 minutes. During this time, the oxygen concentration in the processing chamber was reduced to 50 ppm or less by flowing nitrogen of 50 L / min into the processing chamber.
After waiting for 5 minutes, the shutter inside the apparatus was opened, and a metal oxide semiconductor film was obtained by performing an ultraviolet irradiation treatment under a heat treatment at 120 ° C. for 90 minutes. During the ultraviolet irradiation treatment under the heat treatment, 50 L / min of nitrogen was always flowed. The ultraviolet illuminance at a sample position with a wavelength of 254 nm was 20 mW / cm 2 as measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25).

上記得られた金属酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極成膜はメタルマスクを用いたパターン成膜にて作製し、Tiを50nm成膜した。ソース・ドレイン電極サイズは各々1mm□とし、電極間距離は0.2mmとした。   A source / drain electrode was formed on the metal oxide semiconductor film obtained above by vapor deposition. The source / drain electrodes were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm. The source / drain electrode size was 1 mm □, and the distance between the electrodes was 0.2 mm.

[評価]
(トランジスタ特性)
上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性V−Iの測定を行った。
−I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を−15V〜+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
表3に実施例4のV−I特性から求めた線形移動度を示す。
[Evaluation]
(Transistor characteristics)
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics V g -I d.
Measurement of V g -I d characteristics, the drain voltage (V d) is fixed to + 1V, the gate voltage (V g) is changed within the range of -15V~ + 15V, the drain current at gate voltages (I d) It was performed by measuring.
Table 3 shows the linear mobility determined from, V g -I d characteristics of the Example 4.

<実施例5、6>
(InとZn又はGaを含む実施例)
<Examples 5 and 6>
(Example including In and Zn or Ga)

‐実施例5‐
以下のような試料を作製し、評価を行った。
硝酸インジウム(In(NO)・xHO、4N,高純度化学研究所社製)、硝酸亜鉛(Zn(NO・6HO、3N,高純度化学研究所社製)を2−メトキシエタノール(試薬特級、和光純薬工業製)中に溶解させ、硝酸インジウム濃度0.095mol/L、硝酸亜鉛濃度0.005mol/Lの濃度の硝酸インジウム・硝酸亜鉛混合溶液を作製した。
-Example 5-
The following samples were prepared and evaluated.
Indium nitrate (In (NO 3) 3) · xH 2 O, 4N, manufactured by Kojundo Chemical Laboratory Co., Ltd.), zinc nitrate (Zn (NO 3) 2 · 6H 2 O, 3N, manufactured by Kojundo Chemical Laboratory Co., Ltd.) Was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) to prepare an indium nitrate / zinc nitrate mixed solution having an indium nitrate concentration of 0.095 mol / L and a zinc nitrate concentration of 0.005 mol / L. .

基板として熱酸化膜付p型シリコン基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型シリコン 1inch□基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。   A simple TFT using a p-type silicon substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated. The prepared indium nitrate solution was spin-coated on a p-type silicon 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.

得られた金属酸化物前駆体膜を、下記条件で金属酸化物膜への転化を行った。装置としては低圧水銀ランプを備えたVUVドライプロセッサ(オーク製作所社製、VUE−3400−F)を用いた。   The obtained metal oxide precursor film was converted into a metal oxide film under the following conditions. As a device, a VUV dry processor (VUE-3400-F, manufactured by Oak Manufacturing Co., Ltd.) equipped with a low-pressure mercury lamp was used.

試料を装置内の表面温度が160℃に加熱されたホットプレート上にセットした後、5分間待機した。この間、装置処理室内に50L/minの窒素をフローさせることで、処理室内の酸素濃度を50ppm以下にした。   The sample was set on a hot plate heated to a surface temperature of 160 ° C. in the apparatus, and waited for 5 minutes. During this time, the oxygen concentration in the processing chamber was reduced to 50 ppm or less by flowing nitrogen of 50 L / min into the processing chamber.

5分間の待機後、装置内のシャッターを開け、90分間、160℃の加熱処理下での紫外線照射処理を行うことで金属酸化物半導体膜を得た。加熱処理下での紫外線照射処理の間、50L/minの窒素を常にフローさせた。試料位置での波長254nmの紫外線照度は、紫外線光量計(オーク製作所社製、UV−M10、受光器UV−25)を用いて測定し、20mW/cmであった。 After waiting for 5 minutes, the shutter in the apparatus was opened, and a metal oxide semiconductor film was obtained by performing an ultraviolet irradiation treatment under a heat treatment at 160 ° C. for 90 minutes. During the ultraviolet irradiation treatment under the heat treatment, 50 L / min of nitrogen was always flowed. The ultraviolet illuminance at a sample position with a wavelength of 254 nm was 20 mW / cm 2 as measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25).

上記得られた金属酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極成膜はメタルマスクを用いたパターン成膜にて作製し、Tiを50nm成膜した。ソース・ドレイン電極サイズは各々1mm□とし、電極間距離は0.2mmとした。   A source / drain electrode was formed on the metal oxide semiconductor film obtained above by vapor deposition. The source / drain electrodes were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm. The source / drain electrode size was 1 mm □, and the distance between the electrodes was 0.2 mm.

‐実施例6‐
以下のような試料を作製し、評価を行った。
硝酸インジウム(In(NO)・xHO、4N,高純度化学研究所社製)、硝酸ガリウム(Ga(NO・xHO、3N,高純度化学研究所社製)を2−メトキシエタノール(試薬特級、和光純薬工業製)中に溶解させ、硝酸インジウム濃度0.095mol/L、硝酸ガリウム濃度0.005mol/Lの濃度の硝酸インジウム・硝酸ガリウム混合溶液を作製した。
-Example 6-
The following samples were prepared and evaluated.
Indium nitrate (In (NO 3 ) 3 ) · xH 2 O, 4N, manufactured by High Purity Chemical Research Laboratories), gallium nitrate (Ga (NO 3 ) 2 · xH 2 O, 3N, manufactured by High Purity Chemical Research Laboratories) Was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) to prepare an indium nitrate / gallium nitrate mixed solution having an indium nitrate concentration of 0.095 mol / L and a gallium nitrate concentration of 0.005 mol / L. .

基板として熱酸化膜付p型シリコン基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型シリコン 1inch□基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。   A simple TFT using a p-type silicon substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated. The prepared indium nitrate solution was spin-coated on a p-type silicon 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.

得られた金属酸化物前駆体膜を、下記条件で金属酸化物膜への転化を行った。装置としては低圧水銀ランプを備えたVUVドライプロセッサ(オーク製作所社製、VUE−3400−F)を用いた。   The obtained metal oxide precursor film was converted into a metal oxide film under the following conditions. As a device, a VUV dry processor (VUE-3400-F, manufactured by Oak Manufacturing Co., Ltd.) equipped with a low-pressure mercury lamp was used.

試料を装置内の表面温度が160℃に加熱されたホットプレート上にセットした後、5分間待機した。この間、装置処理室内に50L/minの窒素をフローさせることで、処理室内の酸素濃度を50ppm以下にした。   The sample was set on a hot plate heated to a surface temperature of 160 ° C. in the apparatus, and waited for 5 minutes. During this time, the oxygen concentration in the processing chamber was reduced to 50 ppm or less by flowing nitrogen of 50 L / min into the processing chamber.

5分間の待機後、装置内のシャッターを開け、90分間、160℃の加熱処理下での紫外線照射処理を行うことで金属酸化物半導体膜を得た。加熱処理下での紫外線照射処理の間、50L/minの窒素を常にフローさせた。試料位置での波長254nmの紫外線照度は、紫外線光量計(オーク製作所社製、UV−M10、受光器UV−25)を用いて測定し、20mW/cmであった。 After waiting for 5 minutes, the shutter in the apparatus was opened, and a metal oxide semiconductor film was obtained by performing an ultraviolet irradiation treatment under a heat treatment at 160 ° C. for 90 minutes. During the ultraviolet irradiation treatment under the heat treatment, 50 L / min of nitrogen was always flowed. The ultraviolet illuminance at a sample position with a wavelength of 254 nm was 20 mW / cm 2 as measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25).

上記得られた金属酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極成膜はメタルマスクを用いたパターン成膜にて作製し、Tiを50nm成膜した。ソース・ドレイン電極サイズは各々1mm□とし、電極間距離は0.2mmとした。   A source / drain electrode was formed on the metal oxide semiconductor film obtained above by vapor deposition. The source / drain electrodes were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm. The source / drain electrode size was 1 mm □, and the distance between the electrodes was 0.2 mm.

[評価]
(トランジスタ特性)
上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性V−Iの測定を行った。
−I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を−15V〜+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
表4に実施例5,6のV−I特性から求めた線形移動度を示す。
[Evaluation]
(Transistor characteristics)
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics V g -I d.
Measurement of V g -I d characteristics, the drain voltage (V d) is fixed to + 1V, the gate voltage (V g) is changed within the range of -15V~ + 15V, the drain current at gate voltages (I d) It was performed by measuring.
Table 4 shows the linear mobility determined from, V g -I d characteristics of the fifth and sixth embodiments.

<実施例7>
(紫外線照射中に昇温させた実施例)
以下のような試料を作製し、評価を行った。
硝酸インジウム(In(NO)・xHO、4N,高純度化学研究所製)を2−メトキシエタノール(試薬特級、和光純薬工業製)中に溶解させ、0.1mol/Lの濃度の硝酸インジウム溶液を作製した。
<Example 7>
(Example in which the temperature was raised during UV irradiation)
The following samples were prepared and evaluated.
Indium nitrate (In (NO 3 ) 3 ) · xH 2 O, 4N, manufactured by High Purity Chemical Laboratory) was dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries), and 0.1 mol / L A concentrated indium nitrate solution was prepared.

基板として熱酸化膜付p型シリコン基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型シリコン 1inch□基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。
得られた金属酸化物前駆体膜を、下記条件で金属酸化物膜への転化を行った。装置としては低圧水銀ランプを備えたVUVドライプロセッサ(オーク製作所社製、VUE−3400−F)を用いた。
A simple TFT using a p-type silicon substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated. The prepared indium nitrate solution was spin-coated on a p-type silicon 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.
The obtained metal oxide precursor film was converted into a metal oxide film under the following conditions. As a device, a VUV dry processor (VUE-3400-F, manufactured by Oak Manufacturing Co., Ltd.) equipped with a low-pressure mercury lamp was used.

試料を装置内の表面温度が124℃に加熱されたホットプレート上にセットした後、5分間待機した。この間、装置処理室内に50L/minの窒素をフローさせることで、処理室内の酸素濃度を50ppm以下にした。   The sample was set on a hot plate heated to a surface temperature of 124 ° C. in the apparatus, and waited for 5 minutes. During this time, the oxygen concentration in the processing chamber was reduced to 50 ppm or less by flowing nitrogen of 50 L / min into the processing chamber.

5分間の待機後、装置内のシャッターを開け、0.4℃/minの昇温速度で90分間、紫外線照射処理を行うことで金属酸化物半導体膜を得た。(90分後に160℃に到達した)加熱処理下での紫外線照射処理の間、50L/minの窒素を常にフローさせた。試料位置での波長254nmの紫外線照度は、紫外線光量計(オーク製作所製、UV−M10、受光器UV−25)を用いて測定し、20mW/cmであった。 After waiting for 5 minutes, the shutter inside the apparatus was opened, and a metal oxide semiconductor film was obtained by performing ultraviolet irradiation treatment at a temperature rising rate of 0.4 ° C./min for 90 minutes. During the ultraviolet irradiation treatment under the heat treatment (which reached 160 ° C. after 90 minutes), 50 L / min of nitrogen was constantly flowed. The ultraviolet illuminance at a sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25), and was 20 mW / cm 2 .

上記得られた金属酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極成膜はメタルマスクを用いたパターン成膜にて作製し、Tiを50nm成膜した。ソース・ドレイン電極サイズは各々1mm□とし、電極間距離は0.2mmとした。   A source / drain electrode was formed on the metal oxide semiconductor film obtained above by vapor deposition. The source / drain electrodes were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm. The source / drain electrode size was 1 mm □, and the distance between the electrodes was 0.2 mm.

<実施例8>
(紫外線照射開始時の基板温度と紫外線照射中の昇温速度を変更した実施例)
実施例7において紫外線照射処理開始時の基板温度を79℃、紫外線照射中の昇温速度0.9℃/min(紫外線照射時間:90分間、紫外線照射処理終了時温度:160℃)にそれぞれ変更したこと以外は実施例7と同様の手法で金属酸化物半導体膜を作製し、簡易型TFTを作製した。
<Example 8>
(Example in which the substrate temperature at the start of UV irradiation and the temperature increase rate during UV irradiation were changed)
In Example 7, the substrate temperature at the start of the ultraviolet irradiation treatment was changed to 79 ° C., and the heating rate during the ultraviolet irradiation was 0.9 ° C./min (ultraviolet irradiation time: 90 minutes, temperature at the end of the ultraviolet irradiation treatment: 160 ° C.). Except for the above, a metal oxide semiconductor film was produced in the same manner as in Example 7 to produce a simple TFT.

[評価]
(トランジスタ特性)
上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性V−Iの測定を行った。
−I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を−15V〜+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
[Evaluation]
(Transistor characteristics)
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics V g -I d.
Measurement of V g -I d characteristics, the drain voltage (V d) is fixed to + 1V, the gate voltage (V g) is changed within the range of -15V~ + 15V, the drain current at gate voltages (I d) It was performed by measuring.

図13に実施例7、8で作製した簡易型TFTのV−I特性を示す。また、表5に実施例7、8の金属酸化物半導体膜(活性層)の転化工程における紫外線照射処理開始温度及び昇温速度、並びにV−I特性から求めた線形移動度を示す。 It shows a, V g -I d characteristics of the simplified type TFT prepared in Example 7 and 8 in FIG. 13. Also shows the linear mobility was calculated from the ultraviolet irradiation treatment initiation temperature and heating rate, as well as V g -I d characteristic in the conversion step of the metal oxide semiconductor film of Examples 7 and 8 (the active layer) shown in Table 5.

<比較例3>
(紫外線照射を行わない比較例)
以下のような試料を作製し、評価を行った。
硝酸インジウム(In(NO)・xHO、4N,高純度化学研究所社製)を2−メトキシエタノール(試薬特級、和光純薬工業製)中に溶解させ、0.1mol/Lの濃度の硝酸インジウム溶液を作製した。
<Comparative Example 3>
(Comparative example without UV irradiation)
The following samples were prepared and evaluated.
Indium nitrate (In (NO 3 ) 3 ) · xH 2 O, 4N, manufactured by High Purity Chemical Laboratory Co., Ltd.) is dissolved in 2-methoxyethanol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.), 0.1 mol / L An indium nitrate solution having a concentration of 5 was prepared.

基板として熱酸化膜付p型シリコン基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型シリコン 1inch□基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。
得られた金属酸化物前駆体膜を、下記条件で金属酸化物膜への転化を行った。装置としては低圧水銀ランプを備えたVUVドライプロセッサ(オーク製作所社製、VUE−3400−F)を用いた。
A simple TFT using a p-type silicon substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated. The prepared indium nitrate solution was spin-coated on a p-type silicon 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.
The obtained metal oxide precursor film was converted into a metal oxide film under the following conditions. As a device, a VUV dry processor (VUE-3400-F, manufactured by Oak Manufacturing Co., Ltd.) equipped with a low-pressure mercury lamp was used.

試料を装置内の表面温度が160℃に加熱されたホットプレート上にセットした後、5分間待機した。この間、装置処理室内に50L/minの窒素をフローさせることで、処理室内の酸素濃度を50ppm以下にした。   The sample was set on a hot plate heated to a surface temperature of 160 ° C. in the apparatus, and waited for 5 minutes. During this time, the oxygen concentration in the processing chamber was reduced to 50 ppm or less by flowing nitrogen of 50 L / min into the processing chamber.

5分間の待機後、装置内のシャッターを開けずに、90分間、160℃の加熱処理を行った。加熱処理の間、50L/minの窒素を常にフローさせた。試料位置での波長254nmの紫外線照度は、紫外線光量計(オーク製作所社製、UV−M10、受光器UV−25)を用いて測定し、0.1mW/cm以下であった。 After waiting for 5 minutes, a heat treatment was performed at 160 ° C. for 90 minutes without opening the shutter in the apparatus. During the heat treatment, 50 L / min of nitrogen was constantly flowed. The ultraviolet illuminance at a sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25), and was 0.1 mW / cm 2 or less.

上記得られた金属酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極成膜はメタルマスクを用いたパターン成膜にて作製し、Tiを50nm成膜した。ソース・ドレイン電極サイズは各々1mm□とし、電極間距離は0.2mmとした。   A source / drain electrode was formed on the metal oxide semiconductor film obtained above by vapor deposition. The source / drain electrodes were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm. The source / drain electrode size was 1 mm □, and the distance between the electrodes was 0.2 mm.

[評価]
(トランジスタ特性)
上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性V−Iの測定を行った。
−I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)をー15V〜+15Vの範囲内で変化させ、各ゲート電圧におけるドレイン電流(I)を測定することにより行った。
比較例3に関してはトランジスタ動作が確認されなかった。
[Evaluation]
(Transistor characteristics)
For simplified TFT obtained above, using a semiconductor parameter analyzer 4156C (manufactured by Agilent Technologies), it was measured transistor characteristics V g -I d.
Measurement of V g -I d characteristics, the drain voltage (V d) is fixed to + 1V, the gate voltage (V g) is changed within the range of over 15V~ + 15V, the drain current at gate voltages (I d) It was performed by measuring.
As for Comparative Example 3, transistor operation was not confirmed.

10,30,40,50 薄膜トランジスタ
12 基板
14 活性層(酸化物半導体層)
16 ソース電極
18 ドレイン電極
20 ゲート絶縁膜
22 ゲート電極
100 液晶表示装置
200 有機EL表示装置
300 X線センサ
10, 30, 40, 50 Thin film transistor 12 Substrate 14 Active layer (oxide semiconductor layer)
16 Source electrode 18 Drain electrode 20 Gate insulating film 22 Gate electrode 100 Liquid crystal display device 200 Organic EL display device 300 X-ray sensor

Claims (12)

溶媒及び金属成分として少なくともインジウムを含む溶液を基板上に塗布して金属酸化物前駆体膜を形成する前駆体膜形成工程と、
前記金属酸化物前駆体膜を加熱した状態で、酸素濃度が0000ppm以下の雰囲気下で波長が300nm以下の紫外線を20mW/cm 以上500mW/cm 以下の照度で紫外線照射を行うことにより前記金属酸化物前駆体膜を金属酸化物膜に転化させる転化工程と、
を有し、
前記転化工程における基板の温度を160℃以上200℃未満に保持する金属酸化物膜の製造方法。
A precursor film forming step of forming a metal oxide precursor film by applying a solution containing at least indium as a solvent and a metal component on a substrate;
While heating said metal oxide precursor film, said by oxygen concentration wavelength under the following atmosphere 3 0000Ppm with ultraviolet irradiation of UV light below 300nm at 20 mW / cm 2 or more 500 mW / cm 2 or less of illuminance A conversion step of converting the metal oxide precursor film into a metal oxide film;
I have a,
The manufacturing method of the metal oxide film which keeps the temperature of the board | substrate in the said conversion process at 160 degreeC or more and less than 200 degreeC .
前記溶液に含まれるインジウムがインジウムイオンである請求項1に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to claim 1, wherein indium contained in the solution is indium ions. 前記溶液が、硝酸イオンを含む請求項1又は請求項に記載の金属酸化物膜の製造方法。 It said solution method for producing a metal oxide film according to claim 1 or claim 2 comprising a nitrate ion. 前記紫外線照射中の前記基板が昇温又は降温する速度を±0.5℃/min以内にする請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 3 , wherein a rate at which the substrate is heated or lowered during irradiation with ultraviolet rays is within ± 0.5 ° C / min. 前記溶液に含まれる金属成分の50atom%以上がインジウムである請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 Method for producing a metal oxide film according to any one of claims 1 to 4 or 50 atom% of the metal component contained in the solution is indium. 前記溶液が、少なくとも硝酸インジウムを溶解させた溶液である請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 5 , wherein the solution is a solution in which at least indium nitrate is dissolved. 前記溶液が、亜鉛、錫、ガリウム及びアルミニウムから選ばれる少なくとも1種の金属成分をさらに含む請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 6 , wherein the solution further contains at least one metal component selected from zinc, tin, gallium, and aluminum. 前記溶媒が、メタノール、メトキシエタノール、又は水である請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 The solvent, methanol, methoxyethanol, or method for producing a metal oxide film according to any one of claims 1 to 7 is water. 前記溶液中の金属成分の濃度が、0.01mol/L以上1.0mol/L以下である請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 8 , wherein the concentration of the metal component in the solution is 0.01 mol / L or more and 1.0 mol / L or less. 前記紫外線照射に用いる光源が、低圧水銀ランプである請求項1〜請求項のいずれか1項に記載の金属酸化物膜の製造方法。 The method for producing a metal oxide film according to any one of claims 1 to 9 , wherein a light source used for the ultraviolet irradiation is a low-pressure mercury lamp. 前記前駆体膜形成工程は、前記溶液を前記基板上に塗布し、前記基板を35℃以上100℃以下に加熱して乾燥させることにより前記金属酸化物前駆体膜を形成する請求項1〜請求項1のいずれか1項に記載の金属酸化物膜の製造方法。 The said precursor film | membrane formation process forms the said metal oxide precursor film | membrane by apply | coating the said solution on the said board | substrate, heating the said board | substrate to 35 degreeC or more and 100 degrees C or less and drying. method for producing a metal oxide film according to any one of clauses 1 0. 前記前駆体膜形成工程において、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも1種の塗布法により、前記溶液を前記基板上に塗布する請求項1〜請求項1のいずれか1項に記載の金属酸化物膜の製造方法。 The said precursor film | membrane formation process WHEREIN: The said solution is apply | coated on the said board | substrate by the at least 1 sort (s) of application method selected from the inkjet method, the dispenser method, the relief printing method, and the intaglio printing method. 2. The method for producing a metal oxide film according to any one of 1 above.
JP2014038995A 2014-02-28 2014-02-28 Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device Active JP6177711B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014038995A JP6177711B2 (en) 2014-02-28 2014-02-28 Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device
PCT/JP2014/079770 WO2015129104A1 (en) 2014-02-28 2014-11-10 Method for manufacturing metal-oxide film, metal-oxide film, thin-film transistor, and electronic device
KR1020167014757A KR101884100B1 (en) 2014-02-28 2014-11-10 Method for manufacturing metal-oxide film, metal-oxide film, thin-film transistor, and electronic device
TW103143397A TWI648795B (en) 2014-02-28 2014-12-12 Method of producing metal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038995A JP6177711B2 (en) 2014-02-28 2014-02-28 Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device

Publications (2)

Publication Number Publication Date
JP2015162667A JP2015162667A (en) 2015-09-07
JP6177711B2 true JP6177711B2 (en) 2017-08-09

Family

ID=54008449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038995A Active JP6177711B2 (en) 2014-02-28 2014-02-28 Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device

Country Status (4)

Country Link
JP (1) JP6177711B2 (en)
KR (1) KR101884100B1 (en)
TW (1) TWI648795B (en)
WO (1) WO2015129104A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828293B2 (en) 2015-09-15 2021-02-10 株式会社リコー A coating liquid for forming an n-type oxide semiconductor film, a method for producing an n-type oxide semiconductor film, and a method for producing a field-effect transistor.
JP2019057698A (en) * 2017-09-22 2019-04-11 株式会社Screenホールディングス Thin film formation method and thin film formation device
CN110310894B (en) * 2019-07-05 2022-11-25 山东大学 Method for preparing indium-aluminum-zinc oxide thin film transistor in low-temperature environment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644111B2 (en) * 2007-12-26 2014-12-24 コニカミノルタ株式会社 METAL OXIDE SEMICONDUCTOR AND ITS MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, THIN FILM TRANSISTOR
JP2010258057A (en) * 2009-04-22 2010-11-11 Konica Minolta Holdings Inc Metal oxide semiconductor, method of manufacturing the same, and thin film transistor using the same
CN103177969A (en) * 2013-02-26 2013-06-26 上海大学 Preparation method of metallic oxide thin film transistor

Also Published As

Publication number Publication date
TWI648795B (en) 2019-01-21
JP2015162667A (en) 2015-09-07
TW201533805A (en) 2015-09-01
KR20160083056A (en) 2016-07-11
WO2015129104A1 (en) 2015-09-03
KR101884100B1 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6117124B2 (en) Oxide semiconductor film and manufacturing method thereof
JP6180908B2 (en) Metal oxide semiconductor film, thin film transistor, display device, image sensor and X-ray sensor
JP6181306B2 (en) Method for producing metal oxide film
US9779938B2 (en) Metal oxide thin film, method of producing same, and coating solution for forming metal oxide thin film used in said method
JP6246952B2 (en) Method for manufacturing oxide protective film, and method for manufacturing thin film transistor
JP6096102B2 (en) Method for producing metal oxide semiconductor film
JP6177711B2 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, and electronic device
JP6061831B2 (en) Method for producing metal oxide film and method for producing thin film transistor
JP6271760B2 (en) Method for producing metal oxide film and method for producing thin film transistor
JP6257799B2 (en) Metal oxide semiconductor film, thin film transistor, and electronic device
JP6086854B2 (en) Metal oxide film manufacturing method, metal oxide film, thin film transistor, display device, image sensor, and X-ray sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250