JP6161514B2 - プロセスバス適用保護システム - Google Patents

プロセスバス適用保護システム Download PDF

Info

Publication number
JP6161514B2
JP6161514B2 JP2013224026A JP2013224026A JP6161514B2 JP 6161514 B2 JP6161514 B2 JP 6161514B2 JP 2013224026 A JP2013224026 A JP 2013224026A JP 2013224026 A JP2013224026 A JP 2013224026A JP 6161514 B2 JP6161514 B2 JP 6161514B2
Authority
JP
Japan
Prior art keywords
ied
timing
data
time
process bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013224026A
Other languages
English (en)
Other versions
JP2015089182A (ja
Inventor
尾田 重遠
重遠 尾田
諭 宇佐美
諭 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013224026A priority Critical patent/JP6161514B2/ja
Publication of JP2015089182A publication Critical patent/JP2015089182A/ja
Application granted granted Critical
Publication of JP6161514B2 publication Critical patent/JP6161514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

この発明は、電力機器を保護するためのシステムに関し、特にプロセスバスが適用された保護システムに好適に用いられるものである。
従来の保護リレーは、電力機器から離れた屋内に設けられていたので、多数の計器用変成器によって検出されたアナログ信号は、大量の電気ケーブル類を介して保護リレーに入力されていた。近年、大量の電気ケーブル類は、プロセスバスと呼ばれる高速通信バスに置き換えられつつある。
プロセスバスが適用された保護システム(以下、プロセスバス適用保護システムと称する)では、電力機器の近傍に統合ユニット(MU:Merging Unit)が配置される。MUは、多数の計器用変成器によって検出されたアナログ信号を一旦取り込んで、AD(Analog to Digital)変換する。AD変換後のディジタルデータは、屋内に設けられたIED(Intelligent Electric Device)までプロセスバスを介して送信される。IEDは、MUから受信したデータに基づいてリレー演算を行う(プロセスバス適用保護システムに関して、例えば、特開2012−65433号公報(特許文献1)参照)。
プロセスバス適用保護システムを用いて送電線保護用電流差動リレーを構成するためには(電流差動リレーに関して、例えば、特開2010−279235号公報(特許文献2)を参照)、送電線の両端にそれぞれ設けられたMUが同じタイミングで電流をサンプリングする必要がある。サンプリング同期の1つの方法は、上記の特開2012−65433号公報(特許文献1)に記載されているように、GPSによる同期信号をMUに供給するものである。
他のサンプリング同期方法は、IEDからMUに同期信号を供給するものである。この方法において、送電線両端のIED同士の同期は、互いを接続するデータ通信路の上りと下りで遅延時間が等しいことを前提として相互の通信によって確立させる(例えば、上記の特開2010−279235号公報(特許文献2)の段落0004を参照)。
特開2012−65433号公報 特開2010−279235号公報
上記に示した電流差動リレーのサンプリング同期方法のうち、後者の方法、すなわち、相互の通信によってIED同士の同期を確立し、IEDからMUに同期信号を供給する方法では、何らかの原因でIEDからMUへ供給される同期信号が消失した場合に問題となる。
IEDからの同期信号が消失した場合、送電線両端の各MUは自走モードとなるので、サンプリング同期は不可能となる。このため、電流差動リレー要素は停止される。この場合、伝送線の両端の各IEDは、後備(バックアップ)保護として距離リレーや過電流リレーとして動作する。
ところが、この後備保護も正常に動作しない場合がある。その原因は、IEDからMUへの同期信号がないために、MUでのサンプリング周期とIEDでのデータ処理の周期とにずれが生じるからである。
この発明は、上記の問題点を考慮してなされたものであって、その目的は、プロセスバス適用保護システムにおいて、IEDからMUへの同期信号が消失した場合でも、MUのサンプリングデータをIEDが正常に受信してデータ処理を行うことが可能な信頼性の高い保護システムを提供することである。
一実施の形態によるプロセスバス適用保護システムにおいて、MUは、アナログ信号を一定のサンプリング周期ごとにサンプリングしてディジタルデータに変換し、ディジタルデータに変換する度に、変換されたディジタルデータをプロセスバスに出力するように構成される。IEDは、MUとプロセスバスを介して接続され、MUからディジタルデータを受信する度に、受信したディジタルデータに対して処理を行うように構成される。さらに、IEDは、ディジタルデータを受信するタイミングと処理を開始するタイミングとの時間差を検出し、検出した時間差が基準時間差に近付くように処理を開始するタイミングを調整するように構成されている。
上記の実施の形態によれば、IEDからMUへの同期信号が消失した場合でも、MUのサンプリングデータをIEDが正常に受信してデータ処理を行うことが可能な信頼性の高いプロセスバス適用保護システムを提供することができる。
送電線保護用電流差動リレーの構成を示すブロック図である。 図1に示す各MU100および各IED150の詳細な構成を示すブロック図である。 同期信号の間隔とサンプリング周期との関係を説明するための図である。 同期状態の場合のIEDとMUの動作を示すタイミング図である。 非同期状態の場合のIEDとMUの動作を示すタイミング図である(SVデータの受信タイミングが遅延した場合)。 非同期状態の場合のIEDとMUの動作を示すタイミング図である(SVデータの受信タイミングが早まった場合)。 IED150のデータ送受信回路152および演算回路158で実行される処理の手順を示すフローチャートである。
以下、実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その説明を繰返さない場合がある。
[電流差動リレーの構成]
図1は、送電線保護用電流差動リレーの構成を示すブロック図である。
図1を参照して、変流器(CT:Current Transformer)50Aは、送電線10の一方端(変電所Aの近傍)に流れる電流Iaを検出する。変流器50Bは、送電線10の他方端(変電所Bの近傍)に流れる電流Ibを検出する。ただし、変流器50Bの極性は変流器50Aの極性と逆になっている。なお、図1には図示していないが、送電線10には、計器用変圧器(VT:Voltage Transformer)も接続されている。変流器と計器用変圧器とを総称して計器用変成器と称する。
送電線保護用電流差動リレーは、送電線10両端の電流データをデータ通信路200を介して互いに伝送し合うことにより、自己の検出した電流データと相手方の検出した電流データとを比較し、比較結果に基づいて送電線10の事故の有無を判定する。具体的には、電流Iaと電流Ibとの加算結果が0になっていれば送電線10の内部に事故はない。
この実施の形態では、送電線保護用電流リレーはプロセスバス適用保護システムとして構成される。なお、送電線両端に接続される機器は全く同じ構成であるので、以下の説明では、送電線両端に接続される両機器に共通するときは参照符号の末尾のA,Bを省略して記載する。
プロセスバス適用保護システムは、統合ユニット(MU:Merging Unit)100とIED(Intelligent Electric Device)150とを含む。MU100は、遮断器や計器用変成器(CT/VT)等が設置されるGIS(Gas Insulated Substation)などの変電機器の1次機器の近傍に設置され、系統電流・電圧を取り込む。IED150は、MUから離れた場所(例えばコントロールルームなど)に設置されリレー演算を行うユニットである。
MU100とIED150は、LAN(Local Area Network)または専用シリアルバスなどの高速通信バス180(以下、プロセスバスと称する)を経由して接続されている。MU100は、入力トランスによって検出した系統電圧値および系統電流値を内部回路が扱いやすい大きさに変換し、変換後のアナログデータをAD変換する。MU100は、AD変換後の信号に対してプロセスバス180の規格に規定される所定の変換・処理をしたデータをSV(Sampled Value)データとしてIED150に送信する。IED150は、MU100からのSVデータをもとにリレー演算を行い、電流系統に事故が発生したことを検出すると、事故区間を電力系統から切り離すために遮断器などに信号を出力する。
電流差動リレーとして動作するためには、送電線10の両端に設置される両MU100A,100Bが系統電流をサンプリングするタイミングを同期させる必要がある。従来の保護リレーでは、MUとIEDが一体化した構成となっていたため、サンプリング同期は比較的容易であった。
一方、プロセスバス適用保護システムでは、AD変換を行うMU100とリレー演算を行うIED150は分離されている。すなわち、同期制御を実行するのはIED150A,150Bであり、サンプリング同期を行わなければならないMU100A,100Bとは別のユニットである。このため、各IED150は、対応のMU100に対して同期信号用ケーブル182を介して一定周期の同期信号を出力する。MU100は、同期信号に基づいてサンプリングのタイミングを調整する。
さらに、この同期信号によって、IED−MU間の同期が確保されるので、各IED150は、対応のMU100からのデータ受信タイミングを予測することができる。したがって、各IED150は、対応のMU100から送信されたSVデータを取りこぼしや重複なく受信することができる。
ここで、IED150A,150B間の同期は、データ通信路200を介した自端側IED150Aから相手端側IED150Bへの伝送遅延時間と、相手端側IED150Bから自端側IED150Aへの伝送遅延時間が等しいという前提で、相互に信号を伝送しながら確立される。具体的に、IED150Aは、対応のMU100Aへの同期信号の出力タイミングに同期した一定周期ごとに信号をIED150Bに対して送信する。IED150Bは、当該信号の受信時点と当該信号の受信前のMU100Bへの同期信号の出力タイミングとの時間差を求め、求めた時間差をIED150Aに送信する。IED150Aは、この時間差情報とこの時間差情報の受信タイミングとに基づき、IED150A,150B間の同期(すなわち、対応のMU100への同期信号の出力タイミングの同期)を確立する。
なお、電流差動リレーの接続方式には、分岐のない送電線両端を2台の保護リレーで保護を行う2端子方式や、1本の分岐線のある送電線の3端を3台の保護リレーで保護を行う3端子方式などがある。上記は2端子方式の場合のIED間の同期方法であるが、3端子方式の場合も同様の方法で同期を確立できる。
MU100は、対応のIED150から同期信号を正常受信していると、MU100から対応のIED150へ送信するディジタルデータの中にIED−MU間が同期中かどうかを示すフラグ(以下、「同期フラグ」と称する)をセットする。MU100が何らかの原因で同期信号を消失した場合は、瞬時にまたは(同期信号が受信できなくてもMUでのAD変換タイミングのずれが一定以内である)一定時間後に、同期フラグを同期信号が消失していることを示す内容(以下、「同期ロス」と称する)に切り替える。
同期信号を正常受信できなくなると、MU100は、AD変換後のディジタルデータの送信を一定周期(MU100自身のクロック、もしくは、同期信号の受信中にその同期信号に同期して補正をしたクロック)で実行継続(以下、「自走モード」と称する)する。同期信号が消失した自走モードでは、MU100AのサンプリングのタイミングとMU100Bのサンプリングのタイミングは同期していないので、電流差動リレー要素はロックされる(停止する)。
電流差動リレー要素が使用できなくても、各IED150は、後備(バックアップ)保護機能を実装している。この後備保護機能は、相手端のMU100から出力されるSVデータを必要とせず、距離リレーや過電流リレーなど、自端側の電流・電圧のSVデータのみを使用してリレー演算を行うリレー要素(以下、「自端リレー要素」と称する)である。したがって、各IED150は何らかの理由で相手変電所のIED150とのディジタル通信が停止した状況下でも、自端リレー要素によるリレー演算で送電線保護の継続が可能である。
ところが、自走モードの場合には、IED−MU間の同期も確保できなくなるので、MU100でのサンプリング周期と対応のIED150でのデータ受信周期とにずれが生じ得る。この結果、IED150では、対応のMU100からのデータを受信する前にデータを読み出したり、受信したデータが読み出さなかったりする可能性がある。もし、そのような事態が生じれば、後備保護用の自端リレー要素も停止してしまうことになる。しかしながら、この実施の形態のIED150は、後述するように、自走モードにおいてMU100でのサンプリング周期と対応のIED150でのデータ受信周期とにずれが生じないように制御している。
[保護リレーの詳細な構成]
図2は、図1に示す各MU100および各IED150の詳細な構成を示すブロック図である。
MU100は、送電線近傍に設置され、系統電流・系統電圧などを検出したアナログデータをディジタルデータにAD変換して、AD変換されたデータ(SVデータ)を高速にプロセスバス180へ送出することを主たる機能としている。プロセスバス180には、電流差動リレーや過電流リレーなどのリレー用ならびに制御用のIEDが複数接続されている。図1では送電線保護用電流差動リレー用のIED150が代表的に示されている。MU100は、それらの複数のIEDに対してSVデータを同時に送信できる。
IED150は、相手変電所(相手端)に設置されているIED150とのディジタル通信を高速に行うことを主たる機能としており、コントロールルームやリレールームなどに設置されている。IED150は、MU100からのSVデータをプロセスバス180経由で取り込み、自端および相手端のIED150にそれぞれ取り込まれたSVデータをディジタル通信線(通信路)200経由で相互に伝送し合い、自端および相手端のSVデータから送電線事故を検出するためのリレー演算を行う。以下、MU100とIED150の構成を具体的に説明する。
MU100は、電力系統からの系統電流・電圧を取り込む入力端子102,104,106と、入力変換部(トランス)108,110,112と、アナログフィルタ(AF)114,116,118とを含む。MU100は、さらに、サンプルホールド(S/H)回路120,122,124と、マルチプレクサ(MPX)126と、AD変換器128と、演算回路130と、データ送受信回路136と、制御信号出力回路132とを含み、これらの回路はクロック回路138に基づいて動作する。
IED150は、データ送受信回路152と、メモリ156と、演算回路158と、出力回路162と、ディジタル送受信回路160とを含み、これらの回路はクロック回路168に基づいて動作する。出力回路162の出力は出力端子164,166を介して出力される。
MU100において、制御信号出力回路132(特にHWカウンタ134)は、AD変換器128におけるAD変換のタイミングを制御することを目的とするものであり、サンプルホールド回路120,122,124、マルチプレクサ126、AD変換器128、および演算回路130に対して制御信号を出力する。制御信号出力回路132は、IED150からネットワーク回線182経由で同期信号を取り込み、この同期信号に従って一定周期の制御信号を出力する。
入力変換部108,110,112に取り込まれた系統電流・電圧は、アナログフィルタ(AF)114,116,118にてノイズ成分が除去され、サンプルホールド回路(S/H)120,122,124にて標本化され、マルチプレクサ126により順番に取り出されてAD変換器128に入力される。
AD変換器128は、マルチプレクサ126からのデータを、制御信号出力回路132によって制御された所定のタイミングでAD変換して、AD変換されたデータを演算回路130に出力する。上述したようにAD変換は、IED150から受信した同期信号に基づいて制御されたタイミングで実行される。
演算回路130に入力されたデータは、プロセスバスの規格に規定される所定の変換処理後、データ送受信回路136に送出される。そして、データ送受信回路136に入力されたデータは、プロセスバス180を通じてIED150に送信される。なお、プロセスバス180は、一般的なLANなどのネットワーク線でもよいし、専用のシリアルバスでもよい。
プロセスバス180を介してMU100から送信されたデータは、IED150のデータ送受信回路152に入力される。演算回路158は、データ送受信回路152からのデータに対して、ディジタルフィルタや実効値演算などのリレー演算処理を行う。さらに、演算回路158は、リレー演算処理がなされたデータと、IED150が管理している所定の整定値データとの比較を行い、電力系統に事故が発生しているか否かの判定を行う。
IED150には、さらに、図2において点線で示される出力回路162が搭載される。出力回路162は、演算回路158が電力系統上に事故が発生していると判断された場合に、事故区間を系統より切り離すための所定の信号を、外部に出力するものである。なお、MU100に出力回路140を搭載することも可能であり、この場合、IED150は、プロセスバス180を介して、出力回路140を動作させるための信号をMU100に送信して出力回路140を動作させる。
IED150Aの演算回路158に接続されたディジタル送受信回路160は、IED150Bの演算回路158に接続されたディジタル送受信回路160とディジタル通信線200で相互接続される。これらのディジタル送受信回路160は、自端IED150および相手(変電所)端のIED150にそれぞれ取り込まれたSVデータを相互に伝送し合う。
さらに、IED150Aのディジタル送受信回路160とIED150Bのディジタル送受信回路160とは、既に説明したように、ディジタル通信線200を介して相互に通信することにより相互の同期を確立する。これによって、IED150Aのディジタル送受信回路160とIED150Bのディジタル送受信回路160とは、同一のタイミングで同期信号をMU100AとMU100Bとへそれぞれ出力することができる。この結果、MU100Aのサンプルホールド回路120,122,124によるサンプリングのタイミングと、MU100Bのサンプルホールド回路120,122,124によるサンプリングのタイミングとが同一になる。
[IED−MU間が同期している場合]
次に、IED150からMU100に正常に同期信号が送られている場合において、MU100のサンプリング動作について説明する。
サンプルホールド回路120,122,124のサンプリング周波数は、プロセスバスの規格で規定され、例えば80×f(fは系統周波数)である。このサンプリング周波数は、MU100の制御信号出力回路132の内部に設けられるHW(Hardware)カウンタ134によって制御される。
図3は、同期信号の間隔とサンプリング周期との関係を説明するための図である。図2、図3を参照して、同期信号として例えば1PPS(Pulse Per Second)の信号が採用されたとする。この場合、同期信号が入力されたとき(時刻t100)から次の同期信号が入力されるとき(時刻t200)までの間隔は1秒(1s)である。同期信号の入力とともにMU100の制御信号出力回路132に設けられたHWカウンタ134のカウント値が0にリセットされる。
一例として系統周波数fを50Hzとすると、サンプリング周波数80×fは4000Hzであり、サンプリング周期は0.25msである。制御信号出力回路132のHWカウンタ134は、このサンプリング周期でカウントアップする。図3の例では、カウンタリセット(カウンタ値=0)からカウンタ値=1(時刻t110)までの時間は0.25ms、カウンタ値=0からカウンタ値=2(時刻t120)までの時間は0.5msとなる。サンプリング周期が4000Hzのとき、HWカウンタ134のカウンタ値は、ある同期信号が入力されてから次の同期信号が入力されるまでの間に3999回インクリメントされる。
図4は、同期状態の場合のIEDとMUの動作を示すタイミング図である。図2、図4を参照して、MU100の制御信号出力回路132は、正常な動作をしている場合、IED150から1秒毎に同期信号(1PPS)を受信し、同期信号の受信タイミングを基準として、MU100の内部回路に供給する制御信号の周期を補正している(IED−MU間同期状態)。具体的には、制御信号出力回路132は、受信した同期信号の周期(1s)に基づいて、MU100内部のクロック回路138のクロック周期(たとえば、数10ns)を単位として、上記の制御信号の周期(標準で0.25ms)を補正している。
上記の制御信号の周期補正によって、MU100の内部回路(すなわち、サンプルホールド回路120,122,124、マルチプレクサ126、AD変換器128、および演算回路130)の動作タイミングが同期信号に同期するようになる。たとえば、図4に示すように、MU100の演算回路130は、制御信号出力回路132から受けた制御信号の立上がりまたは立下がり(時刻t100,t110)を基準にして、(1)AD変換データを読み込み(すなわち、受信データをメモリにセットし)、(2)SVデータを生成する。MU100のデータ送受信回路136は、(3)演算回路130によって生成されたSVデータをIED150のデータ送受信回路152に送信する(以下、これらの処理(1)〜(3)を定周期処理と称する)。
IED−MU間同期状態では、IED150の内部回路もMU100に送信する同期信号に基づく一定周期T(図4では0.25ms)を基準にして動作する。この一定周期Tは、MU100の制御信号出力回路132が生成する制御信号の周期に等しい。たとえば、IED150演算回路158は、一定周期Tごとの基準時刻t101,t111を基準にして、(1)受信したSVデータを読み込み、(2)読み込んだSVデータをもとにリレー演算を行う(以下、これらの処理(1)〜(2)を定周期処理と称する)。
さらに、IED150のデータ送受信回路152に設けられた制御回路154は、IED150の定周期処理の起動時刻(時刻t101)から、MU100からSVデータを受信する時刻t102(受信したSVデータはメモリに記憶される)までの経過時間(時間差)をSVデータの受信毎に計測する(以下、この計測を「SVデータ受信タイミング計測」と称し、計測された経過時間を「T1」と記載する)。経過時間T1はIED−MU間が同期状態であれば、毎回ほぼ同じ値になると考えられる。制御回路154は、IED−MU同期状態において計測された経過時間T1について平均化処理をしてその値をメモリ156に保存する。制御回路154は、メモリ156に記憶する値を一定時間毎に更新する。メモリ156に記憶された経過時間T1は、IED−MU間が非同期状態になったときの基準値として用いられる。
[IEDからMUへの同期信号が消失した場合]
次に、MU100が同期信号を正常に受信している状態から消失状態に切り替わった場合において、IED150が行なうタイミング調整機能、すなわち、SVデータを読み込むタイミングのズレを補償するための調整機能について説明する。以下の説明においても簡単のために、同期信号を消失していない正常状態では、MU100はIED150から同期信号を1秒毎に受信し、MU100とIED150は共に、0.25ms周期(系統周波数fは50Hz)で上記の定周期処理の起動がかかるものと仮定する。
IED150から受信する同期信号が何らかの理由で消失した場合、MU100の制御信号出力回路132は、MU100内蔵のクロック回路138が発生するクロック信号(あるいは、同期信号が消失する直前の同期信号による補正クロック信号)に基づいて得られる0.25ms周期を基準にして、サンプリングのタイミング、AD変換のタイミング、定周期処理の起動タイミングを決定する(自走モード)。この場合、IED150とMU100は、各々のクロック回路138,168が生成するクロック信号あるいは補正クロック信号を基準に動作し続けることになる(IED−MU間非同期状態)。
MU100とIED150とにそれぞれ設けられたクロック回路138,168が生成するクロック信号の周期は完全には同一ではないので、互いのクロック周期の偏差によって、時間が経過するにつれて動作の基準となる0.25ms周期の時間幅が変化する。例えば、IED150のクロック回路168のクロック周期に基づく0.25ms周期に比べて、MU100のクロック回路138のクロック周期に基づく0.25ms周期が長くなっていくと、IED150におけるMU100からのSVデータ受信タイミングに遅延が発生し、IED150がリレー演算を行うタイミングにおいてSVデータが未受信という事態も起こり得る。逆に、IED150のクロック周期に基づく0.25ms周期に比べてMU100のクロック周期に基づく0.25ms周期が短くなっていくと、IED150がMU100からSVデータを受信するタイミングが早まり、IED150がリレー演算するタイミングにおいてSVデータを2回分受信するという事態も起こり得る。
このような事態が生じないように、IED150のデータ送受信回路152に設けられた制御回路154は、IED150の定周期処理を開始するタイミングを調整する。以下、図面を参照してさらに説明する。
図5は、非同期状態の場合のIEDとMUの動作を示すタイミング図である(SVデータの受信タイミングが遅延した場合)。
図2、図5を参照して、自走モード時のMU100の定周期処理の起動周期Tは、“MUの内部クロックで算出した0.25ms”であり、“同期中に同期信号を用いて生成していた0.25ms”と比較するとズレ(以下、このズレを「β」と称する)が生じる。IED150が実装するクロック回路(発振器)168とMU100が実装するクロック回路(発振器)138との性能差を±50ppmと仮定すると、0.25ms周期のズレβは最大で25nsでなる。このMU100とIED150での定周期処理の起動周期のズレβの発生に伴い、IED150におけるSVデータの受信タイミングにもズレβを生じる。IED150側でこのズレβに対応するため、IED側で定周期処理の起動周期Tに対して補正(以下、「受信タイミング偏差補正」と称する)を実施する。具体的手順は次のとおりである。
MUが同期信号の消失状態となった場合も正常受信状態の場合と同様に、IED150のデータ送受信回路152に設けられた制御回路154は、IED150の定周期処理の各起動時刻t101,t111,t121からSVデータ受信時刻t102,t112,t122(受信したSVデータはメモリに記憶される)までの経過時間(時間差)をそれぞれ計測する。ただし、同期中に計測された経過時間を「T1」と記載していたのに対し、同期信号消失時において計測された経過時間は「T2」と記載する。
制御回路154は、経過時間T2と同期中に平均化されメモリ156に保存された経過時間T1とを比較することによって、ズレβの方向と大きさを検出する。制御回路154は、ズレβが小さくなるように、演算回路158におけるリレー演算に影響がない範囲内で設定された補正幅αだけ定周期処理の起動周期Tを補正する。言い換えると、制御回路154は、計測される経過時間T2が平均化されたメモリ156に保存されたT1に近づくように、毎周期ごとに受信タイミング偏差補正を実行する。
図5のタイミング図は、MU100のクロック回路138の発振周波数がIED150のクロック回路168の発振周波数と比べて−(マイナス)側にずれた場合の例を示している。この場合、MU100側の発振周波数がIED150側の発振周波数に比べて低いことによって、IED150における定周期処理の起動周期Tよりも、MU100のSVデータの送信周期が長くなる。これに伴い、IED150がMU100からのSVデータを受信するタイミングも遅くなるので、T2>T1となり、IED150のデータ送受信回路152は、想定時刻よりもズレβ=|T2−T1|だけ遅れた時刻t122にてSVデータを受信する。データ送受信回路152に設けられた制御回路154は、リレー演算に影響を与えない範囲内で定周期処理の起動周期Tを補正することにより(この補正値をαと置く)、上記のSVデータの受信タイミングの遅れβを補正する。すなわち、定周期処理の周期TはT+αに補正され、これによって、定周期処理の開始時刻は時刻t131から時刻t131Aに補正される。
図6は、非同期状態の場合のIEDとMUの動作を示すタイミング図である(SVデータの受信タイミングが早まった場合)。
図6のタイミング図は、MU100のクロック回路138の発振周波数がIED150のクロック回路168の発振周波数と比べて+(プラス)側にずれた場合の例を示している。この場合、MU100側の発振周波数がIED150側の発振周波数に比べて高いことから、IED150における定周期処理の起動周期Tよりも、MU100のSVデータの送信周期が短くなる。これに伴い、IED150がMU100からのSVデータを受信するタイミングも早くなるので、T2<T1となり、IED150のデータ送受信回路152は、想定時刻よりもズレβ=|T2−T1|だけ早い時刻t122にてSVデータを受信する。データ送受信回路152に設けられた制御回路154は、リレー演算に影響を与えない範囲内で定周期処理の起動周期Tを補正することにより(この補正値をαと置く)、上記のSVデータの受信タイミングの遅れβを補正する。すなわち、定周期処理の周期TはT−αに補正され、これによって、定周期処理の開始時刻は時刻t131から時刻t131Aに補正される。このように、SVデータの受信毎にクロック偏差の補正を実施することによって、同期信号が消失した状態でも、IED150とMU100の定周期処理の起動タイミングを一定に保つことができる。
[IEDにおけるタイミング処理のまとめ]
図7は、IED150のデータ送受信回路152および演算回路158で実行される処理の手順を示すフローチャートである。
図2、図7を参照して、IED150のデータ送受信回路152に設けられた制御回路154は、MU100から送信される同期フラグが「同期中」か、それとも「同期ロス」かを判定する(ステップS100)。
(1)同期フラグが「同期中」の場合(ステップS100でYES)
(1−1)「同期中」が継続している場合(ステップS105でNO)
制御回路154は、経過時間T1の理論的な最大値および最小値に基づいて、SVデータの受信時刻が一定の時間範囲内に入るようにIED150の定周期処理を起動するタイミングを決定する。制御回路154は、SVデータの受信時刻が何らかの異常によって一定の時間範囲外になると、異常と判断する(以下、「SVデータ受信タイミング監視」と称する)。制御回路154によってSVデータ受信タイミング監視が正常と判断された場合(ステップS115でYES)、演算回路158は、通常のリレー演算(電流差動リレーとしての動作)を行う(ステップS120)。一方、制御回路154によってSVデータ受信タイミング監視が異常と判断された場合(ステップS115でNO)、制御回路154はリレー演算を停止、異常検出を報知する(ステップS125)。
(1−2)同期信号が消失状態から正常受信状態に切り替わった場合(ステップS105でYES)
IED150からMU100に送信される同期信号が消失状態から受信再開となった場合は、MU100からIED150へ送信される同期フラグが「同期ロス」から「同期中」に切り替わる。この場合、制御回路154は、MU100から受信する同期フラグが「同期ロス」から「同期中」に切り替わったことを検出し(ステップS105でYES)、処理を同期信号消失以前の状態に戻す。この結果、IED−MU間の同期と、送電線の自端側と相手端側とでのサンプリング同期とを確保することができ、演算回路158は、電流差動リレー要素による電力系統保護を実施する再開できる(ステップS110)。
(2)同期フラグが「同期ロス」の場合(ステップS100でNO)
(2−1)同期信号が正常受信状態から消失状態に切り替わった場合(ステップS130でYES)
MU100がIED150から受信する同期信号を消失した場合、MU100は、送電線の自端側と相手端側とでのサンプリング同期を保証できないので、IED150に送信する同期フラグを「同期中」から「同期ロス」へ切り替える。この場合、IED150の制御回路154は、MU100から受信する同期フラグの「同期ロス」を検出することによって(ステップS130でYES)、電流差動リレー要素を停止させる(ステップS140)。この場合、上述した受信タイミング偏差補正処理によってIED−MU間の同期は確保されているので、制御回路154は、後備保護である自端リレー要素による送電線保護を開始する(ステップS135)。
(2−2)「同期ロス」が継続している場合(ステップS130でNO)
制御回路154は、前回計測した経過時間T2とメモリに記憶されている経過時間T1とのズレβと今回計測したズレβとの差(以下「Δβ」と称する)が“IEDとMUのクロック周波数の偏差による誤差”と“ネットワーク上考えられる通信上の最大遅延差(以下、γと称する)”との和より大きい場合は、異常と判定する(以下、「Δβ監視」と称する)(ステップS145)。上記のγはIED−MU間が同期状態時における経過時間T1の最大値と最小値の差によって計測できる。
Δβ監視の結果が正常の場合は(ステップS145でYES)、制御回路154は、上述した受信タイミング偏差補正を実行する(ステップS150)。制御回路154は、後備保護である自端リレー要素による送電線保護を継続し(ステップS155)、電流差動リレー要素の停止を継続する(ステップS160)。
一方、Δβ監視の結果が異常の場合は(ステップS145でNO)、制御回路154は異常を報知する(ステップS165)。例えば、MU100に実装されているクロック回路(発振器)138の性能を+50ppm、IED150に実装されているクロック回路(発振器)168の性能を−50ppmと仮定すると、両者の差が100ppmとなる。定周期処理の起動周期0.25ms当たりに換算すると、MU100とIED150のクロック周波数の偏差による誤差は最大25nsとなる。制御回路154は、この値(25ns)にMU100からIED150までのデータ伝送の最大遅延差を加算することによって得られるΔβmaxと比較して、計測したΔβのほうが大きい場合が一定時間継続したときに異常と判定し、警報を出力する。
[効果]
上記の実施の形態によれば、MU100は、IED150からの同期信号が受信できなくなると自走状態になるのは従来と同等である。この場合、送電線10の自端MU100と相手端MU100とでサンプリング同期がとれないので電流差動リレー要素は停止することになる。しかしながら、上記の実施の形態によれば、IED150はMU100から受信するSVデータの受信タイミングを監視することによって、IED−MU間を同期状態に保つことができる。これによって、自端側のみで行う保護リレー要素(過電流リレー、距離リレーなど)を継続して実施することができ、従来よりも信頼性の高いシステムを提供できる。
[変形例]
実施の形態1にかかるプロセスバス適用保護システムは、電流差動リレー要素に上述した受信タイミング偏差補正を適用したものであるが、受信タイミング偏差補正の適用対象は電流差動リレー要素に限定されるものでない。例えば、自端リレー要素のみ実装したIEDについても、IEDの定周期処理の起動からMUからSVデータを受信するまでの経過時間の計測し、その計測値が一定範囲内に入るようIEDの定周期処理の起動タイミングを補正することによって、MUからのデータを確実に読み取ることができるというメリットがある。
上記の実施の形態の説明では、IEDの定周期処理の起動からMUからSVデータを受信するまでの経過時間(時間差)を計測するようにしたが、逆に、MUからSVデータを受信してからIEDの定周期処理の起動までの経過時間(時間差)を計測するようにしても、同様の効果が得られる。
上記の定周期処理の周期Tの調整幅αを一定値に固定するようにしてもよい。たとえば、調整幅αをIED150のクロック回路168のクロック周期に等しく設定してもよい。測定した経過時間T2がメモリ156に記憶されている経過時間T1に等しくなるように調整する場合に比べて、クロック回路168の周波数が低周波でよいというメリットがある。
今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
たとえば、上記の実施の形態に示したプロセスバス適用保護システムは、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。
10 送電線、50A,50B 変流器、100 MU、120,122,124 サンプルホールド回路、126 マルチプレクサ、128 AD変換器、130,158 演算回路、132 制御信号出力回路、134 HWカウンタ、136,152 データ送受信回路、138,168 クロック回路、140,162 出力回路、150 IED、154 制御回路、156 メモリ、160 ディジタル送受信回路、180 プロセスバス、182 同期信号用ケーブル、200 データ通信路。

Claims (5)

  1. アナログ信号を一定のサンプリング周期ごとにサンプリングしてディジタルデータに変換し、前記ディジタルデータに変換する度に、変換された前記ディジタルデータをプロセスバスに出力するように構成されるMU(Merging Unit)と、
    前記MUと前記プロセスバスを介して接続され、前記MUから前記ディジタルデータを受信する度に、受信した前記ディジタルデータに対して処理を行うように構成されるIED(Intelligent Electric Device)とを備え、
    前記IEDは、さらに、前記ディジタルデータを受信するタイミングと前記処理を開始するタイミングとの時間差を検出し、検出した時間差が基準時間差に近付くように前記処理を開始するタイミングを調整するように構成される、プロセスバス適用保護システム。
  2. 前記IEDは、同期信号を生成して前記MUに送信するように構成され、
    前記MUは、前記同期信号を受信している正常時には、前記同期信号に基づいて前記サンプリング周期を調整するように構成され、
    前記IEDは、
    前記正常時に、前記ディジタルデータを受信するタイミングと前記処理を開始するタイミングとの時間差を検出し、検出した時間差を前記基準時間差としてメモリに記憶し、
    前記MUが前記同期信号を受信していない異常時に、前記メモリに記憶した前記基準時間差に基づいて前記処理を開始するタイミングを調整するように構成される、請求項1に記載のプロセスバス適用保護システム。
  3. 前記IEDは、前記異常時において、前記ディジタルデータを前回受信したときに検出された時間差と前記ディジタルデータを今回受信したときに検出された時間差との変動幅を算出し、算出した変動幅が第1の許容範囲内にない場合に異常を報知するように構成される、請求項2に記載のプロセスバス適用保護システム。
  4. 前記IEDは、前記正常時において、前記検出した時間差が第2の許容範囲内にない場合に異常を報知するように構成される、請求項2または3に記載のプロセスバス適用保護システム。
  5. 前記処理を開始するタイミングの調整幅は一定値に固定される、請求項1〜4のいずれか1項に記載のプロセスバス適用保護システム。
JP2013224026A 2013-10-29 2013-10-29 プロセスバス適用保護システム Active JP6161514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224026A JP6161514B2 (ja) 2013-10-29 2013-10-29 プロセスバス適用保護システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224026A JP6161514B2 (ja) 2013-10-29 2013-10-29 プロセスバス適用保護システム

Publications (2)

Publication Number Publication Date
JP2015089182A JP2015089182A (ja) 2015-05-07
JP6161514B2 true JP6161514B2 (ja) 2017-07-12

Family

ID=53051453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224026A Active JP6161514B2 (ja) 2013-10-29 2013-10-29 プロセスバス適用保護システム

Country Status (1)

Country Link
JP (1) JP6161514B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042587A1 (ja) 2016-09-01 2018-03-08 三菱電機株式会社 インテリジェント電子デバイス
JP6915554B2 (ja) * 2018-01-18 2021-08-04 マツダ株式会社 送受信装置及び車両
JP7178973B2 (ja) * 2019-08-09 2022-11-28 三菱電機株式会社 保護制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069661A (ja) * 1999-08-31 2001-03-16 Mitsubishi Electric Corp 保護リレーシステム
JP2001069660A (ja) * 1999-08-31 2001-03-16 Mitsubishi Electric Corp 保護リレーシステム
JP4261447B2 (ja) * 2004-09-10 2009-04-30 株式会社日立製作所 通信システム
JP5501909B2 (ja) * 2010-09-15 2014-05-28 三菱電機株式会社 保護リレー

Also Published As

Publication number Publication date
JP2015089182A (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
US6678134B2 (en) Digital protective relay system
JP6247894B2 (ja) 電流差動保護
US8953645B2 (en) Communication system, communication apparatus and time synchronization method
EP2520040B1 (en) Method and apparatus for detecting communication channel delay asymmetry
EP2768101B1 (en) Protective control device
JP6161514B2 (ja) プロセスバス適用保護システム
JP2002186166A (ja) ディジタル保護継電装置
JP2010279235A (ja) 電流差動リレー
JP5434309B2 (ja) ディジタル保護継電システム及びディジタル保護継電システムのサンプリング同期方法
JP5507025B1 (ja) 電流差動リレー
JP6548592B2 (ja) 保護制御装置
JP6654498B2 (ja) ディジタル保護継電装置及びディジタル保護継電システム
WO2015063815A1 (ja) 信号処理装置
JP2009177952A (ja) Pcm電流差動保護リレー
JP4069600B2 (ja) 主後一体形保護継電装置
JP6563286B2 (ja) 保護リレー及び保護リレー用プログラム
JP2007068325A (ja) 電流差動リレー装置
CN104052564A (zh) 用于检测信道延迟非对称性的方法和装置
JP2004020284A (ja) 事故点標定装置
JP2006014416A (ja) 事故点標定方法及び事故点標定システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250