JP6177680B2 - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
JP6177680B2
JP6177680B2 JP2013259494A JP2013259494A JP6177680B2 JP 6177680 B2 JP6177680 B2 JP 6177680B2 JP 2013259494 A JP2013259494 A JP 2013259494A JP 2013259494 A JP2013259494 A JP 2013259494A JP 6177680 B2 JP6177680 B2 JP 6177680B2
Authority
JP
Japan
Prior art keywords
air electrode
intermediate layer
solid electrolyte
electrode intermediate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013259494A
Other languages
Japanese (ja)
Other versions
JP2015118741A (en
Inventor
佃 洋
洋 佃
重徳 末森
重徳 末森
樋渡 研一
研一 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013259494A priority Critical patent/JP6177680B2/en
Publication of JP2015118741A publication Critical patent/JP2015118741A/en
Application granted granted Critical
Publication of JP6177680B2 publication Critical patent/JP6177680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本開示は、固体電解質燃料電池に関する。   The present disclosure relates to solid electrolyte fuel cells.

固体電解質燃料電池は、一般的に、空気極、固体電解質及び燃料極が積層された構造を有する。
そして、空気極と固体電解質との間で起こる電池反応をスムーズに進行させるため、すなわち空気極と固体電解質との間の接触抵抗を低減させて燃料電池の出力性能を向上させるため、空気極と電解質との間に中間層を設ける構成が提案されている。
例えば、特許文献1には、空気極が、固体電解質膜上に形成される空気極中間層と、該空気極中間層上に形成される空気極導電層とを含む積層構造を有し、空気極中間層はSm1−xCe(但し、0.8≦x≦0.9)で表されるセリア化合物を主成分とし、空気極導電層は、La(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(但し、y>1、0.4≦a≦0.8、0.4≦b≦0.8)で表され、Mnのモル数に対するLa,Sr及びCaのモル数の合計の比が0.92以上0.98以下とされるペロブスカイト型酸化物を主成分とする固体電解質型燃料電池が記載されている。
そして、特許文献1には、上述の固体電解質型燃料電池は焼結により製造することができ、空気極導電層中の遊離Mnが焼結時に空気極中間層に拡散することで空気極中間層中に電子導電性の高いSmMnOが形成されるため、このような空気極を備える固体電解質型燃料電池において固体電解質膜と空気極との間の界面における接触抵抗が低減され、発電性能が向上することが記載されている。
A solid electrolyte fuel cell generally has a structure in which an air electrode, a solid electrolyte, and a fuel electrode are stacked.
In order to smoothly advance the cell reaction that occurs between the air electrode and the solid electrolyte, that is, to reduce the contact resistance between the air electrode and the solid electrolyte and improve the output performance of the fuel cell, A configuration in which an intermediate layer is provided between the electrolyte and the electrolyte has been proposed.
For example, Patent Document 1 has a laminated structure in which an air electrode includes an air electrode intermediate layer formed on a solid electrolyte membrane and an air electrode conductive layer formed on the air electrode intermediate layer. The polar intermediate layer is mainly composed of a ceria compound represented by Sm 1-x Ce x O 2 (where 0.8 ≦ x ≦ 0.9), and the air electrode conductive layer is La (a + b) / 2 Sr ( 1-a) / 2 Ca (1-b) / 2 Mn y O 3 (where y> 1, 0.4 ≦ a ≦ 0.8, 0.4 ≦ b ≦ 0.8), Mn A solid oxide fuel cell mainly composed of a perovskite oxide having a ratio of the total number of moles of La, Sr and Ca to the number of moles of 0.92 to 0.98 is described.
Patent Document 1 discloses that the above-described solid oxide fuel cell can be manufactured by sintering, and free Mn in the air electrode conductive layer diffuses into the air electrode intermediate layer during sintering, so that the air electrode intermediate layer Since SmMnO 3 with high electronic conductivity is formed inside, in the solid oxide fuel cell having such an air electrode, the contact resistance at the interface between the solid electrolyte membrane and the air electrode is reduced, and the power generation performance is improved. It is described to do.

特開2013−140737JP2013-140737A

上述のように、空気極中間層において適度な量のSmMnOが存在すると、固体電解質膜と空気極との間の界面における接触抵抗が低減されて発電性能が向上すると考えられる。
しかしながら、本発明者らは、適度な量のSmMnOを含む空気中間層を有する固体電解質燃料電池(例えば特許文献1に記載の上述の固体電解質型燃料電池)で発電を続けると、時間が経過するにつれて固体電解質膜と空気極との間の界面における接触抵抗が増加し、かえって発電性能が低下することを見出した。
本発明者らの検討によれば、この理由は以下のように考えられる。
適度な量のSmMnOを含む空気中間層を有する固体電解質燃料電池(例えば特許文献1に記載の上述の固体電解質型燃料電池)を用いて発電を行うと、発電開始時には空気極中間層の中に適度な量のSmMnOが存在するため、発電性能は良好である。しかし、発電を続けていくと、空気極導電層中のMnが空気極中間層の中に拡散していき、拡散したMnはSmMnOを形成するため、空気極中間層中のSmMnO量が増加するとともに、Sm0.2Ce0.8(SDC)中のSm量が減少し、SDCのイオン伝導性が低下する。そして、適正な範囲を超えた量のSmMnOが空気極中間層内に存在すると、固体電解質膜と空気極との間の界面における接触抵抗が増加する。このようにして、発電中に空気極中間層が変質することにより、発電性能が低下すると考えられる。
As described above, when an appropriate amount of SmMnO 3 is present in the air electrode intermediate layer, it is considered that the contact resistance at the interface between the solid electrolyte membrane and the air electrode is reduced and power generation performance is improved.
However, when the inventors continue power generation in a solid electrolyte fuel cell having an air intermediate layer containing an appropriate amount of SmMnO 3 (for example, the above-described solid electrolyte fuel cell described in Patent Document 1), time elapses. As a result, it has been found that the contact resistance at the interface between the solid electrolyte membrane and the air electrode increases, and the power generation performance decreases.
According to the study by the present inventors, this reason is considered as follows.
When power generation is performed using a solid electrolyte fuel cell having an air intermediate layer containing an appropriate amount of SmMnO 3 (for example, the above-described solid electrolyte fuel cell described in Patent Document 1), since the moderate amount of SmMnO 3 present in the power generation performance is good. However, as power generation continues, Mn in the air electrode conductive layer diffuses into the air electrode intermediate layer, and the diffused Mn forms SmMnO 3 , so that the amount of SmMnO 3 in the air electrode intermediate layer increases. As it increases, the amount of Sm in Sm 0.2 Ce 0.8 O 2 (SDC) decreases, and the ionic conductivity of SDC decreases. When the amount of SmMnO 3 exceeding the proper range is present in the air electrode intermediate layer, the contact resistance at the interface between the solid electrolyte membrane and the air electrode increases. In this way, it is considered that the power generation performance deteriorates due to the alteration of the air electrode intermediate layer during power generation.

本発明の少なくとも一実施形態の目的は、空気極と固体電解質との間の界面における接触抵抗が発電中に増加するのを抑制し得る固体電解質燃料電池を提供することである。   An object of at least one embodiment of the present invention is to provide a solid electrolyte fuel cell that can suppress an increase in contact resistance at an interface between an air electrode and a solid electrolyte during power generation.

本発明は本発明者らの上記知見に基づくものであり、
本発明の少なくとも一実施形態に係る固体電解質燃料電池は、
固体電解質膜と、前記固体電解質膜に積層される空気極とを備え、
前記空気極は、前記固体電解質膜側に設けられる空気極中間層と、前記固体電解質膜とは反対側に設けられる空気極導電層とを備え、
前記空気極導電層は、(La0.5Sr0.25Ca0.25MnO(ただし、0.98<x≦1.0である。)を含有する材料により構成され、
前記空気極中間層は、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する材料により構成される第1空気極中間層を少なくとも含む。
The present invention is based on the above findings of the present inventors,
A solid electrolyte fuel cell according to at least one embodiment of the present invention includes:
A solid electrolyte membrane, and an air electrode laminated on the solid electrolyte membrane,
The air electrode includes an air electrode intermediate layer provided on the solid electrolyte membrane side, and an air electrode conductive layer provided on the opposite side of the solid electrolyte membrane,
The air electrode conductive layer is made of a material containing (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where 0.98 <x ≦ 1.0),
The air electrode intermediate layer includes at least a first air electrode intermediate layer made of a material containing 30 to 95 mol% of Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% of SmMnO 3 .

上記実施形態に係る固体電解質燃料電池においては、第1空気極中間層は、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する材料により構成される。すなわち、空気極中間層そのものが、電子導電性の高いSmMnOを適量含有する材料によって構成される。このため、例えば従来技術(例えば特許文献1)のように、焼結時や発電時に空気極導電層から拡散したMnが空気極中間層においてSmMnOを形成しなくても、空気極中間層の電子導電性を適切な範囲にすることができる。
また、上記固体電解質燃料電池において、空気極導電層は、(La0.5Sr0.25Ca0.25MnO(ただし、0.98<x≦1.0である。)を含有する材料により構成される。すなわち、空気極導電層において、ペロブスカイト構造のAサイトを構成するLa、Sr及びCaに対して過剰なMnの量を従来(例えば、特許文献1においては0.92≦x≦0.98)に比べて減少させている。このため、空気極導電層に含まれるMnの空気極中間層への拡散が抑制され、空気極中間層においてSmMnOが生成され難くなり、空気極中間層のSmMnOの量を適切な範囲で維持できるので、固体電解質膜と空気極との間の界面における接触抵抗を最適な範囲に維持することができる。
したがって、上記実施形態に係る固体電解質燃料電池によれば、空気極と固体電解質との間の接触抵抗が発電中に増加するのが抑制され、固体電解質燃料電池の発電性能が低下しにくくなる。
In the solid electrolyte fuel cell according to the above embodiment, the first air electrode intermediate layer is made of a material containing 30 to 95 mol% Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% SmMnO 3. Composed. That is, the air electrode intermediate layer itself is made of a material containing an appropriate amount of SmMnO 3 having high electronic conductivity. For this reason, even if Mn diffused from the air electrode conductive layer during sintering or power generation does not form SmMnO 3 in the air electrode intermediate layer, for example, as in the prior art (for example, Patent Document 1), The electronic conductivity can be in an appropriate range.
In the solid electrolyte fuel cell, the air electrode conductive layer contains (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where 0.98 <x ≦ 1.0). It is comprised by the material to do. That is, in the air electrode conductive layer, an excessive amount of Mn with respect to La, Sr and Ca constituting the A site of the perovskite structure is conventionally (eg, 0.92 ≦ x ≦ 0.98 in Patent Document 1). Compared to decrease. For this reason, diffusion of Mn contained in the air electrode conductive layer to the air electrode intermediate layer is suppressed, and it is difficult to generate SmMnO 3 in the air electrode intermediate layer, and the amount of SmMnO 3 in the air electrode intermediate layer is within an appropriate range. Therefore, the contact resistance at the interface between the solid electrolyte membrane and the air electrode can be maintained in an optimum range.
Therefore, according to the solid electrolyte fuel cell according to the above-described embodiment, the contact resistance between the air electrode and the solid electrolyte is suppressed from increasing during power generation, and the power generation performance of the solid electrolyte fuel cell is unlikely to deteriorate.

幾つかの実施形態では、前記空気極中間層の膜厚は3〜30μmである。
空気極中間層の膜厚が上記範囲内であれば、空気極による抵抗が大きくなりすぎず、固体電解質燃料電池として実用的である。
In some embodiments, the thickness of the air electrode intermediate layer is 3 to 30 μm.
When the film thickness of the air electrode intermediate layer is within the above range, the resistance due to the air electrode does not become too large and is practical as a solid electrolyte fuel cell.

幾つかの実施形態では、前記空気極中間層は、前記第1空気極中間層と、前記第1空気極中間層と前記固体電解質膜との間に設けられ、99mol%以上100mol%以下のSm0.2Ce0.8を含有する材料により構成される第2空気極中間層と、を含む複層構造を有する。
上記の複層構造を有する固体電解質燃料電池は、加熱及び冷却を繰り返した際の耐久性(すなわち、耐ヒートサイクル性)がより優れる。
In some embodiments, the air electrode intermediate layer is provided between the first air electrode intermediate layer, the first air electrode intermediate layer, and the solid electrolyte membrane, and has an Sm of 99 mol% or more and 100 mol% or less. And a second air electrode intermediate layer composed of a material containing 0.2 Ce 0.8 O 2 .
The solid electrolyte fuel cell having the above multilayer structure is more excellent in durability (that is, heat cycle resistance) when heating and cooling are repeated.

幾つかの実施形態では、前記固体電解質膜は、イットリア安定化ジルコニアを含有する材料により構成される。   In some embodiments, the solid electrolyte membrane is composed of a material containing yttria-stabilized zirconia.

幾つかの実施形態では、前記第1空気極中間層の膜厚と前記第2空気極中間層の膜厚との比が、1:2〜10:1である。
第1空気極中間層の膜厚と第2空気極中間層の膜厚との比が上記範囲内であれば、空気極による抵抗が大きくなりすぎず、固体電解質燃料電池として実用的である。
In some embodiments, the ratio of the film thickness of the first air electrode intermediate layer to the film thickness of the second air electrode intermediate layer is 1: 2 to 10: 1.
If the ratio between the film thickness of the first air electrode intermediate layer and the film thickness of the second air electrode intermediate layer is within the above range, the resistance due to the air electrode does not become too large and is practical as a solid electrolyte fuel cell.

本発明の少なくとも一実施形態によれば、空気極と固体電解質との間の界面における接触抵抗が発電中に増加するのを抑制し得る固体電解質燃料電池が得られる。   According to at least one embodiment of the present invention, it is possible to obtain a solid electrolyte fuel cell that can suppress an increase in contact resistance at the interface between the air electrode and the solid electrolyte during power generation.

一実施形態に係る固体電解質燃料電池の構成の概略を示す図である。It is a figure which shows the outline of a structure of the solid electrolyte fuel cell which concerns on one Embodiment. 一実施形態に係る固体電解質燃料電池の空気極の構造を示す図である。It is a figure which shows the structure of the air electrode of the solid electrolyte fuel cell which concerns on one Embodiment. 一実施形態に係る固体電解質燃料電池の空気極の構造を示す図である。It is a figure which shows the structure of the air electrode of the solid electrolyte fuel cell which concerns on one Embodiment. 実施例において作成した抵抗値計測用素子の構成を示す図である。It is a figure which shows the structure of the element for resistance value created in the Example. 実施例において作成した抵抗値計測用素子の構成を示す図である。It is a figure which shows the structure of the element for resistance value created in the Example.

以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention, but are merely illustrative examples.

図1は、一実施形態に係る固体電解質燃料電池の構成の概略を示す図であり、図2及び図3は、それぞれ一実施形態に係る固体電解質燃料電池の空気極の構造を示す図である。   FIG. 1 is a diagram illustrating an outline of a configuration of a solid electrolyte fuel cell according to an embodiment, and FIGS. 2 and 3 are diagrams illustrating a structure of an air electrode of the solid electrolyte fuel cell according to an embodiment, respectively. .

図1に示すように、一実施形態に係る固体電解質燃料電池1は、固体電解質膜16と、固体電解質膜16に積層される空気極30を備える。固体電解質膜16は、例えば図1に示すように、基体12上に形成された燃料極14の上に積層されてもよい。また、固体電解質燃料電池1において、例えば図1に示すように、燃料極14、固体電解質膜16、空気極30により構成される単素子10を基体12上に複数形成し、隣接し合う単素子10を素子間部20により電気的に接続してもよい。   As shown in FIG. 1, the solid electrolyte fuel cell 1 according to an embodiment includes a solid electrolyte membrane 16 and an air electrode 30 stacked on the solid electrolyte membrane 16. For example, as shown in FIG. 1, the solid electrolyte membrane 16 may be laminated on the fuel electrode 14 formed on the substrate 12. Further, in the solid electrolyte fuel cell 1, for example, as shown in FIG. 1, a plurality of single elements 10 each composed of a fuel electrode 14, a solid electrolyte membrane 16, and an air electrode 30 are formed on a base 12, and adjacent single elements are formed. 10 may be electrically connected by the inter-element portion 20.

空気極30は、図2及び図3に示すように、固体電解質膜16側に設けられる空気極中間層32と、固体電解質膜16とは反対側に設けられる空気極導電層34とを備える。そして、空気極導電層34は、(La0.5Sr0.25Ca0.25MnO(ただし、0.98<x≦1.0である。)を含有する材料により構成される。また、空気極中間層は、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する材料により構成される第1空気極中間層32を少なくとも含む。
幾つかの実施形態では、空気極導電層34は、(La0.5Sr0.25Ca0.25MnO(ただし、0.99≦x≦1.0である。)を含有する材料により構成される。また、空気極中間層は、40〜85mol%のSm0.2Ce0.8と、15〜60mol%のSmMnOとを含有する材料により構成される第1空気極中間層32を少なくとも含む。
As shown in FIGS. 2 and 3, the air electrode 30 includes an air electrode intermediate layer 32 provided on the solid electrolyte membrane 16 side, and an air electrode conductive layer 34 provided on the side opposite to the solid electrolyte membrane 16. The air electrode conductive layer 34 is made of a material containing (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where 0.98 <x ≦ 1.0). . The air electrode intermediate layer includes at least a first air electrode intermediate layer 32 made of a material containing 30 to 95 mol% of Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% of SmMnO 3. Including.
In some embodiments, the cathode conductive layer 34 contains (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where 0.99 ≦ x ≦ 1.0). Consists of materials. The air electrode intermediate layer includes at least a first air electrode intermediate layer 32 made of a material containing 40 to 85 mol% of Sm 0.2 Ce 0.8 O 2 and 15 to 60 mol% of SmMnO 3. Including.

このように、一実施形態において、第1空気極中間層32は、上記範囲の量のSm0.2Ce0.8とSmMnOとを含有する材料により構成される。すなわち、空気極中間層31そのものが、電子導電性の高いSmMnOを適量含有する材料によって構成される。このため、空気極中間層31の電子導電性を適切な範囲にすることができる。
また、一実施形態において、空気極導電層34は、(La0.5Sr0.25Ca0.25MnO(ただし、xは上記の範囲である。)を含有する材料により構成される。すなわち、空気極導電層34において、Aサイトを構成するLa、Sr及びCaに対して過剰なMnの量が従来よりも低減されている。このため、発電中においても、空気極導電層34に含まれるMnの空気極中間層31への拡散が抑制され、空気極中間層31においてSmMnOが生成され難くなり、空気極中間層31のSmMnOの量を適切な範囲で維持できるので、固体電解質膜16と空気極31との間の界面における接触抵抗を最適な範囲に維持することができる。
Thus, in one embodiment, the first cathode intermediate layer 32 is composed of a material containing the Sm 0.2 Ce 0.8 O 2 and SmMnO 3 of the above amount. That is, the air electrode intermediate layer 31 itself is made of a material containing an appropriate amount of SmMnO 3 having high electronic conductivity. For this reason, the electronic conductivity of the air electrode intermediate layer 31 can be within an appropriate range.
In one embodiment, the air electrode conductive layer 34 is made of a material containing (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where x is in the above range). The That is, in the air electrode conductive layer 34, the amount of excess Mn with respect to La, Sr and Ca constituting the A site is reduced as compared with the conventional case. For this reason, even during power generation, diffusion of Mn contained in the air electrode conductive layer 34 to the air electrode intermediate layer 31 is suppressed, and it is difficult for SmMnO 3 to be generated in the air electrode intermediate layer 31. Since the amount of SmMnO 3 can be maintained within an appropriate range, the contact resistance at the interface between the solid electrolyte membrane 16 and the air electrode 31 can be maintained within an optimal range.

幾つかの実施形態では、図3に示すように、空気極中間層31は、第1空気極中間層32と、第2空気極中間層33とを含む複層構造を有する。そして、第2空気極中間層33は、第1空気極中間層32と固体電解質膜16との間に設けられ、99mol%以上100mol%以下のSm0.2Ce0.8を含有する材料により構成される。また、幾つかの実施形態では、第2空気極中間層33は、99.5mol%以上99.8mol%以下のSm0.2Ce0.8を含有する材料により構成される。なお、「99mol%以上100mol%以下のSm0.2Ce0.8」及び「99.5mol%以上99.8mol%以下のSm0.2Ce0.8を含有する材料」とは、Sm0.2Ce0.8以外の他の成分を実質的に含まない材量であることを意味し、仮に他の成分が含まれるとしても、第2空気極中間層の性質や固体電解質膜燃料電池の発電性能に実質的な影響を与えない範囲で含まれるということである。
このような複層構造を有する固体電解質燃料電池1は、加熱及び冷却を繰り返した際の耐久性(耐ヒートサイクル性)がより優れる。
In some embodiments, as shown in FIG. 3, the air electrode intermediate layer 31 has a multilayer structure including a first air electrode intermediate layer 32 and a second air electrode intermediate layer 33. The second air electrode intermediate layer 33 is provided between the first air electrode intermediate layer 32 and the solid electrolyte membrane 16 and contains 99 mol% or more and 100 mol% or less of Sm 0.2 Ce 0.8 O 2 . Consists of materials. In some embodiments, the second air electrode intermediate layer 33 is made of a material containing 99.5 mol% or more and 99.8 mol% or less of Sm 0.2 Ce 0.8 O 2 . “99 to 100 mol% Sm 0.2 Ce 0.8 O 2 ” and “99.5 mol% to 99.8 mol% Sm 0.2 Ce 0.8 O 2- containing material” Means a material amount that does not substantially contain other components other than Sm 0.2 Ce 0.8 O 2. Even if other components are included, the properties of the second air electrode intermediate layer In other words, it is included within a range that does not substantially affect the power generation performance of the solid electrolyte membrane fuel cell.
The solid electrolyte fuel cell 1 having such a multilayer structure is more excellent in durability (heat cycle resistance) when heating and cooling are repeated.

空気極と固体電解質膜との間の密着性が良好でないと、加熱と冷却の繰り返し(ヒートサイクル)によって剥離が発生する場合がある。
Sm0.2Ce0.8(SDC)とSmMnOとを上記比率で含む第2空気極中間層33と固体電解質膜層16との密着性は、Sm0.2Ce0.8(SDC)層と固体電解質膜層との密着性に比べて優れる。このため、上記実施形態に係る固体電解質燃料電池では、加熱及び冷却による剥離が起きにくく、耐ヒートサイクル性に優れると考えられる。
If the adhesion between the air electrode and the solid electrolyte membrane is not good, peeling may occur due to repeated heating and cooling (heat cycle).
The adhesion between the second air electrode intermediate layer 33 containing Sm 0.2 Ce 0.8 O 2 (SDC) and SmMnO 3 in the above ratio and the solid electrolyte membrane layer 16 is Sm 0.2 Ce 0.8 O. 2 Superior to the adhesion between the (SDC) layer and the solid electrolyte membrane layer. For this reason, in the solid electrolyte fuel cell according to the above embodiment, peeling due to heating and cooling hardly occurs, and it is considered that the heat cycle resistance is excellent.

幾つかの実施形態では、空気極中間層31の膜厚は3〜30μmである。また、幾つかの実施形態では、空気極中間層31の膜厚は10〜25μmである。
空気極中間層の膜厚が上記範囲内であれば、空気極による抵抗が大きくなりすぎず、固体電解質燃料電池として実用的である。
In some embodiments, the film thickness of the air electrode intermediate layer 31 is 3 to 30 μm. In some embodiments, the air electrode intermediate layer 31 has a thickness of 10 to 25 μm.
When the film thickness of the air electrode intermediate layer is within the above range, the resistance due to the air electrode does not become too large and is practical as a solid electrolyte fuel cell.

空気極中間層は、空気極と固体電解質との間で起こる電池反応(O+4e→2O2−で表される)をスムーズに行わせるために設けられる層である。そして、上記還元反応の際に生成した酸素イオン(O2−)の一部が空気極中間層を通過して固体電解質に到達するために、空気極中間層はイオン導電性を有する必要がある。また、上記還元反応のための電子(e)をスムーズに供給するために、空気極中間層は電子導電性を有する必要がある。したがって、空気極中間層は、電子導電性とイオン導電性の両方を有している必要がある。そして、一実施形態に係る固体電解質燃料電池においては、空気極中間層に含まれる成分のうち、Sm0.2Ce0.8がイオン導電性を有する物質であり、SmMnOが電子導電性を有する物質である。
したがって、空気極中間層の膜厚が上記範囲よりも小さいと、イオン導電性を有するSm0.2Ce0.8と電子導電性を有するSmMnOの絶対量が少なくなり、空気極中間層の有する電子導電性及びイオン導電性が十分でなくなる。このため、空気極と固体電解質との間で起こる電池反応をスムーズに行わせるという空気中間層の役割を十分に果たせなくなり、空気極と固体電解質との間の接触抵抗を十分に低減することができなくなる。
また、空気極中間層の中において、酸素イオンは固体電解質に向かって膜厚方向に移動するが、空気極中間層の中で移動する酸素イオンと電子とを比べると、酸素イオンのほうが径が大きく、比較的空気極中間層の中を移動し難い。このような状況において空気極中間層の膜厚が大きくなると、移動し難い酸素イオンの動く距離が大きくなり、このため抵抗として大きくなると考えられる。
したがって、空気極中間層の膜厚が上記範囲よりも大きいと、空気極中間層の中を移動する酸素イオンの移動距離が大きくなるため、空気極の抵抗が大きくなってしまうと考えられる。
The air electrode intermediate layer is a layer provided to smoothly perform a cell reaction (expressed as O 2 + 4e → 2O 2− ) that occurs between the air electrode and the solid electrolyte. And in order for some of the oxygen ions (O 2− ) generated during the reduction reaction to pass through the air electrode intermediate layer and reach the solid electrolyte, the air electrode intermediate layer needs to have ionic conductivity. . Further, in order to smoothly supply the electrons (e ) for the reduction reaction, the air electrode intermediate layer needs to have electronic conductivity. Therefore, the air electrode intermediate layer needs to have both electronic conductivity and ionic conductivity. Then, in the solid electrolyte fuel cell according to an embodiment, among the components contained in the air electrode intermediate layer, Sm 0.2 Ce 0.8 O 2 is a substance having ion conductivity, SmMnO 3 electron conductivity It is a substance with sex.
Therefore, if the film thickness of the air electrode intermediate layer is smaller than the above range, the absolute amount of Sm 0.2 Ce 0.8 O 2 having ion conductivity and SmMnO 3 having electron conductivity decreases, and the air electrode intermediate layer The electronic conductivity and ionic conductivity of the layer are not sufficient. For this reason, the role of the air intermediate layer that smoothly performs the battery reaction that occurs between the air electrode and the solid electrolyte cannot be sufficiently performed, and the contact resistance between the air electrode and the solid electrolyte can be sufficiently reduced. become unable.
In the air electrode intermediate layer, oxygen ions move in the film thickness direction toward the solid electrolyte. However, when oxygen ions moving in the air electrode intermediate layer are compared with electrons, the oxygen ions have a larger diameter. It is large and relatively difficult to move in the air electrode intermediate layer. In such a situation, if the film thickness of the air electrode intermediate layer is increased, the moving distance of oxygen ions that are difficult to move is increased, and therefore, the resistance is considered to be increased.
Therefore, if the film thickness of the air electrode intermediate layer is larger than the above range, it is considered that the resistance of the air electrode is increased because the moving distance of oxygen ions moving through the air electrode intermediate layer is increased.

固体電解質膜の材料としては、酸素イオン導電性を有し、水素等の燃料ガスや酸素ガスを通さない材料を用いることができる。固体電解質膜の材料としては、イットリア安定化ジルコニア(YSZ)を含有する材料の他、例えば、スカンジア安定化ジルコニア(ScSZ)や、ランタンガレート(LaGaO)等を用いることができる。
幾つかの実施形態では、前記固体電解質膜は、イットリア安定化ジルコニアを含有する材料により構成される。この場合、空気極中間層と固体電解質膜との密着性が優れるため、加熱及び冷却による剥離が起きにくく、耐ヒートサイクル性に優れると考えられる。
As a material of the solid electrolyte membrane, a material having oxygen ion conductivity and impermeable to fuel gas such as hydrogen or oxygen gas can be used. As a material for the solid electrolyte membrane, in addition to a material containing yttria stabilized zirconia (YSZ), for example, scandia stabilized zirconia (ScSZ), lanthanum gallate (LaGaO 3 ), or the like can be used.
In some embodiments, the solid electrolyte membrane is composed of a material containing yttria-stabilized zirconia. In this case, since the adhesion between the air electrode intermediate layer and the solid electrolyte membrane is excellent, peeling due to heating and cooling hardly occurs, and it is considered that the heat cycle resistance is excellent.

幾つかの実施形態では、前記第1空気極中間層の膜厚と前記第2空気極中間層の膜厚との比が、1:2〜10:1である。また、幾つかの実施形態では、前記第1空気極中間層の膜厚と前記第2空気極中間層の膜厚との比は1:1〜8:1である。
第1空気極中間層の膜厚と第2空気極中間層の膜厚との比が上記範囲内であれば、空気極による抵抗が大きくなりすぎず、固体電解質燃料電池として実用的である。
In some embodiments, the ratio of the film thickness of the first air electrode intermediate layer to the film thickness of the second air electrode intermediate layer is 1: 2 to 10: 1. In some embodiments, the ratio of the film thickness of the first air electrode intermediate layer to the film thickness of the second air electrode intermediate layer is 1: 1 to 8: 1.
If the ratio between the film thickness of the first air electrode intermediate layer and the film thickness of the second air electrode intermediate layer is within the above range, the resistance due to the air electrode does not become too large and is practical as a solid electrolyte fuel cell.

実施形態に係る固体電解質燃料電池の電池性能及び耐ヒートサイクル性を、以下に記載する実施例及び比較例1〜26により確認した。なお、実施例1、4、5、9〜11、14、15、19〜21、24及び25は本発明に係る実施例であり、比較例2、3、6〜8、12、13、16〜18、22、23及び26は比較例である。   The cell performance and heat cycle resistance of the solid electrolyte fuel cell according to the embodiment were confirmed by Examples and Comparative Examples 1 to 26 described below. Examples 1, 4, 5, 9 to 11, 14, 15, 19 to 21, 24 and 25 are examples according to the present invention, and Comparative Examples 2, 3, 6 to 8, 12, 13, 16 -18, 22, 23 and 26 are comparative examples.

試験1:電池性能の経時変化及び耐ヒートサイクル性の評価(実施例及び比較例1〜6)
以下の手順で評価用セルを作成し、電池性能の経時変化及び耐ヒートサイクル性の評価を行った。
(評価用セルの作製)
カルシア安定化ジルコニア(CSZ)を主原料とした基体管原料に、メチルセルロースとポリエチレンオキサイドとグリセリンを添加し、水を加えながら加圧ニーダで坏土状に混練した。この混練物をオーガー式押出機で3mm厚さの円筒状に成形した。
燃料極としては、NiO及びYSZを主成分とし、スキージオイルを添加して、3本ローラで剪断力を加えスラリーにしたものを用いた。固体電解質としては、YSZにスキージオイルを加え、3本ローラでスラリーにしたものを用いた。インターコネクタとしては、Sr0.9La0.1TiOにスキージオイルを加え、3本ローラでスラリー化したものを用いた。
円筒状に成形した基体管の上に燃料極(膜厚:100μm)、固体電解質膜(膜厚:80μm)及びインターンコネクタ(膜厚:30μm)を、図1に示される要領で成膜し、乾燥後1400℃で3時間以上保持して共焼結した。
共焼結後のセルの固体電解質膜上に、表1に示す組成及び構成となるように、空気極中間層及び空気極導電層を成膜及び焼成して評価用セルを作製した。
より具体的には、共焼結後のセルの固体電解質膜上に、空気極中間層として、3本ローラでスラリーにしたSm0.2Ce0.8からなる第2空気極中間層(膜厚:10μm)と、3本ローラでスラリーにした50mol%のSmMnOと50mol%のSm0.2Ce0.8からなる第1空気極中間層(膜厚:20μm)をこの順に成膜した。ただし、表1にも示すように、比較例2においては第1空気極中間層を成膜しなかった。また、実施例及び比較例1〜4及び比較例6については、第2空気極中間層を成膜しなかった。
成膜した空気極中間層の上に、空気極導電層として、表1に示す組成((La0.5Sr0.25Ca0.25MnO、0.98<x≦1.0)を有する原料を3本ローラでスラリーにしたものを700μm成膜し、1200℃で焼成して評価用セルを作製した。
(電池性能の測定及び評価)
上述のように調製した評価用セルの内側に燃料として70%H−N混合気体と外側に空気を流し、900℃に保持して発電を実施し、発電開始直後の作動電圧0.75Vにおける電流密度を測定した。また、発電開始から1000時間経過後にも作動電圧0.75Vにおける電流密度を測定し、この測定結果A2と、発電開始直後の電流密度の測定結果A1とから、発電開始から1000時間後における電流密度の経時変化率(100×(A1−A2)/A1)(単位:%)を算出した。これらの結果を表1に示す。
なお、以下本明細書において、「発電開始直後の作動電圧0.75Vにおける電流密度」を単に「電流密度」とも称することがあり、「発電開始から1000時間後における電流密度の経時変化率」を単に「経時変化率」又は「劣化率」とも称することがある。
(耐ヒートサイクル性の評価)
上述のように作製した評価用セルを900℃で5時間保持した後、50℃以下で5時間保持する熱サイクルを加え、何回目の熱サイクルで空気極の剥離が起きるか確認した。結果を表1に示す。
Test 1: Evaluation of battery performance over time and heat cycle resistance (Examples and Comparative Examples 1 to 6)
An evaluation cell was prepared according to the following procedure, and changes in battery performance over time and heat cycle resistance were evaluated.
(Production of evaluation cell)
Methyl cellulose, polyethylene oxide, and glycerin were added to a base tube raw material containing calcia-stabilized zirconia (CSZ) as a main raw material, and kneaded in a clay shape with a pressure kneader while adding water. This kneaded product was formed into a 3 mm-thick cylindrical shape by an auger type extruder.
As the fuel electrode, NiO and YSZ were used as main components, squeegee oil was added, and a shearing force was applied with three rollers to form a slurry. As the solid electrolyte, a squeegee oil added to YSZ and slurried with three rollers was used. As the interconnector, a squeegee oil added to Sr 0.9 La 0.1 TiO 3 and slurried with three rollers was used.
A fuel electrode (film thickness: 100 μm), a solid electrolyte film (film thickness: 80 μm), and an intern connector (film thickness: 30 μm) are formed on the base tube formed into a cylindrical shape as shown in FIG. After drying, co-sintering was carried out at 1400 ° C. for 3 hours or more.
On the solid electrolyte membrane of the cell after co-sintering, an air electrode intermediate layer and an air electrode conductive layer were formed and fired so as to have the composition and configuration shown in Table 1, thereby producing an evaluation cell.
More specifically, the second air electrode intermediate layer made of Sm 0.2 Ce 0.8 O 2 slurried with three rollers as the air electrode intermediate layer on the solid electrolyte membrane of the co-sintered cell. (Film thickness: 10 μm) and a first air electrode intermediate layer (film thickness: 20 μm) composed of 50 mol% SmMnO 3 and 50 mol% Sm 0.2 Ce 0.8 O 2 slurried with three rollers. Films were formed in order. However, as shown in Table 1, in Comparative Example 2, the first air electrode intermediate layer was not formed. Moreover, about the Example and Comparative Examples 1-4 and Comparative Example 6, the 2nd air electrode intermediate | middle layer was not formed into a film.
On the formed air electrode intermediate layer, as an air electrode conductive layer, the composition shown in Table 1 ((La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 , 0.98 <x ≦ 1.0 700 μm of a raw material having a slurry of 3) with a three-roller was formed and fired at 1200 ° C. to produce an evaluation cell.
(Measurement and evaluation of battery performance)
A 70% H 2 —N 2 mixed gas as fuel is flown inside the evaluation cell prepared as described above and air is flowed outside, and the power generation is carried out while maintaining the temperature at 900 ° C. The operating voltage immediately after the start of power generation is 0.75 V. The current density at was measured. In addition, the current density at an operating voltage of 0.75 V is measured even after 1000 hours have elapsed since the start of power generation. From this measurement result A2 and the measurement result A1 of the current density immediately after the start of power generation, the current density 1000 hours after the start of power generation The rate of change with time (100 × (A1-A2) / A1) (unit:%) was calculated. These results are shown in Table 1.
Hereinafter, in this specification, “current density at an operating voltage of 0.75 V immediately after the start of power generation” may be simply referred to as “current density”, and “time-dependent change rate of current density after 1000 hours from the start of power generation” It may be simply referred to as “aging rate” or “deterioration rate”.
(Evaluation of heat cycle resistance)
The evaluation cell produced as described above was held at 900 ° C. for 5 hours, and then a thermal cycle was held at 50 ° C. or lower for 5 hours, and it was confirmed how many times the thermal electrode peeled off. The results are shown in Table 1.

Figure 0006177680
Figure 0006177680

表1において、“0.75Vにおける電流密度”は電池の初期性能の指標であり、300mA/cm以上であれば良好であると評価する。また、“経時変化率”は発電開始から1000時間経過後における電池性能の劣化度の指標であり、0.15%/1000時間以下であれば良好であると評価する。また、“耐ヒートサイクル性”はヒートサイクルを加えた際の耐久性の指標であり、25回以上であれば良好であると評価する。 In Table 1, “Current density at 0.75 V” is an index of the initial performance of the battery, and it is evaluated that it is good if it is 300 mA / cm 2 or more. The “rate of change with time” is an indicator of the degree of deterioration of battery performance after 1000 hours from the start of power generation, and is evaluated to be good if it is 0.15% / 1000 hours or less. Further, “heat cycle resistance” is an index of durability when a heat cycle is applied, and is evaluated as good if it is 25 times or more.

表1からわかるように、本発明の実施例である、空気極中間層(第1空気極中間層のみ)を有する実施例1においては、作動電圧0.75Vで電流密度は400mA/cmであり、劣化率は0.1%/1000時間であり、結果は良好であった。また,熱サイクル50回を加えても剥離には至らず、結果は良好であった。
これに対し、空気極中間層(第1空気極中間層及び第2空気極中間層)を設けなかった比較例2においては、作動電圧0.75Vで電流密度は125mA/cmと比較的低い値であった。また、熱サイクル10回を加えたところ,空気極導電層が剥離してしまい、良好な結果は得られなかった。
このことから、実施例1の構成及び膜厚を有する空気極中間層を設けることにより、空気極中間層を有さない電池に比べて、良好な初期性能、劣化度及び耐ヒートサイクル性を有する固体電解質燃料電池が得られることが確認された。
As can be seen from Table 1, in Example 1 having an air electrode intermediate layer (only the first air electrode intermediate layer), which is an example of the present invention, the operating voltage is 0.75 V and the current density is 400 mA / cm 2 . The deterioration rate was 0.1% / 1000 hours, and the result was good. Moreover, even if it applied 50 heat cycles, it did not result in peeling and the result was favorable.
On the other hand, in Comparative Example 2 in which the air electrode intermediate layer (the first air electrode intermediate layer and the second air electrode intermediate layer) was not provided, the operating voltage was 0.75 V and the current density was relatively low at 125 mA / cm 2. Value. Moreover, when 10 heat cycles were added, the air electrode conductive layer was peeled off, and good results were not obtained.
From this, by providing the air electrode intermediate layer having the structure and film thickness of Example 1, it has better initial performance, deterioration degree and heat cycle resistance compared to a battery without the air electrode intermediate layer. It was confirmed that a solid electrolyte fuel cell can be obtained.

また、表1からわかるように、本発明の実施例である、空気極導電層((La0.5Sr0.25Ca0.25MnO)の組成においてx=0.981である実施例4においては、作動電圧0.75Vで電流密度395mA/cmの特性を示し、経時的な劣化率は0.1%/1000時間と小さく、結果は良好であった。また,熱サイクル50回を加えても剥離には至らず、良好な結果となった。
これに対し、空気極導電層((La0.5Sr0.25Ca0.25MnO)の組成においてx=0.975である比較例3においては、作動電圧0.75Vでの電流密度は380mA/cmであり良好であったが、経時的な劣化率が大きく,0.25%/1000時間であった。また、熱サイクルを18回加えたところ,空気極が中間層から剥離し、耐ヒートサイクル性については良好な結果が得られなかった。
また、空気極導電層((La0.5Sr0.25Ca0.25MnO)の組成においてx=1.025である比較例6においては、同様の発電条件で作動電圧0.75Vで電流密度270mA/cmであり,特性が低下した。特性低下要因は,空気極導電層の組成を,(La0.5Sr0.25Ca0.251.025MnOとしたことで,空気極導電層の焼結性が低下し導電率が低下したことが考えられる。また,熱サイクルを15回加えたところ,空気極中間層から剥離が発生し、耐ヒートサイクル性については良好な結果が得られなかった。さらに,室温保持中に空気極が破砕した。これは、空気極導電層中の過剰のLaにより,空気中の水分と反応して,空気極の強度が低下したためであると考えられる。
このことから、実施例4のように、(La0.5Sr0.25Ca0.25MnOにおいてxが0.98<x≦1.0の範囲内である組成を有する空気極導電層とすることにより、xが上記範囲外である場合に比べて、良好な初期性能、劣化度及び耐ヒートサイクル性を有する固体電解質燃料電池が得られることが確認された。
なお、本発明に係る実施例では、ヒートサイクルが50回を超えても剥がれは認められず、良好な耐ヒートサイクル性が確認された。これは、本発明の組成を有する空気導電層及び空気中間層とすることにより、膜の密着性が改善されたことが要因と考えられる。
Further, as can be seen from Table 1, x = 0.981 in the composition of the air electrode conductive layer ((La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 ), which is an example of the present invention. In Example 4, the characteristics were that the operating voltage was 0.75 V and the current density was 395 mA / cm 2 , the deterioration rate with time was as small as 0.1% / 1000 hours, and the result was good. Further, even when 50 heat cycles were applied, peeling did not occur and good results were obtained.
On the other hand, in Comparative Example 3 where x = 0.975 in the composition of the air electrode conductive layer ((La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 ), the operating voltage was 0.75 V. The current density was 380 mA / cm 2 , which was good, but the deterioration rate with time was large, 0.25% / 1000 hours. In addition, when the heat cycle was applied 18 times, the air electrode was peeled off from the intermediate layer, and good results were not obtained for heat cycle resistance.
Further, in Comparative Example 6 in which x = 1.025 in the composition of the air electrode conductive layer ((La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 ), the operating voltage was set to 0. The current density was 270 mA / cm 2 at 75 V, and the characteristics deteriorated. The characteristic deterioration factor is that the composition of the air electrode conductive layer is (La 0.5 Sr 0.25 Ca 0.25 ) 1.025 MnO 3. Is considered to have decreased. Further, when the heat cycle was applied 15 times, peeling occurred from the air electrode intermediate layer, and good results were not obtained for the heat cycle resistance. Furthermore, the air electrode was crushed during the room temperature maintenance. This is presumably because the strength of the air electrode decreased due to reaction with moisture in the air due to excessive La in the air electrode conductive layer.
From this, as in Example 4, the air electrode has a composition in which (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 has a composition in which x is in the range of 0.98 <x ≦ 1.0. It was confirmed that by using the conductive layer, a solid electrolyte fuel cell having good initial performance, deterioration degree and heat cycle resistance can be obtained as compared with the case where x is outside the above range.
In addition, in the Example which concerns on this invention, even if the heat cycle exceeded 50 times, peeling was not recognized but favorable heat cycle resistance was confirmed. This is considered to be because the adhesion of the film was improved by using the air conductive layer and the air intermediate layer having the composition of the present invention.

上述の試験1の結果より、空気極導電層は(La0.5Sr0.25Ca0.25MnOにおいてxが0.98<x≦1.0の範囲内でることが望ましいことが明らかとなった。このため、以下の試験2及び試験3においては、空気極導電層にはxが0.98<x≦1.0である(La0.5Sr0.25Ca0.25MnOを用いた。 From the result of Test 1 described above, it is desirable that the air electrode conductive layer has (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 where x is in the range of 0.98 <x ≦ 1.0. Became clear. For this reason, in Test 2 and Test 3 below, x is 0.98 <x ≦ 1.0 (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 in the air electrode conductive layer. Using.

なお、空気極中間層が複層構造であり、第1空気極中間層は30〜95mol%のSm0.2Ce0.8と5〜70mol%のSmMnOとを含有する組成を有し、第1空気極中間層の膜厚と第2空気極中間層の膜厚との比が1:2〜10:1の範囲内である構成を有する燃料電池セルについて、上述の試験1において実施例5として電池性能の測定及び評価を行った。表1に示されるように、上記構成を有する場合、作動電圧0.75Vで電流密度390mA/cmの特性を示し、経時的な劣化率は0.12%/1000時間と小さく、結果は良好であった。また,熱サイクルを60回以上加えても剥離には至らず、特に良好な結果となった。この結果、上記の構成を有する場合、固体電解質燃料電池として適する電池性能及び耐ヒートサイクル特性を有することが確認された。 The air electrode intermediate layer has a multilayer structure, and the first air electrode intermediate layer has a composition containing 30 to 95 mol% Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% SmMnO 3. The fuel cell having a configuration in which the ratio of the film thickness of the first air electrode intermediate layer to the film thickness of the second air electrode intermediate layer is in the range of 1: 2 to 10: 1 As Example 5, the battery performance was measured and evaluated. As shown in Table 1, in the case of having the above-described configuration, it has characteristics of an operating voltage of 0.75 V and a current density of 390 mA / cm 2 , and the deterioration rate with time is as small as 0.12% / 1000 hours, and the result is good Met. Further, even when the heat cycle was applied 60 times or more, peeling did not occur, and particularly good results were obtained. As a result, it was confirmed that when having the above-mentioned configuration, it has cell performance and heat cycle resistance suitable as a solid electrolyte fuel cell.

試験2:抵抗値の計測(実施例及び比較例7〜16)
以下の手順で、図4に示す構成の抵抗値計測用素子を作製し、交流法により抵抗値を測定した。
(抵抗値計測用素子の作製)
固体電解質膜としてのYSZ上に、表2に示す組成及び膜厚の空気極中間層(第1空気極中間層)と、(La0.5Sr0.25Ca0.250.99MnOの空気極導電層(膜厚:100μm)をこの順に成膜し、1200℃で焼成して、抵抗値計測用素子を作製した。
(抵抗値の計測)
上述のようにして作製した計測用素子の抵抗値を交流法で測定した。図4に示すように、計測用素子を2つのPt電極で挟み、空気極導電層側のPt電極を作用電極、電解質側のPt電極を対極として、この2つのPt電極で集電を行い、電解質側面に巻きつけたPt線と、前述の空気極導電層側のPt電極とを参照電極として、900℃においてオーム抵抗及び界面抵抗の測定を行った。オーム抵抗(単位:Ωcm)は、交流法で得られた複素インピーダンス平面プロットにおける高周波側の実軸との交点から計測値を求めた。また、界面抵抗(単位:Ωcm)は、交流法で得られた複素インピーダンス平面プロットにおけるインピーダンス円弧の実軸の交点の差より求めた。全抵抗(単位:Ωcm)は、これらの合計値である。計測結果を表2に示す。
Test 2: Measurement of resistance value (Examples and Comparative Examples 7 to 16)
The resistance value measuring element having the configuration shown in FIG. 4 was produced by the following procedure, and the resistance value was measured by an alternating current method.
(Fabrication of resistance measurement element)
On the YSZ as the solid electrolyte membrane, an air electrode intermediate layer (first air electrode intermediate layer) having the composition and film thickness shown in Table 2, and (La 0.5 Sr 0.25 Ca 0.25 ) 0.99 MnO 3 air electrode conductive layers (film thickness: 100 μm) were formed in this order and fired at 1200 ° C. to produce a resistance measurement element.
(Measurement of resistance value)
The resistance value of the measuring element manufactured as described above was measured by an alternating current method. As shown in FIG. 4, the measurement element is sandwiched between two Pt electrodes, the Pt electrode on the air electrode conductive layer side is the working electrode, the Pt electrode on the electrolyte side is the counter electrode, and current is collected with these two Pt electrodes. The ohmic resistance and interface resistance were measured at 900 ° C. using the Pt wire wound around the electrolyte side surface and the Pt electrode on the air electrode conductive layer side as a reference electrode. The ohmic resistance (unit: Ωcm 2 ) was measured from the intersection with the real axis on the high frequency side in the complex impedance plane plot obtained by the AC method. The interface resistance (unit: Ωcm 2 ) was obtained from the difference between the intersection points of the real axes of the impedance arcs in the complex impedance plane plot obtained by the AC method. The total resistance (unit: Ωcm 2 ) is the sum of these values. Table 2 shows the measurement results.

Figure 0006177680
Figure 0006177680

表2において、実施例及び比較例7〜12では、空気極中間層(第1空気極中間層)の膜厚を20μmで固定した場合の、空気極中間層(第1空気極中間層)の組成の違いによる抵抗値の変化が示される。また、実施例及び比較例13〜16では、空気極中間層(第1空気極中間層)の組成をSm0.2Ce0.8:50mol%、SmMnO:50mol%で固定した場合の、空気極中間層(第1空気極中間層)の膜厚による抵抗値の変化が示される。測定により得られる全抵抗値が1.4Ωcm以下であれば、抵抗が十分に小さく良好であると考えられる。
なお、全抵抗値の閾値を1.4Ωcmとしているのは、全抵抗値が1.4Ωcmであれば、発電性能として、作動電圧0.75Vにおける電流密度が400mA/cm程度となることが経験的にわかっていることによる。(以下においても同様である。)
In Table 2, in Examples and Comparative Examples 7 to 12, the air electrode intermediate layer (first air electrode intermediate layer) when the film thickness of the air electrode intermediate layer (first air electrode intermediate layer) is fixed at 20 μm. The change in resistance value due to the difference in composition is shown. In Examples and Comparative Examples 13 to 16, the composition of the air electrode intermediate layer (first cathode intermediate layer) Sm 0.2 Ce 0.8 O 2: 50mol%, SmMnO 3: If fixed with 50 mol% The change of the resistance value by the film thickness of the air electrode intermediate layer (first air electrode intermediate layer) is shown. If the total resistance value obtained by measurement is 1.4 Ωcm 2 or less, it is considered that the resistance is sufficiently small and good.
The reason is the threshold of the total resistance and 1.4Omucm 2, if the total resistance value is 1.4Omucm 2, as the power generation performance, the current density in the operating voltage 0.75V is 400 mA / cm 2 of about This is due to empirical knowledge. (The same applies to the following.)

表2から分かるように、空気極中間層(第1空気極中間層)の膜厚が20μmである場合、空気極中間層(第1空気極中間層)が、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する実施例9〜11については、オーム抵抗の計測値、界面抵抗の計測値、及びこれらの合計である全抵抗が十分に小さく、空気極の組成として適することが確認された。これに対し、空気極中間層(第1空気極中間層)の組成において、SmMnOの量が上記範囲よりも少ない比較例7及び8、並びにSmMnOの量が上記範囲よりも多い比較例12については、オーム抵抗の計測値及び界面抵抗の計測値が大きく、全抵抗も1.4Ωcmを超えるため、空気極中間層の組成としては不適であることが確認された。 As can be seen from Table 2, when the film thickness of the air electrode intermediate layer (first air electrode intermediate layer) is 20 μm, the air electrode intermediate layer (first air electrode intermediate layer) is 30 to 95 mol% of Sm 0. For Examples 9-11 containing 2 Ce 0.8 O 2 and 5-70 mol% SmMnO 3 , the measured value of ohmic resistance, the measured value of interfacial resistance, and the total resistance that is the sum of these are sufficient. It was confirmed that the composition was suitable for the composition of the air electrode. In contrast, in the composition of the air electrode intermediate layer (first cathode intermediate layer), a smaller amount Comparative Examples 7 and 8 than the above range SmMnO 3, and SmMnO 3 quantities compared greater than the above range Example 12 With respect to, since the measured value of the ohmic resistance and the measured value of the interface resistance were large and the total resistance exceeded 1.4 Ωcm 2 , it was confirmed that the composition was not suitable for the air electrode intermediate layer.

また、表2から分かるように、空気極中間層(第1空気極中間層)の組成がSm0.2Ce0.8:50mol%、SmMnO:50mol%である場合、空気極中間層(第1空気極中間層)の膜厚が3μm及び30μmである実施例14及び15については、オーム抵抗の計測値、界面抵抗の計測値、及びこれらの合計である全抵抗が十分に小さく、空気極の組成として適することが確認された。これに対し、空気極中間層(第1空気極中間層)の膜厚が1μm及び40μmである比較例13及び16では、オーム抵抗の計測値及び界面抵抗の計測値が大きく、全抵抗も1.4Ωcmを超えるため、空気極中間層の組成としては不適であることが確認された。 Further, as can be seen from Table 2, when the composition of the air electrode intermediate layer (first air electrode intermediate layer) is Sm 0.2 Ce 0.8 O 2 : 50 mol%, SmMnO 3 : 50 mol%, For Examples 14 and 15 in which the thickness of the layer (first air electrode intermediate layer) is 3 μm and 30 μm, the measured value of the ohmic resistance, the measured value of the interface resistance, and the total resistance, which is the sum of them, are sufficiently small. It was confirmed that the composition of the air electrode was suitable. On the other hand, in Comparative Examples 13 and 16 in which the film thickness of the air electrode intermediate layer (first air electrode intermediate layer) is 1 μm and 40 μm, the measured value of the ohmic resistance and the measured value of the interface resistance are large, and the total resistance is also 1 Since it exceeded .4Ωcm 2 , it was confirmed that the composition of the air electrode intermediate layer was unsuitable.

上述の試験2の結果より、空気極導電層(第1空気極中間層)は、30〜95mol%のSm0.2Ce0.8と5〜70mol%のSmMnOとを含有する組成を有することが望ましいことが分かった。また、空気極導電層(第1空気極中間層)の膜厚は3〜30μmの範囲内であることが望ましいことが明らかとなった。 From the results of Test 2 described above, the air electrode conductive layer (first air electrode intermediate layer) contains 30 to 95 mol% Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% SmMnO 3. It has been found desirable to have Moreover, it became clear that the film thickness of the air electrode conductive layer (first air electrode intermediate layer) is preferably in the range of 3 to 30 μm.

試験3:抵抗値の計測(実施例及び比較例17〜26)
以下の手順で、図5に示すように、空気極中間層が複層構造を有する構成の抵抗値計測用素子を作製し、交流法により抵抗値を測定した。
(抵抗値計測用素子の作製)
固体電解質膜としてのYSZ上に、表3に示す組成及び膜厚の第2空気極中間層及び第1空気極中間層と、(La0.5Sr0.25Ca0.250.99MnOの空気極導電層(膜厚:100μm)をこの順に成膜し、1200℃で焼成して、抵抗値計測用素子を作製した。
(抵抗値の計測)
上述のようにして作製した計測用素子の抵抗値を交流法で測定した。図5に示すように、計測用素子を2つのPt電極で挟み、空気極導電層側のPt電極を作用電極、電解質側のPt電極を対極として、この2つのPt電極で集電を行い、電解質側面に巻きつけたPt線と、前述の空気極導電層側のPt電極とを参照電極として、900℃においてオーム抵抗及び界面抵抗の測定を行った。オーム抵抗は、交流法で得られた複素インピーダンス平面プロットにおける高周波側の実軸との交点から計測値を求めた。また、界面抵抗は、交流法で得られた複素インピーダンス平面プロットにおけるインピーダンス円弧の実軸の交点の差より求めた。全抵抗は、これらの合計値である。計測結果を表3に示す。
Test 3: Measurement of resistance value (Examples and Comparative Examples 17 to 26)
In the following procedure, as shown in FIG. 5, a resistance value measuring element having a structure in which the air electrode intermediate layer has a multilayer structure was manufactured, and the resistance value was measured by an alternating current method.
(Fabrication of resistance measurement element)
On the YSZ as the solid electrolyte membrane, a second air electrode intermediate layer and a first air electrode intermediate layer having the composition and film thickness shown in Table 3, and (La 0.5 Sr 0.25 Ca 0.25 ) 0.99 An air electrode conductive layer (film thickness: 100 μm) of MnO 3 was formed in this order and baked at 1200 ° C. to produce a resistance value measuring element.
(Measurement of resistance value)
The resistance value of the measuring element manufactured as described above was measured by an alternating current method. As shown in FIG. 5, the measurement element is sandwiched between two Pt electrodes, the Pt electrode on the air electrode conductive layer side is the working electrode, the Pt electrode on the electrolyte side is the counter electrode, and current is collected with these two Pt electrodes. The ohmic resistance and interface resistance were measured at 900 ° C. using the Pt wire wound around the electrolyte side surface and the Pt electrode on the air electrode conductive layer side as a reference electrode. The ohmic resistance was measured from the intersection with the real axis on the high frequency side in the complex impedance plane plot obtained by the AC method. The interfacial resistance was obtained from the difference between the intersection points of the real axes of the impedance arcs in the complex impedance plane plot obtained by the AC method. Total resistance is the sum of these. Table 3 shows the measurement results.

Figure 0006177680
Figure 0006177680

表3において、実施例及び比較例17〜22では、空気極中間層が複層構造を有する構成において、第1空気極中間層の組成の違いによる抵抗値の変化が示される。また、実施例及び比較例23〜26では、第2空気極中間層の膜厚の違いによる抵抗値の変化が示される。なお、実施例及び比較例17〜26のいずれにおいても、第1空気極中間層の膜厚(10μm)及び第2空気極中間層の組成(Sm0.2Ce0.8:100%)は一定である。測定により得られる全抵抗値が1.4Ωcm以下であれば、抵抗が十分に小さく良好であると考えられる。 In Table 3, in Examples and Comparative Examples 17 to 22, changes in resistance values due to differences in the composition of the first air electrode intermediate layer are shown in the configuration in which the air electrode intermediate layer has a multilayer structure. In the examples and comparative examples 23 to 26, changes in the resistance value due to the difference in film thickness of the second air electrode intermediate layer are shown. In any of Examples and Comparative Examples 17 to 26, the film thickness of the first air electrode intermediate layer (10 μm) and the composition of the second air electrode intermediate layer (Sm 0.2 Ce 0.8 O 2 : 100% ) Is constant. If the total resistance value obtained by measurement is 1.4 Ωcm 2 or less, it is considered that the resistance is sufficiently small and good.

表3からわかるように、空気極中間層が複層構造を有する構成において、空気極中間層(第1空気極中間層)が、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する実施例19〜21については、オーム抵抗の計測値、界面抵抗の計測値、及びこれらの合計である全抵抗が十分に小さく、空気極の組成として適することが確認された。これに対し、空気極中間層(第1空気極中間層)の組成において、SmMnOの量が上記範囲よりも少ない比較例17及び18、並びにSmMnOの量が上記範囲よりも多い比較例22については、オーム抵抗の計測値及び界面抵抗の計測値が大きく、全抵抗も1.4Ωcmを超えるため、空気極中間層の組成としては不適であることが確認された。 As can be seen from Table 3, in the configuration in which the air electrode intermediate layer has a multilayer structure, the air electrode intermediate layer (first air electrode intermediate layer) contains 30 to 95 mol% of Sm 0.2 Ce 0.8 O 2 . In Examples 19 to 21 containing 5 to 70 mol% of SmMnO 3 , the measured value of the ohmic resistance, the measured value of the interfacial resistance, and the total resistance, which is the sum of them, are sufficiently small, and the composition of the air electrode It was confirmed that it was suitable. In contrast, in the composition of the air electrode intermediate layer (first cathode intermediate layer), SmMnO 3 amount is less Comparative Examples 17 and than the above range 18, and the amount is compared greater than the above range example of SmMnO 3 22 With respect to, since the measured value of the ohmic resistance and the measured value of the interface resistance were large and the total resistance exceeded 1.4 Ωcm 2 , it was confirmed that the composition was not suitable for the air electrode intermediate layer.

また、表3からわかるように、空気極中間層が複層構造を有する構成において、第2空気極中間層の膜厚がそれぞれ1μm及び20μmであり、第1空気極中間層の膜厚と第2空気極中間層の膜厚との比が、1:2〜10:1の範囲内である実施例24及び25については、オーム抵抗の計測値、界面抵抗の計測値、及びこれらの合計である全抵抗が十分に小さく、空気極の組成として適することが確認された。これに対し、第2空気極中間層の膜厚がそれぞれ0.5μm及び30μmであり、第1空気極中間層の膜厚と第2空気極中間層の膜厚との比が、1:2〜10:1の範囲外である比較例23及び26では、オーム抵抗の計測値及び界面抵抗の計測値が大きく、全抵抗も1.4Ωcmを超えるため、空気極中間層の組成としては不適であることが確認された。
Further, as can be seen from Table 3, in the structure in which the air electrode intermediate layer has a multilayer structure, the film thickness of the second air electrode intermediate layer is 1 μm and 20 μm, respectively, For Examples 24 and 25 in which the ratio of the film thickness of the two air electrode intermediate layer is within the range of 1: 2 to 10: 1, the measured value of the ohmic resistance, the measured value of the interface resistance, and the sum of these values It was confirmed that a certain total resistance was sufficiently small and suitable as the composition of the air electrode. On the other hand, the film thickness of the second air electrode intermediate layer is 0.5 μm and 30 μm, respectively, and the ratio of the film thickness of the first air electrode intermediate layer to the film thickness of the second air electrode intermediate layer is 1: 2. In Comparative Examples 23 and 26, which are outside the range of -10: 1, the measured value of the ohmic resistance and the measured value of the interface resistance are large, and the total resistance exceeds 1.4 Ωcm 2 , so that it is not suitable as the composition of the air electrode intermediate layer. It was confirmed that.

上述の試験3の結果より、空気極中間層を複層構造にした場合においても、第1空気極中間層は30〜95mol%のSm0.2Ce0.8と5〜70mol%のSmMnOとを含有する組成を有することが望ましいことが確認された。また、空気極中間層を複層構造にした場合、第1空気極中間層の膜厚と第2空気極中間層の膜厚との比が1:2〜10:1の範囲内であることが望ましいことが確認された。 From the results of Test 3 described above, even when the air electrode intermediate layer has a multilayer structure, the first air electrode intermediate layer is 30 to 95 mol% Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol%. It has been determined that it is desirable to have a composition containing SmMnO 3 . When the air electrode intermediate layer has a multilayer structure, the ratio of the film thickness of the first air electrode intermediate layer to the film thickness of the second air electrode intermediate layer is in the range of 1: 2 to 10: 1. Was confirmed to be desirable.

1 固体電解質燃料電池
10 単素子
12 基体
14 燃料極
16 固体電解質膜
20 素子間部
30 空気極
31 空気極中間層
32 第1空気極中間層
33 第2空気極中間層
34 空気極導電層
41 Pt電極
DESCRIPTION OF SYMBOLS 1 Solid electrolyte fuel cell 10 Single element 12 Base | substrate 14 Fuel electrode 16 Solid electrolyte membrane 20 Interelement part 30 Air electrode 31 Air electrode intermediate | middle layer 32 1st air electrode intermediate | middle layer 33 2nd air electrode intermediate | middle layer 34 Air electrode conductive layer 41 Pt electrode

Claims (5)

固体電解質膜と、燃料極と、前記固体電解質膜に積層される空気極とを備える固体電解質燃料電池であって、
前記空気極は、前記固体電解質膜側に設けられる空気極中間層と、前記固体電解質膜とは反対側に設けられる空気極導電層とを備え、
前記空気極導電層は、(La0.5Sr0.25Ca0.25MnO(ただし、0.98<x≦1.0である。)を含有する材料により構成され、
前記空気極中間層は、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する材料により構成される第1空気極中間層を少なくとも含み、
前記固体電解質膜と、前記空気極中間層と、前記空気極導電層と、をこの順に積層した抵抗値計測用素子としたときに、前記抵抗値計測用素子の全抵抗値が900℃において0.95Ωcm 以上1.4Ωcm以下である固体電解質燃料電池。
A solid electrolyte fuel cell comprising a solid electrolyte membrane, a fuel electrode, and an air electrode laminated on the solid electrolyte membrane,
The air electrode includes an air electrode intermediate layer provided on the solid electrolyte membrane side, and an air electrode conductive layer provided on the opposite side of the solid electrolyte membrane,
The air electrode conductive layer is made of a material containing (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where 0.98 <x ≦ 1.0),
The air electrode intermediate layer includes at least a first air electrode intermediate layer made of a material containing 30 to 95 mol% of Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% of SmMnO 3 ,
When the resistance value measuring element is formed by laminating the solid electrolyte membrane, the air electrode intermediate layer, and the air electrode conductive layer in this order, the total resistance value of the resistance value measuring element is 0 at 900 ° C. .95Ωcm solid electrolyte fuel cell is 2 or more 1.4Omucm 2 or less.
前記空気極中間層の膜厚が3〜30μmである請求項1に記載の固体電解質燃料電池。   The solid electrolyte fuel cell according to claim 1, wherein the air electrode intermediate layer has a thickness of 3 to 30 μm. 前記空気極中間層は、
前記第1空気極中間層と、
前記第1空気極中間層と前記固体電解質膜との間に設けられ、99mol%以上100mol%以下のSm0.2Ce0.8を含有する材料により構成される第2空気極中間層と、を含む複層構造を有する請求項1又は2に記載の固体電解質燃料電池。
The air electrode intermediate layer is
The first air electrode intermediate layer;
It provided between the solid electrolyte film and the first cathode intermediate layer, a second cathode intermediate layer composed of a material containing 99 mol% or more 100 mol% or less of Sm 0.2 Ce 0.8 O 2 The solid electrolyte fuel cell according to claim 1, which has a multilayer structure including:
前記固体電解質膜は、イットリア安定化ジルコニアを含有する材料により構成される請求項3に記載の固体電解質燃料電池。   The solid electrolyte fuel cell according to claim 3, wherein the solid electrolyte membrane is made of a material containing yttria-stabilized zirconia. 固体電解質膜と、燃料極と、前記固体電解質膜に積層される空気極とを備える固体電解質燃料電池であって、
前記空気極は、前記固体電解質膜側に設けられる空気極中間層と、前記固体電解質膜とは反対側に設けられる空気極導電層とを備え、
前記空気極導電層は、(La0.5Sr0.25Ca0.25MnO(ただし、0.98<x≦1.0である。)を含有する材料により構成され、
前記空気極中間層は、30〜95mol%のSm0.2Ce0.8と、5〜70mol%のSmMnOとを含有する材料により構成される第1空気極中間層と、前記第1空気極中間層と前記固体電解質膜との間に設けられ、99mol%以上100mol%以下のSm0.2Ce0.8を含有する材料により構成される第2空気極中間層と、を含む複層構造を有し、
前記第1空気極中間層の膜厚と前記第2空気極中間層の膜厚との比が、1:2〜10:1である固体電解質燃料電池。
A solid electrolyte fuel cell comprising a solid electrolyte membrane, a fuel electrode, and an air electrode laminated on the solid electrolyte membrane,
The air electrode includes an air electrode intermediate layer provided on the solid electrolyte membrane side, and an air electrode conductive layer provided on the opposite side of the solid electrolyte membrane,
The air electrode conductive layer is made of a material containing (La 0.5 Sr 0.25 Ca 0.25 ) x MnO 3 (where 0.98 <x ≦ 1.0),
The air electrode intermediate layer includes a first air electrode intermediate layer made of a material containing 30 to 95 mol% Sm 0.2 Ce 0.8 O 2 and 5 to 70 mol% SmMnO 3 , A second air electrode intermediate layer that is provided between one air electrode intermediate layer and the solid electrolyte membrane, and is made of a material containing 99 mol% or more and 100 mol% or less of Sm 0.2 Ce 0.8 O 2 ; Having a multilayer structure including
The solid electrolyte fuel cell, wherein a ratio of a film thickness of the first air electrode intermediate layer to a film thickness of the second air electrode intermediate layer is 1: 2 to 10: 1.
JP2013259494A 2013-12-16 2013-12-16 Solid electrolyte fuel cell Active JP6177680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013259494A JP6177680B2 (en) 2013-12-16 2013-12-16 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013259494A JP6177680B2 (en) 2013-12-16 2013-12-16 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2015118741A JP2015118741A (en) 2015-06-25
JP6177680B2 true JP6177680B2 (en) 2017-08-09

Family

ID=53531335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013259494A Active JP6177680B2 (en) 2013-12-16 2013-12-16 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6177680B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316760B2 (en) 2015-01-27 2018-04-25 三菱日立パワーシステムズ株式会社 Method for producing solid oxide fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369949B1 (en) * 2002-06-06 2013-01-30 Panasonic Corporation Solid electrolyte fuel cell and manufacturing method thereof
JP2004186119A (en) * 2002-12-06 2004-07-02 Mitsubishi Heavy Ind Ltd Electrode forming method
JP2010257947A (en) * 2009-03-30 2010-11-11 Mitsubishi Heavy Ind Ltd Cell tube for solid electrolyte fuel cells, and the solid electrolyte fuel cell
JP4995328B1 (en) * 2010-03-25 2012-08-08 日本碍子株式会社 Electrode material and fuel cell including the same
JP5622754B2 (en) * 2012-01-05 2014-11-12 三菱重工業株式会社 Method for producing solid oxide fuel cell and solid oxide fuel cell

Also Published As

Publication number Publication date
JP2015118741A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5173524B2 (en) Solid oxide fuel cell and water electrolysis cell
JP4853979B2 (en) Fuel cell
JP4999316B2 (en) Fuel cell
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
JP2011119178A (en) Solid oxide fuel cell
JP5622754B2 (en) Method for producing solid oxide fuel cell and solid oxide fuel cell
JP5336207B2 (en) Solid oxide fuel cell
JP2012074306A (en) Power generation cell for solid oxide fuel cell
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
Park et al. Monolithic flat tubular types of solid oxide fuel cells with integrated electrode and gas channels
JPWO2018230247A1 (en) Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for manufacturing solid electrolyte member
JP6177680B2 (en) Solid electrolyte fuel cell
KR20130040311A (en) Dual layer interconnect for solid oxide fuel cell, solid oxide fuel cell therewith and preparation method thereof
JP2019157146A (en) Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen production device
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
WO2013180299A1 (en) Cell, cell stack device, electrochemical module, and electro- chemical device
JP2011060695A (en) Solid oxide fuel cell
KR101763722B1 (en) Proton conductive ceramic electrolyte for stacking high reliable fuel cells
KR101510402B1 (en) Flat tubular segment-in-series sofc and method of fabricating thereof
JP5596594B2 (en) FUEL ELECTRODE MATERIAL FOR SOLID OXIDE FUEL CELL, FUEL ELECTRODE, SOLID OXIDE FUEL CELL AND METHOD FOR PRODUCING FUEL ELECTRODE
JP7194936B2 (en) Solid oxide fuel cell with mixed conductor layers
JP2008226762A (en) Solid oxide type fuel battery cell and solid oxide type fuel battery
JP2007008778A (en) Ceramic material, oxygen electrode material, oxygen electrode, and fuel cell and manufacturing method thereof
JP2015002035A (en) Method for manufacturing solid oxide fuel battery cell
JP2012074305A (en) Power generation cell for solid oxide fuel cell

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170712

R150 Certificate of patent or registration of utility model

Ref document number: 6177680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350