JP6139117B2 - Silicon-based particle-dispersed coating liquid and method for producing the same - Google Patents

Silicon-based particle-dispersed coating liquid and method for producing the same Download PDF

Info

Publication number
JP6139117B2
JP6139117B2 JP2012267308A JP2012267308A JP6139117B2 JP 6139117 B2 JP6139117 B2 JP 6139117B2 JP 2012267308 A JP2012267308 A JP 2012267308A JP 2012267308 A JP2012267308 A JP 2012267308A JP 6139117 B2 JP6139117 B2 JP 6139117B2
Authority
JP
Japan
Prior art keywords
silicon
particle size
coating liquid
particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012267308A
Other languages
Japanese (ja)
Other versions
JP2014114330A (en
Inventor
寿史朗 江口
寿史朗 江口
雅弘 細田
雅弘 細田
良彰 越後
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2012267308A priority Critical patent/JP6139117B2/en
Publication of JP2014114330A publication Critical patent/JP2014114330A/en
Application granted granted Critical
Publication of JP6139117B2 publication Critical patent/JP6139117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、シリコン系粒子を含有した塗液およびその製造方法に関する。 The present invention relates to a coating liquid containing silicon-based particles and a method for producing the same.

従来、シリコン系粒子に、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド等絶縁性の有機高分子バインダを配合した塗液は、これを銅箔等の金属箔に塗工してリチウムイオン二次電池の負極として使用されている。ここではシリコン系粒子は、リチウムイオン二次電池の負極活物質として作用するので、サイクル特性、レート特性等電池特性を向上させるために、粒子サイズを出来るだけ小さくし、かつ塗液中に均一に分散させることが求められているが、シリコン系粒子は凝集しやすい傾向があるので、分散状態が均一でかつ経時的に安定した塗液が求められている。 Conventionally, a coating liquid in which an insulating organic polymer binder such as polyvinylidene fluoride, polytetrafluoroethylene, or polyimide is blended with silicon-based particles is applied to a metal foil such as a copper foil to form a lithium ion secondary battery. It is used as a negative electrode. Here, since the silicon-based particles act as the negative electrode active material of the lithium ion secondary battery, in order to improve battery characteristics such as cycle characteristics and rate characteristics, the particle size should be made as small as possible and uniformly in the coating liquid. Although it is required to disperse, since the silicon-based particles tend to aggregate, there is a need for a coating liquid that is uniformly dispersed and stable over time.

そこで、平均粒径が数μmレベルのシリコン系粒子をビーズミル等による湿式粉砕装置を用いてさらに細粒径化し、平均粒径1μm未満とし、これにバインダ成分と溶媒とを加えて塗液とする方法が提案されている。 Therefore, silicon particles having an average particle size of several μm are further refined using a wet pulverization apparatus such as a bead mill to obtain an average particle size of less than 1 μm, and a binder component and a solvent are added thereto to form a coating solution. A method has been proposed.

特許文献1には平均粒径が1〜10μmのシリコン系粒子を、水、あるいはアルコール、ヘキサン等の有機溶媒に分散させて、これをビーズミルでさらに粉砕して、平均粒径を1μm未満とし、しかるのち、前記溶媒を除去して、シリコン系粒子を採取した後、バインダ高分子を含む塗液用の溶液に混合して塗液とする方法が開示されている。 In Patent Document 1, silicon-based particles having an average particle diameter of 1 to 10 μm are dispersed in water, an organic solvent such as alcohol or hexane, and further pulverized by a bead mill to obtain an average particle diameter of less than 1 μm. Thereafter, a method is disclosed in which the solvent is removed and silicon-based particles are collected, and then mixed with a coating solution containing a binder polymer to form a coating solution.

また、特許文献2には、トルエン、キシレン、ナフタレン、メチルナフタレンなどの芳香族炭化水素系溶媒にシリコン系粒子を分散させて、これをビーズミルで粉砕して、平均粒径を1μm未満とし、しかるのち、前記溶媒を除去して、シリコン系粒子を採取した後、バインダ高分子を含む塗液用の溶液に混合して塗液とする方法が開示されている。 In Patent Document 2, silicon particles are dispersed in an aromatic hydrocarbon solvent such as toluene, xylene, naphthalene, methylnaphthalene, and the like, and this is pulverized by a bead mill to obtain an average particle size of less than 1 μm. After that, after removing the solvent and collecting silicon-based particles, a method is disclosed in which it is mixed with a coating solution containing a binder polymer to form a coating solution.

特許第4898737号公報Japanese Patent No. 4898737 特開2012−43547号公報JP 2012-43547 A

しかしながら、従来開示された方法では、ビーズミルなどの湿式粉砕装置で平均粒径を1μm未満まで粉砕を行い、シリコン系粒子分散液としても、これから溶媒を除去しシリコン系粒子の固形物を単離し、これにバインダ高分子を配合して塗液とする際に、シリコン系粒子の再凝集が起こり、凝集した粒子の最大粒径が2μm超となってしまうため、この塗液を基材に塗工して得られる塗膜表面の平滑性や均一性が損なわれるという問題があった。 However, in the conventionally disclosed method, the average particle size is pulverized to less than 1 μm with a wet pulverizer such as a bead mill, and the silicon-based particle dispersion is also used to remove the solvent and isolate the solids of the silicon-based particles. When a binder polymer is blended with this to form a coating solution, reaggregation of silicon-based particles occurs, and the maximum particle size of the aggregated particles exceeds 2 μm. Thus, there is a problem that the smoothness and uniformity of the surface of the coating film obtained are impaired.

そこで、本発明は上記課題を解決するものであって、高い分散均一性と良好な保存安定性を有し、かつ表面の平滑性や均一性の良好な塗膜を与えるシリコン系粒子分散塗液を提供することを目的とする。 Accordingly, the present invention solves the above-mentioned problems, and has a high dispersion uniformity, good storage stability, and a silicon-based particle dispersion coating solution that provides a coating film with good surface smoothness and uniformity. The purpose is to provide.

本発明者らは、上記課題を解決するために鋭意研究した結果、シリコン系粒子分散塗液を特定の特性とすることにより、上記課題が解決されることを見出し、本発明の完成に至った。
即ち、本発明は下記を趣旨とするものである。
・イミド系高分子を0.5〜15質量%含有してなる平均粒径1μm未満、最大粒径2μm未満のシリコン系粒子分散塗液。
・分散媒がアミド系溶媒である前記塗液。
・平均粒径が1μm以上のシリコン系粒子をアミド系溶媒中で粒径2mm以下のメディアを用いてビーズミルにより粉砕して、平均粒径1μm未満のシリコン系粒子分散体とし、この分散体からシリコン系粒子を単離することなく、この分散体にイミド系高分子を添加することを特徴とする前記塗液の製造方法。
・前記製造法において、イミド系高分子を添加する際、イミド系高分子を含有した溶液として添加、混合し、その溶液の溶媒をアミド系溶媒とすることを特徴とする前記塗液の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by making the silicon-based particle-dispersed coating liquid have specific characteristics, and the present invention has been completed. .
That is, the present invention has the following purpose.
A silicon-based particle dispersion coating liquid containing 0.5 to 15% by mass of an imide polymer and having an average particle size of less than 1 μm and a maximum particle size of less than 2 μm.
-The said coating liquid whose dispersion medium is an amide type solvent.
-Silicon particles having an average particle size of 1 μm or more are pulverized by a bead mill using a medium having a particle size of 2 mm or less in an amide solvent to obtain a silicon particle dispersion having an average particle size of less than 1 μm. A method for producing the coating liquid, comprising adding an imide polymer to the dispersion without isolating the system particles.
In the production method, when the imide polymer is added, the solution is added and mixed as a solution containing the imide polymer, and the solvent of the solution is used as the amide solvent. .

本発明の塗液は、良好な平滑性、均一性を有する塗膜を与え、かつ優れた分散均一性と良好な保存安定性を有しているので、例えばリチウムイオン二次電池電極形成用として好適に用いることができる。 The coating liquid of the present invention gives a coating film having good smoothness and uniformity, and has excellent dispersion uniformity and good storage stability. For example, for forming a lithium ion secondary battery electrode It can be used suitably.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の塗液は、イミド系高分子を含有している。 The coating liquid of the present invention contains an imide polymer.

イミド系高分子とは、主鎖にイミド結合を有する高分子もしくはその前駆体のことであり、主鎖にイミド結合を有する高分子の代表例としては、ポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられるがこれらに限定されるものではなく、主鎖にイミド結合を有する高分子であれば如何なる高分子も使用することができる。 The imide polymer is a polymer having an imide bond in the main chain or a precursor thereof. Typical examples of the polymer having an imide bond in the main chain include polyimide, polyamideimide, and polyesterimide. However, the present invention is not limited to these, and any polymer can be used as long as it has a imide bond in the main chain.

前記イミド系高分子の中で、例えば、ポリイミドを好ましく用いることができる。また、ポリイミドの前駆体として、例えば、ポリアミック酸を好ましく用いることができる。 Among the imide polymers, for example, polyimide can be preferably used. Moreover, as a polyimide precursor, for example, polyamic acid can be preferably used.

ポリイミドとは下記構造式(1)で示す構造を有するものである。 Polyimide has a structure represented by the following structural formula (1).

...(1)
. . . (1)

ここで、R1は4価の芳香族残基、脂肪族残基、脂環族残基から選ばれる残基を表し、R2は2価の芳香族残基、脂肪族残基、脂環族残基から選ばれる残基を表す。 Here, R1 represents a residue selected from a tetravalent aromatic residue, an aliphatic residue, and an alicyclic residue, and R2 represents a divalent aromatic residue, an aliphatic residue, and an alicyclic residue. It represents a residue selected from a group.

本発明では、塗液の良好均一性と安定性を確保する観点から、これらポリイミドの中で芳香族ポリイミドであることが好ましい。 In this invention, it is preferable that it is an aromatic polyimide in these polyimides from a viewpoint of ensuring the favorable uniformity and stability of a coating liquid.

これらの芳香族ポリイミドは、熱可塑性であっても非熱可塑性であってもよい。 These aromatic polyimides may be thermoplastic or non-thermoplastic.

これらイミド系高分子の塗液への配合量としては、0.5〜15質量%であり、1〜10質量%であることが好ましく、5〜8質量%が更に好ましい。 As a compounding quantity to the coating liquid of these imide type polymers, it is 0.5-15 mass%, It is preferable that it is 1-10 mass%, and 5-8 mass% is still more preferable.

本発明の塗液には、平均粒径が1μm未満のシリコン系粒子が均一に分散されている。ここでシリコン系粒子とは、例えば、シリコン、シリコン合金、シリコン・2酸化珪素複合体等の粒子を言い、シリコン粒子を好ましく用いることができる。 In the coating liquid of the present invention, silicon-based particles having an average particle size of less than 1 μm are uniformly dispersed. Here, the silicon-based particles refer to particles such as silicon, a silicon alloy, and a silicon / silicon dioxide composite, and silicon particles can be preferably used.

ここで、シリコン系粒子の平均粒径、最大粒径は、例えば、レーザー回折式粒度分布測定装置を用い、体積基準での粒径分布を測定することにより求めることができる。 Here, the average particle size and the maximum particle size of the silicon-based particles can be determined by measuring the particle size distribution on a volume basis using, for example, a laser diffraction particle size distribution measuring device.

シリコン系粒子の形状としては、不定形状、球状、繊維状等いかなる形状のものでも良い。 The shape of the silicon-based particles may be any shape such as an indefinite shape, a spherical shape, or a fibrous shape.

前記シリコン系粒子の塗液への配合量としては、5〜50質量%が好ましく、10〜30質量%であることがより好ましく、15〜25質量%が特に好ましい。 As a compounding quantity to the coating liquid of the said silicon-type particle, 5-50 mass% is preferable, It is more preferable that it is 10-30 mass%, 15-25 mass% is especially preferable.

本発明の塗液には、必要に応じ、シリコン系粒子以外のフィラー、例えば、黒鉛やカーボンブラック等のカーボン粒子や銀、銅、ニッケル等の金属粒子の導電性粒子等を配合することができる。 If necessary, the coating liquid of the present invention can contain fillers other than silicon-based particles, for example, carbon particles such as graphite and carbon black, and conductive particles of metal particles such as silver, copper, and nickel. .

本発明の塗液には、分散媒として、水や有機溶媒など如何なる液体も使用することができるが、その中でアミド系溶媒を好ましく用いることができる。アミド系溶媒とは、分子中にアミド結合を有する極性溶媒であり、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)等の単独もしくは少なくとも2種類以上の混合物があげられ、この中で単独のNMPが好ましく用いられる。 In the coating liquid of the present invention, any liquid such as water or an organic solvent can be used as a dispersion medium. Among them, an amide solvent can be preferably used. The amide solvent is a polar solvent having an amide bond in the molecule, and examples thereof include N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and the like, or a mixture of at least two kinds. Of these, a single NMP is preferably used.

次に本発明の塗液の製造法について説明する。
本発明の塗液は、例えば、平均粒径が1μm以上のシリコン系粒子をアミド系溶媒中で湿式粉砕して、平均粒径1μm未満のシリコン系粒子分散体とし、この分散体からシリコン系粒子を単離することなく、この分散体にイミド系高分子を添加、混合することにより製造することができる。
Next, the manufacturing method of the coating liquid of this invention is demonstrated.
The coating liquid of the present invention is obtained by, for example, wet-grinding silicon-based particles having an average particle size of 1 μm or more in an amide solvent to obtain a silicon-based particle dispersion having an average particle size of less than 1 μm. The imide polymer can be added to and mixed with this dispersion without isolation.

平均粒径が1μm以上のシリコン系粒子は、例えば、シリコンインゴットを乾式で粉砕したものであり、市販品を利用することができる。 The silicon-based particles having an average particle diameter of 1 μm or more are, for example, those obtained by pulverizing a silicon ingot by a dry method, and commercially available products can be used.

前記平均粒径が1μm以上のシリコン系粒子をアミド溶媒中でまず湿式粉砕する。湿式粉砕する方法としては、ローラーミル、振動ミル、遊星ミル、高速回転ミル、ボールミル、ビーズミル、ジェットミルなどが挙げられ、中でもビーズミルが好ましく用いられる。ビーズミルを用いる際のメディアとしては、例えば、ジルコニアビーズを用いることができる。 この粒径としては、2mm以下が好ましく、1mm以下がより好ましい。この湿式粉砕の際には、イミド系高分子が共存した状態で行うこともできる。 First, silicon-based particles having an average particle size of 1 μm or more are wet-ground in an amide solvent. Examples of the wet pulverization method include a roller mill, a vibration mill, a planetary mill, a high-speed rotation mill, a ball mill, a bead mill, and a jet mill. Among them, a bead mill is preferably used. As media when using the bead mill, for example, zirconia beads can be used. The particle size is preferably 2 mm or less, and more preferably 1 mm or less. The wet pulverization can be performed in the state where an imide-based polymer coexists.

湿式粉砕する際のシリコン系粒子の濃度は10〜60質量%が好ましく、20〜50質量%がさらに好ましい。 The concentration of silicon-based particles during wet pulverization is preferably 10 to 60% by mass, and more preferably 20 to 50% by mass.

前記の如くして得られた平均粒径1μm未満のシリコン系粒子分散体にイミド系高分子を配合することにより本発明の塗液を製造する。 The coating liquid of the present invention is produced by blending an imide polymer with the silicon particle dispersion having an average particle diameter of less than 1 μm obtained as described above.

イミド系高分子の配合方法としては、例えば溶媒としてアミド系溶媒を用いたイミド系高分子の溶液や、イミド系高分子粉体を前記シリコン系粒子分散体に添加混合することにより行うことができるが、イミド系高分子の溶液として混合することが好ましい。混合の際はシリコン系粒子の凝集が起こらないように撹拌しながら行うことが好ましい。 The imide polymer can be blended by, for example, adding an imide polymer solution using an amide solvent as a solvent or adding and mixing an imide polymer powder to the silicon particle dispersion. However, it is preferable to mix as a solution of an imide polymer. The mixing is preferably performed while stirring so that aggregation of silicon-based particles does not occur.

塗液中のシリコン系粒子の濃度としては、5〜50質量%が好ましく、15〜45質量%がさらに好ましい。 As a density | concentration of the silicon-type particle | grains in a coating liquid, 5-50 mass% is preferable, and 15-45 mass% is further more preferable.

前記塗液には、必要に応じて、例えば、各種界面活性剤、有機シランカップリング剤等の公知の添加物を本発明の効果を損なわない範囲で添加することができる。また、他の重合体が本発明の効果を損なわない範囲で添加されていてもよい。 If necessary, known additives such as various surfactants and organic silane coupling agents can be added to the coating liquid as long as the effects of the present invention are not impaired. Moreover, the other polymer may be added in the range which does not impair the effect of this invention.

本発明の塗液を、例えば銅箔等の金属箔に塗工、乾燥、必要に応じて硬化することにより、表面が平滑でしかもシリコン粒子の凝集に起因する突起物のない表面が平滑な塗膜を得ることができる。この塗膜は、例えばリチウムイオン二次電池の負極層として利用することができる。 By applying the coating liquid of the present invention to a metal foil such as copper foil, drying, and curing as necessary, the surface is smooth and the surface free from protrusions due to aggregation of silicon particles is smooth. A membrane can be obtained. This coating film can be used, for example, as a negative electrode layer of a lithium ion secondary battery.

以上述べた如く、本発明の塗液は平均粒径1μm未満、最大粒径2μm未満のシリコン系粒子がイミド系高分子中に凝集することなく均一に分散されているので表面状態の良好な塗膜を製造することができる。この塗液は平均粒径が1μm以上のシリコン系粒子をアミド系溶媒中で粒径2mm以下のメディアを用いてビーズミルにより粉砕して、平均粒径1μm未満のシリコン系粒子分散体とし、この分散体からシリコン系粒子を単離することなく、この分散体にイミド系高分子を添加、混合するという簡単なプロセスで製造することができる。 As described above, the coating liquid of the present invention has a good surface condition because silicon particles having an average particle size of less than 1 μm and a maximum particle size of less than 2 μm are uniformly dispersed without aggregation in the imide polymer. Membranes can be manufactured. This coating solution is obtained by pulverizing silicon-based particles having an average particle size of 1 μm or more with a bead mill using a medium having a particle size of 2 mm or less in an amide solvent to form a silicon-based particle dispersion having an average particle size of less than 1 μm. Without isolating silicon-based particles from the body, the dispersion can be produced by a simple process of adding and mixing an imide-based polymer.

以下、実施例に基づき本発明を更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited only to these Examples.

以下の実施例および比較例におけるイミド系高分子およびシリコン系粒子分散体の調製方法は、以下の通りである。 The preparation methods of the imide polymer and silicon particle dispersion in the following Examples and Comparative Examples are as follows.

<ポリイミド前駆体溶液の調製>
略等モルのBPDA(3,3’,4,4’−ビフェニルテトラカルボン酸二無水物)と4,4’ODA(4,4’−オキシジアニリン)もしくはPDA(パラフェニレンジアミン)とをNMP中で反応させることにより、固形分濃度20質量%、30℃での粘度が5.4Pa・sおよび6.5Pa・sの均一なポリアミック酸溶液をそれぞれ得た。この溶液をP−1およびP−2とする。
<Preparation of polyimide precursor solution>
About NMP of approximately equimolar BPDA (3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride) and 4,4′ODA (4,4′-oxydianiline) or PDA (paraphenylenediamine) By reacting in the solution, uniform polyamic acid solutions having a solid content concentration of 20% by mass and viscosities at 5.4 Pa · s and 6.5 Pa · s at 30 ° C. were obtained, respectively. Let this solution be P-1 and P-2.

<シリコン系粒子分散体の調製>
市販のシリコン粒子からなる粉体(純度99質量%、平均粒径3.5μm、最大粒径8.3μm)を表1に示す所定の分散媒に加え、シリコン分散体を濃度が25質量%のシリコン粒子分散体を得た。この分散体を表1に示す所定の粒径を有するジルコニア粒子をメディアとして用いたビーズミルで30℃、2時間で湿式粉砕し、湿式粉砕されたシリコン粒子を含有する分散体A〜Fを得た。このシリコン系粒子分散体の粒径をレーザー回折式粒度分布測定装置(日機装製マイクロトラックUPA)により体積基準での粒径分布を測定した所、その平均粒径及び最大粒径は表1に示す通りであった。
<Preparation of silicon-based particle dispersion>
A powder composed of commercially available silicon particles (purity 99% by mass, average particle size 3.5 μm, maximum particle size 8.3 μm) was added to the predetermined dispersion medium shown in Table 1, and the silicon dispersion was added at a concentration of 25% by mass. A silicon particle dispersion was obtained. This dispersion was wet pulverized in a bead mill using zirconia particles having a predetermined particle size shown in Table 1 as a medium at 30 ° C. for 2 hours to obtain dispersions A to F containing wet pulverized silicon particles. . When the particle size distribution of this silicon-based particle dispersion was measured on a volume basis using a laser diffraction particle size distribution analyzer (Nikkiso Microtrac UPA), the average particle size and maximum particle size are shown in Table 1. It was street.

[実施例1〜4]
シリコン系粒子分散体A〜Cにポリアミック酸溶液P−1,P−2を撹拌しながら加え、さらに25℃で1時間撹拌を行い、均一なシリコン系粒子分散塗液a〜dを得た。ここで塗液のポリアミック酸濃度は4.8質量%とし、シリコン系粒子の濃度は17.2質量%とした。この分散塗液の平均粒径、最大粒径を、レーザー回折式粒度分布測定定装置(日機装製マイクロトラックUPA)により体積基準での粒径分布を測定した所、その平均粒径及び最大粒径は表2に示す通りであった。次に前記シリコン系粒子分散塗液a〜dを厚み18μmの電解銅箔上に、熱硬化後の被膜の厚みが30〜50μmになるようにバーコータを用いて枚様で均一に塗布し、130℃で10分間乾燥した。この積層体を窒素ガス雰囲気下で100℃から350℃まで2時間かけて昇温した後、350℃で1時間熱処理し、ポリアミック酸を熱硬化させてイミド化することによりシリコン粒子が分散しているポリイミド塗膜を得た。得られた塗膜表面を走査型電子顕微鏡(日立製作所製S-4000)を用いて倍率1000倍で撮影し、その像から、塗膜表面1mm中に現れる直径10μm以上の凝集物の数を調べた所、結果は表2に示す通りであった。また、この実施例で得られた塗液のシリコン粒子の平均粒径は良好な保存安定性を有していた。
[Examples 1 to 4]
The polyamic acid solutions P-1 and P-2 were added to the silicon-based particle dispersions A to C while stirring, and further stirred at 25 ° C. for 1 hour to obtain uniform silicon-based particle dispersion coating liquids a to d. Here, the polyamic acid concentration of the coating solution was 4.8% by mass, and the concentration of silicon-based particles was 17.2% by mass. The average particle size and the maximum particle size of this dispersion coating liquid were measured by measuring the particle size distribution on a volume basis using a laser diffraction particle size distribution measuring instrument (Nikkiso Microtrac UPA). Was as shown in Table 2. Next, the silicon-based particle-dispersed coating liquids a to d are uniformly applied on an electrolytic copper foil having a thickness of 18 μm using a bar coater so that the thickness of the heat-cured film becomes 30 to 50 μm. Dry at 10 ° C. for 10 minutes. After heating this laminated body from 100 ° C. to 350 ° C. in a nitrogen gas atmosphere over 2 hours, heat treatment was performed at 350 ° C. for 1 hour, and the polyamic acid was thermally cured to imidize, thereby dispersing silicon particles. A polyimide coating film was obtained. The obtained coating film surface was photographed with a scanning electron microscope (S-4000 manufactured by Hitachi, Ltd.) at a magnification of 1000 times, and the number of aggregates having a diameter of 10 μm or more appearing on the coating film surface 1 mm 2 was examined from the image. The results were as shown in Table 2. Moreover, the average particle diameter of the silicon particles of the coating liquid obtained in this example had good storage stability.

[比較例1〜2]
シリコン系粒子分散体D〜Eを濾過後乾燥してシリコン系粒子を単離した。この粒子を撹拌しながらNMP溶液に再分散し濃度が25質量%のシリコン粒子分散体を得た。しかる後、このシリコン粒子分散体にポリアミック酸溶液P−1を撹拌しながら加え、さらに25℃で1時間撹拌を行い、シリコン系粒子分散塗液e〜fを得た。ここで塗液のポリアミック酸濃度は4.8質量%とし、シリコン系粒子の濃度は17.2質量%とした。この分散塗液の平均粒径、最大粒径を、レーザー回折式粒度分布測定定装置(日機装製マイクロトラックUPA)により体積基準での粒径分布を測定した所、その平均粒径及び最大粒径は表2に示す通りであった。次に実施例1〜4と同様にして、塗膜表面に現れる直径10μm以上の凝集物の数を調べた所、結果は表2に示す通りであった。
[比較例3]
シリコン系粒子分散体Fにポリアミック酸溶液P−1を撹拌しながら加え、さらに25℃で1時間撹拌を行い、シリコン系粒子分散塗液gを得ようとしたが、ポリアミック酸溶液とP−1を加えた際に、ポリアミック酸が一部不溶化し、均一な塗液を得ることができなかった。
[Comparative Examples 1-2]
Silicon particle dispersions D to E were filtered and dried to isolate silicon particles. The particles were redispersed in an NMP solution while stirring to obtain a silicon particle dispersion having a concentration of 25% by mass. Thereafter, the polyamic acid solution P-1 was added to the silicon particle dispersion with stirring, and the mixture was further stirred at 25 ° C. for 1 hour to obtain silicon-based particle dispersion coating solutions ef. Here, the polyamic acid concentration of the coating solution was 4.8% by mass, and the concentration of silicon-based particles was 17.2% by mass. The average particle size and the maximum particle size of this dispersion coating liquid were measured by measuring the particle size distribution on a volume basis using a laser diffraction particle size distribution measuring instrument (Nikkiso Microtrac UPA). Was as shown in Table 2. Next, when the number of aggregates having a diameter of 10 μm or more appearing on the coating film surface was examined in the same manner as in Examples 1 to 4, the results were as shown in Table 2.
[Comparative Example 3]
The polyamic acid solution P-1 was added to the silicon-based particle dispersion F with stirring, and further stirred at 25 ° C. for 1 hour to obtain a silicon-based particle dispersion coating solution g. Was added, the polyamic acid was partially insolubilized and a uniform coating solution could not be obtained.

実施例1〜4及び比較例1〜3の結果から、塗液中のシリコン系粒子の粒径を、本発明の範囲である平均粒径1μm未満、最大粒径2μm未満とすることにより、塗膜表面にシリコン系粒子が凝集することなく、均一に分散しているので平滑な塗膜を得ることができる。これに対し、比較例の塗液の場合、湿式法による粉砕時には粒径範囲が平均粒径1μm未満、最大粒径2μm未満であっても、塗液の最大粒径が2μm以上になると、形成された塗膜表面には直径10μm以上の凝集した粒子が存在し、表面の平滑性、均一性が損なわれ、塗液としては不適であることが判る。   From the results of Examples 1 to 4 and Comparative Examples 1 to 3, the particle size of the silicon-based particles in the coating liquid was set to an average particle size of less than 1 μm and a maximum particle size of less than 2 μm, which are the scope of the present invention. Since the silicon-based particles are uniformly dispersed on the film surface, a smooth coating film can be obtained. On the other hand, in the case of the coating liquid of the comparative example, when the maximum particle diameter of the coating liquid is 2 μm or more even when the particle diameter range is less than 1 μm and the maximum particle diameter is less than 2 μm at the time of grinding by the wet method, It can be seen that aggregated particles having a diameter of 10 μm or more are present on the surface of the coated film, and the smoothness and uniformity of the surface are impaired, making it unsuitable as a coating liquid.

Claims (4)

イミド系高分子を0.5〜15質量%含有してなる平均粒径1μm未満、最大粒径2μm未満のシリコン系粒子分散塗液。 A silicon-based particle-dispersed coating liquid containing 0.5 to 15% by mass of an imide polymer and having an average particle size of less than 1 μm and a maximum particle size of less than 2 μm. 分散媒がアミド系溶媒であることを特徴とする請求項1記載の塗液。 The coating liquid according to claim 1, wherein the dispersion medium is an amide solvent. 平均粒径が1μm以上のシリコン系粒子をアミド系溶媒中で粒径2mm以下のメディアを用いてビーズミルにより粉砕して、平均粒径が1μm未満のシリコン系粒子分散体とし、この分散体からシリコン系粒子を単離することなく、この分散体にイミド系高分子を添加、混合することを特徴とする請求項1または2記載の塗液の製造方法。 Silicon particles having an average particle size of 1 μm or more are pulverized by a bead mill using a medium having a particle size of 2 mm or less in an amide solvent to obtain a silicon particle dispersion having an average particle size of less than 1 μm. The method for producing a coating liquid according to claim 1 or 2, wherein an imide polymer is added to and mixed with the dispersion without isolating the system particles. イミド系高分子を添加し混合する際、イミド系高分子を含有した溶液として添加、混合し、その溶液の溶媒をアミド系溶媒とすることを特徴とする請求項3記載の塗液の製造方法。
4. The method for producing a coating liquid according to claim 3, wherein when the imide polymer is added and mixed, the solution is added and mixed as a solution containing the imide polymer, and the solvent of the solution is used as the amide solvent. .
JP2012267308A 2012-12-06 2012-12-06 Silicon-based particle-dispersed coating liquid and method for producing the same Active JP6139117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267308A JP6139117B2 (en) 2012-12-06 2012-12-06 Silicon-based particle-dispersed coating liquid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267308A JP6139117B2 (en) 2012-12-06 2012-12-06 Silicon-based particle-dispersed coating liquid and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014114330A JP2014114330A (en) 2014-06-26
JP6139117B2 true JP6139117B2 (en) 2017-05-31

Family

ID=51170682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267308A Active JP6139117B2 (en) 2012-12-06 2012-12-06 Silicon-based particle-dispersed coating liquid and method for producing the same

Country Status (1)

Country Link
JP (1) JP6139117B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262868A (en) * 1985-09-11 1987-03-19 Shin Meiwa Ind Co Ltd Surface treatment having corrosion and abrasion resistance
EP1313158A3 (en) * 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
JP4366222B2 (en) * 2003-03-26 2009-11-18 キヤノン株式会社 Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
JP2007149604A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP5178508B2 (en) * 2006-03-30 2013-04-10 三洋電機株式会社 Lithium secondary battery
US20070269718A1 (en) * 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
JP2008016446A (en) * 2006-06-09 2008-01-24 Canon Inc Powder material, electrode structure using powder material, power storage device having the electrode structure, and manufacturing method of powder material
JP4635978B2 (en) * 2006-08-02 2011-02-23 ソニー株式会社 Negative electrode and secondary battery
JP4501081B2 (en) * 2006-12-06 2010-07-14 ソニー株式会社 Electrode forming method and battery manufacturing method
JPWO2010150513A1 (en) * 2009-06-23 2012-12-06 キヤノン株式会社 Electrode structure and power storage device
JP5984325B2 (en) * 2009-10-15 2016-09-06 東レ株式会社 Binder for lithium ion battery electrode, paste for lithium ion battery electrode using the same, and method for producing lithium ion battery electrode
JP5761740B2 (en) * 2011-03-25 2015-08-12 国立研究開発法人産業技術総合研究所 Electrode and electrode forming method

Also Published As

Publication number Publication date
JP2014114330A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5821137B2 (en) Battery electrode binder composition, battery electrode binder, battery electrode forming mixture slurry, battery electrode forming mixture slurry manufacturing method, battery electrode and battery electrode forming method
JP6881644B2 (en) Method for producing resin particle-dispersed polyimide precursor solution, resin particle-dispersed polyimide precursor solution, resin particle-containing polyimide film, method for producing porous polyimide film, and porous polyimide film.
JP6156363B2 (en) Fine carbon dispersion composition and polyimide-fine carbon composite using the same
JP6358663B2 (en) Method for producing separator for secondary battery and method for producing lithium secondary battery
JP5946444B2 (en) Composite film of polyimide resin fine particles and use thereof
JP5915193B2 (en) Polyimide precursor alcohol solution composition and method for producing polyimide precursor alcohol solution composition
WO2015122498A1 (en) Hydrophilic polymer, production method for same, binder, electrode
JP5019152B2 (en) Carbon nanotube-dispersed polyimide composition
WO2017022796A1 (en) Mixture paste for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017057098A (en) Boron nitride agglomerated particle for forming thin film, insulation coating film, production method of agglomerated particle, production method of insulation electrodeposition paint, enameled wire and coil
WO2016143002A1 (en) Conductive aromatic polyimide porous film and method for producing same
JP2011137063A (en) Polyimide resin aqueous solution, polyimide-based resin aqueous solution, polyazole resin aqueous solution
JP5919989B2 (en) Polyimide precursor composition, and electrode mixture paste, electrode and paint using the same
JP5733355B2 (en) Polyimide resin aqueous solution
JP7069745B2 (en) Polyimide precursor solution, method for producing porous polyimide film, and porous polyimide film
JP2020136187A (en) All-solid battery
WO2018105338A1 (en) Binder composition for electricity storage elements, slurry composition for electricity storage elements, electrode, method for producing electrode, secondary battery and electric double layer capacitor
JP6139117B2 (en) Silicon-based particle-dispersed coating liquid and method for producing the same
JP2023113663A (en) electrode
JP6904109B2 (en) Method for producing polyimide precursor solution and porous polyimide film
WO2020202819A1 (en) Porous carbon material and resin composition
JP2022116646A (en) Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
JP5800232B2 (en) Graphite thin film and manufacturing method thereof
JP2021095568A (en) Resin composition and cured film using the same
JP2021042287A (en) Polyimide precursor solution, method for producing polyimide film, and method for producing separator for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6139117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150