JP6156337B2 - HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET - Google Patents

HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET Download PDF

Info

Publication number
JP6156337B2
JP6156337B2 JP2014238955A JP2014238955A JP6156337B2 JP 6156337 B2 JP6156337 B2 JP 6156337B2 JP 2014238955 A JP2014238955 A JP 2014238955A JP 2014238955 A JP2014238955 A JP 2014238955A JP 6156337 B2 JP6156337 B2 JP 6156337B2
Authority
JP
Japan
Prior art keywords
sheet
conductive sheet
heat conductive
inorganic material
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014238955A
Other languages
Japanese (ja)
Other versions
JP2015084431A (en
Inventor
山本 礼
礼 山本
倫明 矢嶋
倫明 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014238955A priority Critical patent/JP6156337B2/en
Publication of JP2015084431A publication Critical patent/JP2015084431A/en
Application granted granted Critical
Publication of JP6156337B2 publication Critical patent/JP6156337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱伝導シート、及びその熱伝導シートの製造方法に関する。   The present invention relates to a heat conductive sheet and a method for producing the heat conductive sheet.

近年、多層配線板、半導体パッケージに対する配線の高密度化や電子部品の搭載密度が大きくなり、また半導体素子も高集積化して、単位面積あたりの発熱量が大きくなったため、半導体パッケージからの熱放散を良くすることが望まれるようになっている。   In recent years, the density of wiring on multilayer wiring boards and semiconductor packages has increased, the mounting density of electronic components has increased, and the integration of semiconductor elements has increased, resulting in greater heat generation per unit area. It is becoming desirable to improve

半導体パッケージのような発熱体とアルミや銅等の放熱体との間に、熱伝導グリース又は熱伝導シートを挟んで密着させることにより、熱を放散する放熱装置が一般に使用されている。しかし、熱伝導グリースよりは熱伝導シートの方が、放熱装置を組み立てる際の作業性に優れている。熱放散性をよくするには、熱伝導シートに高い熱伝導性が求められるが、従来の熱伝導シートの熱伝導性は必ずしも充分とは言えなかった。   2. Description of the Related Art Generally, a heat dissipation device that dissipates heat by using a heat conductive grease or a heat conductive sheet and sandwiching it between a heat generator such as a semiconductor package and a heat radiator such as aluminum or copper is generally used. However, the thermal conductive sheet is superior to the thermal conductive grease in workability when assembling the heat dissipation device. In order to improve heat dissipation, the heat conductive sheet is required to have high heat conductivity, but the heat conductivity of the conventional heat conductive sheet is not necessarily sufficient.

そのため、熱伝導シートの熱伝導性を更に向上させる目的で、マトリックス材料中に熱伝導性の大きな黒鉛粉末や窒化ホウ素等を配合した様々な熱伝導性複合材料組成物及びその成形加工品が提案されている。   Therefore, in order to further improve the thermal conductivity of the thermal conductive sheet, various thermal conductive composite compositions and molded products obtained by mixing high thermal conductivity graphite powder, boron nitride, etc. in the matrix material are proposed. Has been.

熱伝導性材料をマトリックス材料中で、シート面に対して垂直方向に配向させ、膜厚方向への熱伝導性を向上させた熱伝導シートが報告されている(例えば、特許文献1及び2)。
特許文献1は、図4に示すような、シート面1に対して、ほぼ垂直な方向に無機充填材(窒化ホウ素)10が、配向した熱伝導シートを開示している。
特許文献2では、ゲル状物質に分散された炭素繊維が、シート面に対して垂直に配向した構造が記載されている。
There has been reported a heat conductive sheet in which a heat conductive material is oriented in a direction perpendicular to the sheet surface in a matrix material to improve the heat conductivity in the film thickness direction (for example, Patent Documents 1 and 2). .
Patent Document 1 discloses a heat conductive sheet in which an inorganic filler (boron nitride) 10 is oriented in a direction substantially perpendicular to the sheet surface 1 as shown in FIG.
Patent Document 2 describes a structure in which carbon fibers dispersed in a gel material are oriented perpendicular to the sheet surface.

特開2002−26202号公報Japanese Patent Laid-Open No. 2002-26202 特開2005−82721号公報JP 2005-82721 A

しかしながら、特許文献1又は特許文献2のいずれの場合も、シート表面では熱伝導性の無機材料が露出するため、表面の粘着性(タック性)は低く、発熱体とアルミや銅等の放熱体の間に実装する工程において仮固定しにくいため作業性が悪いという点がある。   However, in either case of Patent Document 1 or Patent Document 2, since the thermally conductive inorganic material is exposed on the sheet surface, the adhesiveness (tackiness) of the surface is low, and the heat generator and the heat radiator such as aluminum or copper There is a point that workability is poor because it is difficult to temporarily fix in the mounting process.

特許文献1では、それを回避するために、スライシング後に可塑剤を含浸させる工程を設けているが、それによってバインダ樹脂が軟化しタック性は向上するものの、シートの強度が低下する問題がある。
また、無機材料と有機材料との混錬物は、界面での剥離が起こりやすく、気泡も巻き混んでいるため、引張強度が弱い問題がある。
In Patent Document 1, in order to avoid this, a step of impregnating a plasticizer after slicing is provided. However, although the binder resin is softened and tackiness is improved, there is a problem that the strength of the sheet is lowered.
In addition, a kneaded product of an inorganic material and an organic material has a problem in that tensile strength is weak because peeling at an interface easily occurs and bubbles are also mixed.

更に、熱伝導性の無機材料がシート面に対して垂直に配向した放熱シートは、発熱体と放熱フィン等の放熱機能部材との間で使用する際、その実装工程において圧力を付加した場合、無機材料が挫屈し熱伝導性能が低下する問題もある。   Furthermore, when a heat-dissipating sheet in which a thermally conductive inorganic material is oriented perpendicularly to the sheet surface is used between a heat-generating member and a heat-dissipating functional member such as a heat-dissipating fin, when pressure is applied in the mounting process, There is also a problem that the inorganic material is bent and the heat conduction performance is lowered.

本発明の目的は、熱伝導シートの膜厚方向に高熱伝導であり、実装工程を容易にするタック性と強度とを併せ持ち、実装工程での圧力付加に対しても、熱伝導性の無機材料が挫屈することなく熱伝導性を維持する熱伝導シートを提供することである。   The object of the present invention is high thermal conductivity in the film thickness direction of the heat conductive sheet, and has both tackiness and strength that facilitate the mounting process, and is also a heat conductive inorganic material for pressure application in the mounting process. Is to provide a thermal conductive sheet that maintains thermal conductivity without buckling.

また本発明の別の目的は、熱伝導シートの膜厚方向に高熱伝導であり、実装工程を容易にするタック性と強度とを併せ持つ熱伝導シートの製造方法を提供することである。   Another object of the present invention is to provide a method for producing a heat conductive sheet having high heat conductivity in the film thickness direction of the heat conductive sheet and having both tackiness and strength that facilitate the mounting process.

本発明者等は鋭意検討を重ねた結果、熱伝導シートの膜厚方向に対する無機材料の配向の角度を適宜調整することで、タック性と熱伝導の両方を兼ね備えることができることを見出した。   As a result of intensive studies, the present inventors have found that both the tack property and the heat conduction can be obtained by appropriately adjusting the orientation angle of the inorganic material with respect to the film thickness direction of the heat conduction sheet.

本発明は、以下のものに関する。   The present invention relates to the following.

(1)鱗片状、楕球状、板状又は棒状である熱伝導性の無機材料と、有機高分子化合物と、を含有する組成物を含む熱伝導シートであって、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に対して傾いて配向している熱伝導シート。 (1) A heat conductive sheet comprising a composition containing a heat conductive inorganic material in the form of a scale, oval, plate or rod, and an organic polymer compound, the surface direction of the scale of the inorganic material The heat conducting sheet in which the major axis direction of the ellipsoid, the major axis direction of the plate, or the major axis direction of the rod are oriented with an inclination relative to the thickness direction of the heat conducting sheet.

(2)前記無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に対して5〜60°の範囲で傾いて配向している上記(1)に記載の熱伝導シート。 (2) The surface direction of the scale of the inorganic material, the long axis direction of the ellipse, the long axis direction of the plate, or the long axis direction of the rod is inclined within a range of 5 to 60 ° with respect to the thickness direction of the heat conductive sheet. The heat conductive sheet according to (1), which is oriented.

(3)前記鱗片状、楕球状、板状又は棒状である熱伝導性の無機材料が、黒鉛である上記(1)又は(2)に記載の熱伝導シート。 (3) The heat conductive sheet according to (1) or (2), wherein the heat conductive inorganic material having a scale shape, an oval shape, a plate shape, or a rod shape is graphite.

(4)下記(a)乃至(d)の工程を含む製造方法により製造された、上記(1)乃至(3)の何れか一つに記載の熱伝導シート。
(a)前記無機材料と前記有機高分子化合物とを混錬し、組成物を調製する工程、
(b)前記組成物に圧力をかけて、前記無機材料が主たる面に対してほぼ平行な方向に配向した1次シートを作製する工程、
(c)前記1次シートを積層して積層体とする工程、
(d)(イ)前記積層体を、前記1次シート面から出る法線に対し5〜60°の角度でスライスしてシート化して熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、ロールプレスすることで熱伝導シートを形成する、の上記(イ)〜(ウ)のいずれかを行う工程。
(4) The heat conductive sheet according to any one of (1) to (3), manufactured by a manufacturing method including the following steps (a) to (d):
(A) kneading the inorganic material and the organic polymer compound to prepare a composition;
(B) applying a pressure to the composition to produce a primary sheet oriented in a direction substantially parallel to the main surface of the inorganic material;
(C) a step of laminating the primary sheet to form a laminate,
(D) (A) The laminate is sliced at an angle of 5 to 60 ° with respect to the normal line coming out of the primary sheet surface to form a sheet, and (c) the laminate is formed. Any one of the above (a) to (c), in which a sheet is obtained by slicing at a substantially perpendicular angle with respect to the normal line coming out of the primary sheet surface and then roll-pressing. The process to perform.

(5)下記工程(a)乃至(d)を含む熱伝導シートの製造方法。
(a)鱗片状、楕球状、板状又は棒状である熱伝導性の無機材料と有機高分子化合物とを混錬し、組成物を調製する工程。
(b)前記組成物に圧力をかけて、前記無機材料が主たる面に対してほぼ平行な方向に配向した1次シートを作製する工程。
(c)前記1次シートを積層して積層体とする工程。
(d)(イ)前記積層体を、前記1次シート面から出る法線に対し5〜60°の角度でスライスしてシート化して熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、ロールプレスすることで熱伝導シートを形成する、の上記(イ)〜(ウ)のいずれかを行う工程。
(5) A method for producing a heat conductive sheet comprising the following steps (a) to (d).
(A) A step of preparing a composition by kneading a heat conductive inorganic material having a scale shape, an oval shape, a plate shape or a rod shape with an organic polymer compound.
(B) A step of applying a pressure to the composition to produce a primary sheet in which the inorganic material is oriented in a direction substantially parallel to a main surface.
(C) A step of laminating the primary sheets to form a laminate.
(D) (A) The laminate is sliced at an angle of 5 to 60 ° with respect to the normal line coming out of the primary sheet surface to form a sheet, and (c) the laminate is formed. Any one of the above (a) to (c), in which a sheet is obtained by slicing at a substantially perpendicular angle with respect to the normal line coming out of the primary sheet surface and then roll-pressing. The process to perform.

(6)下記工程(a)乃至(d)を含む熱伝導シートの製造方法。
(a)鱗片状、楕球状、板状又は棒状である熱伝導性の無機材料と有機高分子化合物とを混錬し、組成物を調製する工程。
(b)前記組成物に圧力をかけて、前記無機材料が主たる面に対してほぼ平行な方向に配向した1次シートを作製する工程。
(c2)前記1次シートを前記無機材料の配向方向を軸にして捲回して積層体とする工程。
(d)(イ)前記積層体を、前記1次シート面から出る法線に対し5〜60°の角度でスライスしてシート化して熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、ロールプレスすることで熱伝導シートを形成する、の上記(イ)〜(ウ)のいずれかを行う工程。
(6) A method for producing a heat conductive sheet including the following steps (a) to (d).
(A) A step of preparing a composition by kneading a heat conductive inorganic material having a scale shape, an oval shape, a plate shape or a rod shape with an organic polymer compound.
(B) A step of applying a pressure to the composition to produce a primary sheet in which the inorganic material is oriented in a direction substantially parallel to a main surface.
(C2) A step of winding the primary sheet with the orientation direction of the inorganic material as an axis to form a laminate.
(D) (A) The laminate is sliced at an angle of 5 to 60 ° with respect to the normal line coming out of the primary sheet surface to form a sheet, and (c) the laminate is formed. Any one of the above (a) to (c), in which a sheet is obtained by slicing at a substantially perpendicular angle with respect to the normal line coming out of the primary sheet surface and then roll-pressing. The process to perform.

本発明の熱伝導シートは、膜厚方向に高熱伝導であり、実装工程を容易にするタック性と強度とを併せ持ち、実装工程での圧力付加に対しても、熱伝導性の無機材料が挫屈することなく、熱伝導性を維持することが可能である。   The heat conductive sheet of the present invention is highly heat conductive in the film thickness direction, has both tackiness and strength to facilitate the mounting process, and the heat conductive inorganic material is also resistant to pressure applied in the mounting process. It is possible to maintain thermal conductivity without bending.

本発明の1実施例であり、熱伝導シートの断面写真を、白黒の二値化したものを示す。It is one Example of this invention and shows what converted the black-and-white binarization of the cross-sectional photograph of a heat conductive sheet. 本発明の実施例である熱伝導シートと、比較例の熱伝導シートとの、タック力比較のグラフを示す。The graph of the tack force comparison with the heat conductive sheet which is an Example of this invention and the heat conductive sheet of a comparative example is shown. 本発明の実施例である熱伝導シートと、比較例の熱伝導シートとの、引張強度比較のグラフを示す。The graph of the tensile strength comparison with the heat conductive sheet which is an Example of this invention and the heat conductive sheet of a comparative example is shown. 従来例である、無機充填材がシート面に垂直方向な熱伝導シートの模式断面図を示す。The schematic cross section of the heat conductive sheet which is a conventional example and an inorganic filler is perpendicular to a sheet surface is shown. 本発明の熱導電性シートの製造方法における1次シート面から出る法線を示す図。The figure which shows the normal line which comes out from the primary sheet | seat surface in the manufacturing method of the heat conductive sheet of this invention. 本発明の熱伝導シートの製造方法におけるスライス方法を説明する図を示す。The figure explaining the slicing method in the manufacturing method of the heat conductive sheet of this invention is shown. 本発明の熱伝導性シートの製造方法におけるスライス方法を説明する図を示す。The figure explaining the slicing method in the manufacturing method of the heat conductive sheet of this invention is shown.

<熱伝導シート>
本発明の熱伝導シートは、鱗片状、楕球状、板状又は棒状である熱伝導性の無機材料と、有機高分子化合物と、を含有する組成物を含み、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に対して傾いて配向している。
<Heat conduction sheet>
The heat conductive sheet of the present invention includes a composition containing a heat conductive inorganic material that is scale-like, oval, plate-like, or rod-like, and an organic polymer compound, and the surface direction of the scale of the inorganic material, The major axis direction of the ellipse, the major axis direction of the plate, or the major axis direction of the rod are oriented with an inclination with respect to the thickness direction of the heat conductive sheet.

鱗片状、楕球状、又は板状、棒状である熱伝導性の無機材料は、以下に列挙するものに限定されるわけではないが、窒化ホウ素、黒鉛、炭素繊維等を挙げることができる。   The thermally conductive inorganic material having a scale shape, an elliptical shape, a plate shape, or a rod shape is not limited to those listed below, but examples thereof include boron nitride, graphite, and carbon fiber.

なお、本発明において「鱗片状」とは、魚の鱗のように薄く平たい形状を示す。「楕球状」とは、ラグビーボールのように楕円を回転した楕円体形状を示す。   In the present invention, the “scale-like” refers to a thin and flat shape like a fish scale. “Oval shape” indicates an ellipsoidal shape obtained by rotating an ellipse like a rugby ball.

「板状」とは、粒子形状が板のような形状であることをいう。具体的には、a軸方向と垂直な方向c軸方向のそれぞれの辺の比率(a/c)が1.5以上のものを、本発明において「板状」とする。   “Plate-like” means that the particle shape is like a plate. Specifically, a plate having a ratio (a / c) of 1.5 or more in each direction in the c-axis direction perpendicular to the a-axis direction is defined as “plate shape” in the present invention.

「棒状」とは、細長い円柱形状や角柱状形状を示す。いずれの形状も異方性を有する形状となる。   The “bar shape” indicates an elongated cylindrical shape or a prismatic shape. Any shape is anisotropic.

本発明で使用される窒化ホウ素の具体例としては、「PT−110(商品名)」(モーメンティブパフォーマンスマテリアルズジャパン合同会社製、平均粒子径45μm)、「HP−1CAW(商品名)」(水島合金鉄製、平均粒径16μm)、「PT−110 Plus(商品名)」(モーメンティブパフォーマンスマテリアルズジャパン合同会社製、平均粒径45μm)、「HP−1CA(商品名)」(水島合金鉄製、平均粒径16μm)等が挙げられる。   Specific examples of boron nitride used in the present invention include “PT-110 (trade name)” (Momentive Performance Materials Japan Godo Kaisha, average particle size 45 μm), “HP-1 CAW (trade name)” ( Made of Mizushima alloy iron, average particle size 16 μm), “PT-110 Plus (trade name)” (made by Momentive Performance Materials Japan, average grain size 45 μm), “HP-1CA (trade name)” (made by Mizushima alloy iron) And an average particle diameter of 16 μm).

本発明で使用される黒鉛としては、例えば、鱗片黒鉛粉末、人造黒鉛粉末、薄片化黒鉛粉末、酸処理黒鉛粉末、膨張黒鉛粉末、炭素繊維フレーク等の鱗片状、楕球状又は棒状の黒鉛が挙げられる。   Examples of the graphite used in the present invention include scaly graphite powder, artificial graphite powder, exfoliated graphite powder, acid-treated graphite powder, expanded graphite powder, carbon fiber flakes and other scaly, oval or rod-like graphite. It is done.

本発明で使用される炭素繊維としては、例えば、ピッチを原料とするピッチ系炭素繊維、ポリアクリロニトリルを原料とするPAN系炭素繊維等が挙げられる。市販品としては、Raheama(ラヒーマ)(帝人(株)製)、トレカ(東レ(株)製)、テナックス(東邦テナックス(株)製)、パイロフィル(三菱レイヨン(株)製)、ダイアリード(三菱樹脂(株)製)、GRANOC(日本グラファイトファイバー(株))等が挙げられる。   Examples of the carbon fibers used in the present invention include pitch-based carbon fibers using pitch as a raw material, PAN-based carbon fibers using polyacrylonitrile as a raw material, and the like. Commercially available products include Raheama (manufactured by Teijin Limited), Trading Card (manufactured by Toray Industries, Inc.), Tenax (manufactured by Toho Tenax Co., Ltd.), Pyrofil (manufactured by Mitsubishi Rayon Co., Ltd.), DIALEAD (Mitsubishi) Resin Co., Ltd.), GRANOC (Nippon Graphite Fiber Co., Ltd.) and the like.

本発明で使用される無機材料の大きさは、熱伝導シートの製造方法におけるスライス工程のスライス厚みに準じて選定するのがよいが、例えば、0.25mmのスライス厚みにする場合、平均粒径が250〜1000μmであることが好ましい。より好ましくは300〜600μmである。
さらに好ましくは、スライス厚みよりも大きな平均粒径を有する無機材料が好ましい。
本発明において無機材料の平均粒径の測定は、レーザー回折・散乱法により測定したときのD50の値とする。
The size of the inorganic material used in the present invention is preferably selected according to the slice thickness in the slicing step in the method for producing a heat conductive sheet. For example, when the slice thickness is 0.25 mm, the average particle diameter Is preferably 250 to 1000 μm. More preferably, it is 300-600 micrometers.
More preferably, an inorganic material having an average particle diameter larger than the slice thickness is preferable.
In the present invention, the average particle size of the inorganic material is measured by the value of D50 when measured by the laser diffraction / scattering method.

本発明で使用される無機材料の含有量は特に制限されないが、組成物全体積の10〜50体積%であることが好ましく、30〜45体積%であることがより好ましい。   Although content in particular of the inorganic material used by this invention is not restrict | limited, It is preferable that it is 10-50 volume% of the total composition volume, and it is more preferable that it is 30-45 volume%.

無機材料の含有量が10体積%以上であると、熱伝導率を高めることができる。また、50体積%以下であると、組成物の凝集力に優れるためシート形成が容易となる。   Thermal conductivity can be improved as content of an inorganic material is 10 volume% or more. Moreover, since it is excellent in the cohesion force of a composition as it is 50 volume% or less, sheet formation becomes easy.

なお、本明細書における無機材料の含有量(体積%)は次式により求めた値である。
無機材料の含有量(体積%)=(Aw/dA)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd)+・・・)×100
Aw:無機材料の質量組成(質量%)
Bw:有機高分子化合物の質量組成(質量%)
Cw:その他の任意成分の質量組成(質量%)
Ad:無機材料の比重(本発明においてAdは黒鉛の場合:2.1、窒化ほう素の場合:2.2、炭素繊維の場合:1.8で計算した。)
Bd:有機高分子化合物の架橋硬化物の比重
Cd:その他の任意成分の比重
In addition, content (volume%) of the inorganic material in this specification is the value calculated | required by following Formula.
Content of inorganic material (% by volume) = (Aw / dA) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd) +.
Aw: mass composition of inorganic material (mass%)
Bw: mass composition of organic polymer compound (mass%)
Cw: mass composition (mass%) of other optional components
Ad: Specific gravity of the inorganic material (In the present invention, Ad is calculated as 2.1 for graphite, 2.2 for boron nitride, and 1.8 for carbon fiber.)
Bd: Specific gravity of the crosslinked cured product of the organic polymer compound Cd: Specific gravity of other optional components

本発明における有機高分子化合物は、Tg(ガラス転移温度)が50℃以下、好ましくは−70〜20℃、より好ましくは−60〜0℃である。Tgが50℃以下であれば柔軟性に優れ、発熱体及び放熱体に対する密着性も良好である。
本発明において、ガラス転移温度の測定は熱機械測定(TMA)を用いて行う。
The organic polymer compound in the present invention has a Tg (glass transition temperature) of 50 ° C. or lower, preferably −70 to 20 ° C., more preferably −60 to 0 ° C. If Tg is 50 ° C. or lower, the flexibility is excellent, and the adhesion to the heat generator and the heat radiator is also good.
In the present invention, the glass transition temperature is measured using thermomechanical measurement (TMA).

本発明で使用する有機高分子化合物としては、例えば、アクリル酸ブチル、アクリル酸2−エチルヘキシル等を主要な原料成分とした、ポリ(メタ)アクリル酸エステル系高分子化合物(所謂アクリルゴム)、ポリジメチルシロキサン構造を主構造に有する高分子化合物(所謂シリコーン樹脂)、ポリイソプレン構造を主構造に有する高分子化合物(所謂イソプレンゴム、天然ゴム)、クロロプレンを主要な原料成分とした高分子化合物(所謂クロロプレンゴム)、ポリブタジエン構造を主構造に有する高分子化合物(所謂ブタジエンゴム)等、一般に「ゴム」と総称される柔軟な有機高分子化合物が挙げられる。   Examples of the organic polymer compound used in the present invention include a poly (meth) acrylate polymer compound (so-called acrylic rubber), poly (meth) acrylate having butyl acrylate, 2-ethylhexyl acrylate and the like as main raw material components. A polymer compound having a dimethylsiloxane structure as a main structure (so-called silicone resin), a polymer compound having a polyisoprene structure as a main structure (so-called isoprene rubber, natural rubber), and a polymer compound having chloroprene as a main raw material component (so-called Examples thereof include flexible organic polymer compounds generally referred to as “rubber”, such as chloroprene rubber) and polymer compounds having a polybutadiene structure as a main structure (so-called butadiene rubber).

これらの中でも、ポリ(メタ)アクリル酸エステル系高分子化合物、特にアクリル酸ブチル、アクリル酸2−エチルヘキシルのいずれか又は両方を共重合成分として含み、それらを共重合組成中に50質量%以上含むポリ(メタ)アクリル酸エステル系高分子化合物が、高い柔軟性を得易く、化学的安定性、加工性に優れ、粘着性をコントロールし易く、かつ比較的廉価であるため好ましい。   Among these, a poly (meth) acrylate polymer compound, particularly butyl acrylate, 2-ethylhexyl acrylate or both are included as a copolymerization component, and they are included in the copolymer composition at 50% by mass or more. A poly (meth) acrylic acid ester polymer compound is preferable because it is easy to obtain high flexibility, excellent in chemical stability and processability, easily controls adhesiveness, and is relatively inexpensive.

また、柔軟性を損なわない範囲で架橋構造を含ませると、長期間の密着保持性と膜強度の点で好ましい。例えば、−OH基を有するポリマに、複数のイソシアネート基を持つ化合物を反応させることで架橋構造を含ませることができる。有機高分子化合物の含有量は特に制限されないが、組成物全体積に対して好ましくは10〜70体積%、より好ましくは20〜50体積%である。   In addition, it is preferable to include a crosslinked structure within a range that does not impair flexibility, in terms of long-term adhesion retention and film strength. For example, a crosslinked structure can be included by reacting a compound having a —OH group with a compound having a plurality of isocyanate groups. Although content in particular of an organic polymer compound is not restrict | limited, Preferably it is 10-70 volume% with respect to the composition whole volume, More preferably, it is 20-50 volume%.

また、本発明の熱伝導シートは難燃剤を含有することができる。難燃剤としては特に限定されず、例えば、赤りん系難燃剤やりん酸エステル系難燃剤等を含有することができる。   Moreover, the heat conductive sheet of this invention can contain a flame retardant. It does not specifically limit as a flame retardant, For example, a red phosphorus flame retardant, a phosphate ester flame retardant, etc. can be contained.

赤りん系難燃剤としては、純粋な赤りん粉末の他に、安全性や安定性を高める目的で種々のコーティングを施したもの、マスターバッチになっているもの等が挙げられ、具体的には、例えば、燐化学工業株式会社製、商品名:ノーバレッド、ノーバエクセル、ノーバクエル、ノーバペレット等が挙げられる。   Examples of red phosphorus flame retardants include pure red phosphorus powder, various coatings for the purpose of improving safety and stability, and master batches. Examples include trade names: Nova Red, Nova Excel, Nova Quel, Nova Pellet, etc., manufactured by Rin Chemical Industry Co., Ltd.

りん酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート等の脂肪族リン酸エステル;
トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、クレジル−2,6−キシレニルホスフェート、トリス(t−ブチル化フェニル)ホスフェート、トリス(イソプロピル化フェニル)ホスフェート、リン酸トリアリールイソプロピル化物等の芳香族リン酸エステル;
レゾルシノールビスジフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、レゾルシノールビスジキシレニルホスフェート等の芳香族縮合リン酸エステル;等が挙げられる。
Examples of the phosphate ester flame retardant include aliphatic phosphate esters such as trimethyl phosphate, triethyl phosphate, tributyl phosphate;
Triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylenyl phosphate, cresyl-2,6-xylenyl phosphate, tris (t-butylated phenyl) phosphate, tris (isopropylated phenyl) phosphate, phosphoric acid Aromatic phosphates such as triaryl isopropylates;
Examples thereof include aromatic condensed phosphate esters such as resorcinol bisdiphenyl phosphate, bisphenol A bis (diphenyl phosphate), and resorcinol bisdixylenyl phosphate.

これらは一種類を用いても二種類以上を併用してもよい。また、難燃剤がりん酸エステル系化合物であり、かつ凝固点が15℃以下、沸点が120℃以上の液状物であると、難燃性と柔軟性やタック性を両立するのが容易となり好ましい。凝固点が15℃以下、沸点が120℃以上の液状物のリン酸エステル系難燃剤としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−キシレニルホスフェート、レゾルシノールビスジフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。   These may be used alone or in combination of two or more. In addition, it is preferable that the flame retardant is a phosphoric acid ester compound and is a liquid having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher because it is easy to achieve both flame retardancy and flexibility and tackiness. Examples of liquid phosphate ester flame retardants having a freezing point of 15 ° C. or lower and a boiling point of 120 ° C. or higher include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6 -Xylenyl phosphate, resorcinol bisdiphenyl phosphate, bisphenol A bis (diphenyl phosphate) and the like.

難燃剤の含有量は特に制限されないが、組成物全体積に対して好ましくは5〜50体積%、より好ましくは10〜40体積%である。難燃剤の含有量が前記範囲であれば、充分な難燃性が発現され、かつ柔軟性の点で有利となるので好ましい。難燃剤の含有量が5体積%以上であれば充分な難燃性が得られやすく、50体積%以下であればシート強度も満足できる。   The content of the flame retardant is not particularly limited, but is preferably 5 to 50% by volume, more preferably 10 to 40% by volume with respect to the total volume of the composition. If the content of the flame retardant is within the above range, it is preferable because sufficient flame retardancy is exhibited and it is advantageous in terms of flexibility. If the content of the flame retardant is 5% by volume or more, sufficient flame retardancy is easily obtained, and if it is 50% by volume or less, the sheet strength is satisfactory.

また、本発明の熱伝導シートは、更に必要に応じてウレタンアクリレート等の靭性改良剤;酸化カルシウム、酸化マグネシウム等の吸湿剤;シランカップリング剤、チタンカップリング剤、酸無水物等の接着力向上剤;ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤;等を適宜添加することができる。   In addition, the heat conductive sheet of the present invention is further provided with a toughness improving agent such as urethane acrylate; a hygroscopic agent such as calcium oxide or magnesium oxide; an adhesive strength such as a silane coupling agent, a titanium coupling agent, or an acid anhydride. An improvement agent; a wetting improvement agent such as a nonionic surfactant or a fluorine-based surfactant; an antifoaming agent such as silicone oil; an ion trapping agent such as an inorganic ion exchanger; or the like can be appropriately added.

本発明の熱伝導シートは、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に対して傾いて配向している。   In the heat conductive sheet of the present invention, the surface direction of the scale of the inorganic material, the long axis direction of the ellipsoid, the long axis direction of the plate, or the long axis direction of the rod are inclined with respect to the thickness direction of the heat conductive sheet. Yes.

本発明において「熱伝導シートの厚み方向に傾いて配向」とは、熱伝導シートの厚み方向の断面を金属顕微鏡又はSEM(走査型電子顕微鏡)を用いて観察し、任意の50個の無機材料について見えている方向から、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向の熱伝導シート表面に対する角度(90°以上の場合は補角を採用する)を測定し、その平均値が5〜60°の範囲になる状態をいう。   In the present invention, “orientation tilted in the thickness direction of the heat conductive sheet” means that a cross section in the thickness direction of the heat conductive sheet is observed using a metal microscope or SEM (scanning electron microscope), and any 50 inorganic materials The angle to the surface of the heat conduction sheet in the direction of the scale of the inorganic material, the long axis direction of the ellipsoid, the long axis direction of the plate, or the long axis direction of the rod (if the angle is 90 ° or more Employed) and the average value is in the range of 5 to 60 °.

本発明の熱伝導シートは、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向が、熱伝導シートの厚み方向に対して傾いて、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向の熱伝導シート表面に対する角度の平均値が5〜60°の範囲で傾いて配向していることが好ましく、より好ましくは10〜55°、更に好ましくは20〜40°の範囲がよい。無機材料の傾きは、熱伝導シートの厚み方向に対して傾く角度が大きいほど表面のタック性は向上するが、徐々に膜厚方向の熱伝導具合が悪くなる傾向がある。
配向状態の観察法は、下記に具体的に記載する。
Thermally conductive sheet of the present invention, the surface direction of the scale of the inorganic materials, the long axis direction of the oval sphere, the long axis direction of the long axis direction or rod of the plate, tilted with respect to the thickness direction of the thermally conductive sheet, inorganic materials The average value of the angle with respect to the surface of the heat conductive sheet in the surface direction of the scale, the long axis direction of the ellipse, the long axis direction of the plate or the long axis direction of the rod is inclined in the range of 5 to 60 °. The range is preferably 10 to 55 °, more preferably 20 to 40 °. The inclination of the inorganic material, tackiness enough large angle surface inclined with respect to the thickness direction of the thermally conductive sheet is improved, there is a tendency that the film thickness direction of the heat conduction condition becomes worse gradually.
The method for observing the alignment state is specifically described below.

無機材料の配向は、以下のような手順で観察することが出来る。
熱伝導シートをガラスナイフで切削し、熱伝導シートの厚み方向の断面を露出させる。この加工は、薄膜試験片等を作製するのに使用するミクロトーム装置で行うことができる。次に、熱伝導シートの断面をリアクティブイオンエッチングによって、無機材料と有機化合物を選択的にエッチングすることで、断面表層に無機材料を顕著に露出させる。更に、任意の50個に対して無機材料が露出した断面を金属顕微鏡又はSEM(走査型電子顕微鏡)を用いて撮像し、無機材料の配向を画像によって分析する。その際、有機化合物と無機材料は、コントラストの異なる画像として得られるため、2値化によってそれぞれの材料の画像に分けることができ、無機材料の配向状態も画像上のピクセルを使用した演算によって、角度を算出することができる。
The orientation of the inorganic material can be observed by the following procedure.
The heat conductive sheet is cut with a glass knife to expose a cross section in the thickness direction of the heat conductive sheet. This processing can be performed with a microtome apparatus used to produce a thin film test piece or the like. Next, the inorganic material and the organic compound are selectively etched on the cross section of the heat conductive sheet by reactive ion etching, so that the inorganic material is remarkably exposed on the cross-sectional surface layer. Furthermore, the cross section in which the inorganic material is exposed with respect to any 50 is imaged using a metal microscope or SEM (scanning electron microscope), and the orientation of the inorganic material is analyzed by the image. At that time, since the organic compound and the inorganic material are obtained as images having different contrasts, it can be divided into images of the respective materials by binarization, and the orientation state of the inorganic material is also calculated by using the pixels on the image. The angle can be calculated.

また、本発明の熱伝導シートにおいて、粘着面を保護するために、使用前の熱伝導シートの粘着面を保護フィルムで覆っておいてもよい。保護フィルムの材質としては、例えば、ポリエチレン、ポリエステル、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリエーテルイミド、ポリエーテルナフタレート、メチルペンテンフィルム等の樹脂、コート紙、コート布、アルミ等の金属が使用できる。これらの保護フィルムは、2種以上組み合わせて多層フィルムとしてもよく、保護フィルムの表面が、シリコーン系、シリカ系等の離型剤等で処理されたものが好ましく用いられる。   Moreover, in the heat conductive sheet of this invention, in order to protect an adhesive surface, you may cover the adhesive surface of the heat conductive sheet before use with a protective film. Examples of the material for the protective film include resins such as polyethylene, polyester, polypropylene, polyethylene terephthalate, polyimide, polyetherimide, polyether naphthalate, and methylpentene film, and metals such as coated paper, coated cloth, and aluminum. Two or more kinds of these protective films may be combined to form a multilayer film, and the protective film whose surface is treated with a release agent such as silicone or silica is preferably used.

<熱伝導シートの製造方法>
本発明の熱伝導シートの製造方法について説明する。
本発明の熱伝導シートの製造方法は、下記工程(a)乃至(d)を含む。
(a)鱗片状、楕球状又は棒状である熱伝導性の無機材料と有機高分子化合物とを混錬し、組成物を調製する工程。
(b)前記組成物に圧力をかけて、前記無機材料が主たる面に対してほぼ平行な方向に配向した1次シートを作製する工程。
(c1)前記1次シートを積層して積層体とする工程。
(d)(イ)前記積層体を、前記1次シート面から出る法線に対し5〜60°の角度でスライスしてシート化して熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、ロールプレスすることで熱伝導シートを形成する、の上記(イ)〜(ウ)のいずれかを行う工程。
<The manufacturing method of a heat conductive sheet>
The manufacturing method of the heat conductive sheet of this invention is demonstrated.
The manufacturing method of the heat conductive sheet of this invention includes the following process (a) thru | or (d).
(A) A step of preparing a composition by kneading a heat conductive inorganic material having a scale shape, an elliptical shape or a rod shape with an organic polymer compound.
(B) A step of applying a pressure to the composition to produce a primary sheet in which the inorganic material is oriented in a direction substantially parallel to a main surface.
(C1) A step of laminating the primary sheets to form a laminate.
(D) (A) The laminate is sliced at an angle of 5 to 60 ° with respect to the normal line coming out of the primary sheet surface to form a sheet, and (c) the laminate is formed. Any one of the above (a) to (c), in which a sheet is obtained by slicing at a substantially perpendicular angle with respect to the normal line coming out of the primary sheet surface and then roll-pressing. The process to perform.

上記(c1)工程の代わりに、(c2)前記1次シートを前記無機材料の配向方向を軸にして捲回して積層体とする工程としてもよい。   Instead of the step (c1), (c2) the primary sheet may be wound around the orientation direction of the inorganic material as an axis to form a laminate.

上記(a)工程において、用いる無機材料の大きさは、(d)工程のスライス厚みに準じて選定するのが好ましく、鱗片、楕球、板状、棒状の最も長い箇所の大きさが、平均で250μmの材料や、500〜1000μmや、1500μm〜2000μm等の条件で投入してよい。   In the step (a), the size of the inorganic material to be used is preferably selected according to the slice thickness in the step (d), and the size of the longest portion of the scale, ellipse, plate, or rod is average. In this case, the material may be charged under conditions of 250 μm material, 500 to 1000 μm, 1500 μm to 2000 μm, and the like.

より熱伝導率を上げるためには、スライス後のシート断面で貫通する無機材料を多くする必要があるため、スライス厚みよりも大きな無機材料を通常は選定する。
混練手段としては特に制限されないが、2本ロール、ニーダー等の装置を利用する。
In order to further increase the thermal conductivity, it is necessary to increase the inorganic material penetrating in the cross section of the sheet after slicing. Therefore, an inorganic material larger than the slice thickness is usually selected.
The kneading means is not particularly limited, but an apparatus such as a two-roller or a kneader is used.

上記(b)工程では、混練した組成物を平板プレスやメタルロールを使用して押しつぶして作製する。温度条件は、高温すぎると樹脂が脆性化し、低温すぎると軟化しないため、25〜150℃の範囲が好ましい。その際シート厚は薄い方が好ましく、0.2mm〜1.0mmの厚みが最も好ましい。   In the step (b), the kneaded composition is prepared by crushing it using a flat plate press or a metal roll. The temperature condition is preferably in the range of 25 to 150 ° C. because if the temperature is too high, the resin becomes brittle and if the temperature is too low, the resin does not soften. In that case, the thinner sheet thickness is preferable, and the thickness of 0.2 mm to 1.0 mm is most preferable.

「無機材料がシートの主たる面に対して平行な方向に配向した」状態とは、無機材料がシートの主たる面に関して寝ているように配向した状態をいう。シート面内での無機材料の向きは、前記組成物を成形する際に、組成物の流れる方向を調整することによってコントロールされる。つまり、組成物を圧延ロールに通す方向、組成物を押出す方向、組成物を塗工する方向、組成物をプレスする方向を調整することで、無機材料の向きがコントロールされる。無機材料が鱗片状、楕球状又は棒状の形状を有することで、異方性を有するため、組成物を圧延成形、プレス成形、押出成形又は塗工することにより、通常、無機材料の向きは揃って配置される。   The state in which the “inorganic material is oriented in a direction parallel to the main surface of the sheet” refers to a state in which the inorganic material is oriented so as to lie on the main surface of the sheet. The orientation of the inorganic material in the sheet surface is controlled by adjusting the direction in which the composition flows when the composition is molded. That is, the direction of the inorganic material is controlled by adjusting the direction in which the composition is passed through a rolling roll, the direction in which the composition is extruded, the direction in which the composition is applied, and the direction in which the composition is pressed. Since the inorganic material has a scale-like, oval or rod-like shape and has anisotropy, the orientation of the inorganic material is usually aligned by rolling, pressing, extrusion or coating the composition. Arranged.

なお、「前記無機材料がシートの主たる面に関してほぼ平行な方向に配向した状態」の確認は、前述の「熱伝導シートの厚み方向に傾いて配向」の確認方法と同様に、1次シート断面をSEMを用いて任意の粒子50個について観察することにより行う。具体的には、1次シート断面をSEMを用いて観察し、任意の粒子50個について、無機材料の鱗片の面方向、楕球の長軸方向、板の長軸方向又は棒の長軸方向の1次シート表面に対する角度(90度以上となる場合は補角を採用する)の平均値が0〜20度の範囲となっているか確認する。   The confirmation of "the state in which the inorganic material is oriented in a direction substantially parallel to the main surface of the sheet" is the same as the confirmation method of the above-mentioned "orientation inclined in the thickness direction of the heat conductive sheet". Is observed by observing 50 arbitrary particles using SEM. Specifically, the cross section of the primary sheet is observed using a SEM, and for any 50 particles, the scale direction of the inorganic material, the long axis direction of the ellipse, the long axis direction of the plate, or the long axis direction of the rod It is confirmed whether the average value of the angle with respect to the primary sheet surface (adopting a complementary angle when it is 90 degrees or more) is in the range of 0 to 20 degrees.

続いての(c1)工程では、1次シートを所定の大きさに切り抜き、複数枚を積層する。あるいは、1次シートを折り畳んで積層体を得てもよい。積層する際は、シート面内での無機材料の向きを揃えて積層する。   In the subsequent step (c1), the primary sheet is cut out to a predetermined size, and a plurality of sheets are laminated. Or you may fold a primary sheet and obtain a laminated body. When laminating, the orientation of the inorganic material in the sheet plane is aligned.

積層する際の1次シートの形状は特に限定されず、例えば矩形状の1次シートを積層した場合は、角柱状の成形体が得られ、円形状の1次シートを積層した場合は、円柱状の成形体が得られる。   The shape of the primary sheet at the time of lamination is not particularly limited. For example, when a rectangular primary sheet is laminated, a prismatic shaped body is obtained, and when a circular primary sheet is laminated, A columnar shaped body is obtained.

積層する際、1次シート間の密着を上げるため、プレス等によって圧力をかけると良い。プレスでの圧縮量は3〜20%の範囲が好ましい。プレス以外にもメタルロールでも問題なく作製できる。   When laminating, in order to increase the adhesion between the primary sheets, it is preferable to apply pressure by a press or the like. The compression amount in the press is preferably in the range of 3 to 20%. A metal roll can be used without problems in addition to the press.

あるいは、(c1)工程の代わりに(c2)工程として、1次シートを捲回して、積層体を得ることも可能である。1次シートを捲回する方法も特に限定されず、1次シートを無機材料の配向方向を軸にして捲回すればよい。捲回の形状は特に限定されず、例えば円筒形でも角筒形でもよい。   Or it is also possible to wind a primary sheet as a (c2) process instead of the (c1) process, and to obtain a laminated body. The method for winding the primary sheet is not particularly limited, and the primary sheet may be wound around the orientation direction of the inorganic material as an axis. The shape of the winding is not particularly limited, and may be, for example, a cylindrical shape or a rectangular tube shape.

上記(d)工程では、(イ)前記積層体を前記1次シート面から出る法線に対し5〜60°の角度でスライスしてシート化して熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、ロールプレスすることで熱伝導シートを形成する、の上記(イ)〜(ウ)のいずれかを行う。
前記積層体における「1次シート面から出る法線」とは、図5に示す矢印をいう。
In the step (d), (i) the laminated body is sliced at an angle of 5 to 60 ° with respect to the normal line coming out from the primary sheet surface to form a heat conductive sheet, and (c) the above The above-mentioned (A) to (C), wherein the laminate is formed by slicing the sheet at a substantially perpendicular angle to the normal line coming out of the primary sheet surface, and then forming a heat conductive sheet by roll pressing. Do one.
The “normal line coming out from the primary sheet surface” in the laminate refers to the arrow shown in FIG.

スライス角度は、積層体の被スライス面に対しほぼ垂直の角度でスライスすることは構造的、プロセス的に容易であるため、工業的には上記(ウ)の方法で行うことが好ましい。
上記(イ)の方法においては、図6に示すように、無機材料が主たる面に対してほぼ平行な方向に配向した1次シートを積層し、1次シート面から出る法線に対して5〜60°となるようにスライスする。
また、上記(イ)の方法において、図7に示すように、無機材料が主たる面に対してほぼ平行な方向に配向した1次シートを、角度をつけてカットしたものを積層して積層体を作製してもよい。この積層体をスライス面に対してほぼ垂直にスライスすれば、プロセス的に容易であるため工業的には好ましい。
Since it is easy in terms of structure and process to slice the slice at an angle substantially perpendicular to the sliced surface of the laminate, it is preferable to carry out the method by the method (c) industrially.
In the method (a), as shown in FIG. 6, a primary sheet in which an inorganic material is oriented in a direction substantially parallel to the main surface is laminated, and the normal line exiting from the primary sheet surface is 5 Slice to ~ 60 °.
Further, in the above method (a), as shown in FIG. 7, a laminated body in which a primary sheet oriented in a direction substantially parallel to a main surface of an inorganic material is cut at an angle and laminated. May be produced. If this laminate is sliced substantially perpendicular to the slice plane, it is industrially preferable because it is easy in terms of process.

スライス手段としては、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられるが、熱伝導シートの厚みの平行を保ちやすく、切りくずが出ない点で、ナイフ加工法が好ましい。   Examples of the slicing means include a multi-blade method, a laser processing method, a water jet method, a knife processing method, etc., but the knife processing method is preferable in that it is easy to keep the thickness of the heat conductive sheet parallel and no chips are generated. .

スライスする際の切断具は特に制限はないが、スリットを有する平滑な盤面と、このスリット部より突出した刃部と、を有するカンナの部位を有するスライス部材であって、前記刃部が、熱伝導シートの所望の厚みに応じて、スリット部からの突出長さが調節可能であるものを使用すると、得られる熱伝導シートの表面近傍の無機材料の配向を乱し難く、且つ所望の厚みの薄いシートも作製し易いので好ましい。   The cutting tool for slicing is not particularly limited, but is a slicing member having a flat portion having a slit and a blade portion protruding from the slit portion, and the blade portion is a heat member. If the length of the protrusion from the slit portion can be adjusted according to the desired thickness of the conductive sheet, it is difficult to disturb the orientation of the inorganic material in the vicinity of the surface of the obtained heat conductive sheet, and the desired thickness A thin sheet is also preferable because it is easy to produce.

上記(d)工程のロールプレスは、スライスシートをメタルロールによって更に圧縮する。この際圧縮量は0.5〜40%の範囲で行うのが好ましい。更に好ましくは10〜30%の範囲で圧縮させる。この工程の圧縮量によって、無機材料をシートの厚み方向に対して5〜60°の間の傾きで配向させることができる。このようにして作製されたシートは、無機材料の鱗片の面方向、楕球の長軸方向又は棒の長軸方向が、シートの厚み方向に対して、傾いて(より好ましくは熱伝導シートの厚み方向に対して5〜60°の範囲で傾いて)配向する構造となっている。   The roll press in the step (d) further compresses the slice sheet with a metal roll. At this time, the compression amount is preferably 0.5 to 40%. More preferably, compression is performed in the range of 10 to 30%. Depending on the amount of compression in this step, the inorganic material can be oriented with an inclination of 5 to 60 ° with respect to the thickness direction of the sheet. In the sheet thus prepared, the surface direction of the scale of the inorganic material, the long axis direction of the ellipsoid, or the long axis direction of the rod is inclined with respect to the thickness direction of the sheet (more preferably, the heat conductive sheet). It has a structure in which it is oriented (tilted in a range of 5 to 60 ° with respect to the thickness direction).

(実施例1)
前述した工程に従って、本発明の熱伝導シートを作製した例を説明する。
Example 1
The example which produced the heat conductive sheet of this invention according to the process mentioned above is demonstrated.

熱伝導性の無機材料には、鱗片状で平均粒径が500〜1000μmの黒鉛を使用した。黒鉛の含有量は、組成物全体積の45体積%とした。有機高分子化合物は、アクリル酸ブチルが、その共重合組成中の76質量%であるポリ(メタ)アクリル酸エステル系高分子化合物を使用した。その含有量は組成物全体積に対して30体積%とした。
難燃剤はりん酸エステル系であるビスフェノールAビス(ジフェニルホスフェート)を使用し、含有量は組成物全体積に対して25体積%とした。
As the heat conductive inorganic material, scale-like graphite having an average particle diameter of 500 to 1000 μm was used. The graphite content was 45% by volume of the total volume of the composition. As the organic polymer compound, a poly (meth) acrylate polymer compound in which butyl acrylate was 76% by mass in the copolymer composition was used. Its content was 30% by volume with respect to the total volume of the composition.
As the flame retardant, bisphenol A bis (diphenyl phosphate), which is a phosphate ester type, was used, and the content was 25% by volume based on the total volume of the composition.

以上の材料を配合し、先ず始めに、加圧ニーダーを用いて混錬した。条件を組成物質量:3.5kgあたり温度:100℃で40分間として混錬した。混練物を油圧プレスにより数十mm厚まで圧縮し、更に、80℃のメタルロールを数回通して、1.0mm厚の1次シートを作製した。   The above materials were blended and first kneaded using a pressure kneader. The kneading was performed under the conditions that the amount of the composition substance: 3.5 kg and the temperature: 100 ° C. for 40 minutes. The kneaded product was compressed to a thickness of several tens of mm with a hydraulic press, and further passed through a metal roll at 80 ° C. several times to produce a 1.0 mm-thick primary sheet.

なお、「前記無機材料がシートの主たる面に関してほぼ平行な方向に配向した状態」の確認は、得られた1次シートの断面をSEMを用いて観察し、任意の無機材料50個について見えている方向から、無機材料の鱗片の面方向の1次シート表面に対する角度(90度以上となる場合は補角を採用する)を測定し、その平均値を求めたところ、2°であった。無機材料(鱗片状の黒鉛)は、1次シートの主たる面に関してほぼ平行な方向に配向していることが認められた。   The confirmation of "the state in which the inorganic material is oriented in a direction substantially parallel to the main surface of the sheet" is made by observing the cross section of the obtained primary sheet using an SEM and seeing about 50 arbitrary inorganic materials. The angle with respect to the primary sheet surface in the surface direction of the scale of the inorganic material was measured from the direction in which the inorganic material was scaled (a complementary angle was adopted when 90 degrees or more), and the average value was determined to be 2 °. It was recognized that the inorganic material (flaky graphite) was oriented in a direction substantially parallel to the main surface of the primary sheet.

次に1次シートを、50mm×200mmの形状に切り出し、高さが50mmになるまで積層した。積層体を更に油圧プレスを用いて0.1MPa以下の圧力で加圧した。そして、積層体の積層面の法線に対して平行な面をカンナと同様の機構を持った装置を用いて、1次シート面から出る法線に対してほぼ垂直の角度でスライスした。   Next, the primary sheet was cut into a 50 mm × 200 mm shape and laminated until the height reached 50 mm. The laminate was further pressurized at a pressure of 0.1 MPa or less using a hydraulic press. Then, a plane parallel to the normal line of the laminate surface of the laminate was sliced at an angle substantially perpendicular to the normal line from the primary sheet surface using an apparatus having a mechanism similar to that of the plane.

具体的には、スライスシートの厚みが0.25mmになるように、刃の突出量を調整し、積層体温度を10℃、加工速度を54mm/分、刃自体の先端角度を32°とした条件で加工した。最後にスライスシートを、80℃のメタルロールを使用して30%圧縮し、熱伝導シートを作製した。   Specifically, the protrusion amount of the blade was adjusted so that the thickness of the slice sheet was 0.25 mm, the laminate temperature was 10 ° C., the processing speed was 54 mm / min, and the tip angle of the blade itself was 32 °. Processed under conditions. Finally, the slice sheet was compressed 30% using a metal roll at 80 ° C. to produce a heat conductive sheet.

以上の条件で作製した熱伝導シートの無機材料の配向を観察した。断面観察方法は、次の手順で行った。先ず、熱伝導シートの断面をミクロトームで削りだした後、断面をリアクティブイオンエッチングでエッチングした。エッチング条件は、ガスを酸素及びアルゴンガスで1:4の割合で注入し、圧力を6Pa、パワーを100Wで20分とした。エッチング後、走査型電子顕微鏡で断面を撮像した。   The orientation of the inorganic material of the heat conductive sheet produced on the above conditions was observed. The cross-sectional observation method was performed according to the following procedure. First, after the cross section of the heat conductive sheet was cut out with a microtome, the cross section was etched by reactive ion etching. Etching conditions were as follows: gas was injected with oxygen and argon gas at a ratio of 1: 4, the pressure was 6 Pa, and the power was 100 W for 20 minutes. After etching, the cross section was imaged with a scanning electron microscope.

図1は、撮像写真を2値化したもので、黒部分が黒鉛100である。白色部分は有機高分子化合物101である。図1に、熱伝導シートの厚み方向と平行な軸線201と、無機材料(黒鉛)の鱗片の面方向の軸線202と、軸線201と202が交差する角度(傾き)200を、併せて図示した。角度200は、無機材料の鱗片の面方向の熱伝導シートの厚み方向に対しての傾き配向具合を表している。この図1から実施例は、黒鉛100の鱗片の面方向が、熱伝導シートの厚み方向に対して51°傾いて配向している構造であることが分る。   FIG. 1 is a binarized photograph, and the black portion is graphite 100. The white part is the organic polymer compound 101. FIG. 1 also illustrates an axis 201 parallel to the thickness direction of the heat conductive sheet, an axis 202 in the surface direction of the scale of the inorganic material (graphite), and an angle (inclination) 200 at which the axes 201 and 202 intersect. . The angle 200 represents the inclination orientation degree with respect to the thickness direction of the heat conductive sheet in the surface direction of the scale of the inorganic material. From this FIG. 1, it can be seen that the surface direction of the scale of the graphite 100 is inclined by 51 ° with respect to the thickness direction of the heat conductive sheet.

(比較例1) (Comparative Example 1)

比較例の熱伝導シートは実施例1と材料は全く同様のものを使用し、工程もスライス工程までは全く同じ条件で行い、最後のロールプレス工程を除いた手順で行った。この条件によって作製された比較例の熱伝導シートは、黒鉛の鱗片の面方向が熱伝導シートの厚み方向に対して傾かず、垂直に配向する構造をとる。   The heat conductive sheet of the comparative example was exactly the same as that of Example 1, and the process was performed under exactly the same conditions until the slicing process, and the procedure was performed except for the final roll press process. The heat conductive sheet of the comparative example produced under these conditions has a structure in which the surface direction of the graphite scale is not inclined with respect to the thickness direction of the heat conductive sheet but is oriented vertically.

図2に、実施例1及び比較例1のタック性を示す。   FIG. 2 shows the tackiness of Example 1 and Comparative Example 1.

タック性の評価はプローブ試験装置を使用し、測定条件は、温度:23度、プローブ直径:5mm、プローブ接触面積:19.6mm、プローブ荷重:50g、押付け時間:10秒で行った。
図2に示されるように、実施例1では比較例1と比べ、タック力が倍以上も向上している。シート表面はスライス加工時のナイフと摩擦する面である。
Evaluation of tackiness was performed using a probe test apparatus, and the measurement conditions were as follows: temperature: 23 degrees, probe diameter: 5 mm, probe contact area: 19.6 mm 2 , probe load: 50 g, and pressing time: 10 seconds.
As shown in FIG. 2, in Example 1, the tack force is improved more than double compared to Comparative Example 1. The sheet surface is a surface that rubs against the knife during slicing.

図3に引張強度の比較を示す。強度は、引張強度で比較した。
サンプル形状は、幅10mmで行い、測定条件は、温度23度、引張速度:50mm/分で行った。
図3に示されるように、実施例1では比較例1と比べ、引張強度が倍に向上している。
FIG. 3 shows a comparison of tensile strength. The strength was compared by tensile strength.
The sample shape was 10 mm wide, and the measurement conditions were a temperature of 23 degrees and a tensile speed of 50 mm / min.
As shown in FIG. 3, the tensile strength in Example 1 is doubled compared to Comparative Example 1.

実施例1と比較例1の熱抵抗を測定したところ、双方同様の値を得ることができた。熱抵抗は、トランジスタ法を用いて測定した。測定は次の手順で行った。熱伝導シートを一定に制御した銅板の上に置き、上からトランジスタを1.0MPaの荷重で加圧し、17〜19Wの電力を印加した時の熱伝導シート表裏の温度差を、熱電対で測定して熱抵抗を算出した。   When the thermal resistances of Example 1 and Comparative Example 1 were measured, similar values could be obtained for both. The thermal resistance was measured using a transistor method. The measurement was performed according to the following procedure. A heat conductive sheet is placed on a constant controlled copper plate, the transistor is pressurized from above with a load of 1.0 MPa, and the temperature difference between the front and back of the heat conductive sheet when a power of 17 to 19 W is applied is measured with a thermocouple. The thermal resistance was calculated.

以上より、本発明によって、膜厚方向に高熱伝導を維持しながらタック性と強度とを増加させることが可能である。また、無機材料が、シート厚み方向に対して傾いているので、実装工程での圧力負荷に対しても無機材料が挫屈することなく、熱伝導性を維持する熱伝導シートを提供することができる。   As described above, according to the present invention, it is possible to increase tackiness and strength while maintaining high heat conduction in the film thickness direction. In addition, since the inorganic material is inclined with respect to the sheet thickness direction, it is possible to provide a heat conductive sheet that maintains thermal conductivity without the inorganic material being buckled even by a pressure load in the mounting process. .

1 シート面
10 無機充填材
100 黒鉛
101 有機高分子化合物
200 無機材料の鱗片の面方向と熱伝導シートの厚み方向とのなす角度
201 熱伝導シートの厚み方向と平行な軸線
202 無機材料(黒鉛)の鱗片の面方向の軸線
DESCRIPTION OF SYMBOLS 1 Sheet surface 10 Inorganic filler 100 Graphite 101 Organic polymer compound 200 The angle 201 between the surface direction of the scale of an inorganic material, and the thickness direction of a heat conductive sheet 201 The axis line 202 parallel to the thickness direction of a heat conductive sheet Inorganic material (graphite) Axial surface direction axis

Claims (3)

下記工程(a)乃至(d)を含む熱伝導シートの製造方法。
(a)少なくとも鱗片状の黒鉛を含有する無機材料と、有機高分子化合物と、を混錬して、前記無機材料の含有量が組成物の全体積の10〜50体積%である組成物を調製する工程、
(b)前記組成物に圧力をかけて、前記鱗状の黒鉛の面方向が、主たる面に対してほぼ平行な方向に配向した1次シートを作製する工程、
(c1)前記1次シートを積層して積層体とする工程、
(d)(イ)前記積層体を、前記1次シート面から出る法線に対し5〜40°の角度でスライスしてシート化して、前記鱗状の黒鉛の面方向が、熱伝導シートの表面に対して5〜40°の範囲で傾いて配向している熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、スライスシートをロールプレスすることで、前記鱗状の黒鉛の面方向が、熱伝導シートの表面に対して5〜40°の範囲で傾いて配向している熱伝導シートを形成する、の前記(イ)及び(ウ)のいずれかを行う工程。
The manufacturing method of the heat conductive sheet containing the following process (a) thru | or (d).
(A) an inorganic material containing even without less scaly graphite, and organic polymer compound, and kneaded, the composition amount of the inorganic material is 10 to 50% by volume of the total volume of the composition Preparing a product,
(B) by applying pressure to the composition, process surface Direction before Kiuroko flake graphite is to produce a primary sheet oriented in a direction substantially parallel to the main surfaces,
(C1) A step of laminating the primary sheet to form a laminate,
The (d) (i) the laminate, said sheeted by slicing at an angle of. 5 to 40 ° to the normal line emanating from the primary sheet plane, the plane Direction before Kiuroko flake graphite, heat Forming a thermally conductive sheet oriented at an angle of 5 to 40 ° with respect to the surface of the conductive sheet; and (c) the laminate being substantially perpendicular to a normal line emerging from the primary sheet surface. after a sheet by slicing at an angle, a slice sheet by roll pressing, prior to the surface direction of Kiuroko flake graphite is inclined in the range of 5 to 40 ° to the surface of the thermally conductive sheet orientation The process of performing any of said (I) and (U) of forming the heat conductive sheet which is carrying out.
下記工程(a)乃至(d)を含む熱伝導シートの製造方法。
(a)少なくとも鱗片状の黒鉛を含有する無機材料と、有機高分子化合物と、を混錬して、前記無機材料の含有量が組成物の全体積の10〜50体積%である組成物を調製する工程、
(b)前記組成物に圧力をかけて、前記鱗状の黒鉛の面方向が、主たる面に対してほぼ平行な方向に配向した1次シートを作製する工程、
(c2)前記1次シートを前記鱗片状の黒鉛の配向方向を軸にして捲回して積層体とする工程、
(d)(イ)前記積層体を、前記1次シート面から出る法線に対し5〜40°の角度でスライスしてシート化して、前記鱗状の黒鉛の面方向が、熱伝導シートの表面に対して5〜40°の範囲で傾いて配向している熱伝導シートを形成する、及び(ウ)前記積層体を、前記1次シート面から出る法線に対しほぼ垂直の角度でスライスしてシート化した後、スライスシートをロールプレスすることで、前記鱗状の黒鉛の面方向が、熱伝導シートの表面に対して5〜40°の範囲で傾いて配向している熱伝導シートを形成する、の前記(イ)及び(ウ)のいずれかを行う工程。
The manufacturing method of the heat conductive sheet containing the following process (a) thru | or (d).
(A) an inorganic material containing even without less scaly graphite, and organic polymer compound, and kneaded, the composition amount of the inorganic material is 10 to 50% by volume of the total volume of the composition Preparing a product,
(B) by applying pressure to the composition, process surface Direction before Kiuroko flake graphite is to produce a primary sheet oriented in a direction substantially parallel to the main surfaces,
(C2) a step of winding the primary sheet around the orientation direction of the scaly graphite to form a laminate,
The (d) (i) the laminate, said sheeted by slicing at an angle of. 5 to 40 ° to the normal line emanating from the primary sheet plane, the plane Direction before Kiuroko flake graphite, heat Forming a thermally conductive sheet oriented at an angle of 5 to 40 ° with respect to the surface of the conductive sheet; and (c) the laminate being substantially perpendicular to a normal line emerging from the primary sheet surface. after a sheet by slicing at an angle, a slice sheet by roll pressing, prior to the surface direction of Kiuroko flake graphite is inclined in the range of 5 to 40 ° to the surface of the thermally conductive sheet orientation The process of performing any of said (I) and (U) of forming the heat conductive sheet which is carrying out.
前記有機高分子化合物が、アクリル酸ブチル及びアクリル酸2−エチルヘキシルからなる群から選択される少なくとも1種を共重合成分として含むポリ(メタ)アクリル酸エステル系高分子化合物を含有する、請求項1又は2に記載の熱伝導シートの製造方法。 The organic polymer compound contains a poly (meth) acrylate polymer compound containing at least one selected from the group consisting of butyl acrylate and 2-ethylhexyl acrylate as a copolymerization component. Or the manufacturing method of the heat conductive sheet of 2 .
JP2014238955A 2008-10-08 2014-11-26 HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET Active JP6156337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238955A JP6156337B2 (en) 2008-10-08 2014-11-26 HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008261613 2008-10-08
JP2008261613 2008-10-08
JP2014238955A JP6156337B2 (en) 2008-10-08 2014-11-26 HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009181432A Division JP2010114421A (en) 2008-10-08 2009-08-04 Thermally conductive sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015084431A JP2015084431A (en) 2015-04-30
JP6156337B2 true JP6156337B2 (en) 2017-07-05

Family

ID=42302717

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009181432A Pending JP2010114421A (en) 2008-10-08 2009-08-04 Thermally conductive sheet and manufacturing method thereof
JP2014238955A Active JP6156337B2 (en) 2008-10-08 2014-11-26 HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009181432A Pending JP2010114421A (en) 2008-10-08 2009-08-04 Thermally conductive sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP2010114421A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2583993B1 (en) * 2010-06-17 2017-05-17 Dexerials Corporation Thermally conductive sheet and process for producing same
JP2012023335A (en) * 2010-06-17 2012-02-02 Sony Chemical & Information Device Corp Thermally conductive sheet and method of producing the same
JP2013177562A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
WO2013118849A1 (en) * 2012-02-08 2013-08-15 日東電工株式会社 Thermal conductive sheet
WO2013118848A1 (en) * 2012-02-08 2013-08-15 日東電工株式会社 Method for producing thermal conductive sheet
JP5752299B2 (en) 2013-07-01 2015-07-22 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP5766335B2 (en) 2013-07-01 2015-08-19 デクセリアルズ株式会社 Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP2015192010A (en) * 2014-03-28 2015-11-02 本田技研工業株式会社 Cooling device
JP6454139B2 (en) 2014-11-26 2019-01-16 マクセルホールディングス株式会社 Adhesive composition precursor, adhesive composition and method for producing the same, adhesive sheet and method for producing the same, and electronic device including the adhesive sheet
WO2016088682A1 (en) * 2014-12-02 2016-06-09 積水化学工業株式会社 Thermally-conductive sheet and method for producing same
JP6544983B2 (en) * 2015-04-21 2019-07-17 昭和電工株式会社 Cooling board
EP3422832B1 (en) * 2016-02-25 2021-01-13 Zeon Corporation Secondary sheet and production method for secondary sheet
JP6852266B2 (en) * 2016-02-29 2021-03-31 昭和電工マテリアルズ株式会社 Method of manufacturing heat conductive sheet and heat conductive sheet
JP6705325B2 (en) * 2016-07-22 2020-06-03 日本ゼオン株式会社 COMPOSITE PARTICLE FOR HEAT CONDUCTIVE SHEET, PROCESS FOR PRODUCING THE SAME, METHOD FOR PRODUCING HEAT CONDUCTIVE PRIMARY SHEET AND HEAT CONDUCTIVE SECONDARY SHEET, METHOD FOR PRODUCING HEATING BODY WITH HEAT CONDUCTIVE PRIMARY SHEET, AND METHOD FOR PRODUCING HEATING BODY WITH LAMINATED SHEET
KR101835385B1 (en) * 2017-09-29 2018-03-09 인동전자(주) Preparation method of thermal conductive thin film using artificial graphite powder
KR102443005B1 (en) 2018-06-07 2022-09-15 에스에이치티 스마트 하이 테크 에이비 Laminated Graphene-Based Thermally Conductive Films and Methods for Manufacturing Films
JP7234560B2 (en) * 2018-09-28 2023-03-08 日本ゼオン株式会社 Heat-conducting sheet and manufacturing method thereof
WO2021246262A1 (en) * 2020-06-03 2021-12-09 東亞合成株式会社 Method for manufacturing heat transfer sheet, laminate, and heat transfer sheet
JP6999054B1 (en) 2021-02-10 2022-01-18 デクセリアルズ株式会社 Supply form of heat conductive sheet and heat conductive sheet
WO2023042497A1 (en) * 2021-09-15 2023-03-23 信越ポリマー株式会社 Thermally conductive sheet and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259671A (en) * 1992-01-07 1993-10-08 Toshiba Corp Heat radiating sheet and manufacture thereof
US5695847A (en) * 1996-07-10 1997-12-09 Browne; James M. Thermally conductive joining film
JP4086946B2 (en) * 1998-01-05 2008-05-14 日東電工株式会社 Thermally conductive pressure-sensitive adhesive sheets and methods for fixing electronic components and heat dissipation members using the same
JPH11302545A (en) * 1998-02-18 1999-11-02 Nippon Mitsubishi Oil Corp Silicone rubber composite
JP3288029B2 (en) * 2000-03-08 2002-06-04 北川工業株式会社 Molded body, thermal conductive material and method for producing the same
JP2002026202A (en) * 2000-06-29 2002-01-25 Three M Innovative Properties Co Heat conducting sheet and its manufacturing method
JP2002046137A (en) * 2000-08-04 2002-02-12 Nippon Graphite Fiber Corp Method for manufacturing thermally conductive sheet
JP2002088171A (en) * 2000-09-13 2002-03-27 Polymatech Co Ltd Heat-conductive sheet and method for producing the same and heat radiation device
JP2006241333A (en) * 2005-03-04 2006-09-14 Nitta Ind Corp Heat conductive composition and heat conductive sheet
US20100073882A1 (en) * 2006-11-01 2010-03-25 Tooru Yoshikawa Thermally conductive sheet, process for producing the same, and radiator utilizing thermally conductive sheet

Also Published As

Publication number Publication date
JP2010114421A (en) 2010-05-20
JP2015084431A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6156337B2 (en) HEAT CONDUCTIVE SHEET AND METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP4743344B2 (en) Heat dissipation sheet and heat dissipation device
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
US20100073882A1 (en) Thermally conductive sheet, process for producing the same, and radiator utilizing thermally conductive sheet
US9574833B2 (en) Thermal conductive sheet, method of producing thermal conductive sheet and heat releasing device
EP3422831B1 (en) Heat conductive sheet and a heat dissipation device
JP7127710B2 (en) thermal conductive sheet
JP2009055021A (en) Heat conductive sheet and its manufacturing method
JP2009149831A (en) Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet
JP5678596B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
EP3422832B1 (en) Secondary sheet and production method for secondary sheet
JP2012015273A (en) Thermal conductive sheet, method of manufacturing thermal conductive sheet and heat radiation device using thermal conductive sheet
JP5454300B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING SAME
JP6897129B2 (en) Heat conduction sheet
JP7131142B2 (en) thermal conductive sheet
WO2018025587A1 (en) Heat transfer sheet
JP2011184663A (en) Heat conductive sheet, method for producing the same, and heat radiation device using the same
JP7218510B2 (en) thermal conductive sheet
JP7163700B2 (en) thermal conductive sheet
JP2022123718A (en) Thermally conductive sheet
WO2018025586A1 (en) Heat transfer sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350