JP7233646B2 - 超音波検査方法、超音波検査装置およびプログラム - Google Patents

超音波検査方法、超音波検査装置およびプログラム Download PDF

Info

Publication number
JP7233646B2
JP7233646B2 JP2019034831A JP2019034831A JP7233646B2 JP 7233646 B2 JP7233646 B2 JP 7233646B2 JP 2019034831 A JP2019034831 A JP 2019034831A JP 2019034831 A JP2019034831 A JP 2019034831A JP 7233646 B2 JP7233646 B2 JP 7233646B2
Authority
JP
Japan
Prior art keywords
data
ultrasonic
ultrasonic signal
pixels
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019034831A
Other languages
English (en)
Other versions
JP2019158876A (ja
Inventor
恭平 林
和之 中畑
正和 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Ehime University NUC
Original Assignee
Mitsubishi Heavy Industries Ltd
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Ehime University NUC filed Critical Mitsubishi Heavy Industries Ltd
Priority to US16/296,908 priority Critical patent/US11054398B2/en
Publication of JP2019158876A publication Critical patent/JP2019158876A/ja
Application granted granted Critical
Publication of JP7233646B2 publication Critical patent/JP7233646B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波検査方法、超音波検査装置およびプログラムに関する。
従来、超音波信号により検査対象物をスキャンし、検査対象物について種々の検査を行う検査方法に関する技術が知られている。例えば、特許文献1には、複数の探触子を用いたフルマトリックス捕捉(FMC:FULL Matrix Capture)スキャンにより検査対象物としての導管を超音波信号でスキャンしたデータを取得し、取得したデータをトータルフォーカス法(TFM:Total Focusing Method)などの波形合成処理法を用いて処理して、スキャン範囲における導管を描画し、導管の肉厚を検査する手法が開示されている。
特許第6224594号公報
上記特許文献1に記載の手法は、導管の肉厚を検査するための手法であり、導管の表面(超音波検査用のプローブから近い面および遠い面)の位置を、上述したFMC/TFMによるデータ収集、処理により特定している。しかしながら、導管の表面位置を特定するため、キャニーエッジによる検出法、エッジの膨張、細線化の処理、誤認識ピクセルのトリミング、水平端部近似処理といった複数の処理を行っているため、計算に要する時間が長くなってしまう。
本発明は、上記に鑑みてなされたものであって、検査対象物について超音波検査を行う検査方法について、処理の計算負荷を低減させることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、検査対象物を超音波によりスキャンして検査する超音波検査方法であって、超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップとを備え、前記データ合成ステップは、前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップとを含むことを特徴とする。
この構成により、検査対象物の全体ではなく、表面を含む画像を作成し、作成した画像から最大のピクセル強度を示すピクセルを抽出するだけで、検査対象物の表面形状を特定することができる。そのため、検査対象物の表面形状の特定に複雑な処理を要さない。
また、前記一次描画ステップは、前記検査対象物の表面が含まれる範囲を予め規定した所定範囲において、前記画像を描画することが好ましい。
この構成により、検査対象物の表面とは異なる位置(すなわち検査対象物の内部)から反射した超音波信号を除外して表面を含む画像を作成することができるため、計算精度を向上させることが可能となる。
また、前記形状特定ステップは、前記ピクセル強度が最大となる前記ピクセルのうち、前記ピクセル強度が所定の閾値以上であるものを抽出することが好ましい。
この構成により、ピクセル強度が所定の閾値未満となる検査対象物の表面については、超音波信号が複数の探触子の範囲外に反射して検査対象物の内部には入射しなかった位置であると推定し、この表面位置を表面形状の特定から除外することができる。その結果、特定した表面形状を用いた後の処理の際に、必要のない表面形状の位置データを用いることなく、処理を実行することができるため、計算負荷をさらに低減させることが可能となる。
また、前記データ合成ステップは、前記形状特定ステップで特定した前記表面形状のうち、前記探触子から任意の前記ピクセルまでの超音波信号の伝播時間が最小となる位置を算出し、算出した前記表面形状の位置を通る経路を超音波信号の伝播経路とする経路算出ステップと、前記データ収集ステップで収集した超音波信号のデータについて、前記経路算出ステップで算出した前記伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成する振幅値合成ステップとをさらに備えることが好ましい。
この構成により、各探触子から発信された超音波信号が検査対象物の内部で反射した(振幅値が増大した)タイミングおよび位置を一致させて振幅値を合成した超音波信号の反射波形の結果を得ることができる。それにより、検査対象物の内部欠陥の位置を検出することができる。また、データ収集ステップにおいて取得した超音波信号のデータ群を用いることで、検査対象物の表面形状を特定した後、連続的に処理を行うことができるため、検査のリアルタイム性を向上させることが可能となる。
また、前記形状特定ステップで特定した前記表面形状に沿って、前記複数の探触子の配列方向に沿って形成される超音波信号の送受信面を湾曲させ、前記データ収集ステップ、前記一次描画ステップおよび前記形状特定ステップを再び実行することが好ましい。
この構成により、形状特定ステップで特定した検査対象物の表面形状に沿って、複数の探触子の送受信面を湾曲させるため、端部に配置される探触子において、より多くの超音波信号の反射波を捕捉することができる。その結果、再び実行される形状特定ステップにおいて、表面形状の端部における形状をより精度良く特定することが可能となる。
また、前記形状特定ステップは、前記延在方向と直交する方向にそって前記ピクセル強度を連続値とし、前記連続値に微分フィルタを施した値に基づいて、前記ピクセル強度が最大となるピクセルを抽出し、前記微分フィルタは、前記表面が形成する凹凸面の端部では、中央部に比べて、より感度の高い微分フィルタであることが好ましい。
この構成により、表面形状の端部において、ピクセル強度の連続値に、より感度の高い微分フィルタを施した値に基づいて、ピクセル強度が最大となるピクセルを精度良く特定することができる。その結果、検査対象物の表面形状をより精度良く特定することが可能となる。
また、前記一次描画ステップは、前記ピクセルごとに、最も強い超音波信号を送受信した前記探触子の座標と前記最も強い超音波信号の送受信時間とに基づいて、前記検査対象物の前記表面の傾斜角を推定し、前記ピクセルごとに、推定した前記傾斜角に基づいて超音波信号の前記表面に対する入射角および反射角を算出し、前記入射角と前記反射角とが近似する超音波信号のデータに強調補正をかけて、前記画像を描画することが好ましい。
この構成により、一つの探触子から送信されて他の探触子で受信した超音波信号のうち、検査対象物の表面に対する入射角および反射角が近似する超音波信号、すなわち強い超音波信号を特定することができる。そして、特定した強い超音波信号のデータに強調補正をかけて画像を作成することができる。その結果、一次描画ステップにおいて、検査対象物の表面をより精度良く描画することができ、後の形状特定ステップにおいて、表面形状をより精度良く特定することが可能となる。
上述した課題を解決し、目的を達成するために、本発明は、検査対象物を超音波によりスキャンして検査する超音波検査装置であって、超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子と、前記複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集処理と、前記データ収集処理で収集した超音波信号のデータを処理して合成するデータ合成処理を実行する演算処理部とを備え、前記演算処理部は、前記データ収集処理で収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画処理と、前記一次描画処理で描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定処理とを実行することを特徴とする。
この構成により、検査対象物の全体ではなく、表面を含む画像を作成し、作成した画像から最大のピクセル強度を示すピクセルを抽出するだけで、検査対象物の表面形状を特定することができる。そのため、検査対象物の表面形状の特定に複雑な処理を要さない。
また、前記演算処理部は、前記形状特定処理で特定した前記表面形状のうち、前記探触子から任意の前記ピクセルまでの超音波信号の伝播時間が最小となる位置を算出し、算出した前記表面形状の位置を通る経路を超音波信号の伝播経路とする経路算出処理と、前記データ収集処理で収集した超音波信号のデータについて、前記経路算出処理で算出した前記伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成する振幅値合成処理とをさらに実行することが好ましい。
この構成により、各探触子から発信された超音波信号が検査対象物の内部で反射した(振幅値が増大した)タイミングおよび位置を一致させて振幅値を合成した超音波信号の反射波形の結果を得ることができる。それにより、検査対象物の内部欠陥の位置を検出することができる。また、データ収集ステップにおいて取得した超音波信号のデータ群を用いることで、検査対象物の表面形状を特定した後、連続的に処理を行うことができるため、検査のリアルタイム性を向上させることが可能となる。
また、前記演算処理部は、GPGPU(General-Purpose Computing On Graphics Processing Unit)用いて、計算速度を向上させることができる。GPUは、少なくとも一つ必要であるが、複数のGPUを並列して使用することも可能である。
また、前記演算処理部は、前記形状特定処理で特定した前記表面形状に沿って、前記複数の探触子の送受信面が湾曲した状態で、前記データ収集処理、前記一次描画処理および前記形状特定処理を再び実行することが好ましい。
この構成により、形状特定処理で特定した検査対象物の表面形状に沿って、複数の探触子の送受信面を湾曲させるため、端部に配置される探触子において、より多くの超音波信号の反射波を捕捉することができる。その結果、再び実行される形状特定処理において、表面形状の端部における形状をより精度良く特定することが可能となる。
また、前記形状特定処理は、前記延在方向と直交する方向にそって前記ピクセル強度を連続値とし、前記連続値に微分フィルタを施した値に基づいて、前記ピクセル強度が最大となるピクセルを抽出し、前記微分フィルタは、前記表面が形成する凹凸面の端部では、中央部に比べて、より感度の高い微分フィルタであることが好ましい。
この構成により、表面形状の端部において、ピクセル強度の連続値に、より感度の高い微分フィルタを施した値に基づいて、ピクセル強度が最大となるピクセルを精度良く特定することができる。その結果、検査対象物の表面形状をより精度良く特定することが可能となる。
また、前記一次描画処理は、前記ピクセルごとに、最も強い超音波信号を送受信した前記探触子の座標と前記最も強い超音波信号の送受信時間とに基づいて、前記検査対象物の前記表面の傾斜角を推定し、前記ピクセルごとに、推定した前記傾斜角に基づいて超音波信号の前記表面に対する入射角および反射角を算出し、前記入射角と前記反射角とが近似する超音波信号のデータに強調補正をかけて、前記画像を描画することが好ましい。
この構成により、一つの探触子から送信されて他の探触子で受信した超音波信号のうち、検査対象物の表面に対する入射角および反射角が近似する超音波信号、すなわち強い超音波信号を特定することができる。そして、特定した強い超音波信号のデータに強調補正をかけて画像を作成することができる。その結果、一次描画ステップにおいて、検査対象物の表面をより精度良く描画することができ、後の形状特定ステップにおいて、表面形状をより精度良く特定することが可能となる。
上述した課題を解決し、目的を達成するために、本発明は、超音波信号を伝播させる媒質を介して、検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと、を備え、前記データ合成ステップは、前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップとを含むことを特徴とする上記各ステップをコンピュータに実行させる。
この構成により、検査対象物の全体ではなく、表面を含む画像を作成し、作成した画像から最大のピクセル強度を示すピクセルを抽出するだけで、検査対象物の表面形状を特定することができる。そのため、検査対象物の表面形状の特定に複雑な処理を要さない。
図1は、実施形態にかかる超音波検査装置の概略構成を示すブロック図である。 図2は、第二演算処理部においてTFMによるデータ処理を行う計算領域の一部を模式的に示した説明図である。 図3は、実施形態にかかる超音波検査方法の処理手順を示すフローチャートである。 図4は、一次描画ステップで作成された配管の表面を含む画像の一例を示す説明図である。 図5は、ピクセル強度をプロットした例を示す説明図である。 図6は、ピクセル強度が最大となる各ピクセルの座標を示す説明図である。 図7は、任意の探触子から任意のピクセルまでの超音波信号の伝播経路の一例を示す説明図である。 図8は、任意の探触子から任意のピクセルまで到達する間の超音波信号の波形の一例を示す説明図である。 図9は、第二実施形態にかかる超音波検査装置の概略を示す説明図である。 図10は、第二実施形態にかかる超音波検査方法の処理手順の要部の一例を示すフローチャートである。 図11は、第四実施形態にかかる超音波検査方法の処理手順の要部の一例を示すフローチャートである。 図12は、最も強い強度の超音波信号を送受信した探触子の一例を示す説明図である。 図13は、超音波信号の入射角および反射角の一例を示す説明図である。 図14は、第五実施形態にかかる超音波検査装置および超音波検査方法の要部を模式的に示す説明図である。 図15は、第六実施形態にかかる超音波検査装置の要部を模式的に示す説明図である。
以下に、本発明にかかる超音波検査方法、超音波検査装置およびプログラムの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。
[第一実施形態]
図1は、第一実施形態にかかる超音波検査装置の概略構成を示すブロック図である。本第一実施形態において、検査対象物は、溶接部2(図2参照)において互いに接続された配管1である。溶接部2は、配管1の表面1aよりも突出する余剰盛り部分を有している(図2参照)。なお、「配管1の表面1a」は、溶接部2の表面も含む。第一実施形態にかかる超音波検査装置100は、配管1を検査対象物として、余剰盛り部分を有する溶接部2における欠陥を検出するための検査装置(探傷装置)である。
超音波検査装置100は、図1に示すように、探傷器10と、計算部20と、操作・表示部30とを備える。探傷器10は、リニアアレイプローブ11と、パルサー12と、レシーバー13と、データ記憶部14と、制御素子切替部15とを有する。
リニアアレイプローブ11は、複数(N個)の探触子110(図2参照)を有する。第一実施形態において、複数の探触子110は、リニアアレイ型に配置される。なお、複数の探触子110の配置構成は、これに限られない。以下の説明では、i番目(iは、1からNまでの整数)の探触子110を探触子110iと称する。各探触子110は、発信器としてのパルサー12および受信器としてのレシーバー13に接続されている。探触子110と検査対象物としての配管1との間には、超音波信号Sを伝播可能な媒質で満たされている。各探触子110は、図1の白抜き矢印に示すように、パルサー12から発信される超音波信号Sを検査対象物としての配管1の溶接部2へと、媒質を介して送信する。また、各探触子110は、媒質を介して、配管1の溶接部2から反射してきた超音波信号Sを受信して、レシーバー13へと送る。レシーバー13へと送られた超音波信号Sは、データ記憶部14で記憶される。制御素子切替部15は、後述する計算部20の制御部21からの指示に従って、複数の探触子110のうち、パルサー12からの超音波信号Sを発信させる探触子110を切り替える。
探触子110と検査対象物としての配管1との間を満たす媒質は、超音波を伝播可能なものであれば、いかなるものであってもよい。媒質は、例えば超音波透過ゲル、水等を用いることができる。媒質として例えば超音波透過ゲルを用いた場合、配管1の表面に超音波透過ゲルのポケットを適切な力で押しつけて当接させることで、溶接部2が複雑な形状であったとしても、超音波透過ゲルが溶接部2の形状に応じて変形する。それにより、配管1とリニアアレイプローブ11との間を隙間なく媒質で満たすことができる。ここでは、説明の簡略化のため、探触子110と配管1との間が単一の媒質で満たされているものとする。それにより、リニアアレイプローブ11と配管1との間で、媒質を介して超音波信号Sが伝播される。
計算部20は、第一実施形態において、探傷器10とは別体に設けられ、探傷器10に接続された演算処理装置である。計算部20は、例えば外部接続のパーソナルコンピュータである。なお、計算部20は、探傷器10と一体に設けられてもよい。計算部20は、制御部21と、記憶部22と、第一演算処理部23と、第二演算処理部24とを有する。
制御部21は、例えば、CPU(Central Processing Unit)などで構成された演算処理装置である。制御部21は、探傷器10の制御素子切替部15と、記憶部22と、第二演算処理部24と、後述する操作・表示部30の検査条件設定部32に接続されている。制御部21は、記憶部22に記憶されているプログラムをメモリにロードして、プログラムに含まれる命令を実行する。より詳細には、制御部21は、検査条件設定部32から、ユーザーにより設定される検査条件の情報を取得する。制御部21は、取得した検査条件の情報に基づいて、制御素子切替部15を制御して、リニアアレイプローブ11の各探触子110から順次、検査対象物としての配管1へと超音波信号Sを発信させ、配管1から反射した超音波信号Sのデータ収集を行う。制御部21は、上記FMCによるデータ収集が終了すると、第二演算処理部24へと、収集したデータの各種処理の実行を命令する。
第一実施形態において、超音波信号Sのデータ収集には、いわゆるフルマトリクスキャプチャー(以下、「FMC」と称する。)による手法が用いられる。FMCとは、1つのリニアアレイプローブ11のうち、探触子(振動子)110から発せられて検査対象物から反射した超音波信号Sをすべての探触子(振動子)110で受信する手順を素子数分繰り返し、1つのリニアアレイプローブ11のうち、すべての探触子(振動子)110における送受信データを取得するデータ収集法である。より詳細には、制御部21は、リニアアレイプローブ11の複数の探触子110のうちの一つから配管1へと超音波信号Sを発信させる。そして、配管1から反射してきた超音波信号Sは、すべての探触子110で受信され、レシーバー13を介してデータ記憶部14で記憶される。このとき、リニアアレイプローブ11の複数の探触子110の個数をN個とすれば、データ記憶部14には、配管1から反射した超音波信号SについてN個のデータが記憶される。次に、制御部21は、前回のタイミングで超音波信号Sを発生させた探触子110とは異なる(例えば隣り合う)探触子110から、同様に超音波信号Sを発信させる。その結果、データ記憶部14には、配管1から反射してきた超音波信号Sについて、新たにN個のデータが記憶される。この処理は、N個の探触子110のすべてから超音波信号Sが発信されるまで繰り返される。その結果、データ記憶部14には、配管1から反射した超音波信号SについてN×N個のマトリックス型のデータが記憶されることになる。この超音波信号SについてのN×N個のマトリックス型データが、配管1を超音波信号Sでスキャンしたデータとなる。
記憶部22は、超音波検査装置100における各種処理に要するデータ(プログラム)を記憶する。記憶部22は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置である。記憶部22は、探傷器10のデータ記憶部14と、第一演算処理部23と、第二演算処理部24とに接続されている。記憶部22は、上述したFMCにより収集されたN×N個の超音波信号Sのデータをデータ記憶部14から受信して記憶する。記憶部22は、記憶した超音波信号Sのデータを第一演算処理部23および第二演算処理部24の要請に応じて、これらに送信する。
第一演算処理部23は、例えばCPUにより構成された演算処理装置である。第一演算処理部23は、記憶部22と、第二演算処理部24と、操作・表示部30の計算条件設定部33と、計算結果表示部31とに接続されている。第一演算処理部23は、記憶部22に記憶されているプログラムをメモリにロードして、プログラムに含まれる命令を実行する。第一演算処理部23は、計算条件設定部33から検査条件に基づいて設定される計算条件の情報を取得する。第一演算処理部23は、取得した計算条件を第二演算処理部24に送信する。また、第一演算処理部23は、第二演算処理部24で計算された結果を計算結果表示部31に送信する。
第二演算処理部24は、GPU(Graphics Processing Unit)により構成された演算処理装置である。第二演算処理部24は、制御部21と、記憶部22と、第一演算処理部23とに接続されている。第一実施形態において、第二演算処理部24は、いわゆるGPGPUにより、GPUを用いて画像作成処理以外の処理も行う。それにより、計算速度を向上させることができる。GPUは、少なくとも一つ必要であるが、複数のGPUを並列して使用することも可能である。第二演算処理部24は、記憶部22から、上述したFMCにより収集されたN×N個の超音波信号Sのデータを受信する。第二演算処理部24は、制御部21からの命令および第一演算処理部23からの計算条件の情報に応じて、N×N個の超音波信号Sのデータ、すなわち配管1をスキャンしたデータについて、トータルフォーカス法(以下、「TFM」と称する。)により処理して合成し、合成結果に基づいて配管1の内部を描画した計算結果を作成する。TFMは、FMCにより収集された超音波信号Sのデータを解析し、超音波信号Sを合成する種々の手法である。第一実施形態にかかる超音波検査方法で用いるTFMの詳細については後述する。
図2は、第二演算処理部においてTFMによるデータ処理を行う計算領域の一部を模式的に示した説明図である。なお、図2を含む以下の説明では、簡略化のため、計算領域を二次元で示すが、実際の計算は三次元領域にて行われる。また、図2では、リニアアレイプローブ11の複数の探触子110が一列に並んだ例を記載しているが、複数の探触子110の配置構成は、これに限られない。第二演算処理部24は、図2に示すように、格子状に区切られた複数のピクセルPを含む計算領域において、ピクセルPごとに、FMCにより収集されたN×N個の超音波信号Sの振幅値を上記TFMによって合成する処理を行う。第一実施形態において、複数のピクセルPは、検査対象物である配管1の表面1aの延在方向(図2の左右方向)である方向e1と、配管1の表面1aの延在方向と直交する方向(図2の上下方向)である方向e2とに沿って、格子状に区切られている。なお、図2で示す複数のピクセルPは、計算領域の一部を示すものであり、実際には配管1の内部領域のみならず、リニアアレイプローブ11から配管1の間の領域についても、同様に複数のピクセルPに区切られた計算領域である。第一実施形態において、第二演算処理部24は、複数のピクセルPを含む単位ボクセル(図示省略)ごとに、コアが一つずつ割り当てられている。第二演算処理部24は、単位ボクセルごとにTFMによる計算処理を並列的に実行し、配管1の内部を描画した計算結果を作成する。第二演算処理部24は、作成した計算結果を第一演算処理部23へと送信する。
操作・表示部30は、検査結果を表示するための表示機能と、ユーザーインターフェースとしての入力操作機能とを兼ね備えた装置である。操作・表示部30は、例えばタッチパネル式のディスプレイを用いることができる。操作・表示部30は、第一実施形態において、探傷器10とは別体に設けられ、計算部20に接続されている。なお、操作・表示部30は、探傷器10と一体に設けられてもよい。また、操作・表示部30は、タッチパネル式のディスプレイに限られず、検査結果を表示するための表示機能と、ユーザーインターフェースとしての操作機能とを別体に設けるものであってもよい。
操作・表示部30は、図1に示すように、計算結果表示部31と、検査条件設定部32と、計算条件設定部33とを有する。計算結果表示部31は、計算部20の第一演算処理部23に接続されている。計算結果表示部31は、第二演算処理部24により計算されて第一演算処理部23から受信した計算結果、すなわち配管1の内部の描画結果をユーザーに対して表示する。検査条件設定部32は、ユーザーが検査条件を設定するユーザーインターフェースである。検査条件は、例えば、リニアアレイプローブ11の複数の探触子110の配置構成、媒質の種類といった情報を含む。また、検査条件は、例えば、検査対象物が配管1の溶接部2であること、配管1のサイズ(肉厚)、配管1を構成する材料の種類といった情報を含む。計算条件設定部33は、ユーザーから入力された検査条件に基づいて、計算条件を設定し、計算部20の第一演算処理部23へと送信する。計算条件は、上記検査条件の情報に応じて第二演算処理部24で演算処理を行う際に必要となる各種条件である。計算条件は、例えば、図2に複数のピクセルPで一部を模式的に示す計算領域の情報を含む。
次に第一実施形態にかかる超音波検査方法の処理手順について説明する。図3は、第一実施形態にかかる超音波検査方法の処理手順を示すフローチャートである。図3に示す処理手順は、計算部20の制御部21、第一演算処理部23および第二演算処理部24が記憶部22に記憶されたプログラムを実行することにより行われる。図3に示す処理手順は、探傷器10を配管1の溶接部上の所定位置に位置決めした状態で実行される。
計算部20は、ステップS1として、制御部21によりデータ収集ステップ(データ収集処理)を実行する。データ収集ステップは、上記FMCにより、検査対象物としての配管1を超音波信号でスキャンするステップである。上述したように、制御部21は、1つの探触子110から発せられて検査対象物から反射した超音波信号をすべての探触子110で受信する手順を、すべての探触子110において行う。これにより、データ記憶部14には、配管1から反射してきた超音波信号、すなわち配管1をスキャンしたデータについて、N×N個のマトリックス型のデータが記憶される。
次に、計算部20は、データ収集ステップで収集した超音波信号SのデータをTFMにより処理して合成するデータ合成ステップとして、ステップS2からステップS5の処理を実行する。ステップS2からステップS5の処理は、計算部20の制御部21の命令により、第二演算処理部24により実行される。また、ステップS2からステップS5の処理は、上述したように、第二演算処理部24にて割り当てられた単位ボクセルごとに並列的に実行する。
第二演算処理部24は、ステップS2として、一次描画ステップ(一次描画処理)を実行する。一次描画ステップは、データ収集ステップで収集した超音波信号Sのデータに基づいて、複数のピクセルPで区切られた領域に配管1の表面1aを含む画像Mを描画するステップである。図4は、一次描画ステップで作成された配管の表面を含む画像の一例を示す説明図である。図4に例示する画像Mは、図2において破線で囲んだ範囲を対象としている。図4に例示する画像Mは、データ収集ステップでFMCにより収集した超音波信号Sの振幅値を、振幅値が増大しているタイミングおよびピクセルPの位置を合わせて合成し、合成した振幅値に関連した強度値を算出して計算領域にマッピングすることで、描画することができる。この処理は、周知のTFMによる手法を用いて実行することができる。また、一次描画ステップは、TFM法以外の手法を用いて実行することも可能である。一次描画ステップは、例えば、逆散乱イメージング法(Inverse Scattering Imaging Method:ISIM)により、受信エコーを周波数領域で合成する手法を用いることもできる。さらに、一次描画ステップは、TFMによる波形再合成処理に限らず、フェーズドアレイ法や垂直UT法で表面形状を描画することもできる。第二演算処理部24は、図2において二点鎖線で挟んだ範囲として例示するように、配管1の表面位置を予め規定した所定範囲Hにおいて画像Mを作成する。所定範囲Hは、例えば、超音波信号Sが、探触子110と配管1との間に満たされた媒質Aを介してリニアアレイプローブ11と配管1の表面位置との距離を伝播する時間に基づいて定められる。それにより、FMCにより収集した超音波信号Sのうち、媒質Aを伝播して配管1の表面位置から反射したものについてのみ合成処理を行って、配管1の表面1aを含む画像Mを作成することができる。
第二演算処理部24は、ステップS3として、形状特定ステップ(形状特定処理)を実行する。形状特定ステップは、一次描画ステップで描画した画像Mにおいて、複数のピクセルPのうち、配管1の表面1aの延在方向と直交する方向e2に沿って並ぶものの中から、ピクセル強度が最大となるピクセルPを抽出し、抽出したピクセルPの位置を配管1の表面形状として特定するステップである。複数のピクセルPのうち、方向e2に沿って並ぶものとは、方向e2に沿った列に含まれるピクセルPを意味する。なお、方向e2に沿って並ぶ複数のピクセルPは、方向e2に沿って一列に並ぶ複数のピクセルPだけではなく、方向e2に沿って二列以上に並ぶ複数のピクセルPで構成されてもよい。
図5および図6を参照しながら、形状特定ステップについて詳細に説明する。図5は、ピクセル強度をプロットした例を示す説明図であり、図6は、ピクセル強度が最大となる各ピクセルの座標を示す説明図である。図5においては、方向e2に沿ったピクセルPの列P1、P2、P3、P4、P5、P6、P7を方向e1に沿って並べ、列P1~P7に含まれるピクセルPのピクセル強度をプロットしている。図示するように、列P1~P7ごとに、各ピクセルPのピクセル強度をプロットした点を繋ぐと、波形のように表すことができる。この波形の振幅値に基づいて、列P1~P7ごとに、最もピクセル強度が大きいピクセルPを抽出することができる。第二演算処理部24は、図4に示す画像Mに含まれるすべてのピクセルPについて、ピクセルPの列ごとに、ピクセル強度が最大となるものを抽出する。その結果、図6に示すように、抽出されたピクセルPは、方向e1に沿って並ぶ点群データとなる。第二演算処理部24は、図6に示す点群データを、配管1の表面形状として特定する(配管1の表面座標として設定する)。
ここで、第二演算処理部24は、形状特定ステップにおいて、ピクセル強度が最大となるピクセルPを上述した手順で抽出するとき、所定の閾値以上のピクセル強度のピクセルPのみを抽出する。所定の閾値は、配管1の表面1aで反射された超音波信号Sが、主としてリニアアレイプローブ11の複数の探触子110の範囲外に向けて反射したと推定することが可能な値として、予め定められる。超音波信号Sが主としてリニアアレイプローブ11の複数の探触子110の範囲外に向けて反射した場合、その超音波信号Sは配管1の内部に入射していないと推定することができる。そのため、所定の閾値未満のピクセル強度のピクセルPの位置は、後の処理において配管1の表面形状(表面座標)として取り扱う必要がなく、このピクセルPを除外することができる。
ステップS1からステップS3の処理において配管1の表面形状を特定すると、第二演算処理部24は、ステップS4として、経路算出ステップ(経路算出処理)を実行する。経路算出ステップは、形状特定ステップで特定した表面形状のうち、探触子110から任意のピクセルPまでの超音波信号Sの伝播時間が最小となる位置を算出し、算出した表面形状の位置を通る経路を超音波信号Sの伝播経路とするステップである。
図7および図8を参照しながら、経路算出ステップの詳細について説明する。図7は、任意の探触子から任意のピクセルまでの超音波信号の伝播経路の一例を示す説明図であり、図8は、任意の探触子から任意のピクセルまで到達する間の超音波信号の波形の一例を示す説明図である。図7において、座標軸を方向e1,e2としたとき、任意(i番目)の探触子110iの座標を(Zi1,Zi2)とし、任意のピクセルPの座標を(Xk1,Xk2)とし、超音波信号Sが通過する配管1の表面座標を(Yki1,Yki2)とする。また、ここでは、配管1の内部を「媒質B」として扱うものとする。また、図8においては、任意のピクセルPの位置において溶接部2の内部に欠陥があった場合の超音波信号Sの波形を示す。
図7および図8に示すように、探触子110iから発信された超音波信号Sは、媒質Aと媒質Bとの境界である配管1の表面1aにおいて屈折し(図8の時刻t1)、溶接部2の内部(媒質B)へと入射し、ピクセルPの位置に到達する(図8の時刻t2)。このとき、超音波信号Sが探触子110iからピクセルPの位置に到達するまでの伝播時間Tは、次式(1)により算出することができる。式(1)中の“Ca”は、媒質Aにおける音速であり、“Cb”は、媒質B(配管1)における音速である。
T=Sqrt((Zi1-Yki1+(Zi2-Yki2)/Ca+Sqrt((Yki1-Xk1+(Yki2-Xk2)/Cb …(1)
いま、任意の探触子110iの座標(Zi1,Zi2)および任意のピクセルPの座標(Xk1,Xk2)は予め定められる値であるため、式(1)中で未知の値は配管1の表面座標(Yki1,Yki2)のみである。ここで、超音波信号Sは、探触子110iからピクセルPの位置に到達するまでに最短となる伝播経路を通ると考えることができる。これは、フェルマーの原理に基づくものである。したがって、形状特定ステップにおいて特定した配管1の表面座標のうち、式(1)で算出される伝播時間Tが最小となる座標を、超音波信号Sが媒質Aから配管1の内部(媒質B)に入射した位置とすることができる。これにより、任意の探触子110iの座標(Zi1,Zi2)、任意のピクセルPの座標(Xk1,Xk2)および配管1の表面座標(Yki1,Yki2)のすべてが定まるため、超音波信号Sの伝達経路を決定することができる。第二演算処理部24は、上記伝播経路の決定手順に従って、各探触子110から発信された超音波信号Sが、計算領域に含まれる各ピクセルPに到達するまでの伝播経路を、すべて算出する。
第二演算処理部24は、ステップS5として、振幅値合成ステップ(振幅値合成処理)を実行する。振幅値合成ステップは、データ収集ステップで収集した超音波信号Sのデータについて、経路算出ステップで算出した伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成するステップである。すなわち、経路算出ステップで各ピクセルPへの超音波信号Sの伝播経路が決定されれば、式(1)に基づいて各ピクセルPへの超音波信号Sの伝播時間Tも決定される。そのため、データ収集ステップでFMCにより収集した各超音波信号Sのデータにおいて、振幅値が増大しているタイミング(図8に示す例では、時刻t2)と、式(1)で算出される伝播時間Tとを照らし合わせることで、超音波信号SがいずれのピクセルPの位置で反射されたかを決定することができる。そこで、第二演算処理部24は、データ収集ステップでFMCにより収集したすべての超音波信号Sのデータについて、伝播時間Tが一致する超音波信号Sの振幅値を、対応するピクセルPにおいて合成する。
第二演算処理部24は、ステップS6として、描画ステップを実行する。描画ステップは、振幅値合成ステップで合成した振幅値に関連した強度値を算出して計算領域にマッピングすることで、配管1の内部を描画した計算結果を算出するステップである。第二演算処理部24は、配管1の内部を描画した計算結果を、第一演算処理部23を介して操作・表示部30の計算結果表示部31へと送信する。それにより、ユーザーが計算結果表示部31に映し出された計算結果を参照することができる。
以上説明したように、第一実施形態にかかる超音波検査方法、超音波検査装置100およびプログラムでは、検査対象物としての配管1の全体ではなく、表面1aを含む画像Mを作成し、作成した画像Mから最大のピクセル強度を示すピクセルPを抽出するだけで、配管1の表面形状を特定することができる。そのため、配管1の表面形状の特定に複雑な処理を要さない。したがって、第一実施形態にかかる超音波検査方法、超音波検査装置100およびプログラムによれば、FMC/TFMにより検査対象物について超音波検査を行う検査方法について、処理の計算負荷を低減させることができる。
また、一次描画ステップ(一次描画処理。ステップS2)は、配管1の表面1aが含まれる範囲を予め規定した所定範囲Hにおいて、画像Mを描画する。
この構成により、配管1の表面1aとは異なる位置(すなわち配管1の内部)から反射した超音波信号Sを除外して表面1aを含む画像Mを作成することができるため、計算精度を向上させることが可能となる。
また、形状特定ステップ(形状特定処理。ステップS3)は、ピクセル強度が最大となるピクセルPのうち、ピクセル強度が所定の閾値以上であるものを抽出する。
この構成により、ピクセル強度が所定の閾値未満となる検査対象物の表面1aについては、超音波信号Sが複数の探触子110の範囲外に反射して配管1の内部には入射しなかった位置であると推定し、この表面位置を表面形状の特定から除外することができる。その結果、特定した表面形状を用いた後の処理の際に、必要のない表面形状の位置データを用いることなく、処理を実行することができるため、計算負荷をさらに低減させることが可能となる。
また、データ合成ステップ(ステップS2からステップS5)は、形状特定ステップで特定した表面形状のうち、探触子110から任意のピクセルPまでの超音波信号Sの伝播時間Tが最小となる位置を算出し、算出した表面形状の位置を通る経路を超音波信号Sの伝播経路とする経路算出ステップ(経路算出処理。ステップS4)と、前記データ収集ステップで収集した超音波信号のデータについて、前記経路算出ステップで算出した前記伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成する振幅値合成ステップ(振幅値合成処理。ステップS5)とをさらに備える。
この構成により、各探触子110から発信された超音波信号Sが配管1の内部で反射した(振幅値が増大した)タイミングおよび位置を一致させて振幅値を合成した超音波信号Sの反射波形の結果を得ることができる。それにより、配管1の内部欠陥の位置を検出することができる。また、データ収集ステップにおいて取得した超音波信号Sのデータ群を用いることで、配管1の表面形状を特定した後、連続的に処理を行うことができるため、検査のリアルタイム性を向上させることが可能となる。
また、第二演算処理部24は、少なくとも一つのピクセルPを含む単位ボクセルごとに割り当てられた複数のコアを含み、複数のコアを用いて、単位ボクセルごとに形状特定処理を並列に実行する。また、第二演算処理部24は、複数のコアを用いて、単位ボクセルごとに経路算出処理および振幅値合成処理を並列に実行する。
この構成により、計算速度を向上させることができる。なお、形状特定処理、経路算出処理および振幅値合成処理は、単一のコアにより処理されてもよい。
第一実施形態では、探触子110と配管1との間に満たされた媒質を単一のものとしたが、媒質の構成は、これに限られない。媒質は、超音波信号Sを伝播可能でさえあれば、いかなるものであってもよい。媒質は、空気であってもよい。
また、媒質は、単一の媒質に限られず、複数の媒質を含んでもよい。複数の媒質を用いる場合には、各媒質の種類および配置位置に対応させて、データ合成ステップ(ステップS2~ステップS5)の各処理を実行すればよい。
また、検査対象物を完全水深または局部水深させることで、リニアアレイプローブ11と検査対象物との間の空間を水で満たし、水を媒質として超音波信号Sを伝播させてもよい。
第一実施形態では、配管1の内部の欠陥を検出するものとしたが、第一実施形態にかかる超音波検査方法および超音波検査装置100の適用対象は、これに限られない。例えば、第一実施形態にかかる超音波検査方法および超音波検査装置100は、配管1の肉厚を測定する場合にも、適用することができる。すなわち、配管1の表面(外面)1aの形状を形状特定ステップで特定し、後の処理において、配管1の内面から反射される超音波信号について同様の合成処理を行えば、配管1の表面(外面)1aから内面までを描画した画像を作成することができる。これにより、配管1の溶接部2についての探傷検査と、配管1の肉厚測定とを、1回のデータ収集ステップで収集したデータに基づいて行うことができる。その結果、検査に必要となる時間を短縮することができ、配管1が配設されるプラント施設の点検のための停止時間の短縮を図ることが可能となる。
また、検査対象物は、配管1に限られず、探傷器10を載置可能であり超音波信号によってスキャン可能なものでさえあれば、いかなるものであってもよい。
[第二実施形態]
次に、第二実施形態にかかる超音波検査装置および超音波検査方法について説明する。ここで、上述したように、一次描画ステップで描画した画像Mにおいて、方向e2に沿ったピクセルPの列P1~P7ごとに、各ピクセルPのピクセル強度をプロットした点を繋ぐと、波形のような連続値として表すことができる(例えば図5参照)。ピクセル強度の連続値は、配管1の溶接部2によって形成される凹凸面2A(図9参照)において、その中央点2C(図9参照)に比べて、端部すなわち始点2S(図9参照)および終点2E(図9参照)の近傍で、波高さが小さくなる傾向となる。これは、図3のステップS1のデータ収集ステップにおいて、各探触子110から発信されて凹凸面2Aの端部で反射された超音波信号Sを各探触子110で捕捉する量が、中央点2C近傍に比べて少なくなることによる。その結果、凹凸面2Aの端部近傍では、ノイズ成分を多く検出する可能性があり、凹凸面2Aの端部近傍における表面形状を精度良く特定することができない可能性がある。
第二実施形態では、以下に説明する装置構成および処理によって、凹凸面2Aの端部を含む表面形状を精度良く特定する。図9は、第二実施形態にかかる超音波検査装置の概略を示す説明図である。第二実施形態にかかる超音波検査装置200は、超音波検査装置100のリニアアレイプローブ11に代えて、リニアアレイプローブ41を備えている。超音波検査装置200の他の構成は、超音波検査装置100と同一であるため、同一の構成については同一の符号を付し、説明を省略する。
リニアアレイプローブ41は、リニアアレイプローブ11と同様に、パルサー12およびレシーバー13に接続された複数(N個)の探触子110を有している。複数の探触子110が形成する超音波信号Sを送受信する送受信面110Aがリニアアレイプローブ41の下端面の一部を形成する。そして、リニアアレイプローブ41は、図9に示すように、複数の探触子110の配列方向(図9における左右方向)において湾曲自在なフレキシブルアレイプローブである。言い換えると、複数の探触子110により形成される送受信面110Aが配列方向において湾曲自在である。リニアアレイプローブ41は、図9に示す例では、湾曲した状態で、配管1の溶接部2が形成する凹凸面2Aを覆う程度の大きさに形成される。リニアアレイプローブ41は、図9に白抜き矢印で示すように、配列方向に沿った所定の押し付け力が付与されることで、複数の探触子110が形成する送受信面110Aが湾曲する。
次に、第二実施形態にかかる超音波検査方法の要部について、図9および図10を参照しながら説明する。図10は、第二実施形態にかかる超音波検査方法の処理手順の要部の一例を示すフローチャートである。より詳細には、図10は、リニアアレイプローブ41を湾曲させた際の各探触子110の座標を補正する処理手順の一例を示す。図10に示す処理手順は、図3に示す形状特定ステップと経路算出ステップとの間に実行される。
計算部20の第二演算処理部24は、図3に示すステップS1のデータ収集ステップからステップS3の形状特定ステップまでの実行によって配管1の表面形状を特定すると、ステップS11として、特定した表面形状に基づいて、凹凸面2Aの始点2S、終点2E、中央点2Cの座標点を特定する。凹凸面2Aの始点2S、終点2E、中央点2Cは、特定した表面形状の各ピクセルPの座標から特定される。
次に、第二演算処理部24は、ステップS12として、凹凸面2Aの曲率半径Rを算出する。凹凸面2Aの曲率半径Rは、次式(2)、(3)を用いてニュートン法により算出される。式(2)中の“d1”は、凹凸面2Aの弦長、すなわち始点2Sから終点2Eまでの直線距離である。また、式(3)中の“h”は、凹凸面2Aの中央点2Cにおける矢高であり、凹凸面2A以外の表面1aの鉛直方向における座標との差分から算出される。なお、式(2)、(3)中の“θ”は、凹凸面2Aの中心角である。“d1”と“h”の値が決定されれば、ニュートン法により曲率半径Rおよび“θ”も近似値として算出される。
d1=2・R・sin(θ/2) …(2)
h=R・(1-cos(θ/2) …(3)
次に、第二演算処理部24は、ステップS13として、複数の探触子110の送受信面110Aの曲率半径Rを算出する。ここでの曲率半径Rは、複数の探触子110の送受信面110Aを凹凸面2Aにあわせて湾曲させるべき指令値としての値である。指令値としての曲率半径Rは、次式(4)にしたがって算出される。式(4)中の“G”は、図9に示すように、配管1の凹凸面2A以外の表面1aから送受信面110Aの下端までの距離(ギャップ)である。
=R+G …(4)
次に、第二演算処理部24は、ステップS14として、送受信面110Aの押し付け量Xの値を算出する。押し付け量Xは、複数の探触子110の送受信面110Aを上記曲率半径Rで湾曲させるために、リニアアレイプローブ41を配列方向に沿って押し付ける量であり、次式(5)にしたがって算出される。式(5)中の“L”は、送受信面110Aの弧長すなわち初期長さであり、式(5)中の“d2”は、送受信面110Aの弦長すなわち端部の探触子110の直線距離である。“d2”は、式(6)にしたがって算出することができる。
X=L-d2 …(5)
d2=2・R・sin(L/R) …(6)
このようにして押し付け量Xが決定されると、リニアアレイプローブ41が押し付け量Xで湾曲するように、リニアアレイプローブ41に押し付け力を付与する。それにより、図9に示すように、リニアアレイプローブ41が湾曲し、複数の探触子110が形成する送受信面110Aが曲率半径Reで湾曲することで、凹凸面2Aに沿った形状となる。なお、リニアアレイプローブ41への押し付け力の付与は、制御部21によって制御される図示しない駆動装置により行われればよい。
次に、第二演算処理部24は、ステップS15として、複数の探触子110の座標を補正する。すなわち、複数の探触子110の送受信面110Aが曲率半径Rで湾曲した状態における各探触子110の座標を押し付け量Xの値に基づいて算出し、算出した座標を各探触子110の座標に設定する。
そして、第二演算処理部24は、ステップS16からステップS18として、図3に示すステップS1のデータ取集ステップ、ステップS2の1次描画ステップおよびステップS3の形状特定ステップを再び実行する。これにより、図9に示すように、凹凸面2Aの端部近傍で反射した超音波信号Sを、送受信面110Aが凹凸面2Aに沿った曲率半径Rで湾曲した複数の探触子110によって、より良好に捕捉することができる。すなわち、再び実行されるステップS16のデータ取集ステップにおいて、凹凸面2Aの端部近傍で反射された超音波信号Sをより多く捕捉することができる。その結果、再び実行されるステップS17の1次描画ステップおよびステップS18の形状特定ステップにおいて、凹凸面2Aの端部近傍を含め、配管1の表面形状をより精度良く特定することが可能となる。
なお、第二実施形態では、図3のステップS1のデータ収集ステップからステップS3の形状特定ステップを一度おこなった後に、図10に示す処理を実行するものとした。ただし、ステップS1のデータ収集ステップにより収集された超音波信号Sのデータに基づいて、周知のTFM処理によって配管1の表面形状の座標を特定し、特定した表面形状の座標を用いて、図10の処理を実行してもよい。
[第三実施形態]
次に、第三実施形態にかかる超音波検査装置および超音波検査方法について説明する。第三実施形態にかかる超音波検査方法では、図3に示す形状特定ステップにおいて、以下に説明する処理を実行する。第三実施形態では、計算部20における処理内容が異なることを除き、図1に示す超音波検査装置100と装置構成に変更はないため、装置構成の説明は省略する。
第三実施形態において、計算部20の第二演算処理部24は、形状特定ステップS3において、微分フィルタを用いてピクセル強度が最大となるピクセルPを抽出する。すなわち、上述したように、一次描画ステップで描画した画像Mにおいて、方向e2(表面1aの延在方向に直交する方向)に沿ったピクセルPの列P1~P7ごとに、各ピクセルPのピクセル強度をプロットした点を繋ぐと、波形のような連続値として表すことができる(図5参照)。第三実施形態では、この連続値に微分フィルタを施した値に基づいて、ピクセル強度が最大となるピクセルPを抽出する。すなわち、微分フィルタを施すことにより、図5に例示する波形の連続値について、その変化量を得ることができ、変化量が大きいピクセルPほど、ピクセル強度が強いピクセルPであると特定することができる。そこで、図5に例示する波形の連続値について、所定の微分フィルタを施し、最も変化量が大きいピクセルPを、ピクセル強度が最も強いピクセルPであると特定する。
ここで、第三実施形態では、凹凸面2A(図9参照)の位置ごとに異なる微分フィルタを用いて、ピクセル強度が最も強いピクセルPを特定する。上述したように、ピクセル強度の連続値は、凹凸面2Aの中央点2Cに比べて、端部である始点2Sおよび終点2E近傍ほど、波高さが小さくなる傾向にある。そのため、端部である始点2Sおよび終点2E近傍ほど、より感度の高い微分フィルタを用いることが好ましい。第三実施形態では、凹凸面2Aの中央点2C近傍では、数1および数2に示される1次微分フィルタを用いる。数1は、Prewittフィルタであり、数2は、Sobelフィルタである。中央点2C近傍では、PrewittフィルタおよびSobelフィルタのいずれを用いてもよい。一方、凹凸面2Aの端部である始点2Sおよび終点2E近傍では、数3に示される2次微分フィルタを用いる。数3の2次微分フィルタは、ラプラシアンフィルタである。
Figure 0007233646000001
Figure 0007233646000002
Figure 0007233646000003
このように、凹凸面2Aの端部である始点2Sおよび終点2Eでは、中央点2Cに比べて、より変化量に対する感度が高い2次微分フィルタを用いることで、ピクセル強度の連続値の波高さが小さくとも、最もピクセル強度が高いピクセルPを精度良く抽出することができる。したがって、図3に示すステップS3の形状特定ステップにおいて、凹凸面2Aの端部(エッジ部分)を含む配管1の表面形状を、より精度良く特定することが可能となる。
[第四実施形態]
次に、第四実施形態にかかる超音波検査装置および超音波検査方法について説明する。第四実施形態にかかる超音波検査方法では、図3に示す一次描画ステップにおいて、以下に説明する処理を実行する。第四実施形態では、計算部20における一次描画ステップの処理内容が異なることを除き、図1に示す超音波検査装置100と装置構成に変更はないため、装置構成の説明は省略する。図11は、第四実施形態にかかる超音波検査方法の処理手順の要部の一例を示すフローチャートである。
計算部20の第二演算処理部24は、ステップS21として、図3のデータ収集ステップで収集した超音波信号Sのデータのうち、最も強い強度の超音波信号Sを受信した探触子110、および、当該最も強い強度の超音波信号Sを送信した探触子110の座標を特定する。図12は、最も強い強度の超音波信号を送受信した探触子の一例を示す説明図である。図示するように、配管1の凹凸面2Aにおける任意のピクセルで反射した最も強い強度の超音波信号Sを、探触子111で送信し、探触子114で受信したとする。このとき、第二演算処理部24は、探触子111および探触子114の座標を特定する。なお、凹凸面2Aにおける任意のピクセルで反射された最も強い超音波信号Sは、データ収集ステップで収集した超音波信号Sのデータのうち、例えば図8の時刻t1に示すように、凹凸面2Aで反射されたことで振幅値が増大しているものを抽出して特定することができる。同様に、凹凸面2Aにおけるすべてのピクセルについて、最も強い強度の超音波信号Sを受信した探触子110、および、当該最も強い強度の超音波信号Sを送信した探触子110の座標を特定する。
次に、第二演算処理部24は、ステップS22として、ステップS21で特定した探触子110の座標に基づいて、任意のピクセルごとに、凹凸面2Aの仮想傾斜角φを算出(推定)する。仮想傾斜角φは、延在方向に対する傾斜角であり、最も強い超音波信号Sを送受信した探触子110の座標と、当該最も強い超音波信号Sの送受信に要した時間とに基づいて算出される。第二演算処理部24は、凹凸面2Aにおけるすべてのピクセルについて、同様の手法により、仮想傾斜角φを算出する。言い換えると、凹凸面2Aの形状が仮想傾斜角φによって特定される。
次に、第二演算処理部24は、ステップS23として、各探触子110から発信され、凹凸面2Aで反射されて他の探触子110で受信した超音波信号Sの入射角αと反射角βとを算出する。図13は、超音波信号の入射角および反射角の一例を示す説明図である。ステップS22において、凹凸面2Aの仮想傾斜角φが算出されていることから、延在方向に対して仮想傾斜角φで傾斜する仮想傾斜面3が規定される。図13に示すように、仮想傾斜面3に直交する直交面4に対して、超音波信号Sがなす角が入射角αおよび反射角βとなる。第二演算処理部24は、凹凸面2Aにおけるすべてのピクセルで反射された超音波信号Sの入射角αと反射角βとを算出する。
次に、第二演算処理部24は、ステップS24として、すべての超音波信号Sのデータについて、ステップS23で算出した入射角αと反射角βとが近似する超音波信号Sを特定する。入射角αと反射角βとが近似する超音波信号Sとは、凹凸面2Aにおける各ピクセルで反射された超音波信号Sのうち、入射角αと反射角βとが最も近いものであることを意味する。また、入射角αと反射角βとの差分が所定値以下であることを条件としてもよい。このように、入射角αと反射角βとが近似する超音波信号Sは、一般的には、凹凸面2Aで反射された最も強い超音波信号Sとなる傾向にある。なお、ステップS24は、入射角αと反射角βとが最も近い値となった超音波信号Sのみならず、2番目、3番目以降に近い値となった超音波信号Sも含めて特定するものであってもよい。
第二演算処理部24は、ステップS25として、ステップS24で特定した入射角αと反射角βとが近似する超音波信号Sについて、強調補正を実行する。すなわち、入射角αと反射角βとが近似すると特定された超音波信号Sについて、波高値(振幅値)に所定の補正係数kを乗算した補正波高値を算出する。
第二演算処理部24は、ステップS26として、ステップS25で強調補正を行った超音波信号S、すなわち波高値が補正波高値とされた超音波信号Sを含むすべてのデータを用いて、画像M(図4参照)を描画する。すなわち、強調補正を行った超音波信号Sを含むすべてのデータについて、その振幅値を、振幅値が増大しているタイミングおよびピクセルの位置をあわせて合成し、合成した振幅値に関連した強度値を算出して計算領域にマッピングする。
なお、ステップS25の処理は、上記の強調補正に加えて、または、上記の強調補正に代えて、ステップS24で特定した入射角αと反射角βとが近似する超音波信号S以外の超音波信号Sをデータ群から除外する処理であってもよい。それにより、ステップS26において、入射角αと反射角βとが近似する超音波信号Sのみを用いて画像Mを描画してもよい。
以上のように、第四実施形態では、一つの探触子110から送信されて他の探触子110で受信した超音波信号Sのうち、配管1の表面1a(凹凸面2A)に対する入射角αおよび反射角βが近似する超音波信号S、すなわち強い超音波信号Sを特定することができる。そして、特定した強い超音波信号Sのデータに強調補正をかけて画像Mを作成することができる。その結果、一次描画ステップにおいて、端部近傍を含む配管1の表面1a(凹凸面2A)をより精度良く描画することができ、後の形状特定ステップにおいて、表面形状をより精度良く特定することが可能となる。
なお、図11に示すステップS21からステップS24までの処理を行い、入射角αと反射角βとが近似する超音波信号Sを特定した後、当該超音波信号Sを送受信する探触子110のみを用いて再び図3に示すステップS1のデータ収集ステップを実行し、収集した超音波信号Sのデータを合成して画像Mを描画してもよい。
[第五実施形態]
次に、第五実施形態にかかる超音波検査装置および超音波検査方法について説明する。図14は、第五実施形態にかかる超音波検査装置および超音波検査方法の要部を模式的に示す説明図である。第五実施形態にかかる超音波検査装置500は、図示するように、リニアアレイプローブ11が表面1aの全方向に沿って移動自在とされている。超音波検査装置500の他の構成は、超音波検査装置100と同様であるため、説明を省略する。また、以下の説明ではリニアアレイプローブ11が表面1aの全方向に沿って移動する場合について説明を行う。
第五実施形態では、図14に示すように、リニアアレイプローブ11の長さが配管1の凹凸面2Aよりも、延在方向において短いものを想定する。そして、ユーザーは、図14に破線および実線矢印で示すように、凹凸面2Aの範囲をカバーするように、リニアアレイプローブ11を表面1aの延在方向に沿って複数回移動させる。超音波検査装置500は、リニアアレイプローブ11を延在方向に沿って移動させる図示しない装置を備え、制御部21がユーザーの指示に従って、図示しない装置を駆動させてリニアアレイプローブ11を移動させる。
リニアアレイプローブ11の移動に伴う複数の探触子110の座標は、リニアアレイプローブ11の移動量に基づいて算出する。リニアアレイプローブ11の移動量は、いかなる手段により計測されてもよい。例えば、図示しないエンコーダを用いて、初期位置からの移動量を計測してもよいし、撮影装置(カメラ)によってリニアアレイプローブ11を撮影しつつ、画像処理を用いて移動量を算出してもよい。また、リニアアレイプローブ11内で複数の探触子110を移動自在としておき、複数の探触子110のみを延在方向に沿って移動させてもよい。その場合、リニアアレイプローブ11自体の長さは、凹凸面2Aの範囲をカバーする必要がある。
第五実施形態において、計算部20は、リニアアレイプローブ11を複数回移動させるごとに、図3に示すステップS1のデータ収集ステップおよびステップS2からステップS5のデータ合成ステップを実行する。それにより、リニアアレイプローブ11の移動位置ごとに、配管1の内部を描画した計算結果を得る。計算部20は、リニアアレイプローブ11の移動位置ごとに得た計算結果をすべて合成することで、リニアアレイプローブ11の移動範囲すべての計算結果を合成した配管1の内部の描画結果を得ることができる。
この構成により、複数の探触子110全体を移動させながら複数回にわたって実行したデータ収集ステップおよびデータ合成ステップの計算結果の重ねあわせにより、配管1の検査を行うことができる。すなわち、リニアアレイプローブ11の長さが配管1の凹凸面2Aよりも延在方向において短いとしても、凹凸面2Aの端部を含み配管1の表面形状をより精度良く特定し、特定した表面形状に基づいて、配管1の内部の描画結果を精度良く得ることが可能となる。
以上のように、第五実施形態では、複数の探触子110全体を移動させながら複数回にわたって実行したデータ収集ステップおよびデータ合成ステップの計算結果の重ねあわせにより、配管1の検査を行う形態を示した。ただし、単一の探触子を複数回に分けて移動させることにより、複数回の移動ごとにデータ収集ステップを実行し、データ合成ステップにおいて収集したデータを重ね合わせた計算結果を取得してもよい。
[第六実施形態]
次に、第六実施形態にかかる超音波検査装置および超音波検査方法について説明する。図15は、第六実施形態にかかる超音波検査装置の要部を模式的に示す説明図である。上記第一実施形態から第五実施形態では、主として、二次元平面に複数の探触子110が並んだリニアアレイプローブ11(およびリニアアレイプローブ41)を利用した計算処理について説明してきた。図15に示す超音波検査装置600は、図示するように、三次元平面においてマトリクスアレイ状に複数の探触子110が並んだマトリクスアレイプローブ61を備えている。超音波検査装置600の他の装置構成は、第一実施形態と同様であるため、説明を省略する。
マトリクスアレイプローブ61は、N個の探触子110がN列に並んで配置される。そのため、マトリクスアレイプローブ61を用い、図3に示すステップS1のデータ収集ステップを実行すると、超音波信号Sについて、1列ごとにN×N個のマトリクス型のデータが収集されることになる。すなわち、すべての探触子110では、N×N×N個のデータが収集されることになり、この超音波信号SについてのN×N×N個のデータが配管1を超音波信号Sでスキャンしたデータとなる。
第六実施形態では、計算部20は、上述した超音波信号SについてのN×N×N個のデータを用いて、図3に示すステップS1のデータ収集ステップおよびステップS2からステップS5のデータ合成ステップを実行する。この構成により、三次元空間において、ステップS1のデータ収集ステップおよびステップS2からステップS5のデータ合成ステップを実行し、配管1の内部の描画結果をより広い範囲で、精度良く得ることができる。
なお、上述した第二実施形態から第六実施形態の構成は、すべて同時に実施されてもよい。
1 配管
1a 表面
2 溶接部
2A 凹凸面
2C 中央点
2E 終点
2S 始点
3 仮想傾斜面
4 直交面
10 探傷器
11,41 リニアアレイプローブ
12 パルサー
13 レシーバー
14 データ記憶部
15 制御素子切替部
20 計算部
21 制御部
22 記憶部
23 第一演算処理部
24 第二演算処理部
30 操作・表示部
31 計算結果表示部
32 検査条件設定部
33 計算条件設定部
61 マトリクスアレイプローブ
100,200,500,600 超音波検査装置
110 探触子
110A 送受信面
A,B 媒質
M 画像
P,P ピクセル
P1~P7 列
S 超音波信号

Claims (13)

  1. 検査対象物を超音波によりスキャンして検査する超音波検査方法であって、
    超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、
    前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと
    を備え、
    前記データ合成ステップは、
    前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、
    前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップと
    を含み、
    前記データ合成ステップは、
    前記形状特定ステップで特定した前記表面形状のうち、前記探触子から任意の前記ピクセルまでの超音波信号の伝播時間が最小となる位置を算出し、算出した前記表面形状の位置を通る経路を超音波信号の伝播経路とする経路算出ステップと、
    前記データ収集ステップで収集した超音波信号のデータについて、前記経路算出ステップで算出した前記伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成する振幅値合成ステップと
    をさらに備えることを特徴とする超音波検査方法。
  2. 検査対象物を超音波によりスキャンして検査する超音波検査方法であって、
    超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、
    前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと
    を備え、
    前記データ合成ステップは、
    前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、
    前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップと
    を含み、
    前記形状特定ステップで特定した前記表面形状に沿って、前記複数の探触子の配列方向に沿って形成される超音波信号の送受信面を湾曲させ、前記データ収集ステップ、前記一次描画ステップおよび前記形状特定ステップを再び実行することを特徴とする超音波検査方法。
  3. 検査対象物を超音波によりスキャンして検査する超音波検査方法であって、
    超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、
    前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと
    を備え、
    前記データ合成ステップは、
    前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、
    前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップと
    を含み、
    前記一次描画ステップは、
    前記ピクセルごとに、最も強い超音波信号を送受信した前記探触子の座標と前記最も強い超音波信号の送受信時間とに基づいて、前記検査対象物の前記表面の傾斜角を推定し、
    前記ピクセルごとに、推定した前記傾斜角に基づいて超音波信号の前記表面に対する入射角および反射角を算出し、
    前記入射角と前記反射角とが近似する超音波信号のデータに強調補正をかけて、前記画像を描画することを特徴とする超音波検査方法。
  4. 前記一次描画ステップは、前記検査対象物の表面が含まれる範囲を予め規定した所定範囲において、前記画像を描画することを特徴とする請求項1から請求項3のいずれか一項に記載の超音波検査方法。
  5. 前記形状特定ステップは、前記ピクセル強度が最大となる前記ピクセルのうち、前記ピクセル強度が所定の閾値以上であるものを抽出することを特徴とする請求項1から請求項4のいずれか一項に記載の超音波検査方法。
  6. 前記形状特定ステップは、前記延在方向と直交する方向にそって前記ピクセル強度を連続値とし、前記連続値に微分フィルタを施した値に基づいて、前記ピクセル強度が最大となるピクセルを抽出し、
    前記微分フィルタは、前記表面が形成する凹凸面の端部では、中央部に比べて、より感度の高い微分フィルタであることを特徴とする請求項1から請求項5のいずれか一項に記載の超音波検査方法。
  7. 検査対象物を超音波によりスキャンして検査する超音波検査装置であって、
    超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子と、
    前記複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集処理と、前記データ収集処理で収集した超音波信号のデータを処理して合成するデータ合成処理を実行する演算処理部と
    を備え、
    前記演算処理部は、
    前記データ収集処理で収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画処理と、
    前記一次描画処理で描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定処理と
    を実行し、
    前記演算処理部は、
    前記形状特定処理で特定した前記表面形状のうち、前記探触子から任意の前記ピクセルまでの超音波信号の伝播時間が最小となる位置を算出し、算出した前記表面形状の位置を通る経路を超音波信号の伝播経路とする経路算出処理と、
    前記データ収集処理で収集した超音波信号のデータについて、前記経路算出処理で算出した前記伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成する振幅値合成処理と
    をさらに実行することを特徴とする超音波検査装置。
  8. 検査対象物を超音波によりスキャンして検査する超音波検査装置であって、
    超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子と、
    前記複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集処理と、前記データ収集処理で収集した超音波信号のデータを処理して合成するデータ合成処理を実行する演算処理部と
    を備え、
    前記演算処理部は、
    前記データ収集処理で収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画処理と、
    前記一次描画処理で描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定処理と
    を実行し、
    前記演算処理部は、前記形状特定処理で特定した前記表面形状に沿って、前記複数の探触子の送受信面が湾曲した状態で、前記データ収集処理、前記一次描画処理および前記形状特定処理を再び実行することを特徴とする超音波検査装置。
  9. 検査対象物を超音波によりスキャンして検査する超音波検査装置であって、
    超音波信号を伝播させる媒質を介して、前記検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子と、
    前記複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集処理と、前記データ収集処理で収集した超音波信号のデータを処理して合成するデータ合成処理を実行する演算処理部と
    を備え、
    前記演算処理部は、
    前記データ収集処理で収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画処理と、
    前記一次描画処理で描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定処理と
    を実行し、
    前記一次描画処理は、
    前記ピクセルごとに、最も強い超音波信号を送受信した前記探触子の座標と前記最も強い超音波信号の送受信時間とに基づいて、前記検査対象物の前記表面の傾斜角を推定し、
    前記ピクセルごとに、推定した前記傾斜角に基づいて超音波信号の前記表面に対する入射角および反射角を算出し、
    前記入射角と前記反射角とが近似する超音波信号のデータに強調補正をかけて、前記画像を描画することを特徴とする超音波検査装置。
  10. 前記形状特定処理は、前記延在方向と直交する方向にそって前記ピクセル強度を連続値とし、前記連続値に微分フィルタを施した値に基づいて、前記ピクセル強度が最大となるピクセルを抽出し、
    前記微分フィルタは、前記表面が形成する凹凸面の端部では、中央部に比べて、より感度の高い微分フィルタであることを特徴とする請求項から請求項のいずれか一項に記載の超音波検査装置。
  11. 超音波信号を伝播させる媒質を介して、検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、
    前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと、
    を備え、
    前記データ合成ステップは、
    前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、
    前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップと
    を含み、
    前記データ合成ステップは、
    前記形状特定ステップで特定した前記表面形状のうち、前記探触子から任意の前記ピクセルまでの超音波信号の伝播時間が最小となる位置を算出し、算出した前記表面形状の位置を通る経路を超音波信号の伝播経路とする経路算出ステップと、
    前記データ収集ステップで収集した超音波信号のデータについて、前記経路算出ステップで算出した前記伝播経路に基づいて、振幅値が増大しているタイミングおよびピクセルを一致させて振幅値を合成する振幅値合成ステップと
    をさらに備えることを特徴とする上記各ステップをコンピュータに実行させるプログラム。
  12. 超音波信号を伝播させる媒質を介して、検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、
    前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと、
    を備え、
    前記データ合成ステップは、
    前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、
    前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップと
    を含み、
    前記形状特定ステップで特定した前記表面形状に沿って、前記複数の探触子の配列方向に沿って形成される超音波信号の送受信面を湾曲させ、前記データ収集ステップ、前記一次描画ステップおよび前記形状特定ステップを再び実行することを特徴とする上記各ステップをコンピュータに実行させるプログラム。
  13. 超音波信号を伝播させる媒質を介して、検査対象物へと超音波信号を送信し、前記検査対象物から反射した超音波信号を受信する複数の探触子を用いて、前記検査対象物を超音波信号でスキャンしたデータを収集するデータ収集ステップと、
    前記データ収集ステップで収集した超音波信号のデータを処理して合成するデータ合成ステップと、
    を備え、
    前記データ合成ステップは、
    前記データ収集ステップで収集した超音波信号のデータに基づいて、格子状に区切られた複数のピクセルを含む領域に前記検査対象物の表面を含む画像を描画する一次描画ステップと、
    前記一次描画ステップで描画した画像において、前記複数のピクセルのうち、前記検査対象物の前記表面の延在方向と直交する方向に沿って並ぶものの中から、ピクセル強度が最大となるピクセルを抽出し、抽出した前記ピクセルの位置を前記検査対象物の表面形状として特定する形状特定ステップと
    を含み、
    前記一次描画ステップは、
    前記ピクセルごとに、最も強い超音波信号を送受信した前記探触子の座標と前記最も強い超音波信号の送受信時間とに基づいて、前記検査対象物の前記表面の傾斜角を推定し、
    前記ピクセルごとに、推定した前記傾斜角に基づいて超音波信号の前記表面に対する入射角および反射角を算出し、
    前記入射角と前記反射角とが近似する超音波信号のデータに強調補正をかけて、前記画像を描画することを特徴とする上記各ステップをコンピュータに実行させるプログラム。
JP2019034831A 2018-03-08 2019-02-27 超音波検査方法、超音波検査装置およびプログラム Active JP7233646B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/296,908 US11054398B2 (en) 2018-03-08 2019-03-08 Ultrasonic inspection method, ultrasonic inspection device, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042160 2018-03-08
JP2018042160 2018-03-08

Publications (2)

Publication Number Publication Date
JP2019158876A JP2019158876A (ja) 2019-09-19
JP7233646B2 true JP7233646B2 (ja) 2023-03-07

Family

ID=67996145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034831A Active JP7233646B2 (ja) 2018-03-08 2019-02-27 超音波検査方法、超音波検査装置およびプログラム

Country Status (1)

Country Link
JP (1) JP7233646B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323477B2 (ja) * 2020-02-25 2023-08-08 三菱重工業株式会社 超音波探触子、及び超音波探傷スキャナ
JP7495725B2 (ja) 2020-08-06 2024-06-05 国立大学法人愛媛大学 道路舗装内部の超音波映像化装置、方法、及びプログラム
JP7433172B2 (ja) * 2020-09-10 2024-02-19 三菱重工業株式会社 超音波検査方法、超音波検査装置およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028589A (ja) 1998-07-10 2000-01-28 Toshiba Corp 3次元超音波画像化装置
JP2001211319A (ja) 2000-01-28 2001-08-03 Fuji Photo Film Co Ltd 画像処理方法
JP2009276085A (ja) 2008-05-12 2009-11-26 Nikko Kensa Service Kk 曲面に追随する超音波探傷装置
JP2012255653A (ja) 2011-06-07 2012-12-27 Central Research Institute Of Electric Power Industry 超音波探傷試験体の表面形状同定方法、表面形状同定装置及び表面形状同定プログラム、並びに、超音波探傷試験体の表面形状同定処理を組み込んだ超音波探傷試験方法、超音波探傷試験装置及び超音波探傷試験プログラム
JP2013040924A (ja) 2011-07-15 2013-02-28 Toshiba Corp 超音波探傷装置及びその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028589A (ja) 1998-07-10 2000-01-28 Toshiba Corp 3次元超音波画像化装置
JP2001211319A (ja) 2000-01-28 2001-08-03 Fuji Photo Film Co Ltd 画像処理方法
JP2009276085A (ja) 2008-05-12 2009-11-26 Nikko Kensa Service Kk 曲面に追随する超音波探傷装置
JP2012255653A (ja) 2011-06-07 2012-12-27 Central Research Institute Of Electric Power Industry 超音波探傷試験体の表面形状同定方法、表面形状同定装置及び表面形状同定プログラム、並びに、超音波探傷試験体の表面形状同定処理を組み込んだ超音波探傷試験方法、超音波探傷試験装置及び超音波探傷試験プログラム
JP2013040924A (ja) 2011-07-15 2013-02-28 Toshiba Corp 超音波探傷装置及びその方法

Also Published As

Publication number Publication date
JP2019158876A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US8838405B2 (en) Ultrasonic inspection equipment and ultrasonic inspection method
JP7233646B2 (ja) 超音波検査方法、超音波検査装置およびプログラム
JP5253424B2 (ja) 超音波探傷方法及び超音波探傷装置
CN104132997B (zh) 焊接部的组织形状的图像化方法及其装置
JP4491800B2 (ja) 超音波探傷方法及び装置
CN111122700B (zh) 一种提高激光超声saft缺陷定位速度的方法
JP5402046B2 (ja) 超音波計測装置及び超音波計測方法
JP2010107285A (ja) 超音波探傷装置及び超音波探傷方法
TWI503542B (zh) 超音波檢查方法及裝置
JP5156707B2 (ja) 超音波検査方法及び装置
JP2019045317A (ja) 超音波探触子、超音波探傷装置及び方法
JP5968114B2 (ja) 超音波探傷方法及び超音波探傷装置
JP5910641B2 (ja) 超音波映像化方法及び超音波映像化装置
KR101131994B1 (ko) 원자력 발전소 자동 초음파 신호를 평가하기 위한 실시간 비쥬얼 시스템
JP2010266416A (ja) フェーズドアレイ開口合成処理方法並びにその適用効果評価方法
JP2014041068A (ja) 超音波検査装置及び方法
CN113552571B (zh) 基于psm算法的水下激光致声saft成像方法
JP5456367B2 (ja) フェーズドアレイ開口合成処理方法
JP2019132798A (ja) 超音波検査方法および超音波検査装置
US11054398B2 (en) Ultrasonic inspection method, ultrasonic inspection device, and computer-readable storage medium
JP5738684B2 (ja) 超音波探傷試験体の表面形状同定処理を組み込んだ超音波探傷試験方法、超音波探傷試験装置及び超音波探傷試験プログラム
JP2014149156A (ja) 超音波検査方法及び装置
Han et al. Combination of direct, half-skip and full-skip TFM to characterize defect (II)
JP2005274444A (ja) 超音波探傷画像処理装置及びその処理方法
WO2019030815A1 (ja) 超音波検査方法および超音波検査装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230214

R150 Certificate of patent or registration of utility model

Ref document number: 7233646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150