JP5622754B2 - Method for producing solid oxide fuel cell and solid oxide fuel cell - Google Patents

Method for producing solid oxide fuel cell and solid oxide fuel cell Download PDF

Info

Publication number
JP5622754B2
JP5622754B2 JP2012000704A JP2012000704A JP5622754B2 JP 5622754 B2 JP5622754 B2 JP 5622754B2 JP 2012000704 A JP2012000704 A JP 2012000704A JP 2012000704 A JP2012000704 A JP 2012000704A JP 5622754 B2 JP5622754 B2 JP 5622754B2
Authority
JP
Japan
Prior art keywords
air electrode
intermediate layer
fuel cell
conductive layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012000704A
Other languages
Japanese (ja)
Other versions
JP2013140737A (en
Inventor
佃 洋
洋 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012000704A priority Critical patent/JP5622754B2/en
Publication of JP2013140737A publication Critical patent/JP2013140737A/en
Application granted granted Critical
Publication of JP5622754B2 publication Critical patent/JP5622754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、基体管上に複数の単素子が形成された固体電解質型燃料電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a solid oxide fuel cell in which a plurality of single elements are formed on a base tube.

円筒型の固体電解質型燃料電池(SOFC)の一般的な構成では、多孔質基体管上に、順に燃料極、固体電解質膜、空気極を積層させた単素子が、基体管長手方向に沿って複数形成され、隣接する単素子同士がインターコネクタで連結される。単素子当たりの起電力は小さいが、複数の素子が直列に接続されることで電圧が高められ、高出力を得ることができる。   In a general configuration of a cylindrical solid oxide fuel cell (SOFC), a single element in which a fuel electrode, a solid electrolyte membrane, and an air electrode are laminated in order on a porous substrate tube along the longitudinal direction of the substrate tube. A plurality of adjacent single elements are connected by an interconnector. Although the electromotive force per single element is small, the voltage can be increased and a high output can be obtained by connecting a plurality of elements in series.

燃料極は、ニッケルとイットリア安定化ジルコニア(YSZ)等のジルコニア系電解質材料とを混合した材料で構成される。固体電解質膜には、主としてYSZが用いられる。
インターコネクタは、SrTiO系などの導電性ペロブスカイト型酸化物から構成される。インターコネクタは、単素子を電気的に接続するためのものである。インターコネクタの導電率が低いと取り出せる電力が少なくなるため、高い導電率が必要となる。また、インターコネクタは、燃料ガスを基体管の内側に供給した際に、燃料と空気が混ざらないようにする役割も担う。そのため、インターコネクタと単素子との接触界面の高い気密性も必要となる。
空気極は、例えばLaMnO系とされる導電性ペロブスカイト型酸化物とで構成される。
The fuel electrode is made of a material obtained by mixing nickel and a zirconia-based electrolyte material such as yttria-stabilized zirconia (YSZ). YSZ is mainly used for the solid electrolyte membrane.
The interconnector is made of a conductive perovskite oxide such as SrTiO 3 . The interconnector is for electrically connecting single elements. When the electrical conductivity of the interconnector is low, less electric power can be taken out, and thus high electrical conductivity is required. The interconnector also serves to prevent fuel and air from mixing when fuel gas is supplied to the inside of the base tube. Therefore, high airtightness of the contact interface between the interconnector and the single element is also required.
The air electrode is composed of, for example, a conductive perovskite oxide made of LaMnO 3 .

上記構成の固体電解質型燃料電池では、空気極と固体電解質膜との界面部分に大きな接触抵抗が存在する。この接触抵抗を低減し、空気極と電解質との間の電極活性を向上させるために、特許文献1は、LaAMnO(A=SrまたはCa)などの空気極と、YSZやスカンジア安定化ジルコニア(SSZ)などとされる電解質との間に、酸素イオン導電性が高い電極反応層を設けることを開示している。特許文献1の電極反応層は、(CeO0.8(Sm0.1などのセリウム酸化物や、セリウム酸化物とランタンマンガナイトとの混合物などとされる。 In the solid oxide fuel cell having the above configuration, a large contact resistance exists at the interface portion between the air electrode and the solid electrolyte membrane. Reduces the contact resistance, in order to improve the electrode activity between the air electrode and the electrolyte, Patent Document 1, LaAMnO 3 (A = Sr or Ca) and an air electrode, such as, YSZ or scandia stabilized zirconia It discloses that an electrode reaction layer having high oxygen ion conductivity is provided between an electrolyte such as (SSZ) and the like. The electrode reaction layer of Patent Document 1 is a cerium oxide such as (CeO 2 ) 0.8 (Sm 2 O 3 ) 0.1 or a mixture of cerium oxide and lanthanum manganite.

また、特許文献2は、ZrO系酸化物を有する第1電解質膜と、LaCoO系酸化物またはLaMnO系酸化物を含む空気極との間に、CeO系酸化物を有する第2電解質膜を設けた固体電解質型燃料電池を開示している。 Patent Document 2 discloses a second electrolyte having a CeO 2 oxide between a first electrolyte film having a ZrO 2 oxide and an air electrode containing a LaCoO 3 oxide or a LaMnO 3 oxide. A solid oxide fuel cell having a membrane is disclosed.

特許第3661676号公報(請求項1,2,14、段落[0007]〜[0008]、[0053]、[0073]〜[0078]、[0101]〜[0104]、[0160]〜[0163]、[0184]〜[0187])Japanese Patent No. 3661676 (claims 1, 2, 14, paragraphs [0007] to [0008], [0053], [0073] to [0078], [0101] to [0104], [0160] to [0163] [0184] to [0187]) 特許第4592484号公報(請求項1,5、段落[0033]〜[0035])Japanese Patent No. 4592484 (Claims 1, 5, paragraphs [0033] to [0035])

本発明は、固体電解質膜と空気極との接触抵抗が低減することにより高い出力を示す固体電解質型燃料電池の製造方法、及び、その製造方法により作製された固体電解質型燃料電池を提供することを目的とする。   The present invention provides a method for manufacturing a solid oxide fuel cell that exhibits high output by reducing the contact resistance between the solid electrolyte membrane and the air electrode, and a solid electrolyte fuel cell manufactured by the manufacturing method. With the goal.

本発明の固体電解質型燃料電池の製造方法は、基体管上に、燃料極と固体電解質膜と空気極とを備える複数の単素子と、隣接する前記単素子を電気的に接続するインターコネクタとを備える固体電解質型燃料電池の製造方法であって、前記基体管の外周面上に、前記燃料極と前記固体電解質膜とを順次積層した積層体を、前記単素子に相当する複数の区域に分けて形成する工程と、隣接する前記複数の区域の間で、隣り合う前記区域の前記積層体を接続するように前記インターコネクタを形成する工程と、前記基体管とともに、前記燃料極、前記固体電解質膜及び前記インターコネクタを焼結する工程と、前記共焼結された前記固体電解質上に、Sm1−xCe(但し、0.8≦x≦0.9)で表されるセリア化合物を主成分とするスラリーを塗布し、前記空気極として空気極中間層を形成する工程と、前記空気極中間層上に、La(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(但し、y>1、0.4≦a≦0.8、0.4≦b≦0.8)で表され、Mnのモル数に対するLa,Sr及びCaのモル数の合計の比が0.92以上0.98以下とされるペロブスカイト型酸化物を主成分とするスラリーを塗布し、前記空気極として空気極導電層を形成する工程と、前記空気極中間層及び前記空気極導電層を焼結するとともに、前記空気極導電層中のMnを前記空気極中間層に拡散させる工程とを含む。 A method for manufacturing a solid oxide fuel cell according to the present invention includes a plurality of single elements including a fuel electrode, a solid electrolyte membrane, and an air electrode on a base tube, and an interconnector that electrically connects the adjacent single elements. A solid oxide fuel cell manufacturing method comprising: a laminated body in which the fuel electrode and the solid electrolyte membrane are sequentially laminated on an outer peripheral surface of the base tube in a plurality of areas corresponding to the single element. a step of dividing by forming, between said plurality of zones adjacent and forming the interconnector to connect the laminate of the area adjacent, together with the substrate tube, the fuel electrode, the solid A step of co- sintering the electrolyte membrane and the interconnector, and Sm 1-x Ce x O 2 (where 0.8 ≦ x ≦ 0.9) is formed on the co-sintered solid electrolyte membrane. Main component of ceria compound The slurry was applied to a step of forming a cathode intermediate layer as said air electrode, said air electrode intermediate layer, La (a + b) / 2 Sr (1-a) / 2 Ca (1-b) / 2 Mn y O 3 (where y> 1, 0.4 ≦ a ≦ 0.8, 0.4 ≦ b ≦ 0.8), and the total number of moles of La, Sr and Ca with respect to the number of moles of Mn Applying a slurry mainly composed of a perovskite oxide having a ratio of 0.92 to 0.98 to form an air electrode conductive layer as the air electrode, the air electrode intermediate layer, and the air Sintering the electrode conductive layer and diffusing Mn in the air electrode conductive layer into the air electrode intermediate layer.

また、本発明の固体電解質型燃料電池は、基体管上に、燃料極と固体電解質膜と空気極とを備える複数の単素子と、隣接する前記単素子を電気的に接続するインターコネクタとを備え、前記空気極が、前記固体電解質膜上に形成されるSm1−xCe(但し、0.8≦x≦0.9)で表されるセリア化合物を主成分とする空気極中間層と、該空気極中間層上に形成されるLa(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(但し、y>1、0.4≦a≦0.8、0.4≦b≦0.8)で表され、Mnのモル数に対するLa,Sr及びCaのモル数の合計の比が0.92以上0.98以下とされるペロブスカイト型酸化物を主成分とする空気極導電層とが積層され、前記空気極導電層中の遊離Mnが前記空気極中間層に拡散したことにより、前記空気極中間層中にSmMnO が形成されている The solid oxide fuel cell of the present invention includes a plurality of single elements each including a fuel electrode, a solid electrolyte membrane, and an air electrode on a base tube, and an interconnector that electrically connects the adjacent single elements. An air electrode comprising a ceria compound represented by Sm 1-x Ce x O 2 (where 0.8 ≦ x ≦ 0.9) as a main component, the air electrode being formed on the solid electrolyte membrane. Intermediate layer and La (a + b) / 2 Sr (1-a) / 2 Ca (1-b) / 2 Mn y O 3 (where y> 1, 0.4 ) formed on the air electrode intermediate layer ≦ a ≦ 0.8, 0.4 ≦ b ≦ 0.8), and the ratio of the total number of moles of La, Sr and Ca to the number of moles of Mn is 0.92 or more and 0.98 or less. An air electrode conductive layer mainly composed of a perovskite oxide, and free Mn in the air electrode conductive layer is SmMnO 3 is formed in the air electrode intermediate layer by diffusing into the air electrode intermediate layer .

上記固体電解質型燃料電池では、空気極が2層構成とされ、空気極導電層が化学量論組成に対して過剰なMnを有するLa(a+b)/2Sr(1−a)/2Ca(1−b)/2Mnとされる。燃料極、固体電解質膜及びインターコネクタが形成された基体管上に、Sm1−xCe(0.8≦x≦0.9)を主成分とする空気極中間層と上記空気極導電層を形成し、焼結すると、空気極導電層中の過剰Mnが空気極中間層中に拡散する。特に、Mnのモル数に対するLa,Sr,Caの合計モル数の比が0.92以上0.98以下とされる上記空気極導電層を形成すれば、化学量論組成の空気極導電層を形成した場合と比較して、高い発電性能を有する固体電解質型燃料電池を得ることができる。 In the solid oxide fuel cell, La (a + b) / 2 Sr (1-a) / 2 Ca (wherein the air electrode has a two-layer structure and the air electrode conductive layer has an excess Mn with respect to the stoichiometric composition. 1-b) / 2 Mn y O 3 An air electrode intermediate layer mainly composed of Sm 1-x Ce x O 2 (0.8 ≦ x ≦ 0.9) and the air electrode on a base tube on which a fuel electrode, a solid electrolyte membrane, and an interconnector are formed. When the conductive layer is formed and sintered, excess Mn in the air electrode conductive layer diffuses into the air electrode intermediate layer. In particular, if the air electrode conductive layer is formed such that the ratio of the total number of La, Sr, and Ca to Mn moles is 0.92 or more and 0.98 or less, the stoichiometric composition of the air electrode conductive layer is obtained. Compared with the case where it forms, the solid oxide fuel cell which has high electric power generation performance can be obtained.

空気極導電層中の過剰Mnが空気極中間層中に拡散した本発明の固体電解質型燃料電池は、化学量論組成の空気極導電層を形成した場合と比較して、高い発電性能を有する固体電解質型燃料電池となる。   The solid oxide fuel cell of the present invention in which excess Mn in the air electrode conductive layer diffuses into the air electrode intermediate layer has higher power generation performance than the case where the stoichiometric air electrode conductive layer is formed. It becomes a solid oxide fuel cell.

本発明の製造方法により作製される固体電解質型燃料電池の断面概略図である。1 is a schematic cross-sectional view of a solid oxide fuel cell produced by the production method of the present invention. A/B比の異なるLa0.5Sr0.25Ca0.25Mnを空気極導電層に用いた固体電解質型燃料電池の電流密度と作動電圧との関係を示すグラフである。Different La 0.5 Sr 0.25 Ca 0.25 Mn y O 3 with A / B ratio is a graph showing the relationship between the operating voltage and current density of the solid electrolyte fuel cell using the air electrode conductive layer. A/B比の異なるLa0.5Sr0.25Ca0.25Mnを空気極導電層に用いた固体電解質型燃料電池の電流密度と出力密度との関係を示すグラフである。Different La 0.5 Sr 0.25 Ca 0.25 Mn y O 3 with A / B ratio is a graph showing the relationship between the output density current density of the solid electrolyte fuel cell using the air electrode conductive layer.

以下に、本発明に係る実施形態について、図面を参照して説明する。
図1は、本実施形態に係る円筒型の固体電解質型燃料電池10の断面概略図である。基体管11の外周面上に、基体管11側から順に燃料極13、固体電解質膜14、空気極15a及び15bを積層した単素子12が形成されている。本実施形態の固体電解質型燃料電池10は、基体管11の内側に燃料(水素ガス等)が符号17の方向に流通し、基体管11の外側に空気が符号18の方向に流通するものである。
Embodiments according to the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a cylindrical solid oxide fuel cell 10 according to the present embodiment. On the outer peripheral surface of the base tube 11, a single element 12 in which a fuel electrode 13, a solid electrolyte membrane 14, and air electrodes 15 a and 15 b are stacked in this order from the base tube 11 side is formed. In the solid oxide fuel cell 10 of this embodiment, fuel (hydrogen gas or the like) flows in the direction of reference numeral 17 inside the base tube 11 and air flows in the direction of reference number 18 outside the base tube 11. is there.

単素子12は基体管11の円周方向に形成されており、基体管11の長手方向に複数の単素子12が並列に配置されている。固体電解質膜14の一部は、単素子12の基体管11長手方向の一端部で基体管11と接触する。但し、単素子12の固体電解質膜14は、隣接する単素子12の燃料極13とは接触していない。複数の単素子12の各々の間には、隣接する単素子同士を連結するインターコネクタ16が形成されている。インターコネクタ16は、単素子12の固体電解質膜14と隣接する単素子12の燃料極13との間で、基体管11と接触している。   The single element 12 is formed in the circumferential direction of the base tube 11, and a plurality of single elements 12 are arranged in parallel in the longitudinal direction of the base tube 11. A part of the solid electrolyte membrane 14 contacts the base tube 11 at one end of the single element 12 in the longitudinal direction of the base tube 11. However, the solid electrolyte membrane 14 of the single element 12 is not in contact with the fuel electrode 13 of the adjacent single element 12. An interconnector 16 that connects adjacent single elements is formed between each of the plurality of single elements 12. The interconnector 16 is in contact with the base tube 11 between the solid electrolyte membrane 14 of the single element 12 and the fuel electrode 13 of the adjacent single element 12.

本実施形態において、空気極は、基体管11側から順に空気極中間層15a及び空気極導電層15bで構成されている。空気極中間層15aは、固体電解質膜14及びインターコネクタ16に接触して設けられる。空気極導電層15bは、空気極中間層15aに接触して設けられる。   In the present embodiment, the air electrode is composed of an air electrode intermediate layer 15a and an air electrode conductive layer 15b in order from the base tube 11 side. The air electrode intermediate layer 15 a is provided in contact with the solid electrolyte membrane 14 and the interconnector 16. The air electrode conductive layer 15b is provided in contact with the air electrode intermediate layer 15a.

本実施形態において、基体管11はカルシア安定化ジルコニア(CSZ)またはCSZと酸化ニッケル(NiO)との混合物(CSZ+NiO)などを主とする多孔質材料からなる。基体管11は多孔質であり、燃料とされる水素ガスが基体管11内側から外側(燃料極13側)に向かって流通可能となっている。
燃料極13は酸化ニッケル(NiO)とジルコニア系電解質材料との複合材で構成されている。複合材としては、例えば、NiOとイットリア安定化ジルコニア(YSZ)の混合物とされる。燃料極13の厚さは、例えば120μmとされる。
固体電解質膜14は電子絶縁性であり、ガスを通さない気密性と高温での高いイオン透過性とを有することが求められる。そのため、固体電解質は、主としてY安定化ZrO(YSZ)などからなる。とされる。固体電解質膜14の厚さは、例えば80μmとされる。
インターコネクタ16は、チタン酸ストロンチウム系などのM1−zTiO(Mはアルカリ土類金属元素、Lはランタノイド元素、0.05≦z≦0.2)で表される導電性ペロブスカイト型酸化物から構成される。例えば、インターコネクタ材料は、Sr1−zLaTiO(0.05≦z≦0.2)とされる。インターコネクタ16は、燃料ガスと空気とが混合しないように緻密な膜となっている。
なお、本実施形態では、基体管11、燃料極13、固体電解質膜14、インターコネクタ16の材質は上記材料に限定されない。
In the present embodiment, the base tube 11 is made of a porous material mainly composed of calcia-stabilized zirconia (CSZ) or a mixture of CSZ and nickel oxide (NiO) (CSZ + NiO). The base tube 11 is porous, and hydrogen gas used as fuel can flow from the inside of the base tube 11 to the outside (the fuel electrode 13 side).
The fuel electrode 13 is composed of a composite material of nickel oxide (NiO) and a zirconia-based electrolyte material. As the composite material, for example, a mixture of NiO and yttria stabilized zirconia (YSZ) is used. The thickness of the fuel electrode 13 is 120 μm, for example.
The solid electrolyte membrane 14 is electronically insulative, and is required to have gas tightness that prevents gas from passing and high ion permeability at high temperatures. Therefore, the solid electrolyte is mainly composed of Y 2 O 3 stabilized ZrO 2 (YSZ) or the like. It is said. The thickness of the solid electrolyte membrane 14 is, for example, 80 μm.
The interconnector 16 is a conductive perovskite represented by M 1-z L z TiO 3 such as strontium titanate (M is an alkaline earth metal element, L is a lanthanoid element, 0.05 ≦ z ≦ 0.2). It is composed of a type oxide. For example, the interconnector material is Sr 1-z La z TiO 3 (0.05 ≦ z ≦ 0.2). The interconnector 16 is a dense film so that fuel gas and air are not mixed.
In the present embodiment, the materials of the base tube 11, the fuel electrode 13, the solid electrolyte membrane 14, and the interconnector 16 are not limited to the above materials.

空気極導電層15bは、La(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(但し、y>1、0.4≦a≦0.8、0.4≦b≦0.8)で表されるペロブスカイト型酸化物を主成分とする。すなわち、上記ペロブスカイト型酸化物は、AサイトとされるLa,Sr,Caに対し、BサイトとされるMnが過剰に存在するものである。上記ペロブスカイト型酸化物において、焼結前のA/B比(Mnのモル数に対するLa,Sr,Caの合計モル数の比)は、0.92以上0.98以下とされる。
空気極導電層15bの膜厚は、500μm〜1500μmの範囲内とされる。
The air electrode conductive layer 15b is composed of La (a + b) / 2 Sr (1-a) / 2 Ca (1-b) / 2 Mn y O 3 (where y> 1, 0.4 ≦ a ≦ 0.8, The main component is a perovskite oxide represented by 0.4 ≦ b ≦ 0.8). That is, the perovskite oxide has an excess of Mn as a B site relative to La, Sr, and Ca as an A site. In the perovskite oxide, the A / B ratio before sintering (the ratio of the total number of moles of La, Sr, and Ca to the number of moles of Mn) is 0.92 or more and 0.98 or less.
The film thickness of the air electrode conductive layer 15b is in the range of 500 μm to 1500 μm.

空気極中間層15aは、Sm1−xCe(0.8≦x≦0.9)で表されるセリア化合物を主成分とし、空気極導電層15bから拡散されたMnを含んでいる。空気極中間層15aの膜厚は、10〜20μmとされる。 The air electrode intermediate layer 15a is mainly composed of a ceria compound represented by Sm 1-x Ce x O 2 (0.8 ≦ x ≦ 0.9), and contains Mn diffused from the air electrode conductive layer 15b. Yes. The film thickness of the air electrode intermediate layer 15a is 10 to 20 μm.

本実施形態の固体電解質型燃料電池10の製造方法を、以下で説明する。
(基体管の成形)
例えばカルシウム安定化ジルコニア(CSZ)とされる基体管11を、押し出し成形法により成形する。
A method for manufacturing the solid oxide fuel cell 10 of the present embodiment will be described below.
(Base tube forming)
For example, a base tube 11 made of calcium stabilized zirconia (CSZ) is formed by an extrusion method.

(燃料極、固体電解質膜の形成)
Ni+YSZの混合粉末と水系ビヒクル(水に分散剤、バインダ、及び消泡剤を添加したもの)とを混合し、燃料極用スラリーを作製する。NiとYSZの混合比は、燃料極13に要求される性能により適宜選択される。混合粉末と水系ビヒクルとの混合比は、燃料極13の厚さや、スラリー塗布後の燃料極膜の状態などを考慮して、適宜選択される。
(Formation of fuel electrode and solid electrolyte membrane)
A mixed powder of Ni + YSZ and an aqueous vehicle (water added with a dispersant, a binder, and an antifoaming agent) are mixed to produce a fuel electrode slurry. The mixing ratio of Ni and YSZ is appropriately selected depending on the performance required for the fuel electrode 13. The mixing ratio of the mixed powder and the water-based vehicle is appropriately selected in consideration of the thickness of the fuel electrode 13, the state of the fuel electrode film after slurry application, and the like.

YSZ粉末と水系ビヒクルとを混合し、固体電解質膜用スラリーを作製する。混合比は、固体電解質膜14の厚さや、スラリー塗布後の固体電解質膜の状態などを考慮して適宜選択される。   A YSZ powder and an aqueous vehicle are mixed to produce a solid electrolyte membrane slurry. The mixing ratio is appropriately selected in consideration of the thickness of the solid electrolyte membrane 14, the state of the solid electrolyte membrane after slurry application, and the like.

基体管11の外周面上の円周方向に、上記の燃料極用スラリー及び固体電解質膜用スラリーをスクリーン印刷により塗布し、燃料極13及び固体電解質膜14を形成する。このとき、図1に示すように、燃料極13と固体電解質膜14との積層膜を、単素子に相当する複数の区域に分けて形成する。   The fuel electrode slurry and the solid electrolyte membrane slurry are applied by screen printing in the circumferential direction on the outer peripheral surface of the base tube 11 to form the fuel electrode 13 and the solid electrolyte membrane 14. At this time, as shown in FIG. 1, the laminated film of the fuel electrode 13 and the solid electrolyte film 14 is divided into a plurality of areas corresponding to a single element.

(インターコネクタの形成)
1−zTiO(Mはアルカリ土類金属元素、Lはランタノイド元素、0.05≦z≦0.2)粉末と水系ビヒクルとを混合し、インターコネクタ用スラリーを作製する。粉末の組成は、インターコネクタに要求される性能に応じて適宜選択される。粉末と水系ビヒクルとの混合比は、スラリー塗布後のインターコネクタの状態などを考慮して適宜選択される。
(Formation of interconnector)
M 1-z L z TiO 3 (M is an alkaline earth metal element, L is a lanthanoid element, 0.05 ≦ z ≦ 0.2) powder and an aqueous vehicle are mixed to prepare an interconnector slurry. The composition of the powder is appropriately selected according to the performance required for the interconnector. The mixing ratio of the powder and the water-based vehicle is appropriately selected in consideration of the state of the interconnector after applying the slurry.

図1に示されるように、燃料極13及び固体電解質膜14が形成された基体管11における隣接する上記積層膜の間で、基体管11の外周面の円周方向に、上記のインターコネクタ用スラリーをスクリーン印刷により塗布し、インターコネクタ16を形成する。   As shown in FIG. 1, the interconnector is formed in the circumferential direction of the outer peripheral surface of the base tube 11 between the adjacent laminated films in the base tube 11 on which the fuel electrode 13 and the solid electrolyte membrane 14 are formed. The slurry is applied by screen printing to form the interconnector 16.

(共焼結)
燃料極13、固体電解質膜14及びインターコネクタ16が形成された基体管11を、大気中にて共焼結する。焼結温度は、具体的に1350℃〜1450℃とされる。
(Co-sintering)
The base tube 11 on which the fuel electrode 13, the solid electrolyte membrane 14, and the interconnector 16 are formed is co-sintered in the atmosphere. The sintering temperature is specifically 1350 ° C. to 1450 ° C.

(空気極中間層の形成)
Sm1−xCe(0.8≦x≦0.9)粉末と水系ビヒクルとを混合し、空気極中間層用スラリーを作製する。粉末と水系ビヒクルとの混合比は、スラリー塗布後の空気極中間層の状態などを考慮して適宜選択される。
(Formation of air electrode intermediate layer)
Sm 1-x Ce x O 2 (0.8 ≦ x ≦ 0.9) powder and an aqueous vehicle are mixed to prepare an air electrode intermediate layer slurry. The mixing ratio of the powder and the water-based vehicle is appropriately selected in consideration of the state of the air electrode intermediate layer after slurry application.

図1に示されるように、共焼結後の基体管11の固体電解質膜14に、上記の空気極中間層用スラリーを基体管11の円周方向に沿って塗布し、空気極中間層15aを形成する。空気極中間層の形成方法は、刷毛塗り、ローラによる製膜、ディスペンサによる製膜などとされる。   As shown in FIG. 1, the air electrode intermediate layer slurry is applied to the solid electrolyte membrane 14 of the base tube 11 after co-sintering along the circumferential direction of the base tube 11, and the air electrode intermediate layer 15a is applied. Form. The air electrode intermediate layer is formed by brushing, film formation by a roller, film formation by a dispenser, or the like.

(空気極導電層の形成)
La(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(y>1、0.4≦a≦0.8、0.4≦b≦0.8、A/B比:0.92〜0.98)粉末と水系ビヒクルとを混合し、空気極導電層用スラリーを作製する。粉末と水系ビヒクルとの混合比は、スラリー塗布後の空気極導電層の状態などを考慮して適宜選択される。
(Formation of air electrode conductive layer)
La (a + b) / 2 Sr (1-a) / 2 Ca (1-b) / 2 Mn y O 3 (y> 1, 0.4 ≦ a ≦ 0.8, 0.4 ≦ b ≦ 0.8 A / B ratio: 0.92 to 0.98) The powder and the water-based vehicle are mixed to prepare a slurry for the air electrode conductive layer. The mixing ratio of the powder and the water-based vehicle is appropriately selected in consideration of the state of the air electrode conductive layer after slurry application.

図1に示されるように、上記の空気極導電層用スラリーを、空気極中間層15a上に基体管11の円周方向に沿ってスクリーン印刷により塗布し、空気極導電層15bを形成する。
(空気極中間層及び空気極導電層の焼結)
As shown in FIG. 1, the air electrode conductive layer slurry is applied onto the air electrode intermediate layer 15a by screen printing along the circumferential direction of the base tube 11 to form the air electrode conductive layer 15b.
(Sintering of air electrode intermediate layer and air electrode conductive layer)

空気極中間層15a及び空気極導電層15bが形成された基体管11を、大気中にて焼結する。焼結温度は、具体的に1100℃〜1250℃とされる。ここでの焼結温度は、基体管11〜インターコネクタ16を形成した後の共焼結温度よりも低温とされる。
上記工程により、基体管11上に単素子12が形成された固体電解質型燃料電池10が得られる。
The base tube 11 on which the air electrode intermediate layer 15a and the air electrode conductive layer 15b are formed is sintered in the atmosphere. The sintering temperature is specifically 1100 ° C. to 1250 ° C. The sintering temperature here is lower than the co-sintering temperature after the base tube 11 to the interconnector 16 are formed.
Through the above process, the solid oxide fuel cell 10 in which the single element 12 is formed on the base tube 11 is obtained.

本実施形態の空気極導電層15bは、ペロブスカイト構造の化学量論比組成に対してMnを過剰に含む。焼結前では、過剰のMnは遊離Mnとして、空気極導電層15b中に存在する。焼結時では、空気極導電層15b中の遊離Mnの一部が、空気極中間層15aに拡散する。このため、本実施形態の空気極中間層15aは、空気極導電層由来のMnを含むものとなる。   The air electrode conductive layer 15b of the present embodiment contains an excessive amount of Mn with respect to the stoichiometric composition of the perovskite structure. Before sintering, excess Mn exists as free Mn in the air electrode conductive layer 15b. At the time of sintering, part of the free Mn in the air electrode conductive layer 15b diffuses into the air electrode intermediate layer 15a. For this reason, the air electrode intermediate layer 15a of the present embodiment includes Mn derived from the air electrode conductive layer.

A/B比の異なるLa0.5Sr0.25Ca0.25Mnを空気極導電層に用いた固体電解質型燃料電池について、発電試験を実施した。
以下の材料を使用し、固体電解質型燃料電池を作製した。
基体管:カルシウム安定化ジルコニア(Ca添加量15mol%)
燃料極:Ni:YSZ(Y添加量8mol%)=50:50(質量比)、膜厚120μm
固体電解質膜:YSZ(Y添加量8mol%)、膜厚80μm
インターコネクタ:Sr0.9La0.1TiO
空気極中間層:Sm0.2Ce0.8、膜厚15μm
空気極導電層:La0.5Sr0.25Ca0.25Mn、膜厚1000μm、A/B比=0.92,0.95,0.98,1
A power generation test was conducted on solid oxide fuel cells using La 0.5 Sr 0.25 Ca 0.25 Mn y O 3 having different A / B ratios as the air electrode conductive layer.
A solid oxide fuel cell was fabricated using the following materials.
Base tube: Calcium stabilized zirconia (Ca addition amount 15 mol%)
Fuel electrode: Ni: YSZ (Y addition amount 8 mol%) = 50:50 (mass ratio), film thickness 120 μm
Solid electrolyte membrane: YSZ (Y addition amount 8 mol%), film thickness 80 μm
Interconnector: Sr 0.9 La 0.1 TiO 3
Air electrode intermediate layer: Sm 0.2 Ce 0.8 O 2 , film thickness 15 μm
Air electrode conductive layer: La 0.5 Sr 0.25 Ca 0.25 Mn y O 3, thickness 1000 .mu.m, A / B ratio = 0.92,0.95,0.98,1

基体管〜インターコネクタの共焼結条件は1400℃4時間、空気極中間層及び空気極導電層の焼結条件は1150℃2時間とした。
なお、基体管の長さは850mm、基体管に形成した単素子の数は22素子とした。
The co-sintering conditions of the base tube to the interconnector were 1400 ° C. for 4 hours, and the sintering conditions for the air electrode intermediate layer and air electrode conductive layer were 1150 ° C. for 2 hours.
The length of the base tube was 850 mm, and the number of single elements formed on the base tube was 22 elements.

燃料としてH+Nを用いて発電試験を実施した。発電試験条件は、900℃とした。 A power generation test was conducted using H 2 + N 2 as a fuel. The power generation test condition was 900 ° C.

図2は、上記の固体電解質型燃料電池を用いた発電試験で取得した電流密度と作動電圧との関係を示すグラフである。同図において、横軸は電流密度、縦軸は作動電圧である。図3は、上記の固体電解質型燃料電池を用いた発電試験で取得した電流密度と出力密度との関係を示すグラフである。同図において、横軸は電流密度、縦軸は出力密度である。 FIG. 2 is a graph showing the relationship between the current density obtained in the power generation test using the solid oxide fuel cell and the operating voltage. In the figure, the horizontal axis represents current density and the vertical axis represents operating voltage. FIG. 3 is a graph showing the relationship between the current density and the output density obtained in the power generation test using the solid oxide fuel cell. In the figure, the horizontal axis represents current density and the vertical axis represents output density.

図2及び図3に示すように、A/B=0.92〜0.98の空気極導電層を形成した固体電解質型燃料電池は、A/B=1の空気極導電層を形成した固体電解質型燃料電池に比べて、各電流密度における作動電圧及び出力密度が上昇している。特に、A/B=0.95において、各電流密度において高い作動電圧及び出力密度が得られる。   As shown in FIGS. 2 and 3, the solid oxide fuel cell in which the air electrode conductive layer of A / B = 0.92 to 0.98 is formed is a solid state in which the air electrode conductive layer of A / B = 1 is formed. Compared to the electrolyte fuel cell, the operating voltage and output density at each current density are increased. In particular, at A / B = 0.95, high operating voltage and power density are obtained at each current density.

A/B=0.92〜0.98の空気極導電層を形成した固体電解質型燃料電池において、空気極中間層をEPMAで元素分析したところ、Mnが存在することが確認できる。また、Smの検出位置とMnの検出位置はほぼ一致している。   In the solid oxide fuel cell in which the air electrode conductive layer of A / B = 0.92 to 0.98 was formed, elemental analysis of the air electrode intermediate layer with EPMA confirmed the presence of Mn. In addition, the detection position of Sm and the detection position of Mn substantially coincide.

このことから、空気極導電層中の遊離Mnが焼結時に空気極中間層に拡散し、SmMnO(サマリウムマンガネート)を形成している。SmMnOは高い電子導電性を示す材料である。A/B=0.92〜0.98の空気極導電性を形成した固体電解質型燃料電池では、空気極中間層がイオン導電性を有するSmCeOと電子伝導性を有するSmMnOが混在することにより、発電性能が向上する。 From this, the free Mn in the air electrode conductive layer diffuses into the air electrode intermediate layer during sintering to form SmMnO 3 (samarium manganate). SmMnO 3 is a material exhibiting high electronic conductivity. In the solid oxide fuel cell having air electrode conductivity of A / B = 0.92 to 0.98, the air electrode intermediate layer contains SmCeO 2 having ion conductivity and SmMnO 3 having electron conductivity. As a result, the power generation performance is improved.

図2及び図3では、A/B=0.95と比較してA/B=0.92の発電性能が低下する結果が得られている。この結果から、A/B比が0.92より低い空気極導電層を形成した場合には、Mnの拡散量が多くなり、SmMnOが多く生成する一方でイオン導電性を示さないCeOが生成することになるので、優れた発電性能は得られない。 2 and 3, the result that the power generation performance of A / B = 0.92 is lower than that of A / B = 0.95 is obtained. From this result, when an air electrode conductive layer having an A / B ratio lower than 0.92 is formed, the diffusion amount of Mn increases, and a large amount of SmMnO 3 is generated, while CeO 2 that does not exhibit ionic conductivity is formed. As a result, excellent power generation performance cannot be obtained.

上記の発電試験中でも空気極導電層からのMnの拡散は起きるが、上記発電試験において、A/B=0.92〜0.98の空気極導電層が形成された固体電解質型燃料電池は、10000時間後でも十分な発電性能を維持することができる。   Diffusion of Mn from the air electrode conductive layer occurs even during the power generation test, but in the power generation test, the solid oxide fuel cell in which the air electrode conductive layer of A / B = 0.92 to 0.98 was formed Sufficient power generation performance can be maintained even after 10,000 hours.

10 固体電解質型燃料電池
11 基体管
12 単素子
13 燃料極
14 固体電解質膜
15a 空気極中間層
15b 空気極導電層
16 インターコネクタ
DESCRIPTION OF SYMBOLS 10 Solid electrolyte type fuel cell 11 Base tube 12 Single element 13 Fuel electrode 14 Solid electrolyte membrane 15a Air electrode intermediate layer 15b Air electrode conductive layer 16 Interconnector

Claims (2)

基体管上に、燃料極と固体電解質膜と空気極とを備える複数の単素子と、隣接する前記単素子を電気的に接続するインターコネクタとを備え、
前記空気極が、前記固体電解質膜上に形成されるSm1−xCe(但し、0.8≦x≦0.9)で表されるセリア化合物を主成分とする空気極中間層と、該空気極中間層上に形成されるLa(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(但し、y>1、0.4≦a≦0.8、0.4≦b≦0.8)で表され、Mnのモル数に対するLa,Sr及びCaのモル数の合計の比が0.92以上0.98以下とされるペロブスカイト型酸化物を主成分とする空気極導電層とが積層され
前記空気極導電層中の遊離Mnが前記空気極中間層に拡散したことにより、前記空気極中間層中にSmMnO が形成されている固体電解質型燃料電池。
A plurality of single elements including a fuel electrode, a solid electrolyte membrane, and an air electrode on the base tube, and an interconnector that electrically connects the adjacent single elements,
The air electrode intermediate layer mainly composed of a ceria compound represented by Sm 1-x Ce x O 2 (where 0.8 ≦ x ≦ 0.9) is formed on the solid electrolyte membrane. And La (a + b) / 2 Sr (1-a) / 2 Ca (1-b) / 2 Mn y O 3 (where y> 1, 0.4 ≦ a ) formed on the air electrode intermediate layer. ≦ 0.8, 0.4 ≦ b ≦ 0.8), and the ratio of the total number of moles of La, Sr and Ca to the number of moles of Mn is 0.92 or more and 0.98 or less. An air electrode conductive layer mainly composed of oxide is laminated ,
A solid oxide fuel cell in which SmMnO 3 is formed in the air electrode intermediate layer due to diffusion of free Mn in the air electrode conductive layer into the air electrode intermediate layer .
基体管上に、燃料極と固体電解質膜と空気極とを備える複数の単素子と、隣接する前記単素子を電気的に接続するインターコネクタとを備える固体電解質型燃料電池の製造方法であって、
前記基体管の外周面上に、前記燃料極と前記固体電解質膜とを順次積層した積層体を、前記単素子に相当する複数の区域に分けて形成する工程と、
隣接する前記複数の区域の間で、隣り合う前記区域の前記積層体を接続するように前記インターコネクタを形成する工程と、
前記基体管とともに、前記燃料極、前記固体電解質膜及び前記インターコネクタを焼結する工程と、
前記共焼結された前記固体電解質上に、Sm1−xCe(但し、0.8≦x≦0.9)で表されるセリア化合物を主成分とするスラリーを塗布し、前記空気極として空気極中間層を形成する工程と、
前記空気極中間層上に、La(a+b)/2Sr(1−a)/2Ca(1−b)/2Mn(但し、y>1、0.4≦a≦0.8、0.4≦b≦0.8)で表され、Mnのモル数に対するLa,Sr及びCaのモル数の合計の比が0.92以上0.98以下とされるペロブスカイト型酸化物を主成分とするスラリーを塗布し、前記空気極として空気極導電層を形成する工程と、
前記空気極中間層及び前記空気極導電層を焼結するとともに、前記空気極導電層中のMnを前記空気極中間層に拡散させる工程とを含む固体電解質型燃料電池の製造方法。
A method for manufacturing a solid oxide fuel cell, comprising: a plurality of single elements including a fuel electrode, a solid electrolyte membrane, and an air electrode on a substrate tube; and an interconnector that electrically connects the adjacent single elements. ,
Forming a laminated body in which the fuel electrode and the solid electrolyte membrane are sequentially laminated on the outer peripheral surface of the base tube in a plurality of areas corresponding to the single element ;
Between said plurality of zones adjacent and forming the interconnector to connect the laminate of the areas adjacent
Co- sintering the fuel electrode, the solid electrolyte membrane and the interconnector together with the base tube;
On the co-sintered solid electrolyte membrane , a slurry mainly composed of a ceria compound represented by Sm 1-x Ce x O 2 (where 0.8 ≦ x ≦ 0.9) is applied, Forming an air electrode intermediate layer as the air electrode;
La (a + b) / 2 Sr (1-a) / 2 Ca (1-b) / 2 Mn y O 3 (where y> 1, 0.4 ≦ a ≦ 0.8) 0.4 ≦ b ≦ 0.8), and the ratio of the total number of moles of La, Sr and Ca to the number of moles of Mn is 0.92 to 0.98. Applying a slurry as a component and forming an air electrode conductive layer as the air electrode;
A method of manufacturing a solid oxide fuel cell, comprising: sintering the air electrode intermediate layer and the air electrode conductive layer, and diffusing Mn in the air electrode conductive layer into the air electrode intermediate layer.
JP2012000704A 2012-01-05 2012-01-05 Method for producing solid oxide fuel cell and solid oxide fuel cell Active JP5622754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012000704A JP5622754B2 (en) 2012-01-05 2012-01-05 Method for producing solid oxide fuel cell and solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000704A JP5622754B2 (en) 2012-01-05 2012-01-05 Method for producing solid oxide fuel cell and solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2013140737A JP2013140737A (en) 2013-07-18
JP5622754B2 true JP5622754B2 (en) 2014-11-12

Family

ID=49038005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000704A Active JP5622754B2 (en) 2012-01-05 2012-01-05 Method for producing solid oxide fuel cell and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5622754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713696B (en) 2016-02-19 2020-12-21 日商迪睿合股份有限公司 Current fuse

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6177680B2 (en) * 2013-12-16 2017-08-09 三菱日立パワーシステムズ株式会社 Solid electrolyte fuel cell
JP6301231B2 (en) 2014-10-03 2018-03-28 三菱日立パワーシステムズ株式会社 FUEL BATTERY CELL STACK AND METHOD FOR MANUFACTURING THE SAME, FUEL CELL MODULE, HIGH TEMPERATURE STEAM ELECTROLYTIC CELL STACK AND METHOD FOR MANUFACTURING SAME
JP6316760B2 (en) 2015-01-27 2018-04-25 三菱日立パワーシステムズ株式会社 Method for producing solid oxide fuel cell
JP6486709B2 (en) * 2015-02-20 2019-03-20 三菱日立パワーシステムズ株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP7275344B1 (en) * 2022-03-24 2023-05-17 三菱重工業株式会社 Fuel cell and manufacturing method thereof, fuel cell module, fuel cell cartridge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462727B2 (en) * 2000-06-30 2010-05-12 京セラ株式会社 Solid electrolyte fuel cell
JP2002134132A (en) * 2000-10-27 2002-05-10 Kyocera Corp Solid electrolyte fuel cell and its manufacturing method
JP2003036863A (en) * 2001-07-24 2003-02-07 Kyocera Corp Cell for solid electrolyte type fuel cell and fuel cell
JP4533620B2 (en) * 2003-12-03 2010-09-01 三菱重工業株式会社 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP5222011B2 (en) * 2008-04-23 2013-06-26 三菱重工業株式会社 Solid oxide fuel cell
ES2456821T3 (en) * 2008-12-03 2014-04-23 Technical University Of Denmark Solid oxide stack and solid oxide stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713696B (en) 2016-02-19 2020-12-21 日商迪睿合股份有限公司 Current fuse

Also Published As

Publication number Publication date
JP2013140737A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5652545B2 (en) Fuel cell
JP6486709B2 (en) Solid oxide fuel cell and method for producing solid oxide fuel cell
JP5622754B2 (en) Method for producing solid oxide fuel cell and solid oxide fuel cell
JP2008270203A (en) Solid oxide fuel cell and water electrolysis cell
JP4999316B2 (en) Fuel cell
CN105359318B (en) Fuel cell system including multilayer interconnection fitting
JP2013175306A (en) Solid oxide fuel battery
US20110027693A1 (en) Solid oxide fuel cell and manufacturing method thereof
JP5888420B2 (en) Fuel cell
JP6039459B2 (en) Solid oxide fuel cell
JP5222011B2 (en) Solid oxide fuel cell
JP4719940B2 (en) Interconnector material and solid oxide fuel cell having the same
DK2973807T3 (en) COMPOSITION FOR ANODE IN FUEL CELLS
JP5613808B1 (en) Fuel cell
JP6169932B2 (en) Solid oxide fuel cell
JP6063368B2 (en) Fuel cell
JP5417548B2 (en) Fuel cell structure
JP5062786B1 (en) Fuel cell structure
JP6039463B2 (en) Solid oxide fuel cell
JP6039461B2 (en) Solid oxide fuel cell
JP5256598B2 (en) Single-chamber solid oxide fuel cell and its stack structure
JP2005310501A (en) Solid oxide fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5622754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350