JP5678596B2 - Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device - Google Patents

Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device Download PDF

Info

Publication number
JP5678596B2
JP5678596B2 JP2010255172A JP2010255172A JP5678596B2 JP 5678596 B2 JP5678596 B2 JP 5678596B2 JP 2010255172 A JP2010255172 A JP 2010255172A JP 2010255172 A JP2010255172 A JP 2010255172A JP 5678596 B2 JP5678596 B2 JP 5678596B2
Authority
JP
Japan
Prior art keywords
sheet
heat transfer
transfer sheet
heat
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010255172A
Other languages
Japanese (ja)
Other versions
JP2012109311A (en
Inventor
倫明 矢嶋
倫明 矢嶋
藤田 淳
藤田  淳
関 智憲
智憲 関
基彰 油井
基彰 油井
吉川 徹
徹 吉川
山本 礼
礼 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010255172A priority Critical patent/JP5678596B2/en
Publication of JP2012109311A publication Critical patent/JP2012109311A/en
Application granted granted Critical
Publication of JP5678596B2 publication Critical patent/JP5678596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、伝熱シート、伝熱シートの作製方法、及び放熱装置に関する。詳しくは、伝熱性に優れ、更に再利用可能な伝熱シート及びそれを用いた伝熱シート、伝熱シートの作製方法、及び伝熱シートを用いた放熱装置に関する。   The present invention relates to a heat transfer sheet, a method for manufacturing the heat transfer sheet, and a heat dissipation device. More specifically, the present invention relates to a heat transfer sheet that is excellent in heat transfer and can be reused, a heat transfer sheet using the heat transfer sheet, a method for manufacturing the heat transfer sheet, and a heat dissipation device using the heat transfer sheet.

近年、パソコンを初めとした各種電子機器の情報処理量は急激に増加し、前記機器内部の重要部材である多層配線板や半導体の高密度化し、また電子部品の大型化が進んでいる。上記背景のなか、機器内部で発生する熱量も従来の機種に比べて大きなものとなり、操作中のトラブル(誤作動、操作不能)などの問題を引き起こしている。   2. Description of the Related Art In recent years, the amount of information processing in various electronic devices such as personal computers has rapidly increased, and the density of multilayer wiring boards and semiconductors, which are important members inside the devices, has been increasing, and the size of electronic components has been increasing. Against the background described above, the amount of heat generated inside the device is larger than that of the conventional model, causing problems such as trouble during operation (malfunction or inoperability).

現在このような問題を解決すべく電子機器メーカ各社は、内部の冷却を迅速に行うため、(1)従来よりも高性能の冷却ファンを設置する、(2)発熱体の放熱性の向上を目的に発熱体と放熱材の間に熱伝導率が高く且つ柔軟性のある放熱材を介在させる、などの対策を図っている。しかし冷却ファンの高性能化は電子機器の大型化を招き、更に騒音の増加及びコスト高の要因となっている。   In order to solve such problems at present, electronic device manufacturers are required to (1) install a cooling fan with higher performance than before, and (2) improve the heat dissipation of the heating element in order to quickly cool the inside. For the purpose, measures are taken such as interposing a heat radiating material having high thermal conductivity and flexibility between the heating element and the heat radiating material. However, the higher performance of the cooling fan has led to an increase in the size of electronic equipment, which further increases noise and increases costs.

そこで注目されるのは、発熱体と放熱材の間に付設する伝熱材である。伝熱材には、できる限り薄く伝熱性に優れること、発熱体および放熱材の変形に追従可能であること、が求められる。   Therefore, attention is focused on a heat transfer material provided between the heating element and the heat dissipation material. The heat transfer material is required to be as thin and excellent in heat transfer properties as possible and to be able to follow the deformation of the heating element and the heat dissipation material.

代表的な伝熱材としては、グリース型の材料が挙げられる。しかしこの方法は、グリースの粘性に起因する取扱い性の悪さから、放熱装置の組み立て時の作業性の悪化を招いている。また、グリースは温度変化に伴う粘度変化が大きく、伝熱特性の変化が問題視されており、再利用も困難である。
そこで上記グリース型伝熱材の作業性を改良した材料として、弾性を有し表面タック性(粘着性)が安定している伝熱シートが注目されている。
A typical heat transfer material is a grease type material. However, this method leads to a deterioration in workability when assembling the heat radiating device due to poor handling due to the viscosity of the grease. In addition, grease has a large viscosity change with a change in temperature, a change in heat transfer characteristics is regarded as a problem, and it is difficult to reuse.
Thus, heat transfer sheets that have elasticity and have stable surface tack (adhesiveness) have attracted attention as materials that improve the workability of the grease-type heat transfer material.

しかし、現状市販されている伝熱シートは、放熱特性(発熱体の冷却効果)、取扱い性、及びシート特性(弾性量や表面タック性)のバランスが悪く、改善が望まれている。また、柔軟性を有した放熱金属材料として、インジウムをシート化したものも使用されているが、高コストのため一部の使用に留まっている。   However, currently available heat transfer sheets have a poor balance of heat dissipation characteristics (cooling effect of the heating element), handleability, and sheet characteristics (elasticity and surface tackiness), and improvements are desired. In addition, as a heat-dissipating metal material having flexibility, a sheet made of indium is used, but it is only partially used due to high cost.

このような状況の中、低コストで放熱特性及び作業性に優れた様々な複合材料組成物及びその加工物が提案されている。
例えば、黒鉛粉末を熱可塑性樹脂に配合した放熱性樹脂成形品(例えば、特許文献1参照。)や、黒鉛、カーボンブラック等を含有するポリエステル樹脂組成物(例えば、特許文献2参照。)が開示されている。更に、粒径1〜20μmの人造黒鉛を配合したゴム組成物(例えば、特許文献3参照。)、結晶面間隔が0.330〜0.340nmの球状黒鉛粉をシリコーンゴムに配合した組成物(例えば、特許文献4参照。)が開示されている。
また、特定の黒鉛粒子を固体中で加圧圧縮して組成物の表面に対して平行に整列させた高放熱性複合材料とその製造方法が開示されている(例えば、特許文献5参照)。更に、成形体中の黒鉛粉末の結晶構造におけるc軸が、放熱方向に対して直交方法に配向されている放熱性成形体及びその製造方法が開示されている(例えば、特許文献6参照。)。
Under such circumstances, various composite material compositions having excellent heat dissipation characteristics and workability at low cost and processed products thereof have been proposed.
For example, a heat-dissipating resin molded product in which graphite powder is blended with a thermoplastic resin (for example, see Patent Document 1) and a polyester resin composition containing graphite, carbon black, etc. (for example, see Patent Document 2) are disclosed. Has been. Furthermore, a rubber composition containing artificial graphite having a particle size of 1 to 20 μm (see, for example, Patent Document 3), a composition containing spherical graphite powder having a crystal plane spacing of 0.330 to 0.340 nm in silicone rubber ( For example, see Patent Document 4).
Further, a highly heat-dissipating composite material in which specific graphite particles are pressed and compressed in a solid and aligned in parallel with the surface of the composition and a method for producing the same are disclosed (for example, see Patent Document 5). Furthermore, a heat dissipating formed body in which the c-axis in the crystal structure of the graphite powder in the formed body is oriented in a method orthogonal to the heat dissipating direction and a method for manufacturing the same are disclosed (for example, see Patent Document 6). .

取扱い性に優れた伝熱シートは、上述のように放熱装置を組み立てる際の作業性が簡便であるという特徴を有する。この特徴を更に生かす使用方法において、放熱材の形状に合わせる形状加工性、発熱体及び放熱材面の凸凹や曲面などの特殊な形状に対する追従性、応力緩和などの機能を付与するニーズが生じている。例えば、デイスプレイパネルのような大面積からの放熱においては、上記機能が重要な課題となっている。   The heat transfer sheet excellent in handleability has a feature that the workability when assembling the heat dissipation device is simple as described above. In the usage method that further utilizes this feature, there is a need to provide functions such as shape workability to match the shape of the heat dissipation material, followability to special shapes such as unevenness and curved surface of the heating element and heat dissipation material, and stress relaxation. Yes. For example, in the heat radiation from a large area such as a display panel, the above function is an important issue.

また、電子機器のメンテナンスを想定した場合、コスト面からシート再利用の可否も大きな課題となる。したがって、上述のような伝熱シートに要求される放熱特性や取扱い性などに加えて、再利用性についても向上が望まれている。   In addition, when the maintenance of the electronic device is assumed, whether or not the sheet can be reused is a big problem from the viewpoint of cost. Therefore, in addition to the heat dissipation characteristics and handling properties required for the heat transfer sheet as described above, it is desired to improve reusability.

特開昭62―131033号公報Japanese Patent Laid-Open No. Sho 62-131033 特開平04−246456号公報Japanese Patent Laid-Open No. 04-246456 特開平05―247268号公報JP 05-247268 A 特開平10−298433号公報JP-A-10-298433 特開平11−001621号公報JP-A-11-001621 特開2003−321554号公報JP 2003-321554 A

本発明は、伝熱性に優れ、再利用可能な伝熱シート、該伝熱シートの製造方法、及び該伝熱シートを用いた伝熱装置を提供することである。   An object of the present invention is to provide a heat transfer sheet that is excellent in heat transfer and can be reused, a method for manufacturing the heat transfer sheet, and a heat transfer device using the heat transfer sheet.

本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、異方性黒鉛粉をバインダ成分中に一定方向に配向させ、且つシート表面に特定の金属層を付与することで、伝熱特性に優れ、且つ再利用性にも優れる伝熱シートを見出した。
すなわち、本発明は以下の通りである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors orientated anisotropic graphite powder in the binder component in a certain direction and provided a specific metal layer on the sheet surface. The present inventors have found a heat transfer sheet that has excellent thermal characteristics and reusability.
That is, the present invention is as follows.

(1) 室温で弾性を示すバインダ成分(A)と異方性黒鉛粉(B)とを含有し、黒鉛粉(B)が厚み方向に配向した基材シートと、
前記基材シートの一方の表面上に設けた、金属蒸着膜(C)と、
を有する伝熱シート。
(1) A base material sheet containing a binder component (A) exhibiting elasticity at room temperature and anisotropic graphite powder (B), wherein the graphite powder (B) is oriented in the thickness direction;
A metal vapor deposition film (C) provided on one surface of the base sheet;
Heat transfer sheet having.

(2) 前記金属蒸着膜(C)の厚さが、総厚みの2%以下である前記(1)に記載の伝熱シート。 (2) The heat transfer sheet according to (1), wherein the thickness of the metal vapor-deposited film (C) is 2% or less of the total thickness.

(3) 前記金属蒸着膜(C)が、アルミ、銅、銀、金、白金、又はニッケルから形成されてなる前記(1)又は(2)に記載の伝熱シート。 (3) The heat transfer sheet according to (1) or (2), wherein the metal vapor deposition film (C) is formed from aluminum, copper, silver, gold, platinum, or nickel.

(4) 前記異方性黒鉛粉(B)が、膨張黒鉛成型シートの粉砕粉であり、粉砕前の前記膨張黒鉛成型シートの嵩密度が0.1g/cm〜1.5g/cmの範囲にある前記(1)〜(3)のいずれか1項に記載の伝熱シート。 (4) The anisotropic graphite powder (B) is a pulverized powder of an expanded graphite molded sheet, and the expanded graphite molded sheet before pulverization has a bulk density of 0.1 g / cm 3 to 1.5 g / cm 3 . The heat transfer sheet according to any one of (1) to (3), which is in a range.

(5) 前記異方性黒鉛粉(B)が、薄片針枝状又は樹枝状であり、粒子径が50μm〜2000μmの範囲である前記(1)〜(4)のいずれか1項に記載の伝熱シート。 (5) The anisotropic graphite powder (B) according to any one of (1) to (4), wherein the anisotropic graphite powder (B) has a thin needle-branch shape or a dendritic shape, and a particle diameter is in a range of 50 μm to 2000 μm. Heat transfer sheet.

(6) 前記バインダ成分(A)として、ガラス転移温度50℃以下の熱可塑性ゴム(D)を含む前記(1)〜(5)にいずれか1項に記載の伝熱シート。 (6) The heat transfer sheet according to any one of (1) to (5), wherein the binder component (A) includes a thermoplastic rubber (D) having a glass transition temperature of 50 ° C. or lower.

(7) 前記バインダ成分(A)として、熱可塑性ゴム成分(D)と、熱硬化性ゴム成分(E)と、該熱硬化性ゴム成分(E)に架橋可能な熱硬化型ゴム硬化剤(F)とを含む前記(1)〜(6)のいずれか1項に記載の伝熱シート。 (7) As the binder component (A), a thermoplastic rubber component (D), a thermosetting rubber component (E), and a thermosetting rubber curing agent (crosslinkable to the thermosetting rubber component (E) ( F) and the heat transfer sheet according to any one of (1) to (6).

(8) 更に、燐酸エステルを含有する前記(1)〜(7)のいずれか1項に記載の伝熱シート。
(9) 前記金属蒸着膜(C)の厚さが、0.5μm〜3μmである前記(1)〜(8)のいずれか1項に記載の伝熱シート。
(8) The heat transfer sheet according to any one of (1) to (7), further including a phosphate ester.
(9) The heat transfer sheet according to any one of (1) to (8), wherein a thickness of the metal deposition film (C) is 0.5 μm to 3 μm.

10) 室温で弾性を示すバインダ成分(A)と、異方性黒鉛粉(B)とを含有する組成物を調製する工程と、
前記組成物を用いて、前記異方性黒鉛粉(B)が主たる面に対して略平行な方向に配向する一次シートを作製する工程と、
前記一次シートを積層又は捲回して、成形体を作製する工程と、
前記一次シート面からの法線に対し45〜80度の角度で、前記成形体をスライスして基材シートを作製する工程と、
前記基材シートの表面に金属を蒸着して、金属蒸着膜(C)を形成する工程と、
を有する前記(1)〜()のいずれか1項に記載の伝熱シートの作製方法。
( 10 ) preparing a composition containing a binder component (A) exhibiting elasticity at room temperature and anisotropic graphite powder (B);
Using the composition, a step of producing a primary sheet in which the anisotropic graphite powder (B) is oriented in a direction substantially parallel to a main surface;
Laminating or winding the primary sheet to produce a molded body; and
Slicing the molded body at an angle of 45 to 80 degrees with respect to the normal from the primary sheet surface to produce a base sheet; and
Depositing metal on the surface of the base sheet to form a metal deposition film (C);
The manufacturing method of the heat-transfer sheet | seat of any one of said (1)-( 9 ) which has.

11) 前記バインダ成分(A)として、熱可塑性ゴム成分(D)と、熱硬化性ゴム成分(E)と、該熱硬化性ゴム成分(E)に架橋可能な熱硬化型ゴム硬化剤(F)とを含み、
前記基材シートの表面に前記金属蒸着膜(C)を形成する工程の前に、前記バインダ成分(A)を架橋させる工程を有する前記(10)に記載の伝熱シートの作製方法。
( 11 ) As the binder component (A), a thermoplastic rubber component (D), a thermosetting rubber component (E), and a thermosetting rubber curing agent (crosslinkable to the thermosetting rubber component (E) ( F) and
The method for producing a heat transfer sheet according to ( 10 ), further including a step of crosslinking the binder component (A) before the step of forming the metal vapor deposition film (C) on the surface of the base sheet.

12) 発熱体と、
放熱体と、
前記発熱体と前記放熱体の間に、該発熱体及び放熱体の双方に接するように配置した、前記(1)〜()のいずれか1項に記載の伝熱シートと、
を有する放熱装置。
( 12 ) a heating element;
A radiator,
The heat transfer sheet according to any one of (1) to ( 9 ), disposed between the heat generating body and the heat radiating body so as to be in contact with both the heat generating body and the heat radiating body,
A heat dissipation device.

本発明によれば、伝熱性に優れ、再利用可能な伝熱シート、該伝熱シートの製造方法、及び該伝熱シートを用いた伝熱装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in heat transfer property and the heat transfer sheet which can be reused, the manufacturing method of this heat transfer sheet, and the heat transfer apparatus using this heat transfer sheet are provided.

<伝熱シート>
本発明の伝熱シートは、室温で弾性を示すバインダ成分(A)と異方性黒鉛粉(B)とを含有し、前記異方性黒鉛粉(B)が厚み方向に配向した基材シートを有し、この基材シートの一方の表面上に、金属蒸着膜(C)を備える。このような構成とすることで、伝熱シートの伝熱特性を維持したまま再利用性が改善される。
<Heat transfer sheet>
The heat transfer sheet of the present invention contains a binder component (A) that exhibits elasticity at room temperature and an anisotropic graphite powder (B), and the anisotropic graphite powder (B) is oriented in the thickness direction. And a metal vapor deposition film (C) is provided on one surface of the base sheet. By adopting such a configuration, the reusability is improved while maintaining the heat transfer characteristics of the heat transfer sheet.

本発明の伝熱シートでは、異方性黒鉛粉(B)が厚み方向に配向しているため、伝熱シートの厚み方向の熱伝導性が向上し、発熱体と放熱材間に設けられる場合に、発熱体の熱を放熱板に効率よく伝熱させることができる。
また、金属蒸着膜(C)を基材シートの表面に付与することによって、基材シート表面のタック性(粘着性)が無くなり、再利用性が向上する。なお、ここでいう「再利用性」とは、伝熱シートを付設した被設部材(例えば放熱体や発熱体)から伝熱シートを剥がし取ったときに、被設部材が故障無く、再利用できることをいう。
更に、金属蒸着膜(C)は蒸着膜であるが故に薄く形成され、金属膜の硬さが抑えられることから被設部材の形状に追従しやすい。よって金属膜の付設による伝熱損失が抑えられて、基材シートの伝熱特性を維持することができる。
In the heat transfer sheet of the present invention, since the anisotropic graphite powder (B) is oriented in the thickness direction, the thermal conductivity in the thickness direction of the heat transfer sheet is improved and provided between the heating element and the heat dissipation material. In addition, the heat of the heating element can be efficiently transferred to the heat sink.
Moreover, by providing a metal vapor deposition film (C) on the surface of a base material sheet, the tackiness (adhesiveness) of the base material sheet surface is lost, and reusability is improved. The term “reusability” as used herein means that when the heat transfer sheet is peeled off from a member to which the heat transfer sheet is attached (for example, a heat radiating body or a heating element), the member to be reused is free from failure. Say what you can do.
Furthermore, since the metal vapor deposition film (C) is a vapor deposition film, the metal vapor deposition film (C) is formed thin, and the hardness of the metal film is suppressed, so that it is easy to follow the shape of the member to be installed. Therefore, heat transfer loss due to the attachment of the metal film is suppressed, and the heat transfer characteristics of the base sheet can be maintained.

本発明において、「異方性黒鉛粉」とは、熱伝導率において異方性を有し、形状においてアスペクト比(短軸及び長軸)を有する黒鉛粉を意味する。   In the present invention, “anisotropic graphite powder” means graphite powder having anisotropy in thermal conductivity and having an aspect ratio (short axis and long axis) in shape.

異方性黒鉛粉(B)が「シートの厚み方向に配向」するとは、伝熱シートを正八角形に切った各辺の厚み方向での断面を蛍光顕微鏡で観察し、いずれか1辺の断面において、任意の50個の異方性黒鉛粉(B)の長軸が、伝熱シートの表面に対してなす角度(90度以上の場合は補角を採用する)を測定し、その平均値が60〜90度の範囲内にある状態をいう。   When the anisotropic graphite powder (B) is “oriented in the thickness direction of the sheet”, the cross section in the thickness direction of each side of the heat transfer sheet cut into a regular octagon is observed with a fluorescence microscope, and the cross section of any one side , The angle formed by the major axis of any 50 anisotropic graphite powders (B) with respect to the surface of the heat transfer sheet (when 90 ° or more, a complementary angle is adopted), and the average value thereof Is in the range of 60 to 90 degrees.

「室温で弾性を示す」とは、25℃において、柔軟性を示すことを意味する。
バインダ成分(A)と異方性黒鉛粉(B)とは、それぞれが充分に混ざり合った状態となっていることが好ましい。
以下、本発明の伝熱シートを構成する材料について説明を行う。
“Show elasticity at room temperature” means showing flexibility at 25 ° C.
It is preferable that the binder component (A) and the anisotropic graphite powder (B) are in a sufficiently mixed state.
Hereinafter, the material which comprises the heat-transfer sheet | seat of this invention is demonstrated.

(バインダ成分(A))
本発明の伝熱シートは、基材シートと金属蒸着膜(C)とを有する。前記基材シートは、室温で弾性を示すバインダ成分(A)を含有し、バインダ成分(A)中で、後述の異方性黒鉛粉(B)がシートの厚み方向に配向している。
(Binder component (A))
The heat transfer sheet of this invention has a base material sheet and a metal vapor deposition film (C). The said base material sheet contains the binder component (A) which shows elasticity at room temperature, and the below-mentioned anisotropic graphite powder (B) is orientating in the thickness direction of a sheet | seat in a binder component (A).

バインダ成分(A)としては、室温で弾性を示すものであれば制限されないが、ガラス転移温度50℃以下の熱可塑性ゴム成分(D)を用いることが好ましく、より好ましくは−70〜20℃、更に好ましくは−60〜0℃のガラス転移温度を有する場合である。ガラス転移温度が50℃以下の場合は、柔軟性に優れ、発熱体及び放熱体に対する密着性が良好となる。なおガラス転移温度(Tg)は示差走査熱量装置(DSC)により測定する。   The binder component (A) is not limited as long as it exhibits elasticity at room temperature, but it is preferable to use a thermoplastic rubber component (D) having a glass transition temperature of 50 ° C. or lower, more preferably −70 to 20 ° C., More preferably, it has a glass transition temperature of −60 to 0 ° C. When glass transition temperature is 50 degrees C or less, it is excellent in a softness | flexibility and the adhesiveness with respect to a heat generating body and a heat radiator becomes favorable. The glass transition temperature (Tg) is measured by a differential scanning calorimeter (DSC).

使用される熱可塑性ゴム成分(D)は特に制限されず、例えばアクリル酸エステル(エチル、ブチル又は2−エチルヘキシルなどのアクリル酸エステル)と他のモノマーとの共重合で得られるアクリルゴムや、エチレンとプロピレンを触媒にて反応させ得られるエチレン−プロピレンゴム、イソブチレンとイソプレンの共重合で得られるブチルゴム、ブタジエンとスチレンの共重合で得られるスチレンブタジエンゴム、アクリロニトリルとブタジエンからなるNBRなどが挙げられる。   The thermoplastic rubber component (D) used is not particularly limited. For example, an acrylic rubber obtained by copolymerization of an acrylic acid ester (an acrylic acid ester such as ethyl, butyl or 2-ethylhexyl) with another monomer, or ethylene And ethylene-propylene rubber obtained by reacting propylene and propylene with a catalyst, butyl rubber obtained by copolymerization of isobutylene and isoprene, styrene-butadiene rubber obtained by copolymerization of butadiene and styrene, NBR composed of acrylonitrile and butadiene, and the like.

また上記熱可塑性ゴム成分(D)は単独及び複合化して使用される。使用される熱可塑性ゴム成分(D)の重量平均分子量は、10万〜200万の範囲が好ましく、より好ましい範囲は20万〜150万である。重量平均分子量が10万以上の場合には、最終的に得られる基材シートとしてのガラス転移温度の低下が抑制され、電子機器内部の温度変化に伴う伝熱シートの物性の変動が抑えられて伝熱特性の変動が抑えられる。また使用する熱可塑性ゴム成分(D)の重量平均分子量が200万以下の場合には、異方性黒鉛粉(B)との混合性が向上し、且つタック性及び弾性に優れる。   The thermoplastic rubber component (D) is used alone or in combination. The weight average molecular weight of the thermoplastic rubber component (D) used is preferably 100,000 to 2,000,000, more preferably 200,000 to 1,500,000. When the weight average molecular weight is 100,000 or more, a decrease in the glass transition temperature as a finally obtained substrate sheet is suppressed, and fluctuations in physical properties of the heat transfer sheet accompanying a temperature change inside the electronic device are suppressed. Variations in heat transfer characteristics are suppressed. Moreover, when the weight average molecular weight of the thermoplastic rubber component (D) to be used is 2 million or less, the mixing property with the anisotropic graphite powder (B) is improved and the tackiness and elasticity are excellent.

熱可塑性ゴム成分(D)の含有量に特に制限はないが、基材シート100質量部に対し、5質量部〜70質量部であることが好ましく、5質量部〜60質量部であることがより好ましい。この範囲内にあると上述のシート特性が維持される。   Although there is no restriction | limiting in particular in content of a thermoplastic rubber component (D), It is preferable that it is 5 mass parts-70 mass parts with respect to 100 mass parts of base material sheets, and it is 5 mass parts-60 mass parts. More preferred. If it is within this range, the above-mentioned sheet characteristics are maintained.

熱可塑性ゴム成分(D)としては、具体的に、アクリルゴムとして、商品名:THR−811DS、重量平均分子量:50万、ナガセケムテックス(株)製;商品名:THR−811DR、重量平均分子量:50万、ナガセケムテックス(株)製;商品名:Nipol AR31、日本ゼオン(株)製;商品名:Nipol AR51、日本ゼオン(株)製;、商品名:Nipol AR71、日本ゼオン(株)製;商品名:Nipol AR32、日本ゼオン(株)製;商品名:Nipol AR42W、日本ゼオン(株)製;等が例示できる。   Specific examples of the thermoplastic rubber component (D) include acrylic rubber, trade name: THR-811DS, weight average molecular weight: 500,000, manufactured by Nagase ChemteX Corporation; trade name: THR-811DR, weight average molecular weight : Product name: Nipol AR31, manufactured by Nippon Zeon Co., Ltd .; Product name: Nipol AR51, manufactured by Nippon Zeon Co., Ltd .; Product name: Nipol AR71, Nippon Zeon Co., Ltd. Product name: Nipol AR32, manufactured by Nippon Zeon Co., Ltd .; Product name: Nipol AR42W, manufactured by Nippon Zeon Co., Ltd .;

一般に、伝熱シートは発熱部材と放熱板に挟まれ、一定の圧力が加えられるとともに使用環境の温度が変化する状況で使用される。そのため使用環境下での圧力負荷に耐えうるよう、バインダ成分(A)として、上述の熱可塑性ゴム成分(D)に加えて熱硬化性ゴム成分(E)を併用することが好適である。熱可塑性ゴム成分(D)と熱硬化性ゴム成分(E)の併用により、さらに取扱い性を高めることが可能となる。   Generally, a heat transfer sheet is sandwiched between a heat generating member and a heat radiating plate, and is used in a situation where a certain pressure is applied and the temperature of the usage environment changes. Therefore, it is preferable to use the thermosetting rubber component (E) in combination with the above-described thermoplastic rubber component (D) as the binder component (A) so that it can withstand the pressure load in the use environment. By the combined use of the thermoplastic rubber component (D) and the thermosetting rubber component (E), the handleability can be further improved.

なお、本発明において「熱硬化性ゴム成分(E)」とは、硬化前の成分を意味し、熱硬化型ゴム硬化剤(F)と熱処理することにより、硬化した成分となる。   In the present invention, the “thermosetting rubber component (E)” means a component before curing, and becomes a cured component by heat treatment with the thermosetting rubber curing agent (F).

本発明において、熱硬化性ゴム成分(E)は、熱硬化型ゴム硬化剤(F)と架橋することにより、伝熱シートの使用温度によっても分子鎖運動の変化が少ない成分となり、取扱い性向上(強度向上)、急激な使用環境高温変化における安定した伝熱特性を得ることができる。   In the present invention, the thermosetting rubber component (E) is crosslinked with the thermosetting rubber curing agent (F) to become a component with little change in molecular chain motion depending on the use temperature of the heat transfer sheet, thereby improving handleability. (Strength improvement), stable heat transfer characteristics in a sudden change in use environment and high temperature can be obtained.

本発明で使用する熱硬化性ゴム成分(E)に特に制限は無く、熱硬化型ゴム硬化剤(F)と架橋可能な官能基を有する変性合成ゴムであればよい。また、熱硬化性ゴム成分(E)を選択する際には、熱硬化型ゴム硬化剤(F)の種類の選択が重要となる。   There is no restriction | limiting in particular in the thermosetting rubber component (E) used by this invention, What is necessary is just a modified synthetic rubber which has a functional group crosslinkable with a thermosetting rubber hardening | curing agent (F). Moreover, when selecting a thermosetting rubber component (E), selection of the kind of thermosetting type rubber curing agent (F) becomes important.

ゴムの架橋(加硫)剤としては、一般的な硫黄、硫黄化合物、過酸化物等を使用することも可能であるが、環境(臭気)、安全衛生及びゴムとの架橋性の維持の観点から、以下の構造を有する熱硬化型ゴム硬化剤(F)を用いることが好ましい。   General sulfur, sulfur compounds, peroxides, etc. can be used as the rubber crosslinking (vulcanizing) agent, but from the viewpoint of maintaining the environment (odor), health and safety, and crosslinkability with rubber. Therefore, it is preferable to use a thermosetting rubber curing agent (F) having the following structure.

本発明に係る熱硬化性ゴム成分(E)の架橋は、架橋によって熱硬化性ゴム成分(E)の分子量が増加しシート強度が高くなるという、分子量の増加のみを単純に考えるのではなく、組み込まれる熱硬化性ゴム成分(E)及び熱硬化型ゴム硬化剤(F)の構造やその特徴を、架橋により得られた基材シートの特性に反映させるよう設計することが望ましい。よって、熱硬化性ゴム成分(E)は、熱硬化型ゴム硬化剤(F)に対して架橋できる官能基を有するものであることが好ましい。   The crosslinking of the thermosetting rubber component (E) according to the present invention does not simply consider the increase in molecular weight, in which the molecular weight of the thermosetting rubber component (E) is increased by the crosslinking and the sheet strength is increased, It is desirable to design so that the structure and characteristics of the thermosetting rubber component (E) and the thermosetting rubber curing agent (F) to be incorporated are reflected in the characteristics of the base sheet obtained by crosslinking. Therefore, the thermosetting rubber component (E) preferably has a functional group capable of crosslinking with respect to the thermosetting rubber curing agent (F).

上記の目的を考慮すると、熱硬化性ゴム成分(E)において、熱硬化型ゴム硬化剤(F)と反応する官能基としては、カルボキシル基、水酸基、アミノ基等が好ましく、熱硬化性ゴム成分(E)としては、これらの官能基で変性された変性合成ゴムを使用することが好ましい。特に、カルボキシル基を有する、アクリロニトリル・ブタジエン・メタクリル酸の共重合体であるNBRやアクリル酸ブチル・アクリロニトリル・アクリル酸との共重合で得られるアクリルゴムが、シート特性及びコストの面で好ましい。   In view of the above purpose, in the thermosetting rubber component (E), the functional group that reacts with the thermosetting rubber curing agent (F) is preferably a carboxyl group, a hydroxyl group, an amino group, or the like, and the thermosetting rubber component As (E), it is preferable to use a modified synthetic rubber modified with these functional groups. In particular, NBR which is a copolymer of acrylonitrile / butadiene / methacrylic acid having a carboxyl group and acrylic rubber obtained by copolymerization with butyl acrylate / acrylonitrile / acrylic acid are preferable in terms of sheet characteristics and cost.

なお、熱硬化性ゴム成分(E)として、常温で固体である成分(E1)と、常温で液体である成分(E2)とを併用すると、常温で固形である成分(E1)の特性である強度、耐熱性と、常温で液体である成分(E2)の特性である柔軟性の両方の特性を配合により、耐熱性と柔軟性をバランスよく得られることから好ましい。ここで常温とは、15℃〜30℃とする。   In addition, when the component (E1) that is solid at normal temperature and the component (E2) that is liquid at normal temperature are used in combination as the thermosetting rubber component (E), the characteristics of the component (E1) that is solid at normal temperature are obtained. It is preferable because heat resistance and flexibility can be obtained in a well-balanced manner by blending both strength, heat resistance, and flexibility, which is a property of the component (E2) that is liquid at room temperature. Here, normal temperature is 15 ° C. to 30 ° C.

常温で固体である熱硬化性ゴム成分(E1)としては、カルボキシル基、水酸基、アミノ基等で変性された変性合成ゴムが好ましく、更には固形カルボキシル基変性合成ゴムが好ましい。
常温で液体である熱硬化性ゴム成分(E2)としては、カルボキシル基、水酸基、アミノ基等で変性された変性合成ゴムが好ましく、更には液状カルボキシル基変性合成ゴムであることが好ましい。
The thermosetting rubber component (E1) that is solid at room temperature is preferably a modified synthetic rubber modified with a carboxyl group, a hydroxyl group, an amino group, or the like, and more preferably a solid carboxyl group-modified synthetic rubber.
The thermosetting rubber component (E2) that is liquid at normal temperature is preferably a modified synthetic rubber modified with a carboxyl group, a hydroxyl group, an amino group, or the like, and more preferably a liquid carboxyl group-modified synthetic rubber.

好ましく使用されるカルボキシル基変性の固形ゴム(E1)の分子量は、常温で固体であれば特に制限は無く、重量平均分子量で10万以上であることが好ましく、重量平均分子量15万〜50万であることがより好ましい。
好ましく使用されるカルボキシル基変性の液状ゴム(E2)の分子量は、常温で液体であれば特に制限は無く、重量平均分子量で9万以下であることが好ましく、重量平均分子量3万〜9万であることがより好ましい。
The molecular weight of the carboxyl group-modified solid rubber (E1) preferably used is not particularly limited as long as it is solid at room temperature, and is preferably 100,000 or more in terms of weight average molecular weight, with a weight average molecular weight of 150,000 to 500,000. More preferably.
The molecular weight of the carboxyl group-modified liquid rubber (E2) preferably used is not particularly limited as long as it is liquid at room temperature, and is preferably 90,000 or less in terms of weight average molecular weight, and has a weight average molecular weight of 30,000 to 90,000. More preferably.

前記カルボキシル基変性固形ゴム(E1)と前記カルボキシル基変性液状ゴム(E2)は、各々単独で、或いは混合して使用することができる。混合して使用する場合の比率は、要求特性により任意に決定される。なお、常温で固体である熱硬化性ゴム成分(E1)を多く用いると、強度、耐熱性を高める傾向があり、常温で液体である熱硬化性ゴム成分(E2)を用いると柔軟性を高める傾向がある。   The carboxyl group-modified solid rubber (E1) and the carboxyl group-modified liquid rubber (E2) can be used alone or in combination. The ratio in the case of mixing and using is arbitrarily determined by required characteristics. If a large amount of the thermosetting rubber component (E1) that is solid at room temperature is used, the strength and heat resistance tend to be increased. If the thermosetting rubber component (E2) that is liquid at room temperature is used, the flexibility is increased. Tend.

常温で固体の熱硬化性ゴム成分(E1)としては、具体的に、カルボキシル基変性NBR(商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75(KOHmg/g)、日本ゼオン(株)製)等が例示できる。   As the thermosetting rubber component (E1) that is solid at room temperature, specifically, carboxyl group-modified NBR (trade name: Nippon 1072, weight average molecular weight: 250,000, carboxyl group concentration: 0.75 (KOHmg / g), Nippon Zeon Co., Ltd.) can be exemplified.

常温で液体の熱硬化性ゴム成分(E2)としては、具体的に、カルボキシル基変性NBR(商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75(KOHmg/g)、日本ゼオン(株)製)、X750、X740、X146、X160(JSR(株)製)等が例示できる。   Specific examples of the thermosetting rubber component (E2) that is liquid at room temperature include carboxyl group-modified NBR (trade name: Nippon DN601, weight average molecular weight: 68,000, carboxyl group concentration: 0.75 (KOHmg / g ), Manufactured by Nippon Zeon Co., Ltd.), X750, X740, X146, X160 (manufactured by JSR Corporation), and the like.

前記熱硬化性ゴム成分(E)の使用量は、バインダ成分(A)中の熱可塑性ゴム成分(D)と熱硬化性ゴム成分(E)との総量100質量部に対し10〜70質量部が好ましく、10〜60質量部がより好ましい。この範囲内であるとバランスのとれた伝熱シートが得られやすい。   The amount of the thermosetting rubber component (E) used is 10 to 70 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic rubber component (D) and the thermosetting rubber component (E) in the binder component (A). Is preferable, and 10-60 mass parts is more preferable. Within this range, a well-balanced heat transfer sheet is easily obtained.

本発明で使用する熱硬化型ゴム硬化剤(F)に特に制限は無いが、熱硬化性ゴム成分(E)が有するカルボキシル基、水酸基、アミノ基等の官能基と容易に反応し、安定した物性を有する材料が好ましい。   Although there is no restriction | limiting in particular in the thermosetting rubber curing agent (F) used by this invention, it reacted easily with functional groups, such as a carboxyl group, a hydroxyl group, and an amino group which thermosetting rubber component (E) has, and was stable A material having physical properties is preferred.

なお、熱硬化性ゴム成分(E)としての水酸基を有した変性合成ゴムと、熱硬化型ゴム硬化剤(F)としてのイソシアネート(NCO)化合物とを併用する方法も採用し得るが、イソシアネート化合物は水分とも瞬時に反応するため、取扱い性及び反応のコントロールの観点からはイソシアネート化合物以外のものを用いることが好ましい。   A method in which a modified synthetic rubber having a hydroxyl group as the thermosetting rubber component (E) and an isocyanate (NCO) compound as the thermosetting rubber curing agent (F) can be used together. Since it reacts instantaneously with moisture, it is preferable to use a compound other than an isocyanate compound from the viewpoint of handling and control of the reaction.

熱硬化性ゴム成分(E)としてカルボキシル基変性合成ゴム又はアミノ基変性合成ゴムを使用する場合、熱硬化型ゴム硬化剤(F)としてはエポキシ基含有化合物が好ましく、特にエポキシ基を2つ以上有するエポキシ基含有化合物が好ましい。エポキシ基含有化合物は、他部材との伝熱シートの接着力や耐熱性の向上、バインダ成分(A)と異方性黒鉛粉(B)との混合性の向上等の働きもある。よって、エポキシ基含有化合物を使用した伝熱シートでは、使用するエポキシ基含有化合物の特徴が一部反映した物性を有したものとなる。   When a carboxyl group-modified synthetic rubber or amino group-modified synthetic rubber is used as the thermosetting rubber component (E), an epoxy group-containing compound is preferred as the thermosetting rubber curing agent (F), and in particular, two or more epoxy groups are contained. An epoxy group-containing compound is preferable. The epoxy group-containing compound also functions to improve the adhesive force and heat resistance of the heat transfer sheet with other members, and to improve the mixing properties of the binder component (A) and the anisotropic graphite powder (B). Therefore, the heat transfer sheet using the epoxy group-containing compound has physical properties partially reflecting the characteristics of the epoxy group-containing compound used.

本発明で使用するエポキシ含有化合物の分子量及び構造に特に制限は無いが、熱可塑性ゴム成分(D)と熱硬化性ゴム成分(E)との相溶性、耐熱性及びコスト等を考慮すると、数平均分子量(Mn)500以下のエピクロルヒドリンとビスフェノールAで構成されるエポキシ含有化合物が好ましい。   There are no particular restrictions on the molecular weight and structure of the epoxy-containing compound used in the present invention, but considering the compatibility, heat resistance, cost, etc. of the thermoplastic rubber component (D) and the thermosetting rubber component (E), several An epoxy-containing compound composed of epichlorohydrin having an average molecular weight (Mn) of 500 or less and bisphenol A is preferred.

熱硬化性ゴム成分(E)、特に熱硬化性ゴム成分(E)がカルボキシル基変性合成ゴム又はアミノ基変性合成ゴムであるときの、熱硬化型ゴム硬化剤(F)としてのエポキシ基含有化合物の比率は、熱硬化性ゴム成分(E)に含まれるカルボキシル基濃度又はアミノ基濃度とエポキシ基含有化合物の分子量及びエポキシ基の数(当量)で決定される。一般には、カルボキシル基変性合成ゴム又はアミノ基変性合成ゴム100質量部に対し、エポキシ基含有化合物1〜30質量部が好ましい。エポキシ基含有化合物の配合量が1質量部以上であれば、エポキシ基含有化合物を介した架橋密度が向上し、タック性及びバインダ成分(A)と異方性黒鉛粉(B)の混合性が向上する。また、エポキシ基含有化合物の配合量が30質量部以下の場合には、添加したエポキシ基含有化合物の全体が架橋に充分寄与し、耐熱性やシート特性が向上する。   Epoxy group-containing compound as a thermosetting rubber curing agent (F) when the thermosetting rubber component (E), particularly the thermosetting rubber component (E) is a carboxyl group-modified synthetic rubber or an amino group-modified synthetic rubber Is determined by the carboxyl group concentration or amino group concentration contained in the thermosetting rubber component (E), the molecular weight of the epoxy group-containing compound, and the number of epoxy groups (equivalent). In general, the epoxy group-containing compound is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the carboxyl group-modified synthetic rubber or amino group-modified synthetic rubber. If the compounding amount of the epoxy group-containing compound is 1 part by mass or more, the crosslinking density through the epoxy group-containing compound is improved, and the tack property and the mixing property of the binder component (A) and the anisotropic graphite powder (B) are improved. improves. Moreover, when the compounding quantity of an epoxy group containing compound is 30 mass parts or less, the whole added epoxy group containing compound contributes to bridge | crosslinking fully, and heat resistance and a sheet | seat characteristic improve.

また必要に応じて、イソシアネート又はアミン化合物等の硬化促進剤が使用される。   If necessary, a curing accelerator such as an isocyanate or an amine compound is used.

前記熱硬化型ゴム硬化剤(F)と前記熱硬化性ゴム成分(E)との反応では、熱処理されることが好ましい。熱処理条件に特に制限はないが、150℃/60分で完全硬化する。完全硬化は、カルボキシル基、水酸基、アミノ基等の官能基の完全消失(IR)が確認され、これを完全硬化した状態と判断できる。従って、伝熱シート中の硬化ひずみを少なくしたい場合は、低温・長時間で処理し、また、生産性向上を図るなら高温・短時間の熱処理条件となる。   In the reaction between the thermosetting rubber curing agent (F) and the thermosetting rubber component (E), heat treatment is preferably performed. Although there is no restriction | limiting in particular in heat processing conditions, It hardens | cures completely at 150 degreeC / 60 minutes. In the complete curing, the complete disappearance (IR) of functional groups such as a carboxyl group, a hydroxyl group, and an amino group is confirmed, and this can be judged as a completely cured state. Accordingly, when it is desired to reduce the curing strain in the heat transfer sheet, the heat treatment is performed at a low temperature for a long time, and for improving the productivity, the heat treatment conditions are a high temperature for a short time.

熱硬化型ゴム硬化剤(F)と熱硬化性ゴム成分(E)の架橋により得られる架橋密度は熱処理条件により、任意に設定できる。上記熱処理条件によりバインダ成分(A)中に含まれる熱硬化性ゴム成分(E)と熱硬化型ゴム硬化剤(F)との架橋密度を変えることができるので、所望の要求に合わせた性状の伝熱シートを提供できる。   The crosslinking density obtained by crosslinking the thermosetting rubber curing agent (F) and the thermosetting rubber component (E) can be arbitrarily set depending on the heat treatment conditions. Since the crosslink density between the thermosetting rubber component (E) and the thermosetting rubber curing agent (F) contained in the binder component (A) can be changed by the heat treatment conditions, the properties can be adjusted to the desired requirements. Heat transfer sheet can be provided.

例えば、本発明の伝熱シートにおいて、発熱体及び放熱体に対する密着性を優先したい場合には、熱処理せずに伝熱シートを発熱体及び放熱体に付着させた後に、熱処理を施して熱硬化性ゴム成分(E)と熱硬化型ゴム硬化剤(F)とを硬化させる方法がある。   For example, in the heat transfer sheet of the present invention, when priority is given to adhesion to the heating element and the heat radiating body, the heat transfer sheet is attached to the heating element and the heat radiating body without heat treatment, and then subjected to heat treatment and thermosetting. There is a method of curing the functional rubber component (E) and the thermosetting rubber curing agent (F).

他方、発熱体及び放熱体に対する密着性よりも、生産性や基材シートの強度(取り扱い性)を重視する場合、基材シートを作製した段階で熱処理し、バインダ成分(A)中の熱硬化性ゴム成分(E)と熱硬化型ゴム硬化剤(F)とを硬化させ、バインダ成分(A)中の熱可塑性ゴム成分(D)のタック性により、発熱体と放熱体の間に伝熱シートを固定する方法等がある。   On the other hand, when emphasizing productivity and strength (handleability) of the base sheet rather than adhesion to the heat generator and heat radiator, heat treatment is performed at the stage of preparing the base sheet, and thermosetting in the binder component (A). Heat transfer between the heat generator and the heat radiating member due to the tackiness of the thermoplastic rubber component (D) in the binder component (A) by curing the heat-resistant rubber component (E) and the thermosetting rubber curing agent (F). There is a method of fixing the sheet.

なお、本発明の伝熱シートで用いる金属膜は蒸着によって形成された金属蒸着膜であることから、基材シートと金属蒸着膜(C)との密着性に優れるため、金属シートを硬化してから金属蒸着膜(C)を形成する方法が好適に採用できる。この方法によれば、取り扱い性が向上した伝熱シートが得られる。   In addition, since the metal film used in the heat transfer sheet of the present invention is a metal vapor-deposited film formed by vapor deposition, it has excellent adhesion between the base sheet and the metal vapor-deposited film (C). From this, a method for forming a metal vapor deposition film (C) can be suitably employed. According to this method, a heat transfer sheet with improved handleability can be obtained.

いずれにしても、本発明の伝熱シートを放熱材として利用する前には、熱硬化性ゴム成分(E)と熱硬化型ゴム硬化剤(F)とを硬化させることにはなるが、上述の通り、放熱材として使用する前の伝熱シートは、所望の要求により架橋密度を変えることが可能である。   In any case, the thermosetting rubber component (E) and the thermosetting rubber curing agent (F) are cured before using the heat transfer sheet of the present invention as a heat dissipation material. As described above, the heat transfer sheet before being used as a heat radiating material can change the crosslinking density according to desired requirements.

(黒鉛粉(B))
本発明に係る基材シートは、異方性黒鉛粉(B)を含有する。伝熱材料として機能する異方性黒鉛粉であれば特に限定されないが、膨張黒鉛成型シートの粉砕粉であることが好ましく、更に薄片針枝状又は樹枝状の形状を有することが好ましい。
(Graphite powder (B))
The base material sheet according to the present invention contains anisotropic graphite powder (B). Although it will not specifically limit if it is anisotropic graphite powder which functions as a heat-transfer material, It is preferable that it is a pulverized powder of an expanded graphite molded sheet, and it is preferable to have a thin needle-branch shape or dendritic shape.

膨張黒鉛成型シートの粉砕粉は、例えば、下記の工程を経て作製される。
(1)膨張黒鉛を作製する工程。
(2)膨張黒鉛により、膨張黒鉛成型シートを作製する工程。
(3)膨張黒鉛成型シートを粉砕する工程。
(4)分級により粉砕粉の粒度を揃える工程。
The pulverized powder of the expanded graphite molded sheet is produced, for example, through the following steps.
(1) A step of producing expanded graphite.
(2) A step of producing an expanded graphite molded sheet from expanded graphite.
(3) A step of pulverizing the expanded graphite molded sheet.
(4) A step of matching the particle size of the pulverized powder by classification.

上記(1)の工程において、膨張黒鉛を作製する方法は特に制限はなく、例えば原料の天然黒鉛等を、酸性物質及び酸化剤を含む溶液中に浸漬して黒鉛層間化合物を生成させる工程の後に、前記黒鉛層間化合物を加熱して黒鉛結晶のc軸方向を膨張させて膨張黒鉛とする工程を経て製造することができる。これにより、膨張した黒鉛が虫状短繊維となり複雑に絡み合った形態となる。   In the step (1), the method for producing the expanded graphite is not particularly limited. For example, after the step of immersing a raw material natural graphite or the like in a solution containing an acidic substance and an oxidizing agent to form a graphite intercalation compound. The graphite intercalation compound can be heated to expand the c-axis direction of the graphite crystal to obtain expanded graphite. Thereby, the expanded graphite becomes a worm-like short fiber and is in a complicatedly entangled form.

膨張黒鉛の膨張倍率は特に制限はないが、放熱特性を考慮すると、10倍以上が好ましく、50倍から500倍であることが更に好ましい。膨張倍率が10倍以上の膨張黒鉛を使用すると、得られる膨張黒鉛成形シートの強度に優れ、また500倍以下の膨張黒鉛を使用すると、膨張黒鉛成型シートの作製の作業性に優れる。また必要に応じて、上記膨張黒鉛を更に高い温度で熱処理し、膨張黒鉛中に含まれる不純物を除去して使用されることも好ましい。   The expansion ratio of expanded graphite is not particularly limited, but is preferably 10 times or more, and more preferably 50 times to 500 times in consideration of heat dissipation characteristics. If expanded graphite having an expansion ratio of 10 times or more is used, the resulting expanded graphite molded sheet is excellent in strength, and if expanded graphite of 500 times or less is used, the workability of producing an expanded graphite molded sheet is excellent. If necessary, the expanded graphite is preferably heat-treated at a higher temperature to remove impurities contained in the expanded graphite.

なお、前記膨張黒鉛の原料黒鉛としては特に制限はないが、天然黒鉛、キッシュ黒鉛、熱分解黒鉛等の、高度に結晶が発達した黒鉛が好ましいものとして挙げられる。得られる特性と経済性の両者を考慮すると天然黒鉛が好ましい。用いる天然黒鉛としては、特に制限はなく、F48C(日本黒鉛(株)製)、H−50(中越黒鉛(株)製)等の市販品を用いることができる。これらは、鱗片状の性状形態で使用することが好ましい。   The raw graphite of the expanded graphite is not particularly limited, and graphite having highly developed crystals such as natural graphite, quiche graphite, and pyrolytic graphite is preferable. Natural graphite is preferable in consideration of both the obtained characteristics and the economical efficiency. There is no restriction | limiting in particular as natural graphite to be used, Commercial products, such as F48C (made by Nippon Graphite Co., Ltd.) and H-50 (made by Chuetsu Graphite Co., Ltd.), can be used. These are preferably used in a scaly form.

上記(1)の工程において、黒鉛の処理に用いられる酸性物質は、黒鉛層間に進入して十分な膨張能力を有する酸性根(陰イオン)を発生可能な、硫酸等が使用される。酸性物質としての硫酸は、適度な濃度で使用されるが、95質量%以上の濃度であることが好ましく、濃硫酸を使用することが特に好ましい。酸性物質の使用量については特に制限はなく、目的とする膨張倍率で決定され、例えば、原料黒鉛100質量部に対して100〜1000質量部で使用することが好ましい。   In the step (1), as the acidic substance used for the treatment of graphite, sulfuric acid or the like that can enter between graphite layers and generate acidic roots (anions) having sufficient expansion ability is used. Sulfuric acid as an acidic substance is used at an appropriate concentration, but is preferably 95% by mass or more, and particularly preferably concentrated sulfuric acid. There is no restriction | limiting in particular about the usage-amount of an acidic substance, It determines with the target expansion ratio, For example, it is preferable to use at 100-1000 mass parts with respect to 100 mass parts of raw material graphite.

また、酸性物質と伴に用いられる酸化剤は、過酸化水素、過塩素酸カリウム、過マンガン酸カリウム、重クロム酸カリウム等の過酸化物、また硝酸などの酸化作用のある酸を用いることが好ましく、良好な膨張黒鉛を得やすいという観点から過酸化水素が特に好ましい。
酸化剤として過酸化水素を用いる場合には、水溶液として用いることが好ましい。水溶液中の過酸化水素の濃度については特に制限はないが、20〜40質量%の範囲が好ましい。過酸化水素水の使用量についても特に制限はないが、原料黒鉛100質量部に対して5〜60質量部の範囲で使用することが好ましい。
The oxidizing agent used with the acidic substance may be a peroxide such as hydrogen peroxide, potassium perchlorate, potassium permanganate, or potassium dichromate, or an acid having an oxidizing action such as nitric acid. Hydrogen peroxide is particularly preferable from the viewpoint that it is easy to obtain good expanded graphite.
When hydrogen peroxide is used as the oxidizing agent, it is preferably used as an aqueous solution. Although there is no restriction | limiting in particular about the density | concentration of hydrogen peroxide in aqueous solution, The range of 20-40 mass% is preferable. Although there is no restriction | limiting in particular also about the usage-amount of hydrogen peroxide water, It is preferable to use in the range of 5-60 mass parts with respect to 100 mass parts of raw material graphite.

上記(2)の工程において、得られた膨張黒鉛を成型してシート化する方法に特に制限はなく、常温でのロール、プレス等により簡単にシート化することができる。また、得られる膨張黒鉛成型シート層の嵩密度は、膨張黒鉛充填量と成形圧力の大きさでほぼ決定される。   In the step (2), there is no particular limitation on the method of forming the obtained expanded graphite into a sheet, and it can be easily formed into a sheet by a roll, a press or the like at room temperature. Further, the bulk density of the obtained expanded graphite molded sheet layer is substantially determined by the amount of expanded graphite filled and the molding pressure.

使用される膨張黒鉛成型シートの嵩密度に制限はないが、0.07g/cm〜1.5g/cmの範囲が好ましく、0.1g/cm〜1.5g/cmの範囲がより好ましい。嵩密度が0.07g/cm以上、更には0.1g/cm以上の場合、膨張黒鉛成型シートの強度が充分となり、嵩密度が1.5g/cm以下の場合、成型時に膨張黒鉛擬集物が破壊するのが抑えられる。 Not limited to bulk density of the expanded graphite shaped sheet to be used, but is preferably in the range of 0.07g / cm 3 ~1.5g / cm 3 , the range of 0.1g / cm 3 ~1.5g / cm 3 is More preferred. When the bulk density is 0.07 g / cm 3 or more, and further 0.1 g / cm 3 or more, the strength of the expanded graphite molded sheet is sufficient, and when the bulk density is 1.5 g / cm 3 or less, the expanded graphite at the time of molding. The destruction of the pseudo-collection is suppressed.

膨張黒鉛成型シートは上記製法により得ることもできるが、下記に示す市販品を入手して使用することも可能である。本発明で用いられる膨張黒鉛成型シートとしては、日立化成工業(株)製のカーボフィットHGP−105、HGP−207等が挙げられる。   The expanded graphite molded sheet can be obtained by the above-mentioned production method, but it is also possible to obtain and use commercially available products shown below. Examples of the expanded graphite molded sheet used in the present invention include Carbofit HGP-105 and HGP-207 manufactured by Hitachi Chemical Co., Ltd.

上記(3)及び(4)の工程で使用する装置に制限はなく、一般的な乾式粉砕機及び乾式分級機が使用でき、形状が薄片針枝状又は樹枝状の異方性黒鉛粉を得ることができる。
本発明の伝熱シートにおいて、異方性黒鉛粉(B)の形状が球状もしくは球状に近い場合は、後に述べる異方性黒鉛粉(B)同士の接触が緩慢となって高い伝熱性を有する伝熱シートが得られにくくなるため、薄片針枝状又は樹枝状の異方性黒鉛粉を用いることが好適である。
The apparatus used in the steps (3) and (4) is not limited, and a general dry pulverizer and dry classifier can be used to obtain an anisotropic graphite powder having a thin needle branch or dendritic shape. be able to.
In the heat transfer sheet of the present invention, when the shape of the anisotropic graphite powder (B) is spherical or nearly spherical, the contact between the anisotropic graphite powders (B) described later is slow and has high heat transfer properties. Since it becomes difficult to obtain a heat transfer sheet, it is preferable to use a thin needle-branched or dendritic anisotropic graphite powder.

ここで、「薄片針枝状」とは、針葉樹のような尖った葉を平らにした形状を指す。また「樹枝状」とは、木の枝のような形状で、複数の小枝が絡み合った形状を指す。なお、これらの形状の確認は、SEMを用いて行う。   Here, the “thin needle-branch shape” refers to a shape obtained by flattening a pointed leaf like a conifer. The “dendritic shape” refers to a shape like a tree branch, in which a plurality of twigs are intertwined. In addition, confirmation of these shapes is performed using SEM.

異方性黒鉛粉(B)の粒子径は、50μm〜2000μmの範囲が好ましく、100μm〜1500μmの範囲がより好ましく、150μm〜1000μmの範囲が更に好ましい。異方性黒鉛粉(B)の粒子径が50μm以上の場合、放熱特性を左右する黒鉛粉の異方性が充分となり、異方性黒鉛粉(B)同士の接触確率が増大し放熱特性が向上する傾向にある。粒子径が2000μm以下の異方性黒鉛粉(B)を使用した場合は、バインダ成分(A)と均一に混合しやすく、伝熱シートの伝熱特性及び物性が均一化しやすい。   The particle diameter of the anisotropic graphite powder (B) is preferably in the range of 50 μm to 2000 μm, more preferably in the range of 100 μm to 1500 μm, and still more preferably in the range of 150 μm to 1000 μm. When the particle diameter of the anisotropic graphite powder (B) is 50 μm or more, the anisotropy of the graphite powder that affects the heat dissipation characteristics becomes sufficient, the contact probability between the anisotropic graphite powders (B) increases, and the heat dissipation characteristics are improved. It tends to improve. When the anisotropic graphite powder (B) having a particle size of 2000 μm or less is used, it is easy to uniformly mix with the binder component (A), and the heat transfer characteristics and physical properties of the heat transfer sheet are easily made uniform.

異方性黒鉛粉(B)の粒子径は、篩い分け法により粒度分布を測定する。具体的には、106、212、300、420、500、600、710、850、1000、1400、2000μmの篩を用いて分級し、各篩に残った黒鉛粉の重量より算出する。   The particle size distribution of the anisotropic graphite powder (B) is measured by a sieving method. Specifically, classification is performed using 106, 212, 300, 420, 500, 600, 710, 850, 1000, 1400, and 2000 μm sieves, and the weight is calculated from the weight of the graphite powder remaining on each sieve.

異方性黒鉛粉(B)の基材シートにおける配合量は、基材シート全体に対して、20〜70質量%であることが好ましく、25〜60質量%であることが好ましい。20質量%以上では放熱効果が充分となり、70質量%以下では基材シートが硬くなりすぎるのが防止される。   The blending amount of the anisotropic graphite powder (B) in the base material sheet is preferably 20 to 70% by mass, and preferably 25 to 60% by mass with respect to the entire base material sheet. If it is 20% by mass or more, the heat dissipation effect is sufficient, and if it is 70% by mass or less, the base sheet is prevented from becoming too hard.

(その他の成分)
本発明の伝熱シートで使用されるその他の成分としては、難燃剤、可塑剤等が挙げられる。難燃剤としては特に制限はないが、基材シートのバインダ成分(A)の一部として機能するため、バインダ成分(A)との相溶性や耐熱性及び得られる基材シートの物性を配慮して選択する必要がある。
(Other ingredients)
Examples of other components used in the heat transfer sheet of the present invention include flame retardants and plasticizers. Although there is no restriction | limiting in particular as a flame retardant, since it functions as a part of binder component (A) of a base material sheet, it considers the compatibility with a binder component (A), heat resistance, and the physical property of the base material sheet obtained. Need to select.

難燃剤としては一般的なハロゲン化化合物が使用できるが、上記シート特性のバランスを考慮すると燐酸エステル系の難燃剤が好ましく、例えばトリメチルホスフェート、トリエチルホスフェートの脂肪族燐酸エステルや、トリフェニルホスフェート、トリクレジルホスフェート等の芳香族燐酸エステル及びビスフェノールAビス(ジフェニルホスフェート)等の芳香族縮合型燐酸エステルが挙げられ、これらは単独及び混合して使用できる。
本発明で使用できる燐酸エステルの一例としては、芳香族縮合燐酸エステル(大八化学工業(株)のCR−741)等が挙げられる。
As the flame retardant, a general halogenated compound can be used. However, in consideration of the balance of the sheet characteristics, a phosphate ester-based flame retardant is preferable. For example, trimethyl phosphate, triethyl phosphate aliphatic phosphate ester, triphenyl phosphate, triphenyl phosphate, and the like. Aromatic phosphate esters such as cresyl phosphate and aromatic condensed phosphate esters such as bisphenol A bis (diphenyl phosphate) can be used, and these can be used alone or in combination.
An example of the phosphoric acid ester that can be used in the present invention is an aromatic condensed phosphoric acid ester (CR-841 of Daihachi Chemical Industry Co., Ltd.).

難燃剤の使用量は、伝熱シートのバインダ成分(A)の100質量部に対して5〜70質量部の範囲が好ましく、異方性黒鉛粉(B)の使用量によって適宜決定される。難燃剤の使用量が5質量部以上の場合には、目標とする難燃性が得られやすく、70質量部以下の場合には、得られる伝熱シートの柔軟性が急激に低下するのが抑えられる。   The amount of the flame retardant used is preferably in the range of 5 to 70 parts by mass with respect to 100 parts by mass of the binder component (A) of the heat transfer sheet, and is appropriately determined depending on the amount of anisotropic graphite powder (B) used. When the amount of the flame retardant used is 5 parts by mass or more, the target flame retardancy is easily obtained, and when it is 70 parts by mass or less, the flexibility of the obtained heat transfer sheet is drastically reduced. It can be suppressed.

また、可塑剤としては各種低分子化合物が使用され、例えば、ポリブテン(日油(株)製、商品名0N、3N、5N、10N、30N、200N)などが挙げられる。   Moreover, various low molecular weight compounds are used as the plasticizer, and examples thereof include polybutene (manufactured by NOF Corporation, trade names 0N, 3N, 5N, 10N, 30N, and 200N).

また、伝熱シートを付設する発熱体及び放熱体への密着性を向上させる観点からは、粘着性付与剤をバインダ成分(A)に加えてもよい。粘着性付与剤としては、例えば、タッキファイヤーなどが挙げられる。市販品としては、スーパーエステルA−75(荒川化学工業(株)製)、エステルガムAA−L(荒川化学(株)製)、ペンセルA(荒川化学(株)製)などを例示することができる。   Moreover, you may add a tackifier to a binder component (A) from a viewpoint of improving the adhesiveness to the heat generating body which attaches a heat-transfer sheet | seat, and a heat radiator. Examples of tackifiers include tackifiers. Examples of commercially available products include Superester A-75 (manufactured by Arakawa Chemical Co., Ltd.), Ester Gum AA-L (manufactured by Arakawa Chemical Co., Ltd.), Pencel A (manufactured by Arakawa Chemical Co., Ltd.), and the like. it can.

(基材シート)
本発明に係る基材シートは、前記バインダ成分(A)と前記異方性黒鉛粉(B)とを含有し、異方性黒鉛粉(B)が厚み方向に配向してなる。
この基材シートの厚みは、100μm〜2000μmであることが好ましく、100μm〜1500μmであることがより好ましく、100μm〜1000μmであることが更に好ましい。基材シートの厚みが上記範囲内にあると、取扱い性及び伝熱特性に優れる。
なお、本発明の伝熱シート中における基材シートの厚みは、厚さゲージによって測定し、その平均値(同一基材シート内の任意の5点での測定の平均値)とする。なお、厚さゲージとしては、例えば、デジタルダイヤルゲージ(株式会社ミツトヨ製 デジマチックインジケータID−C112C)が挙げられる。
(Base material sheet)
The base material sheet according to the present invention contains the binder component (A) and the anisotropic graphite powder (B), and the anisotropic graphite powder (B) is oriented in the thickness direction.
The thickness of the base sheet is preferably 100 μm to 2000 μm, more preferably 100 μm to 1500 μm, and still more preferably 100 μm to 1000 μm. When the thickness of the base sheet is within the above range, the handleability and heat transfer characteristics are excellent.
In addition, the thickness of the base sheet in the heat transfer sheet of the present invention is measured by a thickness gauge, and the average value (the average value of measurements at any five points in the same base sheet) is used. In addition, as a thickness gauge, a digital dial gauge (Digimatic indicator ID-C112C made from Mitutoyo Corporation) is mentioned, for example.

上述の通り、基材シートは熱処理して硬化した硬化シートであってもよいし、熱処理せずに未架橋の状態のシートであってもよいが、基材シートの強度を高める観点からは、架橋した硬化シートとすることが好ましい。なお、未架橋の基材シートは、後述の金属蒸着膜(C)をラミネートして伝熱シートを作製した後に、或いは、伝熱シートを発熱体と放熱体の間に配置した後に、熱処理を施す。
基材シートの具体的な作製方法については後述する。
As described above, the base sheet may be a cured sheet cured by heat treatment, or may be an uncrosslinked sheet without heat treatment, from the viewpoint of increasing the strength of the base sheet, It is preferable to use a crosslinked cured sheet. The uncrosslinked substrate sheet is subjected to a heat treatment after a metal vapor deposition film (C) described later is laminated to prepare a heat transfer sheet, or after the heat transfer sheet is disposed between the heat generator and the heat radiator. Apply.
A specific method for producing the base sheet will be described later.

(金属蒸着膜(C))
本発明において、使用される金属蒸着膜(C)の材質は用途に合わせて適宜選定され、アルミ、銅、銀、金、白金、及びニッケルが挙げられる。そのなかでも、取扱い性、伝熱特性の観点からアルミ、銅又は錫が好ましく、アルミがより好ましい。
(Metal vapor deposition film (C))
In this invention, the material of the metal vapor deposition film (C) used is suitably selected according to a use, and aluminum, copper, silver, gold | metal | money, platinum, and nickel are mentioned. Among these, aluminum, copper, or tin is preferable from the viewpoint of handleability and heat transfer characteristics, and aluminum is more preferable.

金属蒸着膜(C)の厚みは、伝熱シートの総厚みの2%以下であることが、被設部材への追従性の観点から好ましく、1%以下であることがより好ましく、0.5%以下であることがより好ましい。金属蒸着膜(C)が2%以下であるとシート表面が硬くなり、伝熱特性が低下する傾向にある。なお金属箔の材質は用途に合わせて適宜選定される。   The thickness of the metal vapor-deposited film (C) is preferably 2% or less of the total thickness of the heat transfer sheet, preferably from 1% or less, more preferably from 1% or less, from the viewpoint of followability to the installed member. % Or less is more preferable. When the metal vapor deposition film (C) is 2% or less, the sheet surface becomes hard and the heat transfer characteristics tend to deteriorate. In addition, the material of metal foil is suitably selected according to a use.

本発明の伝熱シートにおける金属蒸着膜(C)の厚みは、厚さゲージによって測定し、その平均値(同一金属蒸着膜内の任意の5点での測定の平均値)とする。なお、厚さゲージとしては、例えば、デジタルダイヤルゲージ(株式会社ミツトヨ製、デジマチックインジケータID−C112C)が挙げられる。   The thickness of the metal vapor deposition film (C) in the heat transfer sheet of the present invention is measured by a thickness gauge, and the average value (average value of measurements at any five points in the same metal vapor deposition film) is used. Examples of the thickness gauge include a digital dial gauge (manufactured by Mitutoyo Corporation, Digimatic Indicator ID-C112C).

金属蒸着膜(C)の厚みは、用途や基材シートの厚みにより適宜選定する。具体的には、1μm〜3μmであることが好ましく、0.5μm〜1μmであることがより好ましい。金属蒸着膜(C)の厚みが上記範囲内にあると、伝熱特性に優れる。   The thickness of a metal vapor deposition film (C) is suitably selected according to the use and the thickness of a base material sheet. Specifically, it is preferably 1 μm to 3 μm, and more preferably 0.5 μm to 1 μm. When the thickness of the metal vapor deposition film (C) is within the above range, the heat transfer characteristics are excellent.

<伝熱シートの製造方法>
伝熱シートの製造方法では、まず、前記バインダ成分(A)と前記異方性黒鉛粉(B)とを含有し、異方性黒鉛粉(B)が厚み方向に配向した基材シートを作製する。次に、基材シートの一方の表面に金属蒸着膜(C)を付設する。
<Method for producing heat transfer sheet>
In the method for producing a heat transfer sheet, first, a base material sheet containing the binder component (A) and the anisotropic graphite powder (B) and having the anisotropic graphite powder (B) oriented in the thickness direction is prepared. To do. Next, a metal vapor deposition film (C) is attached to one surface of the base sheet.

詳細には、伝熱シートの製造方法は、下記の工程を含む。
(a)前記バインダ成分(A)と前記異方性黒鉛粉(B)とを含有する組成物を調製する工程。
(b)前記組成物から一次シートを作製する工程。
(c)前記一次シートを積層又は捲回して成形体を得る工程。
(d)前記成形体をスライスしてスライスシート(基材シート)を得る工程。
(e)前記基材シートの表面に金属を蒸着して、金属蒸着膜(C)を形成し伝熱シートを得る工程。
In detail, the manufacturing method of a heat-transfer sheet | seat includes the following process.
(A) A step of preparing a composition containing the binder component (A) and the anisotropic graphite powder (B).
(B) A step of producing a primary sheet from the composition.
(C) A step of obtaining a molded body by laminating or winding the primary sheet.
(D) A step of slicing the molded body to obtain a slice sheet (base material sheet).
(E) A step of vapor-depositing a metal on the surface of the base sheet to form a metal vapor-deposited film (C) to obtain a heat transfer sheet.

((a)工程)
まず、前記バインダ成分(A)、異方性黒鉛粉(B)、および適宜他の成分を混合して組成物を得る。
上記したバインダ成分(A)、異方性黒鉛粉(B)及びその他の成分の混合方法に特に制限はなく、前記各成分を変異無く、短時間で均一に混合できる方法が好ましい。特に、加熱した加圧型のニーダを使用し混合することが好ましい。
(Step (a))
First, the binder component (A), anisotropic graphite powder (B), and other components as appropriate are mixed to obtain a composition.
There is no particular limitation on the method of mixing the binder component (A), anisotropic graphite powder (B) and other components described above, and a method in which the above components can be uniformly mixed in a short time without variation is preferable. In particular, it is preferable to mix using a heated pressure kneader.

混合条件は、使用するバインダ成分(A)の分子量や異方性黒鉛粉(B)の配合量等で任意に決定する。一般的なニーダへの各成分の投入順序は、バインダ成分(A)として、高分子の固形成分と低分子の液状成分を使用する場合には、固形成分を最初にニーダに投入し、素練りした状態で液状成分を少量ずつ配合して混合する方法で行われる。こうすることにより、均一なバインダ成分(A)が得られ効果的である。   Mixing conditions are arbitrarily determined by the molecular weight of the binder component (A) used, the blending amount of the anisotropic graphite powder (B), and the like. When using a high molecular weight solid component and a low molecular weight liquid component as the binder component (A), a general kneader is charged with the solid component first and then kneaded. In this state, the liquid component is mixed and mixed little by little. By carrying out like this, a uniform binder component (A) is obtained and it is effective.

また、固形成分及び液状成分のよりいっそうの均一性を望む場合には、固形成分と液状成分をニーダ及びロールにて均一混合し(このときに他成分の少量を配合してもよい)、前記混合と他材料をニーダにて再度混合してもよい。   In addition, when further uniformity of the solid component and the liquid component is desired, the solid component and the liquid component are uniformly mixed with a kneader and a roll (at this time, a small amount of other components may be blended), Mixing and other materials may be mixed again with a kneader.

また、熱硬化型ゴム成分(E)を使用する場合において、組成物の粘度が高く混合時に摩擦熱が発生し、熱硬化型ゴム硬化剤(F)と熱硬化性ゴム成分(E)との架橋反応の進行が懸念される場合は、混合終了時の10〜20分程度前に熱硬化型ゴム硬化剤(F)をニーダに投入することが好ましい。組成物の混合の均性一(熱硬化型ゴム硬化剤(F)による架橋反応の進行の確認も含まれる)の判断は、組成物の粘度を、キュラストメーターやムーニー粘度計で測定することで行う。   In the case of using the thermosetting rubber component (E), the viscosity of the composition is high and frictional heat is generated during mixing, and the thermosetting rubber curing agent (F) and the thermosetting rubber component (E) When the progress of the crosslinking reaction is concerned, it is preferable to add the thermosetting rubber curing agent (F) to the kneader about 10 to 20 minutes before the end of mixing. To determine the uniformity of mixing of the composition (including confirmation of the progress of the crosslinking reaction with the thermosetting rubber curing agent (F)), measure the viscosity of the composition with a Curast meter or Mooney viscometer. To do.

この際の目標とする粘度は、各種の配合系において混合温度や時間を変える等により予備検討を行い、目的とする物性値の得られた伝熱シート組成物の粘度値とすることが好ましい。なお、ここで目標とする組成物の粘度とは、硬化反応による影響が殆どなく、異方性黒鉛粉(B)とバインダ成分(A)との混合状態のみに起因する粘度である。   The target viscosity at this time is preferably set to the viscosity value of the heat transfer sheet composition having a desired physical property value by conducting preliminary studies by changing the mixing temperature and time in various blending systems. Here, the target viscosity of the composition is a viscosity that is hardly affected by the curing reaction and is caused only by the mixed state of the anisotropic graphite powder (B) and the binder component (A).

また、必要に応じて有機溶剤を少量添加して、混合性の向上を図ることもできるが、最終的には使用した溶媒を除去することが望ましい。   Further, if necessary, a small amount of an organic solvent can be added to improve the mixing property, but it is desirable to finally remove the used solvent.

((b)工程)
次に、前記(a)工程で得た組成物から一次シートを作製する。
具体的には、(a)工程で得た組成物を、圧延成形、プレス成形、押し出し成形又は塗工することにより、前記異方性黒鉛粉(B)を主たる面に関してほぼ平行な方向に配向した一次シートを作製する。このなかでも、圧延成形又はプレス成形による方法が、確実に異方性黒鉛粉(B)を配向させ易く好ましい方法である。
((B) Process)
Next, a primary sheet is produced from the composition obtained in the step (a).
Specifically, the anisotropic graphite powder (B) is oriented in a substantially parallel direction with respect to the main surface by rolling, pressing, extrusion, or coating the composition obtained in step (a). A primary sheet is produced. Among these, the method by rolling molding or press molding is a preferable method because it is easy to reliably orient the anisotropic graphite powder (B).

ここで、異方性黒鉛粉(B)がシートの主たる面に関してほぼ平行方向に配向した状態とは、異方性黒鉛粉(B)がシートの主たる面に沿って配向した状態をいう。シート面内での異方性黒鉛粉(B)の配向の向きは、前記組成物を成形する際に、組成物の流れる方向を調節することによってコントロールされる。   Here, the state in which the anisotropic graphite powder (B) is oriented in a substantially parallel direction with respect to the main surface of the sheet refers to a state in which the anisotropic graphite powder (B) is oriented along the main surface of the sheet. The orientation direction of the anisotropic graphite powder (B) in the sheet plane is controlled by adjusting the flowing direction of the composition when the composition is molded.

なお、異方性黒鉛粉(B)は異方性を有する粒子であるため、組成物を圧延成形、プレス成形、押し出し成形又は塗工すると、通常、異方性黒鉛粉(B)の向きが揃って配置される。   In addition, since the anisotropic graphite powder (B) is an anisotropic particle, when the composition is rolled, press-molded, extruded or coated, the orientation of the anisotropic graphite powder (B) is usually They are arranged together.

((c)工程)
次いで、上記(b)工程において得られた一次シートを積層又は捲回して成形体を得る。
一次シートを積層する方法については特に制限はなく、例えば、複数枚の一次シートを積層する方法、一次シートを折り畳む方法等が挙げられる。
(Step (c))
Next, the primary sheet obtained in the step (b) is laminated or wound to obtain a molded body.
There is no restriction | limiting in particular about the method of laminating | stacking a primary sheet, For example, the method of laminating | stacking several primary sheets, the method of folding a primary sheet, etc. are mentioned.

積層する際は、シート面内での異方性黒鉛粉(B)の向きを揃えて積層する。積層する際の一次シートの形状は、特に制限はなく、例えば矩形状の一次シートを積層した場合は角柱状の成形体が得られ、円形状の一次シートを積層した場合は円柱状の成形体が得られる。   When laminating, the orientation of the anisotropic graphite powder (B) in the sheet plane is aligned. The shape of the primary sheet when laminating is not particularly limited. For example, when a rectangular primary sheet is laminated, a prismatic shaped body is obtained, and when a circular primary sheet is laminated, a cylindrical shaped body is obtained. Is obtained.

また、一次シートを捲回する方法も特に制限はなく、前記一次シートを異方性黒鉛粉(B)の配向方向を軸にして捲回すればよい。捲回の形状も特に制限はなく、例えば、円筒形でも角筒形でもよい。   Moreover, there is no restriction | limiting in particular also in the method of winding a primary sheet, What is necessary is just to wind the said primary sheet centering on the orientation direction of anisotropic graphite powder (B). The shape of the winding is not particularly limited, and may be, for example, a cylindrical shape or a rectangular tube shape.

一次シートを積層する際の圧力や捲回する際の引張り力は、この後の工程の一次シート面からの法線に対し45〜80度の角度でスライスする都合上、スライス面がつぶれて所要面積を下回らない程度に弱く、かつシート間がうまく接着する程度に強くなるよう調節される。   The pressure at the time of laminating the primary sheet and the tensile force at the time of winding are required because the slice surface is crushed for convenience of slicing at an angle of 45 to 80 degrees with respect to the normal line from the primary sheet surface in the subsequent process. It is adjusted so that it is weak enough not to be smaller than the area and strong enough that the sheets can be well bonded.

通常はこの調節によって積層面又は捲回面間の接着力が充分に得られるが、不足する場合は溶剤又は接着剤等を薄く一次シートに塗布した上で積層又は捲回を行って成形体を得てもよい。
また、スライス条件によって発生する応力に対し一次シートの界面剥離を抑えるために、成形体を熱処理し、一次シート界面を一部硬化及び全硬化した成形体を得た後、スライスすることもできる。この場合、成形体を上下加熱した金属板に挟み、成形体が変形しない程度に圧力を加える方法は有効である。また成形体を熱処理(硬化)後にスライスして得られる伝熱シートは、後工程で熱処理を行なわなくてもよい。なお、本発明の伝熱シートでは金属膜を蒸着によって付設するため、金属膜と基材シートの密着性に優れる。そのため、成型体を熱処理してからスライスする方法を好適に採用することができる。その結果、スライスによる一次シート界面での剥離が抑えられ、得られる伝熱シートの伝熱特性の低下が効果的に抑制されるという効果を有する。
Normally, this adjustment provides sufficient adhesion between the laminated or wound surfaces, but if it is insufficient, apply a solvent or adhesive to the primary sheet and then laminate or wind the molded product. May be obtained.
Moreover, in order to suppress the interfacial peeling of the primary sheet against the stress generated by the slicing conditions, the molded body can be heat treated to obtain a molded body partially cured and fully cured at the primary sheet interface, and then sliced. In this case, it is effective to sandwich the formed body between vertically heated metal plates and apply pressure to such an extent that the formed body does not deform. In addition, the heat transfer sheet obtained by slicing the molded body after heat treatment (curing) may not be subjected to heat treatment in a subsequent step. In addition, in the heat-transfer sheet | seat of this invention, since a metal film is attached by vapor deposition, it is excellent in the adhesiveness of a metal film and a base material sheet. Therefore, a method of slicing the molded body after heat treatment can be suitably employed. As a result, peeling at the primary sheet interface due to slicing can be suppressed, and the deterioration of the heat transfer characteristics of the obtained heat transfer sheet can be effectively suppressed.

((d)工程)
次に、上記(c)工程により得た成形体をスライスして、スライスシート(基材シート)を得る。一次シート面からの法線に対し45〜80度の角度で、好ましくは55〜70度の角度でスライスして、所定の厚みを有するスライスシート(基材シート)を得る。
((D) step)
Next, the molded body obtained in the step (c) is sliced to obtain a slice sheet (base material sheet). The slice sheet (base sheet) having a predetermined thickness is obtained by slicing at an angle of 45 to 80 degrees, preferably an angle of 55 to 70 degrees with respect to the normal line from the primary sheet surface.

前記成形体が積層体である場合は、一次シートの積層方向とは垂直又は略垂直となるように、上記角度でスライスすればよい。また、前記成形体が捲回体である場合は、捲回の軸に対して垂直又は略垂直となるように、上記角度でスライスすればよい。更に、円形状の一次シートを積層した円柱状の成形体の場合は、上記角度の範囲内でかつら剥きのようにスライスしてもよい。   When the molded body is a laminated body, it may be sliced at the above-mentioned angle so as to be perpendicular or substantially perpendicular to the lamination direction of the primary sheet. Moreover, when the said molded object is a winding body, what is necessary is just to slice at the said angle so that it may become perpendicular | vertical or substantially perpendicular | vertical with respect to the axis | shaft of winding. Furthermore, in the case of a columnar molded body in which circular primary sheets are laminated, it may be sliced like a wig within the above angle range.

スライスする方法は特に制限されず、例えば、マルチブレード法、レーザー加工法、ウォータージェット法、ナイフ加工法等が挙げられる。スライスシート(基材シート)の厚み精度及び切断面の平滑性を考慮するとナイフ加工法が好ましい。   The method for slicing is not particularly limited, and examples thereof include a multi-blade method, a laser processing method, a water jet method, and a knife processing method. In consideration of the thickness accuracy of the slice sheet (base sheet) and the smoothness of the cut surface, the knife processing method is preferable.

スライスする際の切断具は、特に制限されず、スリットを有する平滑な盤面と、該スリット部より突出した刃部と、を有するカンナ様の部位を有するスライス部材であって、前記刃部が、スライスシート(基材シート)の所望の厚みに応じて、前記スリット部からの突出長さが調節可能であるものを使用すると、得られるスライスシート(基材シート)の表面近傍のバインダ成分(A)の亀裂或いは異方性黒鉛粉(B)の配向を乱し難く、かつ所望の厚みの薄いシートも作製し易いので好ましい。   The cutting tool for slicing is not particularly limited, and is a slice member having a canna-like portion having a smooth board surface having a slit and a blade portion protruding from the slit portion, and the blade portion is By using a slice sheet (base sheet) whose length can be adjusted according to the desired thickness of the slice sheet (base sheet), a binder component (A near the surface of the resulting slice sheet (base sheet) is used. ) Or the orientation of the anisotropic graphite powder (B) is difficult to disturb, and a sheet having a desired thickness is easy to produce.

具体的には、上記スライス部材は、鋭利な刃を備えたカンナ又はスライサーを用いることが好ましい。これらの刃は、スライスシート(基材シート)の所望の厚みに応じて、前記スリット部からの突出長さが調節可能とすることで、容易に所望の厚みとすることが可能である。   Specifically, it is preferable to use a plane or slicer with a sharp blade as the slice member. These blades can be easily set to a desired thickness by allowing the protruding length from the slit portion to be adjusted according to the desired thickness of the slice sheet (base material sheet).

スライスする温度は、使用する熱可塑性ゴム成分(D)のTg(ガラス転移温度)と使用する異方性黒鉛粉(B)の配合量及び粒径により決定されるが、通常、成形体表面温度で−50℃〜+50℃の範囲が好ましい。
+50℃以下の表面温度の成形体は、成形体全体の柔軟性が抑えられてスライスしやすく、結果として、異方性黒鉛粉(B)の配向が乱れることが抑えられ、伝熱特性に優れる。また、成形体の表面温度が−50℃以上の場合には、成形体が固く脆くなるのが抑えられ、スライス直後に得られたスライスシートの割れが抑えられる。
The slicing temperature is determined by the blending amount and particle size of the Tg (glass transition temperature) of the thermoplastic rubber component (D) used and the anisotropic graphite powder (B) used. The range of −50 ° C. to + 50 ° C. is preferable.
A molded body having a surface temperature of + 50 ° C. or less is easy to slice because the flexibility of the entire molded body is suppressed, and as a result, disorder of the orientation of the anisotropic graphite powder (B) is suppressed, and the heat transfer characteristics are excellent. . Moreover, when the surface temperature of a molded object is -50 degreeC or more, it is suppressed that a molded object becomes hard and weak, and the crack of the slice sheet obtained immediately after slicing is suppressed.

成形体のスライス厚みは、用途等により任意に決定されるが、0.1〜5mm程度が好ましい。成形体のスライス厚みが0.1mm以上では取扱いやすく、5mm以下の場合は、熱伝導性に優れる。   Although the slice thickness of a molded object is arbitrarily determined by a use etc., about 0.1-5 mm is preferable. When the slice thickness of the molded body is 0.1 mm or more, it is easy to handle, and when it is 5 mm or less, the thermal conductivity is excellent.

((e)工程)
上記(d)工程により得られたスライスシート(基材シート)の一方の表面に金属を蒸着して、金属蒸着膜(C)を形成し、伝熱シートを得る。
蒸着の方法は公知の方法を採用することができ、抵抗加熱、電子ビーム、高周波誘導、レーザーなどの方法で加熱して、金属を基材シートの表面に蒸着させる。使用する金属蒸着膜(C)の種類や厚みは、用途やスライスシート(基材シート)の厚みにより適宜選定する。
(Step (e))
A metal is vapor-deposited on one surface of the slice sheet (base material sheet) obtained in the step (d) to form a metal vapor-deposited film (C) to obtain a heat transfer sheet.
As a deposition method, a known method can be adopted, and heating is performed by a method such as resistance heating, electron beam, high frequency induction, or laser to deposit a metal on the surface of the substrate sheet. The kind and thickness of the metal vapor deposition film (C) to be used are appropriately selected depending on the use and the thickness of the slice sheet (base material sheet).

(その他)
上述のように、バインダ成分(A)の硬化のための熱処理は、(c)工程において行うことが可能であるが、(d)工程の後、(e)工程の後、又は伝熱シートを発熱体と放熱体の間に挟持させた後、のいずれかの段階で行なってもよい。
(d)工程の後に熱処理工程を備えれば、スライスシート(基材シート)の一体性が向上し、(e)工程の後に熱処理工程を備えれば、スライスシート(基材シート)と金属蒸着膜(C)との密着性が向上し、伝熱シートを発熱体と放熱体の間に挟持させた後に熱処理工程を備えれば、発熱体と伝熱シートと放熱体の間での密着性が向上する。
(Other)
As described above, the heat treatment for curing the binder component (A) can be performed in the step (c), but the step (d), the step (e), or the heat transfer sheet is performed. It may be performed at any stage after being sandwiched between the heating element and the radiator.
If a heat treatment step is provided after the step (d), the integrity of the slice sheet (base material sheet) is improved, and if a heat treatment step is provided after the step (e), the slice sheet (base material sheet) and metal deposition are performed. Adhesiveness between the heating element, the heat transfer sheet, and the heat radiating member can be improved by providing a heat treatment step after the heat transfer sheet is sandwiched between the heating element and the heat radiating element. Will improve.

<放熱装置>
本発明の放熱装置は、本発明の伝熱シートを発熱体と放熱体の間に介在させてなるものである。
本発明の伝熱シートを適用する発熱体としては、使用温度が200℃を超えないものであることが好ましい。使用温度が200℃以下では、前記バインダ成分(A)の急激な柔軟性の低下が抑えられて、放熱特性の低下が抑制される。使用する好適な温度は、−20〜150℃の範囲であり、半導体パッケージ、ディスプレイ、LED、電灯等が、好適な発熱体の例として挙げられる。
<Heat dissipation device>
The heat radiating device of the present invention is obtained by interposing the heat transfer sheet of the present invention between a heat generating body and a heat radiating body.
The heating element to which the heat transfer sheet of the present invention is applied preferably has a use temperature not exceeding 200 ° C. When the operating temperature is 200 ° C. or less, a rapid decrease in flexibility of the binder component (A) is suppressed, and a decrease in heat dissipation characteristics is suppressed. A suitable temperature to be used is in a range of -20 to 150 ° C., and a semiconductor package, a display, an LED, an electric lamp and the like are examples of suitable heating elements.

放熱体としては、例えば、アルミ、銅のフィン・板等を利用したヒートシンク、ヒートパイプに接続されているアルミや銅のブロック、内部に冷却液体をポンプで循環させているアルミや銅のブロック、ペルチェ素子及びこれを備えたアルミや銅のブロック等が使用できる代表的なものである。   For example, heat sinks using aluminum, copper fins, plates, etc., aluminum and copper blocks connected to heat pipes, aluminum and copper blocks in which cooling liquid is circulated by a pump, A typical Peltier element and an aluminum or copper block including the Peltier element can be used.

本発明の放熱装置は、発熱体と放熱体に、本発明の伝熱シートの各々の面を接触させて配置したものである。発熱体、伝熱シート及び放熱体を充分に密着させた状態で固定できる方法であれば、接触・固定させる方法に制限はないが、密着を持続させる観点から、ばねを介してねじ止めする方法、クリップで挟む方法等のように押し付ける力が持続する接触・固定方法が好ましい。   The heat dissipating device of the present invention is configured by placing each surface of the heat transfer sheet of the present invention in contact with a heat generating body and a heat dissipating body. As long as the heating element, the heat transfer sheet, and the radiator can be fixed in a sufficiently intimate contact state, there is no limitation on the contact / fixing method, but from the viewpoint of maintaining the adhesion, a method of screwing through a spring A contact / fixing method in which the pressing force is sustained, such as a method of clamping with a clip, is preferable.

以下、実施例により本発明を具体的に説明する。本発明は、下記実施例に限定されない。   Hereinafter, the present invention will be described specifically by way of examples. The present invention is not limited to the following examples.

[実施例1]
<伝熱シートの作製>
(1)異方性黒鉛粉(膨張黒鉛成形シートの粉砕粉)の作製
嵩密度0.2g/cmの膨張黒鉛成形シート(日立化成工業(株)製、商品名:カーボフィットHGP−105)を粉砕機(細川ミクロン社(株)製、商品名:ロートプレツクス)で粉砕し、得られた粉砕粉を振動篩にて分級し、粒度分布500〜1000μmの異方性黒鉛粉(膨張黒鉛シート粉砕粉)を2kg作製した。
得られた異方性黒鉛粉の形状は、SEM写真で観察し、樹枝状であることを確認した。
[Example 1]
<Preparation of heat transfer sheet>
(1) Production of anisotropic graphite powder (pulverized powder of expanded graphite molded sheet) Expanded graphite molded sheet having a bulk density of 0.2 g / cm 3 (manufactured by Hitachi Chemical Co., Ltd., trade name: Carbofit HGP-105) Is pulverized with a pulverizer (trade name: Rotoplex, manufactured by Hosokawa Micron Co., Ltd.), and the obtained pulverized powder is classified with a vibrating sieve to obtain anisotropic graphite powder (expanded graphite) having a particle size distribution of 500 to 1000 μm. 2 kg of sheet pulverized powder) was produced.
The shape of the obtained anisotropic graphite powder was observed with an SEM photograph and confirmed to be dendritic.

(2)組成物の調製
容量1Lの加圧機構を備えたニーダ(吉田製作所(株)製 商品名:1100−S−1)を80℃に昇温(バレル温度)し、熱可塑性ゴム成分(D)としてのアクリルゴム(ナガセケムテックス(株)製、商品名:HTR−811DR、重量平均分子量:50万:ガラス転移温度:−46℃、タック性大、室温で弾性を示す。)320gと上記(1)で作製した異方性黒鉛粉250gを投入し、10分間混合した。
(2) Preparation of composition A kneader (product name: 1100-S-1 manufactured by Yoshida Seisakusho Co., Ltd.) equipped with a 1 L capacity pressurization mechanism was heated to 80 ° C. (barrel temperature), and a thermoplastic rubber component ( Acrylic rubber as D) (manufactured by Nagase ChemteX Corporation, trade name: HTR-811DR, weight average molecular weight: 500,000: glass transition temperature: −46 ° C., large tack property, exhibits elasticity at room temperature) 320 g 250 g of anisotropic graphite powder prepared in (1) above was added and mixed for 10 minutes.

混合終了後、難燃剤として燐酸エステル(大八化学工業(株)製、商品名:CR−741(粘度:2400mpa・s(40℃)))150gを4回に分け20分掛けて(1回/5分混合)前記混合物中に混ぜこんだ。その後、200gの異方性黒鉛粉の残分を投入し20分混合し、組成物とした。放熱材料である異方性黒鉛粉の配合量は、全体配合量の48.9質量%となる。   After the completion of mixing, 150 g of phosphoric acid ester (made by Daihachi Chemical Industry Co., Ltd., trade name: CR-741 (viscosity: 2400 mpa · s (40 ° C.))) as a flame retardant is divided into 4 portions and takes 20 minutes (1 time) / 5 minutes mixing) It was mixed in the mixture. Thereafter, the remainder of 200 g of anisotropic graphite powder was added and mixed for 20 minutes to obtain a composition. The blending amount of the anisotropic graphite powder as the heat dissipation material is 48.9% by mass of the total blending amount.

また混合物の粘度は、ムーニー粘度計(上島製作所(株)製、商品名:VR−1130)の値で、25(60℃)、18(80℃)、13(100℃)であった。これについて測定温度を横軸に粘度を縦軸にとって、温度変化伴う粘度変化(温度依存性)を確認したところ、両者の関係が直線関係となり、使用した熱可塑性ゴム成分(D)のムーニー粘度と傾向が一致(粘度の値は異なる)した。以上の結果から、バインダ成分(A)中の異方性黒鉛粉の分散性が良好であること、及び混合時のバインダ成分性状の変化が少ないものと判断した。   The viscosity of the mixture was 25 (60 ° C.), 18 (80 ° C.), and 13 (100 ° C.) as a Mooney viscometer (trade name: VR-1130, manufactured by Ueshima Seisakusho Co., Ltd.). With respect to this, with the measured temperature as the horizontal axis and the viscosity as the vertical axis, the change in viscosity (temperature dependence) with temperature change was confirmed, and the relationship between the two became a linear relationship, and the Mooney viscosity of the used thermoplastic rubber component (D) The trends were consistent (viscosity values were different). From the above results, it was judged that the dispersibility of the anisotropic graphite powder in the binder component (A) was good and that the change in the binder component properties during mixing was small.

(3)一次シートの作製
成形体に用いる一次シートは、下記のようにして得た。
まず、離型処理した0.1mm厚みのPETフィルムに、上記調製した組成物の50gを挟み、常温のプレス機を使用し約3mm厚のシートに加工した。得られた加工シートを80℃に昇温したロール(ギャップ1.2mm)に通し、冷却後厚み1mmの一次シートを得た。この一次シートの密度は1.4g/cmであった。
(3) Preparation of primary sheet The primary sheet used for a molded object was obtained as follows.
First, 50 g of the above-prepared composition was sandwiched between 0.1 mm-thick PET film subjected to mold release treatment, and processed into a sheet having a thickness of about 3 mm using a normal temperature press. The obtained processed sheet was passed through a roll (gap 1.2 mm) heated to 80 ° C. to obtain a primary sheet having a thickness of 1 mm after cooling. The density of this primary sheet was 1.4 g / cm 3 .

(4)一次シートの積層
上記で作製した一次シートを、ロール方向に合わせ50mm×250mmサイズに切断したものを50枚作製し、前記切断シートを寸法どおり積層した積層体を得た。
積層体の最外面である両表面に離型紙を充て、盤面を150℃の加熱したハンドプレスに乗せた。更に、積層体の両端側に、厚み調整材として厚み4.5mmの金属板を設置した。この状態でプレスを60分行い、スライス用成形体を作製した。
(4) Lamination | stacking of a primary sheet | seat 50 what cut | disconnected the primary sheet produced above according to the roll direction and cut | disconnected to 50 mm x 250 mm size was produced, and the laminated body which laminated | stacked the said cutting sheet according to the dimension was obtained.
Both surfaces, which are the outermost surfaces of the laminate, were filled with release paper, and the board surface was placed on a hand press heated at 150 ° C. Furthermore, a metal plate having a thickness of 4.5 mm was installed as a thickness adjusting material on both ends of the laminate. In this state, pressing was performed for 60 minutes to produce a sliced compact.

(5)成形体のスライス
上記で作製した成形体を自家製のスライス機械に固定した。成形体の表面温度を−10℃に冷却した後、定盤に固定した単刃により、成形体のスライド速さ60mm/分、切削角度30°の条件でスライスし、厚み0.25mmのスライスシート(基材シート)を作製した。
(5) Slicing of molded body The molded body produced above was fixed to a homemade slicing machine. After cooling the surface temperature of the molded body to −10 ° C., a sliced sheet having a thickness of 0.25 mm is sliced with a single blade fixed to a surface plate under the conditions of a slide speed of 60 mm / min and a cutting angle of 30 °. (Substrate sheet) was produced.

また、基材シートの断面をSEM(走査型電子顕微鏡)により観察し、任意の50個の異方性黒鉛粉について、異方性黒鉛粉の長軸が基材シートの表面に対してなす角度を測定し、その平均値を求めたところ90度であり、異方性黒鉛粉は基材シートの厚み方向に配向していることが認められた。   Moreover, the cross section of a base material sheet is observed with SEM (scanning electron microscope), and the angle which the long axis of anisotropic graphite powder makes with respect to the surface of a base material sheet about arbitrary 50 anisotropic graphite powders Was measured, and the average value was 90 degrees. It was confirmed that the anisotropic graphite powder was oriented in the thickness direction of the base sheet.

(6)金属膜の付与
真空蒸着機を用いて、上記作製した基材シートの片面にアルミを蒸着した。
(6) Application of metal film Aluminum was vapor-deposited on one side of the prepared base sheet using a vacuum vapor deposition machine.

(7)厚さの測定
基材シート及びアルミ蒸着膜の厚みは、デジタルダイヤルゲージ(株式会社ミツトヨ製 デジマチックインジケータID−C112C)で測定し、基材シート及び金属箔のそれぞれにおいて、任意の5点で厚さを測定し、平均値を算出した。
厚み0.25mmの伝熱シートにおけるアルミ蒸着膜の厚みは0.8μmであった。
(7) Measurement of thickness The thickness of the base sheet and the aluminum deposited film was measured with a digital dial gauge (manufactured by Mitutoyo Corporation Digimatic Indicator ID-C112C). The thickness was measured at points and the average value was calculated.
The thickness of the aluminum vapor deposition film in the heat transfer sheet having a thickness of 0.25 mm was 0.8 μm.

[実施例2〜5]
実施例1と同様にして、但し、実施例1の(5)において、スライスした基材シートの厚さを下記表1に示すように代えて、伝熱シートを作製した。
[Examples 2 to 5]
In the same manner as in Example 1, except that the thickness of the sliced base material sheet was changed as shown in Table 1 below in Example 1 (5), a heat transfer sheet was produced.

[実施例6]
実施例1と同様にして、但し、実施例1の(2)の組成物を、下記調製した組成物に代えて、伝熱シートを作製した。
[Example 6]
A heat transfer sheet was produced in the same manner as in Example 1, except that the composition of (2) of Example 1 was replaced with the composition prepared below.

(組成物の調製)
熱可塑性ゴム成分(D)としてのアクリルゴム(ナガセケムテックス(株)製、商品名:HTR−811DR、重量平均分子量:50万、ガラス転移温度:−46℃、タック性大、室温で弾性を示す。)211gと、熱硬化性ゴム成分(E)としての、常温で固体の固形カルボキシル基変性NBR(日本ゼオン(株)製、商品名:Nippol 1072、重量平均分子量:25万、カルボキシル基濃度:0.75(KOHmg/g))80gと、実施例1の(1)で作製した異方性黒鉛粉200gを、実施例1と同様のニーダに投入し、10分間混合した。
(Preparation of composition)
Acrylic rubber as thermoplastic rubber component (D) (manufactured by Nagase ChemteX Corp., trade name: HTR-811DR, weight average molecular weight: 500,000, glass transition temperature: -46 ° C., high tackiness, elasticity at room temperature 211 g and solid carboxyl group-modified NBR as a thermosetting rubber component (E) at normal temperature (manufactured by Nippon Zeon Co., Ltd., trade name: Nipol 1072, weight average molecular weight: 250,000, carboxyl group concentration : 0.75 (KOH mg / g)) 80 g and anisotropic graphite powder 200 g produced in (1) of Example 1 were put into a kneader similar to Example 1 and mixed for 10 minutes.

混合終了後、常温で液体の液状カルボキシル基変性NBR(日本ゼオン(株)製、商品名:Nippol DN601、重量平均分子量:6.8万、カルボキシル基濃度:0.75(KOHmg/g))30gと、難燃剤として燐酸エステル(大八化学工業(株)製、商品名:CR−741(粘度:2400mpa・s(40℃)))150gを混合したものを、4回に分け20分掛けて(1回毎に5分混合)前記混合物中に混ぜこんだ。   After completion of mixing, liquid carboxyl group-modified NBR (manufactured by Nippon Zeon Co., Ltd., trade name: Nippol DN601, weight average molecular weight: 68,000, carboxyl group concentration: 0.75 (KOHmg / g)) 30 g And 150 g of phosphoric acid ester (made by Daihachi Chemical Industry Co., Ltd., trade name: CR-741 (viscosity: 2400 mpa · s (40 ° C.))) as a flame retardant, divided into 4 times and taken over 20 minutes. (Mix for 5 minutes each time) Mix into the mixture.

その後、262gの異方性黒鉛粉の残分を投入し20分混合し、更に熱硬化型ゴム硬化剤(F)として、エポキシ基含有化合物(シェル化学社製、商品名:エピコート828(以下、「Ep828」と略す)、数平均分子量:380、2官能型、エポキシ基の数(当量):190(液状))11g(NBR使用質量の10質量%)を投入して10分混合し、組成物とした。   Thereafter, the remainder of 262 g of anisotropic graphite powder was added and mixed for 20 minutes. Further, as a thermosetting rubber curing agent (F), an epoxy group-containing compound (manufactured by Shell Chemical Co., Ltd., trade name: Epicoat 828 (hereinafter, (Abbreviated as “Ep828”), number average molecular weight: 380, bifunctional, epoxy group number (equivalent): 190 (liquid)) 11 g (10% by mass of NBR use mass) and mixed for 10 minutes, composition It was a thing.

得られた組成物のバインダ成分100質量部(熱可塑性ゴム成分(D)と熱硬化性ゴム成分(E)の合計量)中、熱可塑性ゴム成分(D)としてのアクリルゴムは65.7質量部、熱硬化性ゴム成分(E)としてのNBRが34.3質量部となる。
また、この組成物において、放熱材料である異方性黒鉛粉の配合量は、全体配合量の48.9質量%であり、混合物のムーニー粘度は、27(60℃)、20(80℃)、15(100℃)であった。
In 100 parts by mass of the binder component (total amount of the thermoplastic rubber component (D) and the thermosetting rubber component (E)) of the obtained composition, the acrylic rubber as the thermoplastic rubber component (D) is 65.7 masses. Part, NBR as the thermosetting rubber component (E) is 34.3 parts by mass.
In this composition, the amount of anisotropic graphite powder as a heat dissipation material is 48.9% by mass of the total amount, and the Mooney viscosity of the mixture is 27 (60 ° C.), 20 (80 ° C.). 15 (100 ° C.).

[比較例1]
実施例1と同様にして、但し、実施例1の(6)においてアルミ膜を蒸着せずに、伝熱シートを作製した。
[Comparative Example 1]
A heat transfer sheet was produced in the same manner as in Example 1 except that the aluminum film was not deposited in (6) of Example 1.

<伝熱シートの評価>
上記実施例1〜6及び比較例1で得た伝熱シートについて、下記のようにしてシート特性を評価した。その結果を表1に示す。また伝熱特性に関しては、シートの熱抵抗値を用いた。
<Evaluation of heat transfer sheet>
About the heat-transfer sheet | seat obtained in the said Examples 1-6 and the comparative example 1, the sheet | seat characteristic was evaluated as follows. The results are shown in Table 1. For the heat transfer characteristics, the thermal resistance value of the sheet was used.

〔熱抵抗〕
得られた伝熱シートから、縦1cm×横1.5cmの大きさの試験シートを作製し、この試験シートをトランジスタ(2SC2233)とアルミニウム放熱ブロックとの間に挟み、0.5MPaの圧力でトランジスタを加圧し電流を通じた。トランジスタの温度:T1(℃)と、放熱ブロックの温度:T2(℃)を測定し、測定値と印可電力:W1(W)から、次式(1)によって熱抵抗:X(℃/W)を算出した。
〔Thermal resistance〕
A test sheet having a size of 1 cm in length and 1.5 cm in width is prepared from the obtained heat transfer sheet, and the test sheet is sandwiched between a transistor (2SC2233) and an aluminum heat dissipation block, and the transistor is formed at a pressure of 0.5 MPa. And pressurize the current. The transistor temperature: T1 (° C.) and the heat dissipation block temperature: T2 (° C.) are measured. From the measured value and applied power: W1 (W), the thermal resistance: X (° C./W) according to the following equation (1) Was calculated.

X=(T1−T2)/W1 式(1)           X = (T1-T2) / W1 Formula (1)

上記式(1)の熱抵抗:X(℃/W)と伝熱シートの厚み:d(μm)、熱伝導率既知試料による補正係数:Cから、次式(2)により熱伝導率:Tc(W/mK)を見積もった(室温25℃で測定)。
Tc=C×d/X 式(2)
From the thermal resistance of the above formula (1): X (° C./W) and the thickness of the heat transfer sheet: d (μm), the correction coefficient with a sample having a known thermal conductivity: C, the thermal conductivity: Tc according to the following formula (2) (W / mK) was estimated (measured at room temperature of 25 ° C.).
Tc = C × d / X Formula (2)

〔再利用性〕
得られた伝熱シートから、縦3cm×横3cmの大きさの試験シートを作製した。この試験シートを、縦50×横50×厚み2mmのアルミ板Aと縦10×横10×厚み2mmのアルミ板Bとの間に挟んだ。このとき試験シートにおけるアルミ蒸着膜がアルミ板Aと接するように配置した。この状態で、クリップを用いて0.5MPaの荷重を負荷した。
[Reusability]
From the obtained heat transfer sheet, a test sheet having a size of 3 cm in length and 3 cm in width was prepared. This test sheet was sandwiched between an aluminum plate A 50 × 50 × 2 mm thick and an aluminum plate B 10 × 10 × 2 mm thick. At this time, it arrange | positioned so that the aluminum vapor deposition film in a test sheet may contact the aluminum plate A. FIG. In this state, a 0.5 MPa load was applied using a clip.

作製した試験体を100℃の乾燥機(ETAC製、型式HG220)に100時間投入し、取り出した後、除荷してアルミ板Bの剥がれ有無を確認した。
○:アルミ板Bが故障無く剥がれ、再利用できる。
×:アルミ板Bが剥がれず、再利用できない。
The prepared test body was put into a dryer at 100 ° C. (manufactured by ETAC, model HG220) for 100 hours, taken out, unloaded and checked for peeling of the aluminum plate B.
○: The aluminum plate B is peeled off without failure and can be reused.
X: The aluminum plate B is not peeled off and cannot be reused.

〔取扱い性〕
(長手方向)
得られた伝熱シートから、20mm×40mmの大きさの試験シートを作製し、オートグラフを用いて試験シートの長手方向(積層面に対し90度方向)の引張強度を室温25℃で測定した。
[Handling]
(Longitudinal direction)
A test sheet having a size of 20 mm × 40 mm was prepared from the obtained heat transfer sheet, and the tensile strength in the longitudinal direction of the test sheet (90-degree direction with respect to the laminated surface) was measured at 25 ° C. using an autograph. .

(積層方向)
得られた伝熱シートから、20mm×40mmの大きさの試験シートを作製し、試験シートの積層方向の引張強度を、長手方向の引張強度と同様の方法で測定した。
(Lamination direction)
A test sheet having a size of 20 mm × 40 mm was produced from the obtained heat transfer sheet, and the tensile strength in the stacking direction of the test sheet was measured by the same method as the tensile strength in the longitudinal direction.

〔難燃性〕
UL規格に準じ、JIS Z 2391(1999)に従い垂直燃焼試験を行った。このときの試験シートの大きさは、125×13mmとした。難燃性試験合格品について、最も難燃効果の高いレベルをV0とし、次いでV1、V2、HBとした。
〔Flame retardance〕
A vertical combustion test was performed in accordance with JIS Z 2391 (1999) in accordance with UL standards. The size of the test sheet at this time was 125 × 13 mm. About the flame retardant test pass product, the level with the highest flame retardant effect was set to V0, and then set to V1, V2, and HB.

Figure 0005678596
Figure 0005678596

表1に見られるように、室温で弾性を示すバインダ成分(A)と異方性黒鉛粉(B)とを含有し、異方性黒鉛粉(B)が厚み方向に配向した基材シート上に、金属蒸着膜(C)を備える実施例1〜6の伝熱シートでは、伝熱特性(熱抵抗)、取扱い性(強度、難燃性)、及び再利用性の両立が図られていることが分かる。   As seen in Table 1, on a base sheet containing a binder component (A) that exhibits elasticity at room temperature and an anisotropic graphite powder (B), and the anisotropic graphite powder (B) oriented in the thickness direction In addition, in the heat transfer sheets of Examples 1 to 6 including the metal vapor-deposited film (C), both heat transfer characteristics (heat resistance), handleability (strength, flame retardancy), and reusability are achieved. I understand that.

Claims (12)

室温で弾性を示すバインダ成分(A)と異方性黒鉛粉(B)とを含有し、前記異方性黒鉛粉(B)が厚み方向に配向した基材シートと、
前記基材シートの一方の表面上に設けた、金属蒸着膜(C)と、
を有する伝熱シート。
A base material sheet containing a binder component (A) exhibiting elasticity at room temperature and anisotropic graphite powder (B), wherein the anisotropic graphite powder (B) is oriented in the thickness direction;
A metal vapor deposition film (C) provided on one surface of the base sheet;
Heat transfer sheet having.
前記金属蒸着膜(C)の厚さが、総厚みの2%以下である請求項1に記載の伝熱シート。   The heat transfer sheet according to claim 1, wherein the thickness of the metal vapor-deposited film (C) is 2% or less of the total thickness. 前記金属蒸着膜(C)が、アルミ、銅、銀、金、白金、又はニッケルから形成されてなる請求項1又は請求項2に記載の伝熱シート。   The heat transfer sheet according to claim 1 or 2, wherein the metal vapor-deposited film (C) is formed from aluminum, copper, silver, gold, platinum, or nickel. 前記異方性黒鉛粉(B)が、膨張黒鉛成型シートの粉砕粉であり、粉砕前の前記膨張黒鉛成型シートの嵩密度が0.1g/cm〜1.5g/cmの範囲にある請求項1〜請求項3のいずれか1項に記載の伝熱シート。 The anisotropic graphite powder (B), a pulverized powder of an expanded graphite shaped sheet, bulk density of the expanded graphite shaped sheet before crushing is in the range of 0.1g / cm 3 ~1.5g / cm 3 The heat transfer sheet according to any one of claims 1 to 3. 前記異方性黒鉛粉(B)が、薄片針枝状又は樹枝状であり、粒子径が50μm〜2000μmの範囲である請求項1〜請求項4のいずれか1項に記載の伝熱シート。   The heat transfer sheet according to any one of claims 1 to 4, wherein the anisotropic graphite powder (B) has a thin needle-branch shape or a dendritic shape, and has a particle diameter in a range of 50 µm to 2000 µm. 前記バインダ成分(A)として、ガラス転移温度50℃以下の熱可塑性ゴム(D)を含む請求項1〜請求項5にいずれか1項に記載の伝熱シート。   The heat transfer sheet according to any one of claims 1 to 5, comprising a thermoplastic rubber (D) having a glass transition temperature of 50 ° C or lower as the binder component (A). 前記バインダ成分(A)として、熱可塑性ゴム成分(D)と、熱硬化性ゴム成分(E)と、該熱硬化性ゴム成分(E)に架橋可能な熱硬化型ゴム硬化剤(F)とを含む請求項1〜請求項6のいずれか1項に記載の伝熱シート。   As the binder component (A), a thermoplastic rubber component (D), a thermosetting rubber component (E), a thermosetting rubber curing agent (F) that can be cross-linked to the thermosetting rubber component (E), and The heat-transfer sheet | seat of any one of Claims 1-6 containing. 更に、燐酸エステルを含有する請求項1〜請求項7のいずれか1項に記載の伝熱シート。   Furthermore, the heat-transfer sheet | seat of any one of Claims 1-7 containing phosphoric acid ester. 前記金属蒸着膜(C)の厚さが、0.5μm〜3μmである請求項1〜請求項8のいずれか1項に記載の伝熱シート。  The thickness of the said metal vapor deposition film (C) is 0.5 micrometer-3 micrometers, The heat-transfer sheet | seat of any one of Claims 1-8. 室温で弾性を示すバインダ成分(A)と、異方性黒鉛粉(B)とを含有する組成物を調製する工程と、
前記組成物を用いて、前記異方性黒鉛粉(B)が主たる面に対して略平行な方向に配向する一次シートを作製する工程と、
前記一次シートを積層又は捲回して、成形体を作製する工程と、
前記一次シート面からの法線に対し45〜80度の角度で、前記成形体をスライスして基材シートを作製する工程と、
前記基材シートの表面に金属を蒸着して、金属蒸着膜(C)を形成する工程と、
を有する請求項1〜請求項のいずれか1項に記載の伝熱シートの製造方法。
Preparing a composition containing a binder component (A) exhibiting elasticity at room temperature and anisotropic graphite powder (B);
Using the composition, a step of producing a primary sheet in which the anisotropic graphite powder (B) is oriented in a direction substantially parallel to a main surface;
Laminating or winding the primary sheet to produce a molded body; and
Slicing the molded body at an angle of 45 to 80 degrees with respect to the normal from the primary sheet surface to produce a base sheet; and
Depositing metal on the surface of the base sheet to form a metal deposition film (C);
Method for producing a heat transfer sheet according to any one of claims 1 to 9 having a.
前記バインダ成分(A)として、熱可塑性ゴム成分(D)と、熱硬化性ゴム成分(E)と、該熱硬化性ゴム成分(E)に架橋可能な熱硬化型ゴム硬化剤(F)とを含み、
前記基材シートの表面に前記金属蒸着膜(C)を形成する工程の前に、前記バインダ成分(A)を架橋させる工程を有する請求項10に記載の伝熱シートの製造方法。
As the binder component (A), a thermoplastic rubber component (D), a thermosetting rubber component (E), a thermosetting rubber curing agent (F) that can be cross-linked to the thermosetting rubber component (E), and Including
The manufacturing method of the heat-transfer sheet | seat of Claim 10 which has the process of bridge | crosslinking the said binder component (A) before the process of forming the said metal vapor deposition film (C) on the surface of the said base material sheet.
発熱体と、
放熱体と、
前記発熱体と前記放熱体の間に、該発熱体及び放熱体の双方に接するように配置した、請求項1〜請求項のいずれか1項に記載の伝熱シートと、
を有する放熱装置。
A heating element;
A radiator,
Between the heating element with the radiator, and disposed in contact with both the heat generating body and heat radiating body, and heat transfer sheet according to any one of claims 1 to 9,
A heat dissipation device.
JP2010255172A 2010-11-15 2010-11-15 Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device Expired - Fee Related JP5678596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255172A JP5678596B2 (en) 2010-11-15 2010-11-15 Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255172A JP5678596B2 (en) 2010-11-15 2010-11-15 Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device

Publications (2)

Publication Number Publication Date
JP2012109311A JP2012109311A (en) 2012-06-07
JP5678596B2 true JP5678596B2 (en) 2015-03-04

Family

ID=46494637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255172A Expired - Fee Related JP5678596B2 (en) 2010-11-15 2010-11-15 Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device

Country Status (1)

Country Link
JP (1) JP5678596B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473708B1 (en) * 2013-02-21 2014-12-19 엠케이전자 주식회사 Method of manufacturing heat sink plate having excellent thermal conductivity in thickness direction and heat sink plate manufactured by the same
KR101458076B1 (en) * 2013-11-01 2014-11-05 정상문 Material with enhanced heat-releasing and electromagnetic wave shielding properties
KR101458080B1 (en) * 2013-11-21 2014-11-05 정상문 Material with enhanced heat-releasing using carbon
JP2017069278A (en) * 2015-09-28 2017-04-06 積水化学工業株式会社 Foamed composite sheet, multilayer foamed composite sheet, and manufacturing method thereof
JP2017079232A (en) * 2015-10-19 2017-04-27 パナソニックIpマネジメント株式会社 Heat conduction sheet and manufacturing method thereof
JP6915545B2 (en) * 2015-11-13 2021-08-04 日本ゼオン株式会社 Method for manufacturing composite material sheet and heat conductive sheet
US11545413B2 (en) * 2018-02-16 2023-01-03 Showa Denko Materials Co., Ltd. Thermal conduction sheet and heat dissipating device including thermal conduction sheet
JP7131142B2 (en) * 2018-07-09 2022-09-06 日本ゼオン株式会社 thermal conductive sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101535383B (en) * 2006-11-01 2012-02-22 日立化成工业株式会社 Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP4648351B2 (en) * 2007-03-30 2011-03-09 住友ベークライト株式会社 Heat transfer sheet and heat dissipation structure
EP2291066B1 (en) * 2008-05-23 2012-08-01 Hitachi Chemical Company, Ltd. Heat radiation sheet and heat radiation device

Also Published As

Publication number Publication date
JP2012109311A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5915525B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
JP4743344B2 (en) Heat dissipation sheet and heat dissipation device
JP5678596B2 (en) Heat transfer sheet, heat transfer sheet manufacturing method, and heat dissipation device
JP6341303B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING THE HEAT CONDUCTIVE SHEET
JP5560630B2 (en) HEAT CONDUCTIVE SHEET, METHOD FOR PRODUCING THE HEAT CONDUCTIVE SHEET, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP5407120B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISSIPATION DEVICE USING THE SAME
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP5316254B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP2009149831A (en) Thermoconductive sheet, manufacturing method thereof, and heat-radiating device using thermoconductive sheet
JP5454300B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING SAME
JP2017143212A (en) Composite thermally-conductive sheet and heat dissipation system
JP2019010773A (en) Composite thermoconductive sheet and heat radiation system
JP5879782B2 (en) HEAT CONDUCTIVE COMPOSITE SHEET, PROCESS FOR PRODUCING THE SAME, AND HEAT DISSULATING DEVICE
JP2011184663A (en) Heat conductive sheet, method for producing the same, and heat radiation device using the same
JP7131142B2 (en) thermal conductive sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5678596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees