JP6161143B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP6161143B2
JP6161143B2 JP2012082424A JP2012082424A JP6161143B2 JP 6161143 B2 JP6161143 B2 JP 6161143B2 JP 2012082424 A JP2012082424 A JP 2012082424A JP 2012082424 A JP2012082424 A JP 2012082424A JP 6161143 B2 JP6161143 B2 JP 6161143B2
Authority
JP
Japan
Prior art keywords
hole
plating
filled
filling
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012082424A
Other languages
Japanese (ja)
Other versions
JP2013211502A (en
Inventor
聡 小田
聡 小田
Original Assignee
株式会社伸光製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社伸光製作所 filed Critical 株式会社伸光製作所
Priority to JP2012082424A priority Critical patent/JP6161143B2/en
Publication of JP2013211502A publication Critical patent/JP2013211502A/en
Application granted granted Critical
Publication of JP6161143B2 publication Critical patent/JP6161143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明はプリント配線板に関するもので、特にNCまたはレーザーで加工した穴を金属メッキにより充填する構造の配線の製造方法に関する。 The present invention relates to a printed wiring board, in particular holes machined in the NC or laser method for manufacturing a wiring board of the structure to be filled by metal plating.

部品の高密度化への対応及び熱伝導性を高める目的から、レーザーまたは穴明けで加工した層間接続の穴をメッキにより充填することが一般的となっている。ただし所謂フィルドメッキでは、通常はメッキ時に底面が必要であり、かつ充填可能な深さには薬液、装置等から発生する制約がある。
このため基板強度が要な製品、インピーダンス等の電気特性の要求がある製品、及び層間絶縁が必要な製品等で、厚い基材にはメッキの充填能力不足でフィルドメッキ構造が適用出来ないことがある。
For the purpose of increasing the density of parts and increasing thermal conductivity, it is common to fill holes in interlayer connections processed by laser or drilling by plating. However, in so-called filled plating, a bottom surface is usually required at the time of plating, and the depth that can be filled is limited by chemicals, equipment, and the like.
For this reason, filled plating structures may not be applicable to thick base materials due to insufficient plating filling capacity for products that require board strength, products that require electrical characteristics such as impedance, and products that require interlayer insulation. is there.

そのフィルドメッキの充填深さを深くする方法として、例えば特許文献1に示されるような、貫通穴をテーパー状に加工して、メッキの充填を促進する方法が開示されているが、このような方法では、フィルドメッキ時の底面を形成するために中間部を細くする必要があり、熱伝導性が十分に得られないという問題があった。   As a method for increasing the filling depth of the filled plating, for example, as disclosed in Patent Document 1, a method of processing a through hole into a tapered shape to promote plating filling is disclosed. In the method, there is a problem that the intermediate part needs to be thinned in order to form the bottom surface during filled plating, and sufficient thermal conductivity cannot be obtained.

ところで、フィルドメッキでの充填可能な深さは、薬液、装置、穴径等により決定されるが、既知の工法の多くでは底面が必要となる。このためフィルドメッキ実施前の充填する穴内に、底面となる境界面が存在すれば、薬液、装置、穴径等の変更無しで、埋め込み可能な深さをより深くすることが可能となる。   By the way, although the depth which can be filled with filled plating is determined by a chemical | medical solution, an apparatus, a hole diameter, etc., a bottom face is required in many known methods. For this reason, if there is a boundary surface serving as a bottom surface in the hole to be filled before filling plating, the depth of embedding can be increased without changing the chemical solution, the device, the hole diameter, and the like.

特許文献2には、貫通穴に底部を形成した基板に貫通穴を有する基板を貼り合わせることで、貫通穴の中間に底部を形成してフィルドメッキする基板が開示されている。
しかし、この方法では中間の底面と表層及び表層同士の合わせ精度を考慮した設計が必要となり、高密度化する部品設計の制約となってしまう。また3層基板の構造となることで、製品に反りが発生することが問題となる。
さらに、特許文献3では、スルーホール2の内壁への給電用金属膜(符号6、8)と、スルーホール内の境界部の給電用金属膜(符号6、8)を、同じメッキ工程で形成した境界部を有するスルーホールフィリング方法が開示されている。
Patent Document 2 discloses a substrate that is filled and plated by forming a bottom portion in the middle of the through hole by bonding a substrate having a through hole to a substrate having a bottom portion in the through hole.
However, this method requires a design in consideration of the intermediate bottom surface, the surface layer, and the alignment accuracy between the surface layers, and this imposes restrictions on the component design for increasing the density. Further, the structure of the three-layer substrate causes a problem that the product is warped.
Further, in Patent Document 3, a power supply metal film (reference numerals 6 and 8) on the inner wall of the through hole 2 and a power supply metal film (reference numerals 6 and 8) at the boundary in the through hole are formed by the same plating process. A through-hole filling method having a boundary portion is disclosed.

特開2003−46248公報JP 2003-46248 A 特開2003−46249公報JP 2003-46249 A 特開2008−235755号公報JP 2008-235755 A

このような状況に鑑み、本発明は配線基板に設けられる穴の穴径と基板の板厚に係る穴の長さとの関係において、既知、既存のフィルドメッキ工法では充填が困難な穴の場合でも、穴内の中央付近に境界面を配置することにより、フィルドメッキを用いて穴内をメッキにより充填された配線基板を提供する。 In view of such circumstances, the present invention relates to the relationship between the hole diameter of the hole provided in the wiring board and the hole length related to the board thickness of the board, even in the case of a hole that is difficult to fill by the existing filled plating method. by placing the boundary surface near the center of the bore, the bore to provide a wiring board which is filled by plating using a filled plating.

上記課題を解決するため、本発明者が鋭意研究したところ、フィルドメッキにより充填する穴内に境界面を形成することが可能であれば、その境界面がフィルドメッキ時に必要な底面として機能することを見出した。また穴内の中央付近に境界面を配置することにより、既存の薬液、装置を使用しても、充填可能な深さが倍増することを確認し本発明に想達した。 To solve the above problems, the present inventors have conducted extensive studies, if it is possible to form a boundary surface in the hole to be filled by the filled plating, that the boundary surface serves as a bottom surface required when filled plating I found it. Also by disposing the boundary surface near the center of the hole, existing chemical, the use of equipment, reaching virtual confirmation to the present invention that the depth fillable is doubled.

本発明の第の発明は、以下に示す工程1〜5により充填導通穴を形成する配線基板の製造方法であって、
工程1:両面に銅箔が接着された絶縁基材に穴開け加工により貫通穴を形成する工程、
工程2:前記絶縁基材の両面にメッキを施し、前記貫通穴の内壁に金属メッキ層を形成し、前記貫通穴を導通した状態とした後に、導通した貫通穴に樹脂を充填する工程、
工程3:前記工程2において貫通穴に充填された樹脂を加工して、絶縁基材の一面側に凹型陥没部を形成し、前記凹型陥没部の壁面にメッキをする工程、
工程4:前記凹型陥没部と反対面側の充填された樹脂上のメッキを除去し、前記樹脂を露出させた後、前記樹脂を除去して前記金属メッキ層と導通した導電性境界部を形成する工程、
工程5:フィルドメッキを行い、前記導電性境界部の両端に導電性金属を充填して充填導通穴を形成する工程、
前記工程3における前記樹脂の加工、及び前記工程4における前記樹脂の除去が、レーザー加工により行われることを特徴とする配線基板の製造方法。
1st invention of this invention is a manufacturing method of the wiring board which forms a filling conduction hole by the process 1-5 shown below,
Step 1: A step of forming a through hole by drilling in an insulating base material having copper foil bonded on both sides,
Step 2: Plating both surfaces of the insulating base material, forming a metal plating layer on the inner wall of the through hole, and making the through hole conductive, filling the conductive through hole with resin;
Step 3: Process the resin filled in the through hole in Step 2 to form a concave depression on one side of the insulating base, and plating the wall surface of the concave depression.
Step 4: Remove the plating on the filled resin on the side opposite to the recessed depression, expose the resin, and then remove the resin to form a conductive boundary that is electrically connected to the metal plating layer. The process of
Step 5: performing filled plating, filling a conductive metal at both ends of the conductive boundary portion to form a filled conduction hole,
A method of manufacturing a wiring board, wherein the processing of the resin in the step 3 and the removal of the resin in the step 4 are performed by laser processing.

本発明によれば、既存、既知のメッキ薬液、装置、工法を利用してフィルドメッキを実施しても、充填可能な穴深さが倍増することにある。   According to the present invention, even if filled plating is performed using existing and known plating chemicals, apparatuses, and construction methods, the hole depth that can be filled is doubled.

本発明の両面配線基板の断面図である。It is sectional drawing of the double-sided wiring board of this invention. 本発明に係る配線基板(図1の層間接続の穴が金属により充填されている部位:充填導通穴近傍)の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the wiring board (The site | part with which the hole of the interlayer connection of FIG. 1 is filled with the metal: Filling conduction hole vicinity) which concerns on this invention. 本発明に係る配線基板(図1の層間接続の穴が金属により充填されている部位:充填導通穴近傍)の製造方法を示すフロー図の続きである。FIG. 3 is a continuation of the flow diagram showing the method for manufacturing the wiring board according to the present invention (portion where the hole of the interlayer connection in FIG. 1 is filled with metal: near the filling conduction hole). 比較例にかかる配線基板の断面図である。It is sectional drawing of the wiring board concerning a comparative example.

以下に、本発明の詳細を説明する。
本発明の配線基板及びその製造方法は、基板に設けた導通用の貫通穴に、良好な熱伝導性を付与するためにフィルドメッキを用いて、その穴内に熱伝導性の高い物質を充填する際、フィルドメッキ前に、その貫通穴内に穴を非貫通とする境界面を有することにより、フィルドメッキの薬液、装置等の変更なしでフィルドメッキにより充填することが出来る充填深さを深く、貫通穴の両側からフィルドメッキを行うため、充填導通穴の深さは、最大でフィルドメッキの限界値の2倍とすることができるものである。また本発明は、メッキ薬液の種類、装置の制約を受けないため、多くの既知のフィルドメッキ工法で応用可能である。
Details of the present invention will be described below.
In the wiring board and the manufacturing method thereof according to the present invention, filled plating is used to fill the through holes for conduction provided in the board with good thermal conductivity, and a material having high thermal conductivity is filled in the holes. In this case, before filling plating, by having a boundary surface that does not penetrate the hole in the through hole, the filling depth that can be filled by filled plating without changing the chemicals and equipment of filled plating is penetrated deeply. Since filled plating is performed from both sides of the hole, the depth of the filling conduction hole can be set to twice the limit value of the filled plating. In addition, the present invention is applicable to many known filled plating methods because it is not restricted by the type and apparatus of the plating chemical.

図1は本発明の両面配線基板の断面図である。
図1において、1は充填導通穴、2は絶縁基材、3a、3bは外層導体(一般に銅箔が用いられる)、4は両面に外層導体を積層した絶縁基板(コア材)、5はフィルドメッキ層(高熱伝導性金属層)、10は配線基板、BSは境界部、BSは境界部面である。
FIG. 1 is a sectional view of a double-sided wiring board according to the present invention.
In FIG. 1, 1 is a filling conduction hole, 2 is an insulating base material, 3a and 3b are outer layer conductors (generally copper foil is used), 4 is an insulating substrate (core material) in which outer layer conductors are laminated on both sides, and 5 is filled. A plating layer (high thermal conductivity metal layer), 10 is a wiring board, BS is a boundary portion, and BS 1 is a boundary portion surface.

図1に見られるように、本発明に係る配線基板10は、両面に銅箔(外層導体)3a、3bを備える絶縁基板4の貫通穴の中間部に導電性境界部(BS)を形成して、両端が開口した非貫通穴とし、その非貫通穴の空間部を、フィルドメッキにより熱伝導性の良好な材料、一般に純銅を充填した充填導通穴1として、備える配線基板である。
しかも、この導電性境界部(BS)は、樹脂による貫通穴の充填、充填した樹脂のレーザー加工による除去、及びメッキによる導通の工程によって形成されていることを特徴とするものである。
As shown in FIG. 1, the wiring board 10 according to the present invention forms a conductive boundary (BS) in the middle part of the through hole of the insulating substrate 4 having copper foils (outer layer conductors) 3a and 3b on both sides. Thus, the wiring board includes a non-through hole having both ends opened, and a space portion of the non-through hole as a filled conduction hole 1 filled with a material having a good thermal conductivity, generally pure copper, by filled plating.
Moreover, the conductive boundary (BS) is formed by filling through holes with resin, removing the filled resin by laser processing, and conducting steps by plating.

以下に、図1に示す本発明に係る配線基板の製造方法を、図2を参照しながら説明する。
なお、この図1に見られる基本構造は、多層板のコア材としても利用可能であるため、基本構造の製造方法のみを説明することとする。またサブトラクティブ工法による本発明の製造方法を説明するが、アディティブ工法での製造も可能である。
Hereinafter, a method of manufacturing the wiring board according to the present invention shown in FIG. 1 will be described with reference to FIG.
Since the basic structure shown in FIG. 1 can also be used as a core material of a multilayer board, only the manufacturing method of the basic structure will be described. Moreover, although the manufacturing method of this invention by a subtractive construction method is demonstrated, the manufacture by an additive construction method is also possible.

図1に示す配線基板(図1では層間接続の穴が金属により充填されている部位を示している)の製造は、先ず絶縁基板に貫通穴を設け、その貫通穴を貫通導通穴に加工し、その穴への樹脂の充填、充填された樹脂の加工を経て、その加工面に金属層を設けた後、充填された樹脂を除去することによって、貫通導通穴の中間部に貫通導通穴を非貫通化させる境界部を形成して、その境界部を有する非貫通導通穴をフィルドメッキなどの方法により、熱伝導性の良好な金属で充填して、熱伝導性の高い充填導通穴を形成する充填導通穴の形成工程を施し、次いで余分な箇所を除去して、所定の配線基板を作製するものである。   To manufacture the wiring board shown in FIG. 1 (in FIG. 1, the part where the hole for interlayer connection is filled with metal) is first provided with a through hole in the insulating substrate, and the through hole is processed into a through conduction hole. After filling the hole with resin, processing the filled resin, providing a metal layer on the processed surface, and removing the filled resin, a through conduction hole is formed in the middle of the through conduction hole. A non-penetrating boundary is formed, and the non-penetrating conductive hole having the boundary is filled with a metal with good thermal conductivity by a method such as filled plating to form a highly conductive conductive hole. The filling conduction hole forming step is performed, and then the extra portion is removed to fabricate a predetermined wiring board.

図2は、本発明に係る配線基板(図1の層間接続の穴が金属により充填されている部位:充填導通穴)の製造方法を示すフロー図である。(図2は図2−1から図2−2へと続く。)
図2(a)〜(i)は、充填導通穴の形成工程に関するフロー図で、図2(j)は、フィルドメッキにより、境界部の両側の穴に熱伝導性の高い金属を充填した充填導通穴近傍の余分な箇所を除去した状態の配線基板を示す図である。
図2において、1は充填導通穴、2は絶縁基材、3a、3bは外層導体、4は絶縁基板(コア材)、5はフィルドメッキ層(高熱伝導性金属層)、6はメッキ層(金属層)、7はメッキ層(金属層)、9は配線板、10は配線基板、11は貫通穴、12は貫通導通穴、13は非貫通導通穴、14は凹型陥没部、15は有底非貫通導通穴、20は充填材、BSは境界部、BSは境界部面である。
FIG. 2 is a flowchart showing a manufacturing method of the wiring board according to the present invention (the portion where the hole of the interlayer connection in FIG. 1 is filled with metal: a filling conduction hole). (FIG. 2 continues from FIG. 2-1 to FIG. 2-2.)
2 (a) to 2 (i) are flow charts related to the process of forming a filling conduction hole, and FIG. 2 (j) is a filling in which holes on both sides of the boundary portion are filled with a metal having high thermal conductivity by filled plating. It is a figure which shows the wiring board of the state which removed the excess location of the conduction hole vicinity.
In FIG. 2, 1 is a filling conduction hole, 2 is an insulating substrate, 3a and 3b are outer layer conductors, 4 is an insulating substrate (core material), 5 is a filled plating layer (high thermal conductive metal layer), and 6 is a plating layer ( (Metal layer), 7 is a plating layer (metal layer), 9 is a wiring board, 10 is a wiring board, 11 is a through hole, 12 is a through conduction hole, 13 is a non-through conduction hole, 14 is a concave depression, and 15 is A bottom non-through hole, 20 is a filler, BS is a boundary portion, and BS 1 is a boundary portion surface.

先ず充填導通穴の形成方法に関して説明する。本発明に係る充填導通穴は、以下の工程1〜工程5に示す工程を経て形成されるものである。
・充填導通穴の形成方法
[工程1]
(貫通穴の形成)
工程1として、先ず、両面に銅箔(外部導体)3a、3bが接着された絶縁基材2からなる絶縁基板4(以下コア材4)に、充填導通穴(図1符号1参照)となる箇所に穴開け加工して貫通穴11を形成する(図2(a)、(b)参照)。
First, a method for forming a filling conduction hole will be described. The filling conduction hole according to the present invention is formed through the steps shown in the following steps 1 to 5.
-Filling conduction hole forming method [Step 1]
(Forming through holes)
As a process 1, first, a filling conduction hole (see reference numeral 1 in FIG. 1) is formed in an insulating substrate 4 (hereinafter referred to as a core material 4) made of an insulating base material 2 having copper foils (outer conductors) 3a and 3b bonded to both surfaces. A through hole 11 is formed by drilling a hole (see FIGS. 2A and 2B).

その穴開け加工方法は特に限定されないが、NCドリリングマシン、レーザーマシンなどを用いると良い。また、穴の形状は丸穴に限らず、楕円穴、四角穴、異形穴など、目的に合わせて選択すればよい。ただし充填導通穴(図1符号1参照)の形状、サイズ及び絶縁基材2の厚みの組み合わせについては、利用する薬液、装置で絶縁基材2の半分以上の厚みで充填メッキが可能な範囲とする。   The drilling method is not particularly limited, but an NC drilling machine, a laser machine, or the like may be used. The shape of the hole is not limited to a round hole, but may be selected according to the purpose, such as an elliptical hole, a square hole, or a deformed hole. However, with respect to the combination of the shape and size of the filling conduction hole (see reference numeral 1 in FIG. 1) and the thickness of the insulating base 2, the chemical solution to be used and the range in which filling plating can be performed with a thickness more than half that of the insulating base 2 by the apparatus To do.

[工程2]
(貫通導通穴の形成)
次に、穴開け加工が実施されたコア材4の全面または必要な箇所に金属メッキ層6を設け、貫通導通穴12を形成する。(図2(c)参照)この金属メッキ層6は、無くても本発明の実施は可能であるが、内壁の凹凸削減、充填範囲の拡大のためには、この金属メッキ層6を設けることが望ましい。以下、この金属メッキ層6が設けられている状態での説明とする。
[Step 2]
(Formation of through conduction holes)
Next, the metal plating layer 6 is provided on the entire surface of the core material 4 on which the drilling process has been performed or a necessary portion, and the through conduction hole 12 is formed. (Refer to FIG. 2 (c)) Although the present invention can be carried out without the metal plating layer 6, the metal plating layer 6 is provided in order to reduce the unevenness of the inner wall and expand the filling range. Is desirable. Hereinafter, the description will be made in a state where the metal plating layer 6 is provided.

(貫通導通穴への樹脂の充填)
貫通導通穴12を充填材20により完全に充填し、非貫通導通穴13を形成する(図2(d)参照)。
この充填作業は、下記の条件を満たす樹脂を印刷法、ローラー法、カーテンコーター法、ディップ法など、各種工法で行うことが可能である。
充填材は、充填作業時には粘性を持ち、熱、UV、光等により硬化する性質が必要であるが、樹脂の種類に制約は無くエポキシ系、メラニン系、アクリル系等が選択可能で、高耐熱性、高剛性を持つ樹脂がより望ましい。
充填材を充填した後に、熱、UV、光等により、充填樹脂を硬化させる。硬化状態については半硬化状態でも、完全硬化状態でも良い。
(Resin filling into the through hole)
The through conduction hole 12 is completely filled with the filler 20 to form the non-through conduction hole 13 (see FIG. 2D).
This filling operation can be performed by using various methods such as printing, roller, curtain coater, and dipping, with a resin satisfying the following conditions.
The filling material has viscosity during filling work and needs to be cured by heat, UV, light, etc., but there is no restriction on the type of resin, and epoxy, melanin, acrylic, etc. can be selected, and high heat resistance Resin having high properties and high rigidity is more desirable.
After filling the filler, the filling resin is cured by heat, UV, light, or the like. The cured state may be a semi-cured state or a completely cured state.

[工程3]
(凹型陥没形状の形成)
硬化した充填材20を、絶縁基板4(コア材4)の形成する面、若しくは金属メッキ層6の形成する面と平坦となるように研磨する。
続いて充填材20により充填された非貫通導通穴13の一端に凹型陥没部14を形成する(図2(e)参照)。
この凹型陥没部14の形成には、レーザー加工をすることが好ましい。加工レーザーの種類は炭酸ガスレーザー、UVレーザー等、有機物にエネルギーが吸収される波長であればその種類に制約は無い。
[Step 3]
(Formation of concave depression shape)
The cured filler 20 is polished so as to be flat with the surface on which the insulating substrate 4 (core material 4) is formed or the surface on which the metal plating layer 6 is formed.
Subsequently, a concave depression 14 is formed at one end of the non-through conductive hole 13 filled with the filler 20 (see FIG. 2E).
For the formation of the concave depression 14, it is preferable to perform laser processing. The type of the processing laser is not limited as long as it is a wavelength at which energy is absorbed by an organic substance, such as a carbon dioxide gas laser or a UV laser.

また、その加工順序に制約は無いが、表裏で要求平坦度が異なる場合、または表裏で回路密度が異なる場合には適切な面から加工することが望ましい。
表裏で要求平坦度が異なる場合には、よりへ平坦度が必要な面から加工することが望ましい。
表裏で回路密度が表裏で異なる場合には、より粗な面から加工することが望ましい。
Further, although there is no restriction on the processing order, it is desirable to perform processing from an appropriate surface when the required flatness differs between the front and back surfaces, or when the circuit density differs between the front and back surfaces.
When the required flatness differs between the front and back surfaces, it is desirable to process from a surface that requires higher flatness.
When the circuit density differs between the front and back, it is desirable to process from a rougher surface.

また加工深さについては、最終の板厚の半分程度を目安とする。底部についてはレーザー加工の条件によりほぼ平坦に加工することが可能である。   The processing depth is about half of the final plate thickness. The bottom can be processed almost flat depending on the laser processing conditions.

(壁面へのメッキ)
レーザー加工が実施されたコア材4の全面または必要な箇所に金属層7を設けるメッキを実施する(図2(f)参照)。
ここでのメッキは、一般的な被覆メッキでもフィルドメッキでも可能であるが、一般的には生産コストの面から被覆メッキを採用することが望ましい。
(Plating on the wall)
Plating is performed in which the metal layer 7 is provided on the entire surface of the core material 4 on which laser processing has been performed or a necessary portion (see FIG. 2F).
The plating here can be either general coating plating or filled plating, but it is generally desirable to use coating plating from the viewpoint of production cost.

[工程4]
メッキ加工が実施されたコア材のレーザー加工実施済みの面は、ほぼ全面をエッチングレジストで被覆する。
またレーザー加工未実施の面は、ほぼ全面を被覆しない状態としてから、エッチングにより金属導体を除去する(図2(g)参照)。
その金属導体の除去量は、非貫通導通穴13に充填した樹脂が確認出来る量を最小とするが、最終の回路密度に合わせてさらに除去量を増やすことは可能である。
[Step 4]
The surface of the core material that has been subjected to the laser processing is almost entirely covered with an etching resist.
Further, after the surface not subjected to laser processing is in a state of not covering almost the entire surface, the metal conductor is removed by etching (see FIG. 2G).
The removal amount of the metal conductor minimizes the amount that the resin filled in the non-penetrating conduction holes 13 can be confirmed, but the removal amount can be further increased in accordance with the final circuit density.

その後、非貫通導通穴13のレーザー加工未実施の面から再度レーザー加工を実施して、中間部に境界部(BS)を備える有底非貫通導通穴15を形成する(図2(h)参照)。
この時の加工レーザーの種類は、炭酸ガスレーザー、UVレーザー等、有機物にエネルギーが吸収される波長であればその種類に制約は無い。
レーザー加工終了状態は、穴内にメッキにより形成された境界部の面(BS)上の残留樹脂状態が、使用するデスミア、プラズマ等の残留樹脂除去方法により除去可能なレベルとする。
Thereafter, laser processing is performed again from the surface of the non-through-conduction hole 13 where laser processing has not been performed to form a bottomed non-through-conduction hole 15 having a boundary portion (BS) in the middle (see FIG. 2 (h)). ).
The type of the processing laser at this time is not limited as long as it is a wavelength at which energy is absorbed by an organic substance, such as a carbon dioxide laser or a UV laser.
The laser processing end state is set to a level at which the residual resin state on the boundary surface (BS 1 ) formed by plating in the hole can be removed by a residual resin removing method such as desmear or plasma to be used.

[工程5]
工程4を経て形成された中間に境界部(BS)が備える有底非貫通導通穴15を有するコア材4に、フィルドメッキを実施することで、その有底非貫通導通穴15の境界部(BS)両側の穴部を熱伝導性の高い金属で充填した本発明の充填導通穴1を有する配線板9を形成する(図2(i)参照)。なお、5は穴部に充填された高熱伝導性の金属である。
この配線板9の余分な箇所をエッチングなどにより除去して図1に示す本発明の配線基板10を製造する。
以上の工程を経て得られた充填導通穴1の深さは、従来よりも倍化することが可能となり、従ってフィルドメッキが適用できる配線基板の厚みが倍化する。
[Step 5]
By performing filled plating on the core material 4 having the bottomed non-penetrating conductive hole 15 provided in the boundary part (BS) formed in the middle through the step 4, the boundary part of the bottomed non-penetrating conductive hole 15 ( BS) A wiring board 9 having a filling conduction hole 1 of the present invention in which holes on both sides are filled with a metal having high thermal conductivity is formed (see FIG. 2 (i)). Reference numeral 5 denotes a metal having high thermal conductivity filled in the hole.
Excess portions of the wiring board 9 are removed by etching or the like to manufacture the wiring board 10 of the present invention shown in FIG.
The depth of the filling conduction hole 1 obtained through the above steps can be doubled as compared with the conventional one, and thus the thickness of the wiring board to which filled plating can be applied is doubled.

以下、絶縁基材厚みを変化させた配線板を作製して、そのフィルドメッキによる充填の健全性を評価することで本発明を詳細する。
なお、フィルドメッキによる充填可能な条件は、メッキ薬液、装置及び設計の影響を受けるため、その評価結果は特定のメッキ薬液、装置の結果であり、他の条件ではより厚く、より大面積でのフィルドメッキが可能となる場合もある。また、フィルドメッキによる充填の健全性を明確に評価するために、配線基板ではなく、その前段階の配線板におけるフィルドメッキによる充填の状態を評価したものである。
Hereinafter, the present invention will be described in detail by producing a wiring board having a changed thickness of the insulating base material and evaluating the soundness of filling by filled plating.
In addition, since filling conditions by filled plating are affected by plating chemicals, equipment and design, the evaluation results are the results of specific plating chemicals and equipment. Other conditions are thicker and larger areas. Filled plating may be possible. In addition, in order to clearly evaluate the soundness of filling by filled plating, the state of filling by filled plating is evaluated not on the wiring board but on the previous wiring board.

実施例におけるフィルドメッキによる充填の健全性評価は、噴流式メッキ装置を用い、硫酸銅溶液に奥野製薬工業株式会社製の硫酸銅メッキ添加剤を所定量添加した硫酸銅電解液を用い、液温25℃、電流密度1.5A/dmの条件でフィルドメッキを行い、そのフィルドメッキ部の断面を光学顕微鏡によりフィルドメッキ層表面における凹み程度を観察した。
10μm未満の凹みの場合を「○」、20μm未満の凹みの場合を「△」、20μm以上の凹みの場合を「×」とし、その結果を表1に示した。
The soundness evaluation of filling by filled plating in the examples was performed using a jet plating apparatus, using a copper sulfate electrolyte in which a predetermined amount of copper sulfate plating additive manufactured by Okuno Pharmaceutical Co., Ltd. was added to the copper sulfate solution, and the liquid temperature Filled plating was performed under the conditions of 25 ° C. and a current density of 1.5 A / dm 2 , and the cross section of the filled plating portion was observed for the degree of dents on the surface of the filled plating layer with an optical microscope.
Table 1 shows the results when the recesses of less than 10 μm are indicated by “◯”, the recesses of less than 20 μm are indicated by “Δ”, and the recesses of 20 μm or more are indicated by “X”.

(実施例)
厚み0.060mm、0.105mm、0.210mmの両面に銅箔が接着された絶縁基材を用い、各々の貫通穴の径を0.120mmとして、上記工程1〜工程5を経て形成した充填導通穴(図2の符号1参照)を有する図2(i)に示す配線板9を作製して、供試材とした。
(Example)
Filling formed through steps 1 to 5 above using an insulating base material with copper foil bonded to both sides of thickness 0.060 mm, 0.105 mm, and 0.210 mm, with each through hole having a diameter of 0.120 mm A wiring board 9 shown in FIG. 2 (i) having a conduction hole (see reference numeral 1 in FIG. 2) was prepared and used as a test material.

(比較例)
厚み0.060mm、0.105mm、0.210mmの両面に銅箔が接着された絶縁基材を用い、各々にレーザーで片側の外層導体まで穴の径を0.120mmでレーザー加工し、フィルドメッキを行い、図3に示す充填導通穴51を有する配線板50を作製して供試材とした。
(Comparative example)
Using an insulating base material with copper foil bonded to both sides of thickness 0.060mm, 0.105mm, 0.210mm, each is laser processed with a laser to a diameter of 0.120mm to the outer layer conductor on one side, filled plating Then, a wiring board 50 having a filling conduction hole 51 shown in FIG. 3 was produced and used as a test material.

Figure 0006161143
Figure 0006161143

表1から明らかなように、本発明に係る充填導通穴の形成方法を用いた配線板における充填導通穴のフィルドメッキの健全性は、従来の貫通導通穴の片側に底面を設けてフィルドメッキすることにより得られる充填導通穴を有する配線板におけるフィルドメッキの健全性と比べて、少なくとも2倍の深さの充填導通穴の形成に対応可能であることがわかる。   As is clear from Table 1, the soundness of filled plating of filled conduction holes in a wiring board using the method for forming filled conduction holes according to the present invention is filled with a bottom surface provided on one side of a conventional through conduction hole. It can be seen that it is possible to cope with the formation of the filling conduction hole having a depth of at least twice as much as the soundness of the filled plating in the wiring board having the filling conduction hole obtained by this.

1、51 充填導通穴
2 絶縁基材
3a、3b 外層導体
4 絶縁基板(コア材)
5 フィルドメッキ層(高熱伝導性金属層)
6、7 メッキ層(金属層)
9、50 配線板
10 配線基板
11 貫通穴
12 貫通導通穴
13 非貫通導通穴
14 凹型陥没部
15 有底非貫通導通穴
20 充填材
BS 境界部
BS 境界部面
1, 51 Filling conduction hole 2 Insulating base material 3a, 3b Outer layer conductor 4 Insulating substrate (core material)
5 Filled plating layer (High thermal conductivity metal layer)
6, 7 Plating layer (metal layer)
9, 50 Wiring board 10 Wiring board 11 Through hole 12 Through conduction hole 13 Non-through conduction hole 14 Recessed recessed portion 15 Bottomed non-through conduction hole 20 Filler BS boundary portion BS 1 boundary surface

Claims (1)

以下に示す工程1〜5により充填導通穴を形成する配線基板の製造方法であって、
工程1:両面に銅箔が接着された絶縁基材に穴開け加工により貫通穴を形成する工程、
工程2:前記絶縁基材の両面にメッキを施し、前記貫通穴の内壁に金属メッキ層を形成し、前記貫通穴を導通した状態とした後に、導通した貫通穴に樹脂を充填する工程、
工程3:前記工程2において貫通穴に充填された樹脂を加工して、絶縁基材の一面側に凹型陥没部を形成し、前記凹型陥没部の壁面にメッキをする工程、
工程4:前記凹型陥没部と反対面側の充填された樹脂上のメッキを除去し、前記樹脂を露出させた後、前記樹脂を除去して前記金属メッキ層と導通した導電性境界部を形成する工程、
工程5:フィルドメッキを行い、前記導電性境界部の両端に導電性金属を充填して充填導通穴を形成する工程、
前記工程3における前記樹脂の加工、及び前記工程4における前記樹脂の除去が、レーザー加工により行われることを特徴とする配線基板の製造方法。
A method for manufacturing a wiring board in which a filling conduction hole is formed by steps 1 to 5 shown below,
Step 1: A step of forming a through hole by drilling in an insulating base material having copper foil bonded on both sides,
Step 2: Plating both surfaces of the insulating base material, forming a metal plating layer on the inner wall of the through hole, and making the through hole conductive, filling the conductive through hole with resin;
Step 3: Process the resin filled in the through hole in Step 2 to form a concave depression on one side of the insulating base, and plating the wall surface of the concave depression.
Step 4: Remove the plating on the filled resin on the side opposite to the recessed depression, expose the resin, and then remove the resin to form a conductive boundary that is electrically connected to the metal plating layer. The process of
Step 5: performing filled plating, filling a conductive metal at both ends of the conductive boundary portion to form a filled conduction hole,
A method of manufacturing a wiring board, wherein the processing of the resin in the step 3 and the removal of the resin in the step 4 are performed by laser processing.
JP2012082424A 2012-03-30 2012-03-30 Wiring board manufacturing method Expired - Fee Related JP6161143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082424A JP6161143B2 (en) 2012-03-30 2012-03-30 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082424A JP6161143B2 (en) 2012-03-30 2012-03-30 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2013211502A JP2013211502A (en) 2013-10-10
JP6161143B2 true JP6161143B2 (en) 2017-07-12

Family

ID=49529069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082424A Expired - Fee Related JP6161143B2 (en) 2012-03-30 2012-03-30 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP6161143B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253173B2 (en) 2015-01-14 2019-04-09 Exxonmobil Chemical Patents Inc. Polymer compositions and processes for their production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478870B2 (en) * 2004-05-11 2010-06-09 日立化成工業株式会社 Wiring board and chip-type electronic component using the same
JP4925881B2 (en) * 2007-03-23 2012-05-09 新日本無線株式会社 Through-hole filling method
JP2009283739A (en) * 2008-05-23 2009-12-03 Shinko Electric Ind Co Ltd Wiring substrate and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253173B2 (en) 2015-01-14 2019-04-09 Exxonmobil Chemical Patents Inc. Polymer compositions and processes for their production

Also Published As

Publication number Publication date
JP2013211502A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP2017143254A (en) Wiring board having lamination and embedded capacitor and manufacturing method
KR20130035895A (en) Multilayer printed wiring board and method for manufacturing the same
US10064292B2 (en) Recessed cavity in printed circuit board protected by LPI
WO2016136222A1 (en) Printed wiring board and method for manufacturing same
KR20100125805A (en) Heat-dissipating substrate and fabricating method of the same
JP6262153B2 (en) Manufacturing method of component-embedded substrate
US20140166355A1 (en) Method of manufacturing printed circuit board
JP2017216414A (en) Wiring board manufacturing method
KR100965341B1 (en) Method of Fabricating Printed Circuit Board
KR20090094983A (en) A metal core package and a multilayer printed circuit board including the metal core package and a fabricating method of the same
JP6161143B2 (en) Wiring board manufacturing method
JP3942535B2 (en) Manufacturing method of multilayer wiring board
JP5134194B2 (en) Component built-in device and manufacturing method
JP2017084914A (en) Printed wiring board and method of manufacturing the same
JP2013074270A (en) Manufacturing method of rigid flexible printed wiring board
KR101089923B1 (en) Manufacturing method of printed circuit board
JP2009060151A (en) Production process of laminated wiring board
JP4802402B2 (en) High-density multilayer build-up wiring board and manufacturing method thereof
TW201010560A (en) Printed circuit boards and method for manufacturing the same
KR100294157B1 (en) Manufacturing method for interconnecting multilayer circuit board
KR102149797B1 (en) Substrate and manufacturing method thereof
CN104284530A (en) Method for manufacturing printed circuit board or integrated circuit package substrate through coreless board process
JP2005072184A (en) Compound substrate of metal core and multilayer substrate
JP2014192482A (en) Multilayer wiring board and manufacturing method therefor
TW566070B (en) Structure and manufacture of multi-layer board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160518

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6161143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees