JP6155691B2 - 超音波探傷試験装置 - Google Patents

超音波探傷試験装置 Download PDF

Info

Publication number
JP6155691B2
JP6155691B2 JP2013033572A JP2013033572A JP6155691B2 JP 6155691 B2 JP6155691 B2 JP 6155691B2 JP 2013033572 A JP2013033572 A JP 2013033572A JP 2013033572 A JP2013033572 A JP 2013033572A JP 6155691 B2 JP6155691 B2 JP 6155691B2
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
phased array
nozzle
array probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013033572A
Other languages
English (en)
Other versions
JP2014163750A (ja
Inventor
聡明 濱野
聡明 濱野
松田 誠司
誠司 松田
英介 椎名
英介 椎名
良一 堀越
良一 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013033572A priority Critical patent/JP6155691B2/ja
Publication of JP2014163750A publication Critical patent/JP2014163750A/ja
Application granted granted Critical
Publication of JP6155691B2 publication Critical patent/JP6155691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、超音波探傷試験装置に関するものである。
原子炉の圧力容器等は、運転開始後には内部からの検査は容易でない。このため、供用期間中検査においては、超音波探傷試験によって傷の有無が検出される。例えば、原子炉においては、圧力容器とこの圧力容器に繋がれる配管とを接続するノズルに対して超音波探傷試験が行われている。
この超音波探傷試験を行う超音波探傷試験装置は、例えば特許文献1に示すように、超音波を発信すると共に超音波の反射波を受信するプローブと、プローブの受信結果に基づいて反射源(すなわち傷)の有無及びその形状を検出する演算処理装置とを備えている。このような超音波探傷試験装置を用いてノズルに対する超音波探傷試験を行う場合には、プローブをノズルの外側に配置し、ノズルに対して発信した超音波の反射波に基づいて、ノズル内部に形成された傷を検出する。
特開平5−172790号公報
ところで、供用期間中検査におけるノズルに対する上述の超音波探傷試験の検出性とサイジング性とについて検証が行われている。検出性とは、傷の存在を確認できるか否の程度を意味し、サイジング性とは、検出された傷の大きさ等の形状データの精度の高さを意味している。この結果、傷の検出率については100%であり、検出性が極めて高いことが確認された。しかしながら、サイジング精度については、ばらつきが大きくサイジング性が高くないことも確認された。
本発明は、上述する問題点に鑑みてなされたもので、超音波探傷試験のサイジング性を向上させることを目的とする。
本発明は、上記課題を解決するための手段として、以下の構成を採用する。
第1の発明は、試験対象に対して超音波を発信すると共に上記超音波の反射波を受信する超音波式フェーズドアレイプローブと、上記超音波式フェーズドアレイプローブの受信結果から超音波を反射する反射源を検出する演算処理装置とを備える超音波探傷試験装置であって、上記試験対象に対する上記超音波式フェーズドアレイプローブの位置を把握する位置把握機構を備え、上記演算処理装置が、1つの上記反射源の形状を、上記位置把握機構から得られる上記超音波式フェーズドアレイプローブの位置情報と、第1の位置に配置されたときの上記超音波式フェーズドアレイプローブの受信結果と、上記第1の位置と異なる位置に配置されたときの上記超音波式フェーズドアレイプローブの受信結果とに基づいて求めるという構成を採用する。
第2の発明は、上記第1の発明において、上記位置把握機構が、上記超音波式フェーズドアレイプローブを上記試験対象の表面に対して移動可能に固定する固定手段と、上記超音波式フェーズドアレイプローブの位置を調節する位置調節手段と、上記超音波式フェーズドアレイプローブの上記試験対象に対する移動量を検出して出力する移動量検出手段と、上記超音波式フェーズドアレイプローブを上記試験対象の表面に向けて押し付ける押圧手段とを備えるという構成を採用する。
第3の発明は、上記第2の発明において、原子炉の圧力容器と当該圧力容器に半径方向から繋がれる配管とを接続すると共に、上記圧力容器の外面と上記配管の外面とを繋ぐ外側曲面を有するノズルが上記試験対象であり、上記超音波式フェーズドアレイプローブを支持すると共に、上記外側曲面に沿った湾曲部を有するベースフレームと、上記ベースフレームに設けられて上記外側曲面と磁力によって固定されると共に上記ベースフレームを上記配管の周方向に移動可能とし、上記固定手段及び上記位置調節手段として機能する磁石車輪と、上記ベースフレームに設けられると共に上記超音波式フェーズドアレイプローブを上記外側曲面に沿って上記配管の軸方向に移動可能とし、上記位置調節手段として機能する回転機構と、上記磁石車輪に取り付けられ、上記移動量検出手段として機能する第1ロータリエンコーダと、上記回転機構に取り付けられ、上記移動量検出手段として機能する第2ロータリエンコーダとを備えるという構成を採用する。
第4の発明は、上記第3の発明において、上記演算処理装置が、1つの上記反射源の形状を、第1の位置に配置されたときの上記超音波式フェーズドアレイプローブの受信結果と、上記第1の位置から上記回転機構を用いて移動されたときの上記超音波式フェーズドアレイプローブの受信結果とに基づいて求めるという構成を採用する。
本発明によれば、超音波式フェーズドアレイプローブが2つの異なる位置(第1の位置及びこの第1の位置と異なる位置)に配置され、これらの位置で取得された超音波式フェーズドアレイプローブの受信結果に基づいて、1つの反射源の形状が求められる。超音波式フェーズドアレイプローブの配置位置が異なると、同じ反射源であっても、受信結果から得られる形状が異なる場合がある。これは、超音波式フェーズドアレイプローブの配置位置によって、受信可能な反射波の角度が異なるためと考えられる。このため、本発明のように異なる位置に配置された超音波式フェーズドアレイプローブから得られた受信結果に基づいて反射源の形状を求めることによって、より正確な反射源の形状を求めることが可能となる。したがって、本発明によれば、超音波探傷試験のサイジング性を向上させることが可能となる。
(a)が本発明の一実施形態における超音波探傷試験装置による試験対象であるノズルを含む斜視図であり、(b)が本発明の一実施形態における超音波探傷試験装置による試験対象であるノズルを含む断面斜視図である。 本発明の一実施形態における超音波探傷試験装置を模式的に示す概略構成図である。 (a)が本発明の一実施形態における超音波探傷試験装置が備えるプローブ移動治具を含む斜視図であり、(b)が本発明の一実施形態における超音波探傷試験装置が備えるプローブ移動治具を含む平面図である。 本発明の一実施形態における超音波探傷試験装置が備えるプローブの説明するための模式図であり、(a)がプローブとノズルとの位置関係を示す斜視図であり、(b)がプローブの斜視図である。 本発明の一実施形態における超音波探傷試験装置が備えるプローブの移動を説明するための模式図であり、(a)が平面図であり、(b)が縦断面図である。 本発明の一実施形態における超音波探傷試験装置による反射源の位置を求める算出方法の一例を説明するための概略図であり、(a)がノズルを含む断面図であり、(b)がノズルの正面図であり、(c)がプローブを側面から見た模式図である。 本発明の一実施形態における超音波探傷試験装置による反射源の位置を求める算出方法の一例を説明するための概略図であり、(a)がノズルの一部を示した概略図であり、(b)がノズルの全体を示した概略図である。 本発明の一実施形態における超音波探傷試験装置を用いた試験の試験対象であるノズルを含む模式図である。 (a)が従来例による結果と本発明の一実施形態における超音波探傷試験装置を用いた試験の結果とを示す図であり、(b)が従来法によるプローブの移動の様子を示す模式図である。 従来法においてサイジング結果が短くなる原因について検討するための模式図である。 (a)がノズル内面コーナ部を模擬した底面の傾きが、探傷角度に対してどのように変化するかを示すグラフである。(b)がノズル内面コーナ部を模擬した底面の傾きが、探傷角度に対してどのように変化するかを示す模式図である。 本発明の一実施形態における超音波探傷試験装置のように超音波ビームのスキュー角を変更した場合において、ノズル内面コーナ部を模擬した底面の傾きが、探傷角度に対してどのように変化するかを示すグラフである。 本発明の一実施形態における超音波探傷試験装置を用いた試験によるサイジング精度を説明するためのグラフである。
以下、図面を参照して、本発明に係る超音波探傷試験装置の一実施形態について説明する。なお、以下の説明において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
最初に、本実施形態の超音波探傷試験装置1による試験対象であるノズル100について説明する。図1は、(a)がノズル100を含む斜視図であり、(b)がノズル100を含む断面斜視図である。ノズル100は、原子炉の圧力容器200と、この圧力容器200に繋がれる配管300とを接続する部位である。圧力容器200は、燃料棒等を収容する鋼鉄製の円筒形状の容器であり、内部に冷却水が供給される。配管300は、圧力容器200の半径方向からノズル100を介して圧力容器200に対して繋がれており、例えば上記冷却水を案内する。
ノズル100は、圧力容器200の内部と配管300の内部流路とを繋げる貫通孔101が形成された円筒状の部位であり、圧力容器200及び配管300と同様に鋼鉄製である。このノズル100は、図1(b)に示すように、貫通孔101の圧力容器200側の縁部であるノズル内面コーナ部102と、このノズル内面コーナ部102に対向する外面であるノズル外面湾曲部103とを有している。ノズル内面コーナ部102は、圧力容器200の内壁面と貫通孔101を形成する内壁面とを滑らかに繋ぐ表面を有する部位である。ノズル外面湾曲部103は、ノズル内面コーナ部102の表面と同じ方向に湾曲する表面を有する部位である。この表面は、図1(b)に示すように、テーパー面104を介して、圧力容器200の外面と配管300の外面とを繋ぐ面である。以下、この面を外側曲面105と称する。
このようなノズル100は、経年劣化によって、応力集中部であるノズル内面コーナ部102に小さなき裂(傷)が生じることがある。このき裂は、補修等の対策を施さない場合には、時間の経過に伴って成長し、重大な損傷を招くことになる。本実施形態の超音波探傷試験装置1は、ノズル100を試験対象とし、ノズル内面コーナ部102に生じるき裂を素早く発見するためのものである。
図2は、本実施形態の超音波探傷試験装置1を模式的に示す概略構成図である。この図に示すように、本実施形態の超音波探傷試験装置1は、プローブ移動治具2(位置把握機構)と、プローブ3(超音波式フェーズドアレイプローブ)と、アクリルシュー4と、通信ケーブル5と、探傷装置本体6と、PC(パーソナルコンピュータ)7(演算処理装置)とから構成されている。
プローブ移動治具2は、プローブ3のノズル100に対する位置を調節するための治具であり、作業者によって持ち運びが可能な大きさとされている。図3は、このプローブ移動治具2は、ベースフレーム21と、磁石車輪22(位置調節手段)と、第1ロータリエンコーダ23(移動量検出手段)と、回転機構24(位置調節手段)と、第2ロータリエンコーダ25(移動量検出手段)と、台座26と、ガイドローラ27と、押圧機構28(押圧手段)とを備えている。
ベースフレーム21は、磁石車輪22と、第1ロータリエンコーダ23と、回転機構24と、第2ロータリエンコーダ25と、台座26と、ガイドローラ27と、押圧機構28プローブ3と、アクリルシュー4とを支持する剛性部材である。このベースフレーム21は、図3(a)に示すように、対向配置される2つの扇状のフレーム21a及びフレーム21bと、これらのフレーム21a及びフレーム21bとを繋ぐ連結棒21cとから構成されている。なお、2つのフレーム21a及びフレーム21bは、同様に湾曲する湾曲部21a1及び湾曲部21b1を有している。これらの湾曲部21a1及び湾曲部21b1の形状は、ノズル100の外側曲面105に合わされている。このため、ベースフレーム21は、湾曲部21a1及び湾曲部21b1を外側曲面105に当接させることによってノズル外面湾曲部103に嵌まる形状とされている。
磁石車輪22は、ベースフレーム21のフレーム21aとフレーム21bとの各々に回転可能に設けられており、ノズル100に磁力によって固着するように永久磁石によって形成されている。この磁石車輪22は、回転による進行方向がノズル100の周方向となるように、フレーム21aの湾曲部21a1の端部に配置されている。これらの磁石車輪22は、プローブ3をノズル100に対して移動可能に固定する固定手段、及び、プローブ3の位置を調節する位置調節手段として機能するものである。
第1ロータリエンコーダ23は、磁石車輪22に取り付けられており、磁石車輪22の回転量を検出してその回転量をプローブ3のノズル周方向への移動量を示す信号として出力するセンサである。すなわち、第1ロータリエンコーダ23は、プローブ3のノズル100に対する移動量を検出する移動量検出手段として機能するものである。
回転機構24は、ベースフレーム21のフレーム21bに固定されたターンテーブル機構であり、プローブ3が載置される台座26を回転可能に支持している。この回転機構24は、作業者によって回転されるが、作業者が手を離した場合であっても、その回転位置を固定するためのロック機構を備えている。この回転機構24は、図3(b)に矢印にて示すように、フレーム21aとフレーム21bとの間において、ノズル100のノズル外面湾曲部103の湾曲方向に沿ってプローブ3を回動させる。このような回転機構24によって、プローブ3は、フレーム21aの湾曲部21a1と、フレーム21bの湾曲部21b1とに沿って移動される。なお、以下の説明において、回転機構24を用いたプローブ3の移動を走査と称し、回転機構24によって規定されるプローブ3の角度を走査角度と称する。
第2ロータリエンコーダ25は、回転機構24に取り付けられており、回転機構24の回転量を検出してその回転量をプローブ3の走査角度を示す信号として出力するセンサである。すなわち、第2ロータリエンコーダ25は、プローブ3のノズル100に対する移動量を検出する移動量検出手段として機能するものである。
台座26は、回転機構24上に摺動可能に取り付けられており、プローブ3を支持する。ガイドローラ27は、台座26と連結されており、ベースフレーム21の表面を走行して台座26を案内するものである。押圧機構28は、回転機構24上に載置されており、台座26を押すことによって、台座26上に載置されたプローブ3を、アクリルシュー4を介してノズル100の外側曲面105に対して押し付けるものである。
このように構成されたプローブ移動治具2は、磁石車輪22がノズル100の外側曲面105の配管300寄りの領域に固着されることで、全体がノズル100の外側曲面105に対して固着される。この状態で、例えば作業者がノズル100の周方向にベースフレームを押すことによって、磁石車輪22が回転され、プローブ移動治具2はノズル100に固着したままノズル100の周方向(図2の矢印A方向)に移動される。これによって、プローブ移動治具2に支持されたプローブ3もノズル100の周方向に移動される。つまり、作業者は、プローブ移動治具2をノズル100の周方向に移動させることによって、プローブ3のノズル100の周方向の位置を調節することができる。また、回転機構24を回転させた場合には、台座26が回動され、プローブ3が走査方向(図2の矢印B方向)に移動される。つまり、作業者は、プローブ移動治具2のガイドローラ27を摘み、回転機構24を回転させることによって、外側曲面105の湾曲方向(図2の矢印B方向)の位置(すなわち走査角度)を調節することができる。
また、プローブ移動治具2は、上述のようにして作業が行った操作によってプローブ3が移動された量を示す信号を出力する。具体的には、第1ロータリエンコーダ23はプローブ3のノズル周方向への移動量を示す信号を出力し、第2ロータリエンコーダ25はプローブ3の走査角度を示す信号(すなわち走査方向の移動量を示す信号)を出力する。本実施形態の超音波探傷試験装置1では、このプローブ移動治具2を用いてプローブ3のノズル100に対する位置の把握が行われる。
プローブ3は、超音波式フェーズドアレイプローブであり、台座26上に配置され、アクリルシュー4を介してノズル100の外側曲面105に当接されている。図4は、プローブ3の説明するための模式図であり、(a)がプローブ3とノズル100との位置関係を示す斜視図であり、(b)がプローブ3の斜視図である。なお、図4(a)では、プローブ移動治具2は省略して図示している。図4(a)に示すように、プローブ3は、作業者の走査の下、プローブ移動治具2によって、ノズル100の周方向(矢印A方向)と外側曲面105の湾曲方向(矢印B方向)に移動される。このようなプローブ3は、ノズル外面湾曲部103からノズル内面コーナ部102に向けて超音波を発信し、その反射波を受信し、その受信結果を出力する。
プローブ3は、上述のように超音波式フェーズドアレイプローブであり、図4(b)に示すように、超音波の発信方向をノズル100の周方向及び外側曲面105の湾曲方向に振ることが可能とされている。なお、図4(b)に示すように、超音波の発信方向と鉛直線とが成す角度を屈折角、超音波の発信方向とプローブ3のノズル100の周方向への進行方向とが成す角度をスキュー角と称する。
アクリルシュー4は、図3(a)及び図3(b)に示すように、プローブ3に取り付けられており、プローブ3から発信される超音波の発信方向を調節すると共にプローブ3を保護する。通信ケーブル5は、図2に示すように、プローブ移動治具2及びプローブ3と、探傷装置本体6とを電気的に繋ぐケーブルである。この通信ケーブル5によって、探傷装置本体6からプローブ3に制御信号が送信され、プローブ3から探傷装置本体6に受信結果が送信される。また、通信ケーブル5によって、第1ロータリエンコーダ23及び第2ロータリエンコーダ25から探傷装置本体6にプローブ3の位置を示す信号が送信される。
探傷装置本体6は、図2に示すように、プローブ3と通信ケーブル5を介して接続されており、プローブ3の制御を行うと共に、作業者の要求に応じてプローブ3の受信結果に対する後処理を行う。例えば、この探傷装置本体6は、プローブ3の受信結果から反射源(すなわち傷)の有無を判定する。また、探傷装置本体6は、プローブ3の受信結果を、第1ロータリエンコーダ23の出力結果及び第2ロータリエンコーダ25の出力結果(すなわち)プローブ3の位置情報と関連付けて、PC7に向けて出力する。
PC7は、図2に示すように探傷装置本体6と接続され、探傷装置本体6と接続するための探傷装置用ソフトウェアや反射源の形状を求めるための反射源形状算出ソフトウェアを有している。このPC7は、探傷装置本体6から入力されるプローブ3の位置情報と関連付けられたプローブ3の受信結果に基づいて、反射源の形状を求める。より詳細には、PC7は、探傷装置本体6によって発見された1つの反射源に対して、走査角度が異なる状態で取得されたプローブ3の受信結果を用いて反射源の形状を求める。すなわち、PC7は、1つの反射源の形状を、プローブ移動治具2から得られるプローブ3の位置情報と、第1の位置に配置されたときのプローブ3の受信結果と、第1の位置と異なる位置に配置されたときのプローブ3の受信結果とに基づいて求める。なお、例えばPC7は、予めプローブ3の基準位置を記憶しており、第1ロータリエンコーダ23及び第2ロータリエンコーダ25の検出結果からプローブ3の位置を特定する。
このような構成を有する本実施形態の超音波探傷試験装置1を用いて探傷試験を行う場合には、例えば図5(a)及び図5(b)に示すように、鉛直方向を0°とした場合のプローブ3の走査角度を50°に設定した状態で、超音波を屈折角及びスキュー角を変更しながらプローブ3をノズル100の周方向に1周させる。続いて、プローブ3の走査角度を55°に設定した状態で同様にプローブ3をノズル100の周方向に1周させる。さらに、プローブ3の走査角度を60°に設定した状態で同様にプローブ3をノズル100の周方向に1周させる。
このように、プローブ3の走査角度を変更し、その都度プローブ3をノズル100周りに1周させることによって、図5(b)に示すように、1つの反射源Hに対して異なる方向から超音波が当てられる。
PC7は、探傷装置本体6を介して入力される第1ロータリエンコーダ23及び第2ロータリエンコーダ25の検出結果に基づいてプローブ3の位置を求める。このようなPC7は、走査角度が50°のときのプローブ3の受信結果と、走査角度が55°でノズル100の周方向の位置が同じときのプローブ3の受信結果と、走査角度が60°でノズル100の周方向の位置が同じときのプローブ3の受信結果とをピックアップする。PC7は、このようにピックアップした3つの受信結果から、反射源Hの形状を求める。具体的には、PC7は、走査角度が50°のときのプローブ3の受信結果から求められる反射源Hの形状と、走査角度が55°のときのプローブ3の受信結果から求められる反射源Hの形状と、走査角度が60°のときのプローブ3の受信結果から求められる反射源Hの形状とを重ね合わせ、この結果得られた形状を、最終的に求めた反射源Hの形状とする。
なお、プローブ3の走査角度がある1つの値であるときのPC7による反射源Hの形状の求め方の一例について図6及び図7を参照して説明する。なお、図6(a)は、ノズル100を含む断面図であり、図6(b)は、ノズル100の正面図であり、(c)はプローブ3を側面から見た模式図である。また、図7(a)はノズル100の一部を概略的に示した概略図であり、図7(b)はノズル100の全体を概略的に示した概略図である。
図6に示すように、以下の計算式において、ノズル100の半径をRa、圧力容器200の外面の曲率をRb、ノズル100の外側曲面105の曲率をRs、探傷角度θx、入射点の座標をPi、反射源の座標をPe、入射点Piから反射源位置Peまでの路程をW、屈折角をθy、スキュー角をθsとする。また、ノズル100の周方向におけるプローブ3の位置(入射点)をθzとする。座標の原点は、Z座標は圧力容器200の中心、XY座標はノズル100の貫通孔101の中心とする。また、ここでの探傷角度とは、超音波ビーム(超音波の発信方向)と鉛直線とが成す角度であり、上記実施形態の走査角度と同一である。
まず入射点Pi(x,y,z)座標を算出する。なお、ノズル100の周方向におけるプローブ3の位置(入射点)をθzは直接測定することが困難であるため、図6(b)に示すように、第1ロータリエンコーダ23の検出結果から得られる距離Lに基づいて下式(1)から求める。
Figure 0006155691
入射点Piは、θz,θxを用いて、下式(2)、(3)及び(4)に基づいて求められる。
Figure 0006155691
Figure 0006155691
Figure 0006155691
続いて、θx,θy,θzを用いて超音波ビーム(超音波の発信方向)を回転させる。路程w及び屈折角θyを読取る。反射源のみの座標系をPs’とすると、下式(5)及び下式(6)となる。
Figure 0006155691
Figure 0006155691
下式(7)、(8)及び(9)によって、スキュー角θsを用いて座標Ps’を回転しPs’’とする。
Figure 0006155691
Figure 0006155691
Figure 0006155691
次に、下式(10)によってオフセット値Poを加える。
Figure 0006155691
続いて、下式(11)、(12)及び(13)によって、探傷角度θxを用いて座標Ps’’を回転しPs’’’とする。
Figure 0006155691
Figure 0006155691
Figure 0006155691
ノズル100の周方向におけるプローブ3の位置(入射点)をθzを用い、下式(14)、(15)及び(16)によって座標Ps’’を回転する。
Figure 0006155691
Figure 0006155691
Figure 0006155691
続いて、入射点Piに回転させた座標Psを移動し、下式(17)により、反射源位置Peを求めることができる。
Figure 0006155691
以上の算出方法によって、超音波ビームが当てられている座標が求められるため、PC7は、XYZ画像メモリのPe座標に反射波の強さであるエコー高さEhを入力する。PC7は、プローブ3からの超音波の発信方向が変更される都度、上記算出方法で超音波ビームが当てられている座標が求め、XYZ画像メモリの該当する座標にエコー高さを入力する。この結果、超音波ビームが当てられた領域の全てにおけるエコー高さがXYZ画像メモリに入力される。エコー高さは、反射源の有無を示すことから、これに基づいて反射源の形状が求められる。なお、PC7は、上記算出方法を用いて反射源Hの形状を算出する場合には、上記反射源形状算出ソフトウェアとして、上記算出方法が実行可能なプログラムを有している。
以上のような本実施形態の超音波探傷試験装置1によれば、プローブ3が2つの異なる位置に配置され、これらの位置で取得されたプローブ3の受信結果に基づいて、1つの反射源Hの形状が求められる。プローブ3の配置位置が異なると、同じ反射源Hであっても、受信結果から得られる形状が異なる場合があるが、本実施形態の超音波探傷試験装置1によれば、異なる位置に配置されたプローブ3から得られた受信結果に基づいて反射源Hの形状を求めることによって、より正確な反射源Hの形状を求めることが可能となる。したがって、本実施形態の超音波探傷試験装置1によれば、超音波探傷試験のサイジング性を向上させることが可能となる。
また、本実施形態の超音波探傷試験装置1においてプローブ移動治具2は、プローブ3を支持すると共に、外側曲面105に沿った湾曲部21a1及び湾曲部21b1を有するベースフレーム21を備えている。また、ベースフレーム21に設けられて外側曲面105と磁力によって固定されると共にベースフレーム21を配管300(ノズル100)の周方向に移動可能とし、固定手段及び上記位置調節手段として機能する磁石車輪22を備えている。また、ベースフレーム21に設けられると共にプローブ3を外側曲面105に沿って配管300(ノズル100)の軸方向に移動可能とし、位置調節手段として機能する回転機構24を備えている。また、磁石車輪22に取り付けられ、移動量検出手段として機能する第1ロータリエンコーダ23と、回転機構24に取り付けられ、移動量検出手段として機能する第2ロータリエンコーダ25とを備えている。このような本実施形態の超音波探傷試験装置1によれば、プローブ3の位置をノズル100に固着させたまま容易に移動させることができ、また移動後のプローブ3の位置を正確に把握することができる。
続いて、本実施形態の超音波探傷試験装置1によって得られた結果と、従来例の超音波探傷試験によって得られた結果との比較を行う。
本実施形態の超音波探傷試験装置1を用いた試験では、図8に示すように、3つの反射源H1、反射源H2及び反射源H3をノズル内面コーナ部102に貼り付けて行った。なお、反射源H1の長さは42mmであり、反射源H2の長さも42mmであり、反射源H3の長さは40mmとした。この試験で得られた結果をと、従来例の超音波探傷試験によって得られた結果とを示したもの図9(a)に示す。これから、従来例の超音波探傷試験(以下、従来法と称する)では、疲労亀裂及びEDMスリットが過小評価(非保守的評価)されているのに対して、本実施形態の超音波探傷試験装置1では、試験体は異なるものの反射源の保守的評価できていることが確認できる。
ここで、従来法においてサイジング結果が短くなる原因について検討する。本検討のため、本来は行っていないものの、従来法において、図9(b)に示すように、外側曲面105に沿って探傷角度を変化させながら探傷試験を行った。この結果、ノズル100の貫通孔101が検出されない結果となった。これは、図10(a)及び図10(b)に示すように、超音波の発信方向を斜方とする斜角法の場合には、反射源Hがない場合に反射波が得られず、反射源Hがある場合にのみプローブに戻る反射波が得られることと同じ理由であると考えられる。つまり、図10(c)及び図10(d)に示すように、反射源Hが形成される面(底面)がプローブからの垂直方向に対して傾斜している場合には、反射源Hがない場合には、底面が検出されない。このため、プローブ3の垂直方向に対して、傾斜した面となるノズル内面コーナ部102は検出されてないものと考えられる。なお、図10(b)は、図10(a)を側方から見た図であり、図10(d)は、図10(c)を側方から見た図である。これらの現象を考察すると、図10(d)に示すように、反射源Hが傾斜する底面に設けられている場合には、反射源Hの一部が検出されない領域に達し、この結果サイジング結果が短くなるものと考えられる。
図11(a)は、ノズル内面コーナ部102を模擬した底面の傾きが、探傷角度に対してどのように変化するかを示すグラフである。また、図11(b)は、ノズル内面コーナ部102を模擬した底面の傾きが、探傷角度に対してどのように変化するかを示す模式図である。なお、図11(b)で示す数字は、探傷角度を示している。これらの図に示すように、ノズル内面コーナ部102のように湾曲した底面であると、探傷角度によっては、プローブ3の垂直方向に対して底面の傾きが大きくなり、底面の検出ができない場合が考えられる。
一方、図12は、本実施形態の超音波探傷試験装置1のように超音波ビームのスキュー角を変更した場合において、ノズル内面コーナ部102を模擬した底面の傾きが、探傷角度に対してどのように変化するかを示すグラフである。この図に示すように、超音波ビームのスキュー角を変更した場合には、スキュー角によって探傷角度に対する底面の角度が変化し、結果として底面の検出範囲が広がる。すなわち、スキュー角を変更することによって、変更前においては検出されなかった底面を検出することができるようになる。よって、本実施形態の超音波探傷試験装置1のように、スキュー角を変更可能とすることで、より広い範囲のノズル内面コーナ部102を検出できるようになり、サイジング精度を向上させることができる。
図13は、本実施形態の超音波探傷試験装置1において、回転機構24によってプローブ3を移動することで探傷角度を変更し、反射源H1、反射源H2及び反射源H3の形状(長さ)を求めた結果である。なお、本実施形態の超音波探傷試験装置1では、探傷角度を変化させて求められた結果を全て重ね合わせ、最大値と最小値との差分を長さとして求めた。この結果、(a)に示すように、反射源H1に対しては、実際の長さが42mmに対して51.8mmとの結果が得られた。また、(b)に示すように、反射源H2に対しては、実際の長さが42mmに対して57.2mmとの結果が得られた。また、反射源H3に対しては、(c)に示すように、実際の長さが40mmであるのに対して55.1mmとの結果が得られた。このように、本実施形態の超音波探傷試験装置1によれば、実際の長さに近い結果が得られ、なおかつ結果は実際の長さよりも長いものとなる。よって、本実施形態の超音波探傷試験装置1によれば、サイジング精度を向上させることができると共に、保守的評価を行うことができる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態においては、試験対象がノズル100である構成について説明した。しかしながら、本発明はこれに限定されるものではなく、少なくとも現在、超音波探傷試験が行われている部材全般を試験対象とすることができる。
また、上記実施形態においては、磁石車輪22によってプローブ移動治具2を移動可能に固着する構成について説明した。しかしながら、本発明はこれに限定されるものではなく、複数の吸着パッドを用いて、吸着と乖離とを繰り返しながら、プローブ移動治具2をノズル100に対して移動可能に固着する構成を採用しても良い。また、ノズル100の周囲にレールを敷設し、このレールに沿ってプローブ移動治具2を移動させるようにしても良い。すなわち、本発明における固着手段及び位置調節手段は、磁石車輪22に限られるものではない。
また、上記実施形態においては、第1ロータリエンコーダ23及び第2ロータリエンコーダ25の出力に基づいてプローブ3の位置を求める構成について説明した。しかしながら、本発明はこれに限定されるものではなく、他のセンサを設置し、その出力に基づいてプローブ3の位置を求めるようにしても良い。すなわち、本発明における移動量検出手段は、第1ロータリエンコーダ23及び第2ロータリエンコーダ25に限られるものではない。
また、上記実施形態においては、PC7において、採取的な反射源Hの形状を求める構成について説明した。しかしながら、本発明はこれに限定されるものではなく、PC7の機能を探傷装置本体6に付与しても良い。この場合は、探傷装置本体6が本発明の演算処理装置として機能することになる。
1……超音波探傷試験装置、2……プローブ移動治具、3……プローブ、4……アクリルシュー、5……通信ケーブル、6……探傷装置本体、7……PC(演算処理装置)、21……ベースフレーム、21a……フレーム、21a1……湾曲部、21b……フレーム、21b1……湾曲部、21c……連結棒、22……磁石車輪、23……第1ロータリエンコーダ、24……回転機構、25……第2ロータリエンコーダ、26……台座、27……ガイドローラ、28……押圧機構、100……ノズル(試験対象)、101……貫通孔、102……ノズル内面コーナ部、103……ノズル外面湾曲部、104……テーパー面、105……外側曲面、200……圧力容器、300……配管、H……反射源、H1……反射源、H2……反射源、H3……反射源

Claims (4)

  1. 試験対象に対して超音波を発信すると共に前記超音波の反射波を受信する超音波式フェーズドアレイプローブと、前記超音波式フェーズドアレイプローブの受信結果から超音波を反射する反射源を検出する演算処理装置とを備える超音波探傷試験装置であって、
    前記試験対象に対する前記超音波式フェーズドアレイプローブの位置を把握する位置把握機構を備え、
    前記位置把握機構は、前記超音波式フェーズドアレイプローブを支持すると共に、前記試験対象の外側曲面に当接可能な湾曲部を有するベースフレームを備え、
    前記演算処理装置は、1つの前記反射源の形状を、前記位置把握機構から得られる前記超音波式フェーズドアレイプローブの位置情報と、第1の位置に配置されたときの前記超音波式フェーズドアレイプローブの受信結果と、前記第1の位置と異なる位置に配置されたときの前記超音波式フェーズドアレイプローブの受信結果とに基づいて求める
    ことを特徴とする超音波探傷試験装置。
  2. 前記位置把握機構は、
    前記超音波式フェーズドアレイプローブを前記試験対象の表面に対して移動可能に固定する固定手段と、
    前記超音波式フェーズドアレイプローブの位置を調節する位置調節手段と、
    前記超音波式フェーズドアレイプローブの前記試験対象に対する移動量を検出して出力する移動量検出手段と、
    前記超音波式フェーズドアレイプローブを前記試験対象の表面に向けて押し付ける押圧手段と
    を備えることを特徴とする請求項1記載の超音波探傷試験装置。
  3. 原子炉の圧力容器と当該圧力容器に半径方向から繋がれる配管とを接続すると共に、前記圧力容器の外面と前記配管の外面とを繋ぐ外側曲面を有するノズルが前記試験対象であり
    前記ベースフレームに設けられて前記外側曲面と磁力によって固定されると共に前記ベースフレームを前記配管の周方向に移動可能とし、前記固定手段及び前記位置調節手段として機能する磁石車輪と、
    前記ベースフレームに設けられると共に前記超音波式フェーズドアレイプローブを前記外側曲面に沿って前記配管の軸方向に移動可能とし、前記位置調節手段として機能する回転機構と、
    前記磁石車輪に取り付けられ、前記移動量検出手段として機能する第1ロータリエンコーダと、
    前記回転機構に取り付けられ、前記移動量検出手段として機能する第2ロータリエンコーダと
    を備えることを特徴とする請求項2記載の超音波探傷試験装置。
  4. 前記演算処理装置は、1つの前記反射源の形状を、第1の位置に配置されたときの前記超音波式フェーズドアレイプローブの受信結果と、前記第1の位置から前記回転機構を用いて移動されたときの前記超音波式フェーズドアレイプローブの受信結果とに基づいて求めることを特徴とする請求項3記載の超音波探傷試験装置。
JP2013033572A 2013-02-22 2013-02-22 超音波探傷試験装置 Active JP6155691B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033572A JP6155691B2 (ja) 2013-02-22 2013-02-22 超音波探傷試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033572A JP6155691B2 (ja) 2013-02-22 2013-02-22 超音波探傷試験装置

Publications (2)

Publication Number Publication Date
JP2014163750A JP2014163750A (ja) 2014-09-08
JP6155691B2 true JP6155691B2 (ja) 2017-07-05

Family

ID=51614498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033572A Active JP6155691B2 (ja) 2013-02-22 2013-02-22 超音波探傷試験装置

Country Status (1)

Country Link
JP (1) JP6155691B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645428B (zh) * 2016-12-28 2023-07-04 天津精益铁安机电技术有限公司 一种相控阵超声检测载体的快速更换导流板结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122563A (ja) * 1989-10-05 1991-05-24 Toshiba Corp 超音波探傷装置
JPH0815478A (ja) * 1994-06-28 1996-01-19 Ishikawajima Harima Heavy Ind Co Ltd 圧力容器ノズル用超音波探傷装置および超音波探触子
JPH08304360A (ja) * 1995-05-10 1996-11-22 Ishikawajima Harima Heavy Ind Co Ltd 原子炉圧力容器ノズル部の探傷装置
US7305885B2 (en) * 2004-09-30 2007-12-11 General Electric Company Method and apparatus for phased array based ultrasonic evaluation of rail
JP2006308566A (ja) * 2005-04-01 2006-11-09 Hitachi Ltd 超音波探傷方法及び超音波探傷装置
JP5183422B2 (ja) * 2008-10-29 2013-04-17 株式会社日立製作所 三次元超音波映像化方法及び装置

Also Published As

Publication number Publication date
JP2014163750A (ja) 2014-09-08

Similar Documents

Publication Publication Date Title
KR101804484B1 (ko) 센서 장치 및 상기 장치를 사용한 잔류 응력 검측 시스템
JP2007187593A (ja) 配管検査装置及び配管検査方法
JP6290718B2 (ja) 超音波検査装置及び超音波検査方法
US20100131210A1 (en) Method and system for non-destructive inspection of a colony of stress corrosion cracks
WO2011138741A1 (en) Object inspection with referenced volumetric analysis sensor
JP5731765B2 (ja) 超音波探傷装置および超音波探傷方法
KR101308071B1 (ko) 곡률 쐐기를 가지는 위상배열 초음파 탐촉자의 빔 집속점 보정 방법
JP5931551B2 (ja) 超音波探傷装置、超音波センサ支持装置、および超音波探傷方法
CN105229461A (zh) 用于管状产品的尤其现场非破坏性检查的装置和方法
KR20100045284A (ko) 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
CN105637358A (zh) 可移动式超声波探伤装置及超声波探伤方法
JP5622597B2 (ja) 超音波探傷装置及び超音波探傷方法
CN105044211A (zh) 基于trl相控阵探头的缺陷3d可视化超声检测流程
KR20100124242A (ko) 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
JP5840910B2 (ja) 超音波探傷方法
JP5530975B2 (ja) 超音波探傷方法及び超音波探傷装置
JP7233646B2 (ja) 超音波検査方法、超音波検査装置およびプログラム
JP2010122175A (ja) 配管検査装置および配管検査方法
JP5748417B2 (ja) 超音波探傷システム
JP6155691B2 (ja) 超音波探傷試験装置
JP6356579B2 (ja) 渦電流探傷装置および渦電流探傷方法
JP2007198822A (ja) 車輪用軸受外輪の転走面焼入れ深さ測定方法
Kumar et al. Experimentation for sag and dimension measurement of thin-walled tubes and pipes using multi-channel ultrasonic imaging system
US20180164255A1 (en) Adjustable wide bandwidth guidewave (gw) probe for tube and pipe inspection systems
JP5959677B2 (ja) 超音波探傷装置および超音波探傷方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6155691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250