JP6175047B2 - 燃料電池システムの制御方法及び燃料電池自動車 - Google Patents

燃料電池システムの制御方法及び燃料電池自動車 Download PDF

Info

Publication number
JP6175047B2
JP6175047B2 JP2014254999A JP2014254999A JP6175047B2 JP 6175047 B2 JP6175047 B2 JP 6175047B2 JP 2014254999 A JP2014254999 A JP 2014254999A JP 2014254999 A JP2014254999 A JP 2014254999A JP 6175047 B2 JP6175047 B2 JP 6175047B2
Authority
JP
Japan
Prior art keywords
voltage
fuel cell
storage device
power storage
terminal side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014254999A
Other languages
English (en)
Other versions
JP2016115605A (ja
Inventor
修一 数野
修一 数野
佐伯 響
響 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014254999A priority Critical patent/JP6175047B2/ja
Publication of JP2016115605A publication Critical patent/JP2016115605A/ja
Application granted granted Critical
Publication of JP6175047B2 publication Critical patent/JP6175047B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Description

この発明は、放電又は充電が可能な蓄電装置から電圧変換装置を介してモータ等の負荷に電力を供給すると共に、燃料電池から直接又は他の電圧変換装置を介して前記モータ等の負荷及び/又は前記蓄電装置に電力を供給する燃料電池システム等に適用した好適な燃料電池システムの制御方法、及び前記制御方法が実施される燃料電池自動車に関する。
従来から、例えば特許文献1の図1に示されるように、1次側電圧としての蓄電装置電圧(バッテリ電圧)を2次側電圧としてのモータ駆動電圧に変換してモータ駆動部(インバータ)に印加する電圧変換装置(DC/DCコンバータ)を備えると共に、燃料電池電圧を前記モータ駆動電圧として直接前記モータ駆動部に印加する燃料電池システムが開示されている。
この特許文献1に開示された燃料電池システムでは、前記モータ駆動部によって駆動されるモータが左右の車輪を駆動する。
特開2007−157478号公報
ところで、前記燃料電池と前記蓄電装置とから前記モータ等の負荷に電力を供給しているときに、例えば、運転者のアクセルペダル操作及び又はブレーキペダル操作等により前記モータ等の要求負荷が急に変動する事態が発生するが、前記燃料電池の発電電力は急な変動には追従し難いので、前記蓄電装置が急な変動に対応すべく放電動作及び充電動作を行う。
しかしながら前記蓄電装置の充放電電力には制限があり、特に、低温下ではその制限が大きくなり、この制限を超えて充放電がなされると前記蓄電装置が劣化乃至故障に至るという課題があるが、特許文献1には、これら課題及び課題解決手段は何も開示されておらず、改良の余地がある。
この発明は、このような課題を考慮してなされたものであり、充放電電力に制限のある蓄電装置の負荷が急変動した場合であっても、前記蓄電装置の充放電電力の制限を超えて充放電がなされることを防止可能な燃料電池システムの制御方法及び燃料電池自動車を提供することを目的とする。
この発明に係る燃料電池システムの制御方法は、燃料電池電圧を出力する燃料電池と、蓄電装置電圧を出力する蓄電装置と、モータ駆動部を通じて駆動されるモータと、前記蓄電装置電圧を昇圧し前記モータ駆動部の直流端側に直流端側電圧として印加するか、前記直流端側に前記燃料電池側から印加された直流端側電圧又は前記モータから前記モータ駆動部を通じて印加された直流端側電圧を降圧して前記蓄電装置に印加する電圧変換装置と、を有する燃料電池システムの制御方法であって、前記蓄電装置の充放電電力制限範囲を規定する充放電特性を把握する充放電特性把握工程と、把握された前記充放電特性に基づいて前記蓄電装置の保護が必要か否かを判定する保護要否判定工程と、前記蓄電装置の保護が必要と判定された場合に、モータ駆動要求電圧の高低に拘わらず、前記電圧変換装置の前記直流端側電圧を、直流端側上限電圧を限度として高く設定するか、又は前記電圧変換装置の電圧変換幅を要求電圧変換幅より大きい値の強制電圧変換幅に設定して前記電圧変換装置を動作させる強制電圧変換動作工程と、を有する。
この発明によれば、蓄電装置の保護が必要と判定された場合に、モータ駆動要求電圧の高低に拘わらず、前記電圧変換装置の前記直流端側電圧を、直流端側上限電圧を限度として高く設定するか、又は電圧変換装置の電圧変換幅を要求電圧変換幅より大きい値の強制電圧変換幅に設定して電圧変換装置を動作させる強制電圧変換動作工程を設けているので、前記電圧変換装置での電力消費が確保でき、例えば、燃料電池の発電電力の余剰電力が大きくなって蓄電装置に充電させる必要が発生した場合に、電圧変換装置での電力消費を大きくしているので、蓄電装置の充電電力分を少なくでき、蓄電装置を保護することができる。
この場合、前記充放電特性把握工程では、前記蓄電装置の温度に基づいて前記蓄電装置の前記充放電特性を把握し、前記保護要否判定工程では、前記蓄電装置の温度が閾値温度以下の温度である場合に保護が必要と判定することで、蓄電装置の保護が必要な状態であるか否かを簡便に把握することができる。
また、前記充放電特性把握工程では、前記燃料電池システムの始動時からの経過時間に基づいて前記蓄電装置の前記充放電特性を把握し、前記保護要否判定工程では、前記始動時からの前記経過時間が閾値時間以下の時間である場合に保護が必要と判定することで、蓄電装置の保護が必要な状態であるか否かを簡便に把握することができる。
さらに、前記燃料電池システムは、前記燃料電池電圧を前記直流端側電圧に昇圧する他の電圧変換装置をさらに備え、前記制御方法は、前記強制電圧変換動作工程では、前記電圧変換装置による強制電圧変換動作を行うと共に、前記他の電圧変換装置による強制電圧変換動作を行うことで、両電圧変換装置の電力消費により、より確実に蓄電装置を保護することができる。
この場合、前記強制電圧変換動作工程では、前記蓄電装置電圧に前記電圧変換装置の最小電圧変換幅と前記モータ駆動要求電圧を加算した電圧を第1目標直流端側電圧として算出する第1目標電圧算出工程と、前記燃料電池電圧に前記他の電圧変換装置の最小電圧変換幅と前記モータ駆動要求電圧を加算した電圧を第2目標直流端側電圧として算出する第2目標電圧算出工程と、をさらに備え、前記第1目標直流端側電圧及び前記第2目標直流端側電圧のうち、高い方の電圧を前記モータ駆動部の直流端側に印加する前記直流端側電圧の最低電圧として前記電圧変換装置及び前記他の電圧変換装置を強制電圧変換動作させるようにしてもよい。
これにより、1次側が蓄電装置に接続された電圧変換装置及び1次側が燃料電池に接続された他の電圧変換装置の両方の制御性を考慮して強制電圧変換幅が設定されるので、燃料電池システム全体の制御性が悪化することが回避される。
上記の各発明は、燃料電池自動車で実施して好適である。
この発明によれば、蓄電装置の保護が必要と判定された場合に、モータ駆動要求電圧の高低に拘わらず、前記電圧変換装置の前記直流端側電圧を、直流端側上限電圧を限度として高く設定するか、又は電圧変換装置の電圧変換幅を要求電圧変換幅より大きい値の強制電圧変換幅に設定して電圧変換装置を動作させる強制電圧変換動作工程を設けているので、前記電圧変換装置での電力消費が確保でき、充放電電力に制限のある蓄電装置の負荷が急変動した場合であっても、前記蓄電装置の充放電電力の制限を超えて充放電がなされることを防止し、蓄電装置を保護することができる。
この発明の実施形態に係る燃料電池システムが適用された燃料電池自動車の概略全体構成図である。 図1例の燃料電池自動車中、昇圧コンバータと昇降圧コンバータの一例の詳細構成を含む模式的回路図である。 燃料電池のIV特性図である。 実施形態の動作説明に供されるタイミングチャートである。 実施形態の動作説明に供されるフローチャートである。 モータ要求電力と、モータ駆動要求電圧との関係を示す特性図である。 蓄電装置の充放電電力制限の温度特性図である。 図8Aは、この実施形態の概念図、図8Bは、変形例の概念図である。
以下、この発明に係る燃料電池システムの制御方法について、これを実施する燃料電池自動車との関係において好適な実施形態を挙げ添付の図面を参照しながら説明する。
図1は、この実施形態に係る燃料電池システム12(以下、「FCシステム12」という。)が適用された燃料電池自動車10(以下、「FC自動車10」又は「車両10」という。)の概略全体構成図である。
図2は、1次側1sfと2次側2s側との間に配置される燃料電池側コンバータであり第1電圧変換装置(昇圧器)としてのチョッパ方式の昇圧コンバータ21(以下、SUC21という。SUC:Step Up Converter)、及び1次側1sbと2次側2s側との間に配置される蓄電装置側コンバータであり第2電圧変換装置(昇降圧器)としてのチョッパ方式の双方向の昇降圧コンバータ22(以下、SUDC22という。SUDC:Step Up/Down Converter)の一例の詳細構成を含むFC自動車10の模式的回路図である。
図1及び図2に示すように、FC自動車10は、FCシステム12と、車両走行用のモータ・ジェネレータである駆動モータ14と、駆動モータ14を駆動する負荷駆動回路(モータ駆動部)としてのインバータ16(以下、「INV16」という。INV:Inverter)と、を有する。
FCシステム12は、基本的には、一方の1次側1sfに配置される燃料電池18(以下、「FC18」という。)と、他方の1次側1sbに配置される蓄電装置である高電圧バッテリ20(以下「BAT20」という。)と、前記SUC21と、前記SUDC22と、1次側電圧V1入力のエアポンプ31と、制御装置としての電子制御装置24(以下、「ECU24」という。ECU:Electronic Control Unit)と、を有する。エアポンプ31は、1次側電圧V1(BAT電圧Vbat)がエアポンプ駆動電圧Vapとして供給されると、ファンが回転し、FC18に酸化剤ガスとしての空気を圧送する。
FC18の出力端がSUC21の入力端(1次側1sf)に接続され、SUC21の出力端(2次側2s)がINV16及びSUDC22の一端(昇圧端側)側に接続される。
なお、BAT20の入出力端には、図示しない降圧コンバータを通じて、+12V等の低圧バッテリや、ECU24及びライト等の低圧補機が接続される。
駆動モータ14は、一般的には、FC18から供給されるFC発電電力(FC電力)Pfc(Pfc=Vfc×Ifc)とBAT20から供給される蓄電電力であるBAT放電電力Pbatd(Pbatd=Vbat×Ibd)の合成電力値(Pfc+Pbatd)がINV16を通じて供給されることで駆動力を生成し、当該駆動力によりトランスミッション26を通じて車輪28を回転させる。しかしながら、この実施形態では、BAT20からSUDC22を通じてINV16に供給されるBAT放電電力Pbatdが、Pbatd=0[kW]となるように燃料電池システム12を制御している。
INV16は、例えば3相フルブリッジ型の構成とされて、直流/交流変換を行い、FC18からSUC21を介してFC電圧Vfcが昇圧された直流電圧である2次側電圧V2(直流端側電圧Vinv又は負荷端電圧Vinvともいう。)を3相の交流電圧に変換して駆動モータ14に供給する(力行時)。
この実施形態において、INV16と駆動モータ14とを合わせて負荷30という。実際上、負荷には、負荷30の他に、エアポンプ31、図示しない空調装置、及び前記した低圧補機が含まれる。
一方、駆動モータ14の回生動作に伴う交流/直流変換後のINV16の入力端(直流端側)の2次側2sに発生する2次側電圧(直流端側電圧)V2は、降圧コンバータとして動作するSUDC22を通じてBAT電圧Vbatに降圧されてBAT20に供給され、あるいはSUDC22が直結状態(スイッチング素子22b:オフ、スイッチング素子22d:オン)にされてBAT20に供給され、BAT20を充電する。
また、BAT20には、BAT20の残容量であるSOC(State Of Charge)が目標SOCtarとなるように、FC18による駆動モータ14の駆動用の電力の余剰電力が、昇圧状態のSUC21又は直結状態のSUC21を介し、降圧状態又は直結状態のSUDC22を通じて供給され、BAT20が充電される。
さらに、FC18の外部に、FC18のアノード流路(不図示)に対して水素(燃料ガス)を供給する水素タンク37を備える。なお、水素と酸化剤ガスをそれぞれ反応ガスという。
FC18は、例えば、電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成された燃料電池セル(以下、「FCセル」という。)を積層したスタック構造を有し、前記アノード流路を介して前記アノード電極に供給された水素含有ガスが、電極触媒上で水素イオン化され、前記電解質膜を介して前記カソード電極へと移動し、その移動の間に生じた電子が外部回路に取り出され、直流電圧(FC電圧Vfc)を発生する電気エネルギとして利用に供される。カソード電極には、前記カソード流路を介して前記酸化剤ガス(酸素含有ガス)が供給されているために、このカソード電極において、水素イオン、電子及び酸素ガスが反応して水が生成される。
水が生成されることで、前記電解質膜を湿潤な状態、すなわち膜含水率(膜湿度)を高い状態に保持することができ、前記反応を円滑に遂行することができる。
BAT20は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池等を利用することができる。蓄電装置としてキャパシタを利用することもできる。本実施形態ではリチウムイオン2次電池を利用している。BAT20は、BAT電圧(バッテリ電圧)Vbat、BAT電流(バッテリ電流)Ib(放電電流Ibd、充電電流Ibc)、BAT温度(バッテリ温度)Tb、及びBAT20の残容量であるSOCがECU24により検出乃至管理される。
SUC21、及びSUDC22は、種々の構成を採用できるが、公知のように、基本的には、MOSFETやIGBT等のスイッチング素子と、ダイオードと、リアクトルと、コンデンサ(平滑コンデンサも含む)とから構成され、接続される負荷の要求電力に基づきECU24により前記スイッチング素子がオン・オフスイッチング制御(デューティ制御)される。
具体的には、図2に示すように、SUC21は、リアクトル(インダクタ)21aと、スイッチング素子21bとダイオード21c(単方向電流通過素子、逆方向電流阻止素子)と、1次側1sf間に配置される平滑コンデンサC1fと、2次側2s間に配置される平滑コンデンサC2fとから構成され、コンバータ制御器として機能するECU24を通じてスイッチング素子21bがスイッチング状態(デューティ制御)とされることで、FC電圧Vfcを所定の2次側電圧V2に昇圧する。
なお、デューティ(駆動デューティ)が0[%]とされて、スイッチング素子21bがオフ状態(開状態)に維持されると、リアクトル21aとダイオード21cを通じてFC18と負荷30とが直結状態(FC直結状態又はFCVCU直結状態という。)とされ、FC電圧Vfcが2次側電圧V2に直結される(V2=Vfc−Vd≒Vfc、Vd<<Vfc、Vd:ダイオード21cの順方向降下電圧)。ダイオード21cは、昇圧用又は直結用且つ逆流防止用として動作する。従って、SUC21は、昇圧動作(力行時等)の他に逆流防止動作、直結動作(力行時等)を行う。
一方、SUDC22は、図2に示すように、リアクトル22aと、スイッチング素子22b、22dと、これらスイッチング素子22b、22dにそれぞれ並列に接続されるダイオード22c、22eと、1次側1sb間に配置される平滑コンデンサC1bと、2次側2s間に配置される平滑コンデンサC2bとから構成される。
昇圧時には、ECU24により、スイッチング素子22dがオフ状態とされ、スイッチング素子22bがスイッチング(デューティ制御)されることでBAT電圧Vbat(蓄電装置電圧)が所定の2次側電圧V2まで昇圧される(力行時)。
降圧時には、ECU24により、スイッチング素子22bがオフ状態とされ、スイッチング素子22dがスイッチング(デューティ制御)されることで、スイッチング素子22dがオフ状態であるときにダイオード22cがフライホイールダイオードとして機能し、2次側電圧V2がBAT20のBAT電圧Vbatまで降圧される(回生充電時及び/又はFC18による充電時)。
また、スイッチング素子22bをデューティが0[%]でのオフ状態、スイッチング素子22dをデューティが100[%]でのオン状態とすることで、BAT20と負荷30とが直結状態(BAT直結状態又はBATVCU直結状態という。力行時、充電時、又は補機負荷等の駆動時)とされる。
BAT直結状態においては、BAT20のBAT電圧Vbatが2次側電圧V2になる(Vbat≒V2)。実際上、BAT直結状態におけるBAT20による力行時の2次側電圧V2は、「Vbat−ダイオード22eの順方向降下電圧」となり、充電時(回生充電時含む)の2次側電圧V2は、「Vbat=V2−スイッチング素子22dのオン電圧=Vbat(スイッチング素子22dのオン電圧を0[V]と仮定した場合。)」になる。
なお、スイッチング素子21b、22b、22dには、図示しているMOSFETの他、IGBT等の電力素子が用いられる。
また、FCシステム12において、それぞれ図示はしないが、SUC21の直結時(FC18の直結時と同意)、又はSUDC22の直結時(力行時)(BAT20の直結時と同意)におけるSUC21又はSUDC22の直流電圧降下を低減するために、SUC21の1次側1sfにアノード端子が接続され2次側2sにカソード端子が接続されたダイオード及び/又はSUDC22の1次側1sbにアノード端子が接続され2次側2sにカソード端子が接続されたダイオードを設けてもよい。
FC18は、図3のIV(電流電圧)特性70に示すように、FC電圧VfcがFC開回路電圧Vfcocvより低下するに従い、FC電流Ifcが増加する公知の電流電圧(IV)特性70を有する。すなわち、FC電圧Vfcが相対的に高いFC電圧VfchであるときのFC電流Ifclに比較して、FC電圧Vfcが相対的に低いFC電圧VfclであるときのFC電流Ifchが大きな電流になる。なお、FC電力Pfcは、FC電流Ifcが大きくなるほど(FC電圧Vfcが低くなるほど)大きくなる。
FC18のFC電圧Vfcは、SUC21の直結時においては、昇圧状態(スイッチング状態)にあるSUDC22の昇圧比(V2/Vbat)又は降圧状態(スイッチング状態)にあるSUDC22の降圧比(Vbat/V2)で決定される2次側電圧V2{SUDC22の指令電圧(目標電圧)になる。}により制御され、FC電圧Vfcが決定されると、IV特性70に沿ってFC電流Ifcが制御(決定)される。
また、SUC21の昇圧時及びSUDC22の直結時においては、SUC21の1次側1sfの電圧、すなわちFC電圧VfcがSUC21の指令電圧(目標電圧)とされ、IV特性70に沿ってFC電流Ifcが決定され、所望の2次側電圧V2となるようにSUC21の昇圧比(V2/Vfc)が決定される。
なお、この実施形態では、SUC21の昇圧時に、FC電圧Vfcが指令値(設定値、目標値)になるようにコンバータ制御器としてのECU24によりスイッチング素子21bのデューティが調整されるフィードバック(F/B)制御がなされているが、FC電圧VfcとFC電流Ifcとの間にはIV特性70に基づく一意の関係があるのでFC電流Ifcが指令値(設定値、目標値)になるようにECU24によりスイッチング素子21bのデューティを調整するフィードバック(F/B)制御をすることも可能である。
ECU24は、通信線68(図2参照)を介して、駆動モータ14、INV16、FC18、BAT20、SUC21、SUDC22、エアポンプ31等の各部を制御する。当該制御に際しては、ECU24のメモリ(ROM)に格納されたプログラムを実行し、また、各種センサ(図示しない電圧センサ、電流センサ、温度センサ、圧力センサ、水素濃度センサ、各種回転数センサ、及びアクセルペダルの開度センサ等)の検出値及び各種スイッチ(空調スイッチやイグニッションスイッチ等)のオンオフ情報等を用いる。
ここで、ECU24は、マイクロコンピュータを含む計算機であり、CPU(中央処理装置)、メモリであるROM(EEPROMも含む。)、RAM(ランダムアクセスメモリ)、その他、A/D変換器、D/A変換器等の入出力装置、計時部としてのタイマ等を有しており、CPUが前記ROMに記録されている前記プログラムを読み出し実行することで各種機能実現部(機能実現手段)、例えば制御部、演算部、及び処理部等として機能する。なお、ECU24は、1つのECUのみから構成するのではなく、複数のECUで構成することもできる。
ECU24は、FC18の状態、BAT20の状態及び駆動モータ14の状態の他、各種スイッチ及び各種センサからの入力値に基づき決定したFC自動車10全体としてFCシステム12に要求される負荷(負荷電力)から、FC18が負担すべき負荷(負荷電力)と、BAT20が負担すべき負荷(負荷電力)と、回生電源(駆動モータ14)が負担すべき負荷(負荷電力)の配分(分担)を調停しながら決定し、駆動モータ14、INV16、エアポンプ31、FC18、BAT20、SUC21、及びSUDC22を制御する。すなわち、ECU24は、FC18、BAT20、負荷30、エアポンプ31及び低圧補機を含めた燃料電池自動車10全体のエネルギ管理(エネルギマネジメント)制御を行う。
この実施形態に係る燃料電池システム12が適用されたFC自動車10は、基本的には、以上のように構成される。
次に、上記実施形態の動作について図4のタイミングチャート及び図5のフローチャートを参照して説明する。
ステップS1にて、ECU24は、走行に必要なモータ駆動要求電圧(モータ必要電圧ともいう。)Vmdを算出する。
モータ駆動要求電圧Vmdを算出する場合、ECU24は、図示しないアクセルペダルのアクセルペダル操作量θpと車速Vs[km/h]に応じて、モータ回転数Nm[rpm]に対する必要トルクTreq[N・m]の特性・マップ(不図示)を参照してモータ要求電力Pmreq[kW]を算出する。
次に、図6に示す特性72を参照して、モータ要求電力Pmreqに比例するモータ駆動要求電圧Vmd[V]を算出する。モータ駆動要求電圧Vmdは、モータ要求電力Pmreqを実現するためのインバータ16の直流端に印加されるSUC21又はSUDC22の2次側電圧V2の最低必要電圧である。
次に、前記のモータ要求電力Pmreqの他に、エアポンプ31及び図示しない空調装置等の補機の要求電力(補機要求電力)Pareqを賄うFC18分としての目標発電電力Pfctarを算出すると共に、FC18のFC目標発電電力Pfctarの不足分(BAT20の放電電力)又は余剰分(BAT20の充電電力)をBAT電力Pbatとして算出する。
次に、この目標発電電力Pfctarを発電するのに必要なFC18に供給する目標エア流量を発生可能なエアポンプ要求回転数Napreqを算出する。この場合、水素流量は、基本的には、目標発電電力Pfctarに対応して設定され、例えば、水素流量が増加すると水素タンク37からレギュレータ(不図示)を通じて供給される水素の供給量が増加するように構成されている。
次いで、ステップS2にて、BAT20の温度であるBAT温度Tbを検出する。
次に、ステップS3にて、ECU24は、BAT温度Tbに基づき、図7に示すバッテリ充放電温度特性75を参照し、現在のBAT温度Tb下のBAT20の充放電電力制限範囲を規定する充放電特性を把握する。
図7は、BAT20の電力制限(放電電力制限と充電電力制限)の温度特性(バッテリ充放電温度特性75)を示している。
バッテリ充放電温度特性75は、BAT20から放電電流Ibdを出力(放電)する際の許容放電電力Padmaxのバッテリ放電制限特性74と、BAT20が充電電流Ibcを入力(充電)する際の許容充電電力Pacmaxのバッテリ充電制限特性76とから構成される。
BAT温度Tbが常温Tnorm=25[℃]より低くなると、出力可能な放電電流Ibd及び入力可能な充電電流Ibcの制限がきつくなり、図7の左端側の氷点下数十度の温度では、BAT20が活性化されないために殆どゼロ値となる。また、常温Tnormより高い温度では、出力可能な放電電流Ibd及び入力可能な充電電流Ibcの制限が、それぞれ大きな値で一定になる。
このBAT20の電力制限のバッテリ放電制限特性74とバッテリ充電制限特性76(バッテリ充放電温度特性75)とを参照して、現在のBAT温度Tbでの許容放電電力Padmaxと許容充電電力Pacmaxとを算出する。
図7に示すように、常温Tnormより低温側では、|Padmax|>|Pacmax|が成立し、充電側の許容充電電力Pacmaxの絶対値|Pacmax|が放電側の許容放電電力Padmaxの絶対値|Padmax|より小さいので、充電側に閾値充電電力Pacthを設ける。ここでは、閾値充電電力Pacthが、低温であることを示す例えば氷点(0[℃])等の閾値温度(低温閾値)Tthでの充電電力に設定している。
次いで、ステップS4にて、許容充電電力Pacmaxの絶対値|Pacmax|が、閾値充電電力Pacthの絶対値|Pacth|より小さいか否かを判定する。
なお、図7に示したバッテリ充放電温度特性75では、低温側において、バッテリ充電制限特性76上の充電側の許容充電電力Pacmaxの絶対値|Pacmax|が、放電側の許容放電電力Padmaxの絶対値|Padmax|より小さい特性になっているが、BAT20に異なる仕様のバッテリ(蓄電装置)を採用した場合には、放電側の許容放電電力Padmaxの絶対値|Padmax|が、充電側の許容充電電力Pacmaxの絶対値|Pacmax|より小さい場合もあり、その場合には、ステップS4の判定にて放電側に閾値温度(低温閾値)Tthでの閾値放電電力Padthの絶対値|Padth|を設けるようにすればよい。
図4に示す時点t0〜t1の期間では、このステップS4の判定が肯定的となる(|Pacmax|<|Pacth|、ステップS4:YES)ので、ステップS5にて、SUC21及びSUDC22を両方昇圧状態に設定する。
そして、さらに、ステップS6にて、モータ駆動要求電圧Vmdの高低に拘わらず、SUC21及びSUDC22のそれぞれの電圧変換幅を要求電圧変換幅より大きい値の強制電圧変換幅に設定して動作させる。
ここで、SUC21の昇圧時の電圧変換幅は、直流端側電圧VinvとFC電圧Vfcとの差(Vinv−Vfc)であり、SUC21の要求電圧変換幅(必要電圧幅)は、直流端側電圧Vinvをモータ駆動要求電圧Vmdに置き換えたモータ駆動要求電圧VmdとFC電圧Vfcとの差(Vmd−Vfc)になる。
一方、SUDC22の昇圧時の電圧変換幅は、直流端側電圧VinvとBAT電圧Vbatとの差(Vinv−Vbat)であり、SUDC22の要求電圧変換幅(必要電圧幅)は、直流端側電圧Vinvをモータ駆動要求電圧Vmdに置き換えたモータ駆動要求電圧VmdとBAT電圧Vbatとの差(Vmd−Vbat)になる。
差(Vmd−Vfc)及び差(Vmd−Vbat)のそれぞれの最小値は、FC電圧VfcをSUC21及び/又はSUDC22にて制御する必要があるので、SUC21及びSUDC22を構成するスイッチング素子の特性等により、それぞれ、例えば、20[V]程度の最小電圧変換幅ΔV[V]に制限される。なお、FC電圧Vfcは、通常、SUC21によって制御されるが、SUC21が直結状態とされるときには、FC電圧VfcがSUDC22により制御されることに留意する。
ここで、最小電圧変換幅ΔVを考慮した強制電圧変換幅を規定する直流端側電圧Vinv(2次側電圧V2)の制限値を直流端側上限電圧Vinvlmtという。
SUC21についての直流端側上限電圧Vinvlmt(Vinvlmt1と置く。)は、FC電圧VfcとSUC21の上限昇圧率(最大昇圧率)Ksucupとで(1)式に示すように仮決定され、SUDC22についての直流端側上限電圧Vinvlmt(Vinvlmt2と置く。)は、BAT電圧VbatとSUDC22の上限昇圧率(最大昇圧率)Ksudcupで(2)式に示すように仮決定される。
Vinvlmt1=Vfc×Ksucup …(1)
Vinvlmt2=Vbat×Ksudcup …(2)
仮に、Ksucup=Ksudcup=3倍とする。氷点下等の低温で起動した場合FC18のFC電圧Vfcは、例えば、Vfc≒100[V]程度となり、BAT電圧Vbatの半分程度以下の値(Vbat≒200[V]程度)になっているので、低温下では、SUC21の直流端側上限電圧Vinvlmt1が、Vinvlmt1=100×3=300[V]となり、SUC21の直流端側上限電圧Vinvlmt1=300[V]が、直流端側上限電圧Vinvlmtに設定(決定)される。
そうすると、SUDC22の昇圧率Ksudcは、(3)式を満足する値に制限される。
Vinvlmt1=Vbat×Ksudc …(3)
具体的に、Ksudc=300[V]÷200[V]=1.5になるので、Ksudc<3を満足する。
このようにして、ステップS6にて、直流端側上限電圧Vinvlmt(Vinvlmt>Vmd)を決定する。
SUC21では、算出された電圧変換幅の差(Vmd−Vfc)から強制電圧変換幅に応じた差(Vinvlmt−Vfc)まで大きくし、SUDC22では、算出された電圧変換幅の差(Vmd−Vbat)から強制電圧変換幅に応じた差(Vinvlmt−Vbat)まで大きくしている。
電圧変換幅を大きくすることで、SUC21では、リアクトル21a、スイッチング素子21b及びコンデンサC1f、C2fの消費電力Psucが増大し、SUDC22では、昇降圧両方を考慮すれば、リアクトル22a、スイッチング素子22b、22d、コンデンサC1b、C2bの消費電力Psudcが増大する。
図4において、時点t0〜時点t1の期間の許容充電電力Pacmaxの絶対値|Pacmax|が閾値充電電力Pacthの絶対値|Pacth|より小さい期間では、直流端側電圧Vinvが直流端側上限電圧Vinvlmtに制限される。時点t0〜時点t1の期間で直流端側上限電圧Vinvlmtが徐々に増加しているのは、比較的に小さい電流値ではあるもののBAT20が充放電(化学反応)を繰り返していることを原因としてBAT温度Tbが常温Tnormに向かって昇温されるからである。すなわち、時点t0〜時点t1の期間ではBAT20が徐々に昇温される結果、直流端側上限電圧Vinvlmtを徐々に増加させることができる。
このようにすれば、BAT電力Pbatが許容充電電力Pacmaxより小さい値になるように制御され、且つ許容放電電力Pbadmaxより小さい値になるように制御されて、BAT20が低温下で保護される。
時点t0〜時点t1の期間で、仮に、FC自動車10が赤信号等で停車した場合、FC電力Pfcに余剰電力が発生する。この場合、この余剰電力が電圧変換幅の大きい強制電圧変換幅に設定された昇圧状態になっているSUC21の消費電力と、電圧変換幅の大きい強制電圧変換幅に設定されて降圧状態となったSUDC22の消費電力により消費され、BAT20への充電電力を減らすことができ、BAT20を保護することができる。
時点t1以降では、ステップS4の判定が否定的とされ、制限制御が解除され、ステップS7でのモータ要求駆動電圧Vmdを守る効率のよい通常のSUC21及びSUDC22による制御に切り替えられる。
なお、ステップS5、S6の処理では、電圧変換幅が、より大きい強制電圧変換幅になるように処理しているが、電圧変換幅ではなく、SUC21及びSUDC22の2次側電圧V2である直流端側電圧Vinvが、直流端側上限電圧Vinvlmtを限度(上限)として高い電圧となるように処理(設定)を変更してもよい。直流端側上限電圧Vinvlmtは、SUC21の昇圧率の最大値、又はSUDC22の昇降率の最大値もしくは降圧率の最小値により制限される。
また、図4の最上段の波形例では、比較的に小さい電流値でBAT20が充放電(SUC21は昇圧、SUDC22は、昇圧と降圧の繰り返し)をしている状態となっているが、これに限らず、時点t0〜時点t1の期間で、BAT20が、例えば、比較的小さい電流値(電力)で連続的に放電(充電)している状態となっている場合であっても、BAT温度Tbが常温Tnormに向かって昇温されるので、ステップS5、S6の処理を同様に適用できる。
[実施形態のまとめ及び変形例]
以上説明したようにこの実施形態のFCシステム12の制御方法は、FC電圧Vfcを出力するFC18と、BAT電圧Vbatを出力するBAT20と、モータ駆動部としてのINV16を通じて駆動される駆動モータ14と、BAT電圧Vbatを昇圧しインバータ16の直流端側に直流端側電圧Vinvとして印加するか、前記直流端側にFC18側から印加された直流端側電圧Vinv又は駆動モータ14(回生時)からインバータ16を通じて印加された直流端側電圧Vinvを降圧してBAT20に印加するSUDC22と、を有するFCシステム12の制御方法である。
この制御方法では、BAT20の充放電電力制限範囲(許容放電電力Padmaxと許容充電電力Pacmax)を規定する充放電特性としてのバッテリ充放電温度特性75を把握する充放電特性把握工程(ステップS3)と、把握された充放電特性(バッテリ充放電温度特性75)に基づいてBAT20の保護(過放電保護又は過充電保護)が必要か否かを判定する保護要否判定工程(ステップS4)と、BAT20の保護が必要と判定された(ステップS4:YES)場合に、モータ駆動要求電圧Vmdの高低に拘わらず、SUC21及びSUDC22の直流端側電圧Vinvを、直流端側上限電圧Vinvlmtを限度として高く設定するか、又はSUC21及びSUDC22の電圧変換幅(SUC21では、Vinv−Vfc、SUDC22では、Vinv−Vbat。)を要求電圧変換幅(SUC21では、Vmd−Vfc、SUDC22では、Vmd−Vbat。)より大きい値の強制電圧変換幅(SUC21では、Vinvlmt−Vfc、SUDC22では、Vinvlmt−Vbat。)に設定して動作させる強制電圧変換動作工程(ステップS5、ステップS6)と、を有する。
このようにこの実施形態では、BAT20の保護が必要と判定された場合に、駆動モータ14のモータ駆動要求電圧Vmdの高低に拘わらず、SUC21及びSUDC21の直流端側電圧Vinvを、直流端側上限電圧Vinvlmtを限度として高く設定するか、又はSUC21の電圧変換幅(Vinv−Vfc)及びSUDC22の電圧変換幅(Vinv−Vbat)をそれぞれ要求電圧変換幅(Vmd−Vfc、Vmd−Vbat)より大きい値の強制電圧変換幅(Vinvlmt−Vfc、Vinvlmt−Vbat)に設定してSUC21及びSUDC22を動作させる強制電圧変換動作工程(ステップS5、S6)を設けているので、SUC21及びSUDC22での電力消費が確保でき、例えば、FC18のFC電力Pfcの余剰電力が大きくなってBAT20に充電させる必要が発生した場合に、SUC21及びSUDC22での電力消費を大きくしているので、BAT20の充電電力Pbatd分を少なくでき、BAT20を保護することができる。
つまり、両電圧変換装置であるSUC21及びSUDC22の電力消費により、より確実にBAT20を保護することができる。
特に、充放電特性把握工程(ステップS2、S3)では、BAT20のBAT温度Tbに基づいてBAT20のバッテリ充放電温度特性75(許容放電電力Padmaxと許容充電電力Pacmax)を把握し、保護要否判定工程(ステップS4)では、BAT20のBAT温度Tbが閾値温度Tth以下の温度である場合に保護が必要と判定するようにすることで、BAT20の保護(過放電保護及び過充電保護)が必要な状態であるか否かをBAT温度Tbの測定により簡便に把握することができる。
[変形例1]
なお、BAT20のBAT温度TbがBAT20を保護することが必要な所定温度である閾値温度Tth、例えば氷点(Tth=0[℃])下等以下での始動後所定時間は、BAT20の出力特性であるバッテリ充放電温度特性(充放電特性)75が低下している{許容放電電力Padmaxの値又は許容充電電力Pacmaxの値(絶対値)が低下している}と判定してもよい。
具体的には、充放電特性把握工程(ステップS3)では、FCシステム12の始動時(図4では、時点t0)からの経過時間(図4では、時点t0〜時点t1の間の時間)に基づいてBAT20の充放電特性75を間接的に把握し、保護要否判定工程(ステップS4)では、始動時(時点t0)からの経過時間(時点t0〜時点t1の間の時間)が閾値時間tth(図4参照)以下の時間である場合に、BAT温度Tbが立ち上がっておらず、保護が必要と判定するようにすることで、BAT20の保護が必要な状態であるか否かを簡便に把握することができる。
なお、閾値時間tthは、始動時のBAT温度Tbが高くなるに従い短く設定される。つまり、この変形例1では、ステップS2にて始動時のBAT温度Tbと始動時刻を検出したとき、ステップS3の処理を省略し、ステップS4にて、始動後の経過時間が閾値時間tthを上回っていないかいるかを判定し、上回っていない場合にステップS5に進み、上回っている場合にステップS7に進めばよい。この場合、BAT温度Tbと閾値時間tthの関係を示す特性は予め測定され、記憶部(メモリ)に記憶される。
[変形例2]
前記の強制電圧変換動作工程(ステップS6)では、BAT電圧VbatにSUDC22の最小電圧変換幅ΔV(SUDC22がスイッチング動作可能な20[V]程度。)とモータ駆動要求電圧Vmdを加算した電圧を第1目標直流端側電圧として算出する第1目標電圧算出工程と、FC電圧VfcにSUC21の最小電圧変換幅ΔV(SUC21がスイッチング動作可能な20[V]程度。)とモータ駆動要求電圧Vmdを加算した電圧を第2目標直流端側電圧として算出する第2目標電圧算出工程と、をさらに備え、前記第1目標直流端側電圧及び前記第2目標直流端側電圧のうち、高い方の電圧をインバータ16の直流端側に印加する直流端側電圧Vinv(2次側電圧V2)の最低電圧としてSUDC22及びSUC21を強制電圧変換動作させるようにしてもよい。
このように制御すれば、1次側1sbがBAT20に接続されたSUDC22及び1次側1sfがFC18に接続されたSUC21の両方の制御性を考慮して強制電圧変換幅が設定されるので、FCシステム12全体の制御性が悪化することが回避される。
[変形例3]
この発明は、上述したように(図8Aの概念図に示すように)、SUC21及びSUDC22の二つの電圧変換装置を有するFCシステム12を備えるFC自動車10に適用することに限らず、モータ駆動要求電圧Vmdより常時高いFC電圧Vfcを出力できるFC18が採用できる場合、図8Bに示すように、SUC21を省略した燃料電池システム12Aを備える燃料電池自動車10Aに適用することができる。
さらに、この発明は、FC18のアノード電極とカソード電極間に発生するキャパシタ成分であるFCキャパシタ成分が小さくて、余剰電力をFCキャパシタ成分に充電させることができない場合に有効である。すなわち、SUC21及びSUDC22の電圧変換幅を要求電圧変換幅より大きい値の強制電圧変換幅に設定して動作させる強制電圧変換動作工程を設けることで、FCキャパシタ成分での余剰電力の吸収が十分ではなく、FC18からBAT20に対して急峻な電流が流れようとするときに、大きな値の電圧変換幅に設定されたSUC21及びSUDC22で電力消費を行うことができ、BAT20を保護することができる。
なお、この発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。
10、10A…燃料電池自動車(FC自動車)
12、12A…燃料電池システム(FCシステム)
14…駆動モータ 16…インバータ(INV)
18…燃料電池(FC) 20…蓄電装置、高電圧バッテリ(BAT)
21…昇圧コンバータ(昇圧器、電圧変換装置、SUC)
22…昇降圧コンバータ(昇降圧器、電圧変換装置、SUDC)
24…ECU 31…エアポンプ

Claims (6)

  1. 燃料電池電圧を出力する燃料電池と、
    蓄電装置電圧を出力する蓄電装置と、
    モータ駆動部を通じて駆動されるモータと、
    前記蓄電装置電圧を昇圧し前記モータ駆動部の直流端側に直流端側電圧として印加するか、前記直流端側に前記燃料電池側から印加された直流端側電圧又は前記モータから前記モータ駆動部を通じて印加された直流端側電圧を降圧して前記蓄電装置に印加する電圧変換装置と、
    前記燃料電池電圧を前記直流端側電圧に昇圧する他の電圧変換装置と、
    を有する燃料電池システムの制御方法であって、
    前記蓄電装置の充放電電力制限範囲を規定する充放電特性を把握する充放電特性把握工程と、
    把握された前記充放電特性に基づいて前記蓄電装置の保護が必要か否かを判定する保護要否判定工程と、
    前記蓄電装置の保護が必要と判定された場合に、モータ駆動要求電圧の高低に拘わらず、前記直流端側電圧を、直流端側上限電圧を限度として高く設定し、前記他の電圧変換装置を動作させる強制電圧変換動作工程と、
    を有することを特徴とする燃料電池システムの制御方法。
  2. 燃料電池電圧を出力する燃料電池と、
    蓄電装置電圧を出力する蓄電装置と、
    モータ駆動部を通じて駆動されるモータと、
    前記蓄電装置電圧を昇圧し前記モータ駆動部の直流端側に直流端側電圧として印加するか、前記直流端側に前記燃料電池側から印加された直流端側電圧又は前記モータから前記モータ駆動部を通じて印加された直流端側電圧を降圧して前記蓄電装置に印加する電圧変換装置と、
    前記燃料電池電圧を前記直流端側電圧に昇圧する他の電圧変換装置と、
    を有する燃料電池システムの制御方法であって、
    前記蓄電装置の充放電電力制限範囲を規定する充放電特性を把握する充放電特性把握工程と、
    把握された前記充放電特性に基づいて前記蓄電装置の保護が必要か否かを判定する保護要否判定工程と、
    前記蓄電装置の保護が必要と判定された場合に、モータ駆動要求電圧の高低に拘わらず、前記電圧変換装置の前記直流端側電圧を、直流端側上限電圧を限度として高く設定するか、又は前記電圧変換装置の電圧変換幅を要求電圧変換幅より大きい値の強制電圧変換幅に設定して前記電圧変換装置を動作させる強制電圧変換動作を行うと共に、前記他の電圧変換装置による強制電圧変換動作を行う強制電圧変換動作工程と、
    を有することを特徴とする燃料電池システムの制御方法。
  3. 請求項1又は2に記載の燃料電池システムの制御方法において、
    前記充放電特性把握工程では、
    前記蓄電装置の温度に基づいて前記蓄電装置の前記充放電特性を把握し、
    前記保護要否判定工程では、
    前記蓄電装置の温度が閾値温度以下の温度である場合に保護が必要と判定する
    ことを特徴とする燃料電池システムの制御方法。
  4. 請求項1〜3のいずれか1項に記載の燃料電池システムの制御方法において、
    前記充放電特性把握工程では、
    前記燃料電池システムの始動時からの経過時間に基づいて前記蓄電装置の前記充放電特性を把握し、
    前記保護要否判定工程では、
    前記始動時からの前記経過時間が閾値時間以下の時間である場合に保護が必要と判定する
    ことを特徴とする燃料電池システムの制御方法。
  5. 請求項に記載の燃料電池システムの制御方法において、
    前記充放電特性把握工程では、
    前記蓄電装置の温度に基づいて前記蓄電装置の前記充放電特性を把握するとともに、前記燃料電池システムの始動時からの経過時間に基づいて前記蓄電装置の前記充放電特性を把握し、
    前記保護要否判定工程では、
    前記蓄電装置の温度が閾値温度以下の温度である場合に保護が必要と判定するとともに、前記始動時からの前記経過時間が閾値時間以下の時間である場合に保護が必要と判定し、
    前記強制電圧変換動作工程では、
    前記蓄電装置電圧に前記電圧変換装置の最小電圧変換幅と前記モータ駆動要求電圧を加算した電圧を第1目標直流端側電圧として算出する第1目標電圧算出工程と、
    前記燃料電池電圧に前記他の電圧変換装置の最小電圧変換幅と前記モータ駆動要求電圧を加算した電圧を第2目標直流端側電圧として算出する第2目標電圧算出工程と、をさらに備え、
    前記第1目標直流端側電圧及び前記第2目標直流端側電圧のうち、高い方の電圧を前記モータ駆動部の直流端側に印加する前記直流端側電圧の最低電圧として前記電圧変換装置及び前記他の電圧変換装置を強制電圧変換動作させる
    ことを特徴とする燃料電池システムの制御方法。
  6. 請求項1〜5のいずれか1項に記載の燃料電池システムの制御方法を実施する燃料電池自動車。
JP2014254999A 2014-12-17 2014-12-17 燃料電池システムの制御方法及び燃料電池自動車 Expired - Fee Related JP6175047B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254999A JP6175047B2 (ja) 2014-12-17 2014-12-17 燃料電池システムの制御方法及び燃料電池自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254999A JP6175047B2 (ja) 2014-12-17 2014-12-17 燃料電池システムの制御方法及び燃料電池自動車

Publications (2)

Publication Number Publication Date
JP2016115605A JP2016115605A (ja) 2016-06-23
JP6175047B2 true JP6175047B2 (ja) 2017-08-02

Family

ID=56141832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254999A Expired - Fee Related JP6175047B2 (ja) 2014-12-17 2014-12-17 燃料電池システムの制御方法及び燃料電池自動車

Country Status (1)

Country Link
JP (1) JP6175047B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122625A (ja) * 2014-12-25 2016-07-07 本田技研工業株式会社 燃料電池システムの制御方法及び燃料電池自動車
JP6547764B2 (ja) 2017-01-11 2019-07-24 トヨタ自動車株式会社 車両用燃料電池システム及びその制御方法
JP6621489B2 (ja) * 2018-02-16 2019-12-18 本田技研工業株式会社 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835383B2 (ja) * 2006-10-25 2011-12-14 トヨタ自動車株式会社 電力供給ユニットの制御装置および制御方法、その方法をコンピュータに実現させるためのプログラム、そのプログラムを記録した記録媒体
JP2009059558A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp 燃料電池システム
JP2010220305A (ja) * 2009-03-13 2010-09-30 Toyota Motor Corp 電気自動車

Also Published As

Publication number Publication date
JP2016115605A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
US9643517B2 (en) Method of controlling fuel cell vehicle
US7946365B2 (en) Control method for fuel cell vehicle, and fuel cell vehicle
US8084151B2 (en) Fuel cell system and method therefor
US8097369B2 (en) Control apparatus for fuel cell vehicle and control method for fuel cell vehicle
WO2007066795A1 (ja) 燃料電池システム
CN108454419B (zh) 电池***的控制装置和电池***
JP2009225522A (ja) ハイブリッド直流電源システム、燃料電池車両及び蓄電装置の保護方法
US10661665B2 (en) Two-power-supply load driving fuel cell system
JP2009117070A (ja) 燃料電池システム
JP2016122625A (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP2015115982A (ja) 電力出力装置
JP6174553B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP6175047B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP6162678B2 (ja) 2電源負荷駆動燃料電池システム及び燃料電池自動車
JP6174528B2 (ja) 2電源負荷駆動燃料電池システムの制御方法及び燃料電池自動車
JP6133623B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP6104637B2 (ja) 2電源負荷駆動システム及び燃料電池自動車
JP2016095911A (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP6186344B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP5986977B2 (ja) 電源システム
JP6174546B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP6054918B2 (ja) 2電源負荷駆動燃料電池システム及び燃料電池自動車
JP6215811B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車
JP4556989B2 (ja) 燃料電池電源装置
JP6185899B2 (ja) 燃料電池システムの制御方法及び燃料電池自動車

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6175047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees