JP5019152B2 - Carbon nanotube-dispersed polyimide composition - Google Patents

Carbon nanotube-dispersed polyimide composition Download PDF

Info

Publication number
JP5019152B2
JP5019152B2 JP2005517154A JP2005517154A JP5019152B2 JP 5019152 B2 JP5019152 B2 JP 5019152B2 JP 2005517154 A JP2005517154 A JP 2005517154A JP 2005517154 A JP2005517154 A JP 2005517154A JP 5019152 B2 JP5019152 B2 JP 5019152B2
Authority
JP
Japan
Prior art keywords
polyimide
carbon nanotube
solvent
dispersed
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005517154A
Other languages
Japanese (ja)
Other versions
JPWO2005068556A1 (en
Inventor
陽一 榊原
圓 徳本
オレクシー ロジン
弘道 片浦
ウィンモー ソー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI R&D Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
PI R&D Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI R&D Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical PI R&D Co Ltd
Priority to JP2005517154A priority Critical patent/JP5019152B2/en
Publication of JPWO2005068556A1 publication Critical patent/JPWO2005068556A1/en
Application granted granted Critical
Publication of JP5019152B2 publication Critical patent/JP5019152B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Description

本発明は、カーボンナノチューブが均一に分散されたポリイミドに関する。特に、アミド系極性有機溶媒、非イオン性界面活性剤及び/又はポリビニルピロリドン(PVP)にカーボンナチューブを分散させた混合液を用いて得られる、カーボンナノチューブが均一に分散されたポリイミドに関する。  The present invention relates to a polyimide in which carbon nanotubes are uniformly dispersed. In particular, the present invention relates to a polyimide in which carbon nanotubes are uniformly dispersed, which is obtained using a mixed solution in which a carbon natube is dispersed in an amide polar organic solvent, a nonionic surfactant and / or polyvinyl pyrrolidone (PVP).

ポリイミドは、1,963年にデュポン社によって開発された絶縁性及び機械的特性に優れた超耐熱性樹脂であり、また、高機能性も有しており、各種電子材料、機械材料へ応用されている。
一方、カーボンナノチューブは、近年発見された直径がカーボンファイバーよりも細い1ミクロン以下の6角網目状のシート状の構造がチューブの軸に平行になって管を形成したものであり、そのユニークな機械的、電気的、熱的特性が注目されている。
カーボンナノチューブは、6角網目のチューブの数によって、多層のもの(マルチウォール・カーボンナノチューブ、「MWNT」と呼ばれる)から単層のもの(シングルウォール・カーボンナノチューブ、「SWNT」と呼ばれる)まである。このようなカーボンナノチューブは、特に、SWNTはナノコンポジットとして利用した場合、強力な機械的強度の向上が期待され、しかも、導電性が向上するなど極めて有利な特性が期待されている。
したがって、ポリイミドにカーボンナノチューブを均一に分散することができれば、カーボンナノチューブの有する機械的、電気的、熱的特性とポリイミドの有する機械的、熱的、化学的特性の相乗作用により、極めて優れた特性が得られることが期待できる。
しかしながら、一般に、カーボンナノチューブを用いたナノコンポジットは上述した利点を有するにもかかわらず、カーボンナノチューブ相互の凝集力(ファンデルワールスの力)によって、カーボンナノチューブが束状及び縄状になってしまうため、カーボンナノチューブを樹脂に均一に分散させることは極めて困難であった。特に、カーボンナノチューブの原子レベルでの滑らかな表面が基材に対する親和性を低下する要因となっている(特開平7−102112号及び米国特許5,502,143号明細書参照)。
このようなカーボンナノチューブの高分子材料への分散性を改善するために様々な試みが報告されている。従来から行われているフィラーの分散方法としては、攪拌、超音波処理、混練等の機械的な処理と、微粒子表面への化学的処理とを組み合わせるのが主であった。機械的な処理のうちで混練としてはセラミックスの微粒子を用いたビーズミル装置やボールミル装置、三本ローラーなど様々な装置が用いられる。しかしながら、機械的な処理では、これらの装置を用いた混練が必要となり、また、カーボンナノチューブが損傷しやすいという欠点を有する。
そこで、カーボンナノチューブの凝集を防ぎ安定した分散液を確保した後、この分散液ごと高分子材料マトリックスに混合し分散することが行われている。このような分散液を調製する方法を大別すると、(1)酸処理によってカーボンナノチューブの表面に親水性の官能基を導入することによって各種溶媒への分散性を向上させ、分散液をポリマー溶液と混合することによってコンポジット化する方法と、(2)界面活性剤やカーボンナノチューブに吸着する特定のポリマーによってCNTをコーティングして各種溶媒に分散する方法がある。
前者の例としては、強酸と超音波を利用してSWCNTを短く分断する方法がある。例えば、カーボンナノチューブ表面を化学的に修飾し、エポキシ樹脂に対する親和力の向上を図る試みも報告されているが必ずしも十分な分散性を得ていない。また、化学修飾法においては、強力な酸化反応でナノチューブを最初に切断するためナノチューブが損傷してしまうという欠点を有する(NANO LETTERS Vol.3,No.8,2003,1107−1113参照)。
後者の例として、エポキシ樹脂において、非イオン性の界面活性剤であるポリオキシエチレン8ラウリル(C12EO)がカーボンナノチューブの分散剤として機能することも報告されている。これは、C12EOの有するオキシエチレンによる親水性部と炭化水素による疎水性部が炭素の分散性に寄与するというものである。つまり、疎水性部が炭素と相互作用し、同時に、親水性部が水素結合によってエポキシ樹脂と相互作用するというものである。しかしながら、このような界面活性剤の添加によって、カーボンナノチューブの分散性の一定の向上は図れたものの、まだ、十分な分散性は得られていないことが報告されている(Chem.Mater.2000,12,1049−1052参照)。
さらに、別の研究では、エポキシ樹脂基材に対して、カーボンナノチューブを分散させる手法として、非イオン系界面活性剤(Tergitol NP7)を用いて超音波処理することが提案されている。しかし、この場合においても、カーボンナノチューブの配合量を増加させると、カーボンナノチューブが凝集してしまい、均一な分散が得られない旨報告されている(Carbon 41,2003,797−809参照)。
以上のような方法によって、ある程度カーボンナノチューブの分散が高められた例もあるが、まだ十分な分散性が得られていないのが現状であった。特に、これらの方法をポリイミドヘ応用した場合、カーボンナノチューブの分散は十分でなかった。
一方、従来のポリイミドは、一般的に溶剤に溶解することが困難であり、ナノコンポジットとして利用する際、ナノ粒子を混合、分散させることが困難であるという問題を有する。最近では、このようなポリイミドの溶剤に対する難溶性を改善するために、3成分系、4成分系のポリイミドが開発されてきている。例えば、ラクトンを利用する2成分系触媒を用いる方法が開発された。溶媒はN−メチルピロリドンと少量のトルエンを用い、180℃で加熱重合される方法である。
また、ブロック共重合により製造されたポリイミドは溶媒に可溶であることが知られている。すなわち、ポリイミドは酸ジ無水物と芳香族ジアミンの縮合物であるが、酸ジ無水物と芳香族ジアミンの組み合わせ方法、分子量及び分子量分布等を調整することによって、溶剤に可溶なものとすることができる。例えば、低沸点を有する2成分系触媒の存在下で溶媒を加熱することにより、有機溶媒に溶解するポリイミドが製造できる。この方法では、ポリイミドと2成分系触媒の特別な除去処理をすることなく、継続的な添加技術に基づくイミド化反応によって4以上の構成要素を有する溶剤に可溶なポリイミドが製造できる(米国特許5,502,143号明細書参照)。
Polyimide is a super heat-resistant resin with excellent insulation and mechanical properties developed by DuPont in 1963. It also has high functionality and is applied to various electronic materials and mechanical materials. ing.
On the other hand, a carbon nanotube is a tube having a recently discovered hexagonal mesh-like structure with a diameter of 1 micron or smaller than that of a carbon fiber, which is parallel to the tube axis to form a tube. Mechanical, electrical and thermal properties are attracting attention.
Carbon nanotubes range from multi-walled (multi-walled carbon nanotubes, called “MWNT”) to single-walled (single-walled carbon nanotubes, called “SWNT”), depending on the number of hexagonal tubes. Such carbon nanotubes are expected to have particularly advantageous properties such as enhanced mechanical strength and improved electrical conductivity, especially when SWNTs are used as nanocomposites.
Therefore, if carbon nanotubes can be uniformly dispersed in polyimide, extremely excellent characteristics can be obtained by the synergistic action of mechanical, electrical, and thermal characteristics of carbon nanotubes and mechanical, thermal, and chemical characteristics of polyimide. Can be expected.
However, in general, although nanocomposites using carbon nanotubes have the above-mentioned advantages, the carbon nanotubes become bundled and rope-like due to the cohesive force between each other (van der Waals force). It has been extremely difficult to uniformly disperse the carbon nanotubes in the resin. In particular, the smooth surface at the atomic level of carbon nanotubes is a factor that reduces the affinity for the substrate (see JP-A-7-102112 and US Pat. No. 5,502,143).
Various attempts have been reported to improve the dispersibility of such carbon nanotubes in polymer materials. Conventionally, the filler dispersion method has mainly been a combination of mechanical treatment such as stirring, ultrasonic treatment, and kneading, and chemical treatment on the surface of fine particles. Among mechanical processing, various apparatuses such as a bead mill apparatus, a ball mill apparatus, and a three-roller using ceramic fine particles are used for kneading. However, mechanical treatment requires kneading using these apparatuses, and has the disadvantage that the carbon nanotubes are easily damaged.
Therefore, after securing a stable dispersion that prevents aggregation of the carbon nanotubes, the dispersion is mixed and dispersed in a polymer material matrix. The method of preparing such a dispersion can be broadly divided into (1) dispersibility in various solvents by introducing hydrophilic functional groups on the surface of carbon nanotubes by acid treatment, and the dispersion is converted into a polymer solution. And (2) a method in which CNTs are coated with a surfactant or a specific polymer adsorbed on carbon nanotubes and dispersed in various solvents.
As an example of the former, there is a method of dividing SWCNT into short pieces using strong acid and ultrasonic waves. For example, attempts have been reported to improve the affinity for epoxy resin by chemically modifying the surface of carbon nanotubes, but sufficient dispersibility is not always obtained. In addition, the chemical modification method has a disadvantage that the nanotube is damaged because it is first cut by a strong oxidation reaction (see NANO LETTERS Vol. 3, No. 8, 2003, 1107-1113).
As an example of the latter, it has also been reported that polyoxyethylene 8 lauryl (C 12 EO 8 ), which is a nonionic surfactant, functions as a carbon nanotube dispersant in an epoxy resin. This is because the hydrophilic part due to oxyethylene and the hydrophobic part due to hydrocarbons of C 12 EO 8 contribute to the dispersibility of carbon. That is, the hydrophobic part interacts with carbon, and at the same time, the hydrophilic part interacts with the epoxy resin by hydrogen bonding. However, it has been reported that although the dispersibility of carbon nanotubes has been improved by the addition of such a surfactant, sufficient dispersibility has not yet been obtained (Chem. Mater. 2000, 12, 1049-1052).
Further, in another study, as a method for dispersing carbon nanotubes on an epoxy resin base material, it is proposed to perform ultrasonic treatment using a nonionic surfactant (Tergitol NP7). However, even in this case, it has been reported that when the compounding amount of the carbon nanotubes is increased, the carbon nanotubes aggregate and a uniform dispersion cannot be obtained (see Carbon 41, 2003, 797-809).
Although there are examples in which the dispersion of carbon nanotubes has been increased to some extent by the above method, the present situation is that sufficient dispersibility has not yet been obtained. In particular, when these methods were applied to polyimide, the dispersion of carbon nanotubes was not sufficient.
On the other hand, conventional polyimides generally have a problem that it is difficult to dissolve in a solvent, and it is difficult to mix and disperse nanoparticles when used as a nanocomposite. Recently, three-component and four-component polyimides have been developed in order to improve the poor solubility of such polyimides in solvents. For example, a method using a two-component catalyst utilizing a lactone has been developed. The solvent is a method in which N-methylpyrrolidone and a small amount of toluene are used and polymerized by heating at 180 ° C.
Moreover, it is known that the polyimide manufactured by block copolymerization is soluble in a solvent. That is, polyimide is a condensate of acid dianhydride and aromatic diamine, but it is soluble in the solvent by adjusting the combination method, molecular weight and molecular weight distribution of acid dianhydride and aromatic diamine. be able to. For example, a polyimide that is soluble in an organic solvent can be produced by heating the solvent in the presence of a two-component catalyst having a low boiling point. In this method, a polyimide soluble in a solvent having four or more components can be produced by an imidization reaction based on a continuous addition technique without performing special removal treatment of the polyimide and the two-component catalyst (US Patent). No. 5,502,143).

カーボンナノチューブを分散したポリイミドは、その優れた特性が期待されつつも、カーボンナノチューブ相互の凝集力、及び表面の親和力の低さから、十分な分散性が得られない。また、カーボンナノチューブ表面を化学的に修飾して親和性を高める方法では、強力な酸化反応によってナノチューブが損傷してしまい、期待されたナノチューブの機能が得られないという欠点が存する。
一方、ポリイミドは機械的性質、絶縁性、耐熱性に優れた有用な樹脂であり、そのナノコンポジットへの応用も期待されるにもかかわらず、一般に、有機溶媒に難溶であるため、ナノ微粒子を混合、分散することが困難であり、特に、カーボンナノチューブを均一に分散させることは困難であった。また、通常、ポリイミドは熱可塑性でないため他の高分子材料によるナノコンポジットの製造の際に行われる混練によるカーボンナノチューブの分散も採用することは困難である。
したがって、本発明の目的は、カーボンナノチューブを損傷することなく、カーボンナノチューブがポリイミドに均一に分散したカーボンナノチューブ分散高分子材料を提供することにある。
本発明は、非イオン性界面活性剤のカーボンナノチューブに対する分散剤としての機能及びポリビニルピロリドン(PVP)のカーボンナノチューブに対するラッピング効果に着目しつつ、該非イオン性界面活性剤及び/又はポリビニルピロリドン(PVP)をアミド系極性有機溶媒、特に、NMP(Nメチルピロリドン)及び/又はジメチルアセトアミド(DMAC)に溶解させると、アミド系極性溶媒を単独で用いた場合に比較して、はるかに優れた分散剤としての機能を発揮し、溶剤に可溶なポリイミドにカーボンナノチューブを均一に分散できることを見出したものである。
ポリイミドは、2成分系、3成分系、4成分系等のポリイミドがあるが、一般に、3成分系のポリイミドは溶剤に可溶なものが多く、さらに4成分系のものは溶解度が増加する。溶剤に可溶なポリイミドとしては、芳香族ポリイミドが好ましい。また、ブロック共重合ポリイミドは、一般的に溶剤に可溶である。したがって、本発明においては、好ましくは、芳香族系のブロック共重合ポリイミドの有機溶媒に溶解する性質を利用してカーボンナノチューブの分散を行う。
本発明は、具体的には、次の構成からなる。
(1)カーボンナノチューブ、アミド系極性有機溶媒、並びに非イオン性界面活性剤及び/又はポリビニルピロリドン(PVP)からなるカーボンナノチューブ分散溶液を溶剤に可溶なポリイミドの有機溶媒に混合することにより得られたカーボンナノチューブ分散ポリイミド。
(2)アミド系極性有機溶媒がN−メチルピロリドン(NMP)及び/又はジメチルアセトアミド(DMAC)であることを特徴とする上記(1)に記載のカーボンナノチューブ分散ポリイミド。
(3)非イオン性界面活性剤がポリオキシエチレン系界面活性剤であることを特徴とする上記(1)又は(2)のに記載のカーボンナノチューブ分散ポリイミド。
(4)溶剤に可溶なポリイミドが、芳香族ジアミン又は脂肪族ジアミンから得られる3成分系以上のポリイミドであることを特徴とする上記(1)ないし(3)のいずれかに記載のカーボンナノチューブ分散ポリイミド。
(5)カーボンナノチューブ分散液中の非イオン性界面活性剤の配合量が0.005〜5重量%であることを特徴とする上記(1)ないし(4)のいずれかに記載のカーボンナノチュ−ブ分散ポリイミド。
(6)カーボンナノチューブ分散液中のポリビニルピロリドン(PVP)の配合量が0.1〜10重量%であることを特徴とする上記(1)ないし(5)のいずれかに記載のカーボンナノチュ−ブ分散ポリイミド。
(7)アミド系極性有機溶媒及び非イオン系界面活性剤混合溶液に、強攪拌処理を行いながらカーボンナノチューブを混合分散し、得られた分散溶液をポリイミド混合有機溶媒に混合することを特徴とする、カーボンナノチューブ分散ポリイミドの製造方法。
(8)アミド系極性有機溶媒及び非イオン系界面活性剤混合溶液に、強攪拌処理を行いながらカーボンナノチューブを混合分散し、さらにポリビニルピロリドリン(PVP)を混合し、得られた分散溶液をポリイミド混合有機溶媒に混合することを特徴とするカーボンナノチューブ分散ポリイミドの製造方法。
(9)アミド系極性有機溶媒及びポリビニルピロリドン(PVP)の混合溶液に、強攪拌処理を行いながらカーボンナノチューブを混合分散し、得られた分散溶液をポリイミド混合有機溶媒に混合することを特徴とするカーボンナノチューブ分散ポリイミドの製造方法。
(10)カーボンナノチューブ分散液をフィルターによりろ過処理した後、ポリイミド混合有機溶媒に混合することを特徴とする上記(8)ないし(10)のいずれかに記載のカーボンナノチューブ分散ポリイミドの製造方法。
(11)カーボンナノチューブ分散液をポリイミド混合有機溶媒に混合した後フィルターによるろ過処理を行うことを特徴とする上記(8)ないし(10)のいずれかに記載のカーボンナノチューブ分散ポリイミドの製造方法。
本発明で用いられるアミド系極性有機溶媒としては、具体的には、ジメチルホルムアミド(DMF)、ジエチルホルムアミド、ジメチルアセトアミド(DMAC)、N−メチルピロリドン(NMP)などのいずれも用いることができるが、特に好ましくは、N−メチルピロリドン(NMP)及び/又はジメチルアセトアミド(DMAC)を用いることができる。これらは、多くの有機物(低級炭化水素を除く)、無機物、極性ガス、天然および高分子樹脂を溶かすことができる。本発明で使用される溶剤可溶ポリイミドは、これらのアミド系極性有機溶媒に溶解することができる。したがって、カーボンナノチューブをこれらの溶媒に均一に分散することができれば、その分散液に溶剤可溶ポリイミドを溶かすことによってカーボンナノチューブが均一に分散した溶剤可溶ポリイミドを得ることができる。
本発明で用いられる非イオン性界面活性剤としては、ポリオキシエチレン系、多価アルコールと脂肪酸エステル系、この両者を併せ持つ系のいずれであってもよいが、特に好ましくは、ポリオキシエチレン系のものが用いられる。ポリオキシエチレン系界面活性剤の例としては、脂肪酸のポリオキシエチレン・エーテル、高級アルコールのポリオキシエチレン・エーテル、アルキル・フェノール・ポリオキシエチレン・エーテル、ソルビタン・エステルのポリオキシニチレン・エーテル、ヒマシ油のポリオキシエチレン・エーテル、ポリオキシ・プロピレンのポリオキシエチレン・エーテル、脂肪酸のアルキロールアマイドなどがある。多価アルコールと脂肪酸エステル系界面活性剤の例としては、モノグリセライト型界面活性剤、ソルビトール型界面活性剤、ソルタビン型界面活性剤、シュガーエステル型界面活性剤などがある。
これら非イオン性界面活性剤の添加量は、カーボンナノチューブの配合量、配合するアミド系極性有機溶媒の種類によって適宜定めることができるが、一般には、0.005〜10重量%であれば、カーボンナノチューブの十分な分散効果を得ることができる。0.005%以下であると、カーボンナノチューブに対する界面活性剤の量が不足するために、一部のナノチューブは凝集して沈殿物が生じてしまう。また、10重量%以上であると、界面活性剤分子の溶媒中での分子回転が困難になるために、疎水性のナノチューブ表面に十分な量の界面活性剤の疎水部が吸着することが出来なくなり、微細なナノチューブの分散には不都合である。また、カーボンナノチューブの配合量を0.005〜0.05%にした場合、非イオン性界面活性剤の配合量は、0.01〜5重量%がよい。
本発明で用いられるカーボンナノチューブには、多層のもの(マルチウォール・カーボンナノチューブ、「MWNT」と呼ばれる)から単層のもの(シングルウォール・カーボンナノチューブ、「SWNT」と呼ばれる)まで、それぞれ目的に応じて使うことができる。
本発明においては、好ましくは、シングルウォール・カーボンナノチューブが用いられる。用いるSWNTの製造方法としては、特に制限されるものではなく、触媒を用いる熱分解法(気相成長法と類似の方法)、アーク放電法、およびレーザー蒸発法、HiPco法(High−Presuure carbon monoxide process)等、従来公知のいずれの製造方法を採用しても構わない。
以下に、レーザー蒸着法により、本発明に好適なシングルウォール・カーボンナノチューブを作成する手法について例示する。原料として、グラファイトパウダーと、ニッケルおよびコバルト微粉末混合ロッドを用意した。この混合ロッドを665hPa(500Torr)のアルゴン雰囲気下、電気炉により1,250℃に加熱し、そこに350mJ/PulseのNd:YAGレーザーの第二高調波パルスを照射し、炭素と金属微粒子を蒸発させることにより、シングルウォール・カーボンナノチューブを作製した。
以上の作製方法は、あくまで典型例であり、金属の種類、ガスの種類、電気炉の温度、レーザーの波長等を変更しても差し支えない。また、レーザー蒸着法以外の作製法、例えば、CVD法やアーク放電法、一酸化炭素の熱分解法、微細な空孔中に有機分子を挿入して熱分解するテンプレート法、フラーレン・金属共蒸着法等、他の手法によって作製されたシングルウォールナノチューブを使用しても差し支えない。
また、カーボンナノチューブの配合量は、使用目的によっても異なるが、分散性が得られる限り特に限定されるものではない。SWNTを用いて、NMP及びポリオキシエチレン系の界面活性剤の混合溶液に分散した場合、最大0.05%まで分散することができる。
本発明でいう強力攪拌とは、超音波処理、超振動処理などによって行う攪拌をいう。好ましくは、超音波処理が用いられる。本発明で使用される超音波は、20kHz,150W及び28kHz,140Wを用い、約1時間処理することによって良好な分散効果を得ることができたが、本発明の超音波の条件はこれに限定されるものではない。配合されるカーボンナノチューブの量、アミド系極性有機の種類等によって、適宜、定めることが可能である。
本発明に用いられるポリイミドは、溶剤に可溶なものでなければならない。一般に、ポリイミドは溶剤に難溶であり、通常のポリイミドでは、カーボンナノチューブを均一に分散することは困難である。したがって、本発明では、酸ジ無水物と芳香族ジアミンの組み合わせ方法、分子量及び分子量分布によって溶剤に対する溶解性を調整することによって、あらかじめ溶剤に可溶なポリイミドを準備することが重要である。一般に、3成分系のポリイミドは溶剤に可溶なものが多く、更に4成分系にすると溶解度が増す。このような溶剤に可溶なポリイミドとしては、芳香族ポリイミド又は脂肪族ジアミンから得られる3成分以上のポリイミドが用いられる。芳香族ポリイミドとしては、好ましくは、ブロック共重合芳香族ポリイミドが用いられる。
ブロック共重合ポリイミドを製造する方法としては、例えば、米国特許明細書第5,502,143に開示されているように、低沸点を有する2成分系触媒の存在下で極性溶媒中の酸ジ無水物と芳香族ジアミンを加熱反応させ、さらにジアミンを添加して継続的にイミド化反応行うことによってブロック共重合ポリイミドが製造できる。その際、触媒と極性溶媒は加熱蒸発によって自然に除去することができる。
例えば、使用する酸ジ無水物と芳香族アミンがそれぞれ5種、10種である場合、下式で表記される4成分系ポリイミドは理論上2,500種生成することが可能である。
(A1−:B1)(A2−B2)(A:酸ジカルボン酸、B:ジアミン)
このようなブロック共重合ポリイミドは、有機溶媒に可溶であるというだけでなく、分子量、分子量分布の測定がGPCによって測定可能であり、ポリマーの再現性が良い。その溶液は室温で長時間保存できるという利点も有する。また、4成分系にして、溶媒を用い、逐次反応によって規則的に配列したブロック共重合体となり、改質が可能であり、感光性、低誘電性、接着性、電着性、寸法安定性など用途に応じて、多種多様のブロック共重合ポリイミドを提供することができる。
この際、2成分系触媒としては、γ−バレロラクトン−ピリジン、γ−バレロラクトン−N−メチルモルホリン、クロトン酸N−メチルモルホリン及びクロトン酸ピリジンが挙げられるが、好ましくは、γ−バレロラクトン−ピリジン又はクロトン酸N−メチルモルホリンが使用される。
本発明のポリイミドの好ましい製造方法は、例えば、ラクトンと塩基の複合触媒の存在下、テトラカルボン酸ジ無水物とジアミンとを反応させてイミドオリゴマーとし、ついでテトラカルボン酸ジ無水物及び/又はジアミンを添加して(全テトラカルボン酸ジ無水物とジアミンのモル比は、1.05−0.95である)反応する方法である。このようにして合成したブロック共重合ポリイミド溶液は、保存安定性が良い。密閉容器中では、室温で数ヶ月から数ヶ年安定的に保存が可能である。
この際、芳香族ジアミンとテトラカルボン酸ジ無水物との重縮合反応は、通常、有機溶媒中で実施される。この反応系の有機溶媒としては、例えばN,N−ジメチルホルムアミド、N,N−ジメチルメトキシアセトアミド、N,N−ジメチルエトキシアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム、ジメチルスルホキシド、ジメチルスルホン、テトラメチル尿素、1−オキシド(スルホランともいう)等を挙げることができる。前記重縮合反応における反応原料の濃度は、通常、5−40重量%である。
また、ラクトンとしては、通常バレロラクトン、塩基としてはピリジン又はN−メチルモルホリンが使用される。ラクトンは、酸ジ無水物に対して0.05−0.3モル使用する(上記米国特許5502143号明細書)。
本発明に用いられる芳香族テトラカルボン酸ジ無水物としては、ピロメリット酸ジ無水物、3,4,3’,4’−ビフェニルテトラカルボン酸ジ無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸ジ無水物、2,3,3’,4’−ビフェニルテトラカルボン酸ジ無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパンジ無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパンジ無水物、ビス(3,4−ジカルボキシフェニル)エーテルジ無水物、ビス(2,3−ジカルボキシフェニル)エーテルジ無水物、ビス(3,4−ジカルボキシフェニル)スルホンジ無水物、ビス(2,3−ジカルボキシフェニル)スルホンジ無水物、4,4’−{2,2,2−トリフルオロ−1−(トリフルオロメチル)エチリデン}ビス(l,2−ベンゼンジカルボン酸無水物)、9,9−ビス{4−(3,4−ジカルボキシフェノキシ)フェニル}フルオレンジ無水物、1,2,5,6−ナフタレンテトラカルボン酸ジ無水物、2,3,6,7−ナフタレンテトラカルボン酸ジ無水物、1,4,5,8−ナフタレンテトラカルボン酸ジ無水物、3,4,9,10−ペリレンテトラカルボン酸ジ無水物、2,3,5,6−ピリジンテトラカルボン酸ジ無水物、ビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸ジ無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、1,2,3,4−シクロペンタンテトラカルボン酸ジ無水物を用いることができる。
本発明で用いられる芳香族ジアミンとしては、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、2,2−ビス(4−アミノフェニル)プロパン、1,2−ビスアニリノエタン、3,3’−ジメチルベンジジン、3,3’−ジメチル−4,4’−ジアミノジフェニルエーテル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシフェニル)スルホン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2−ニトロ−1,4−ジアミノベンゼン、3,3’−ジニトロ−3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシ−4、4’−ジアミノビフェニル、2,4−ジアミノフェノール、0−トリジンスルホン、1,3−ジアミノベンゼン、1,4−ジアミノベンゼン、2,5−ジアミノトルエン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2−ビス(トリフルオロ)−メチルベンジジン、2、2−ビス−(4−アミノフェニル)プロパン、2、2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、1,1,1,3,3,3−ヘキサフルオロ−2−ビス−(4−アミノフェニル)プロパン、1,5−ジアミノナフタレン、9,9−ビス(4−アミノフェニル)フルオレン、9,10−ビス(4−アミノフェニル)アントラセン、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニルスルホン等を用いることができる。
本発明で用いられる脂肪族ジアミンとしては、N−メチル−2,2’ジアミノジエチルアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、シスタミン、1,2−ビス(2−アミノエトキシ)エタン、1,3−ビス(アミノメチル)シクロヘキサン、1,3−ビス(3−アミノプロピル)−1,1,3,3−テトラメチルジシロキサン、ビス(4−アミノシクロヘキシル)メタンを用いることができる。
本発明で使用されるフィルターは、ガラス繊維フィルター、メンブランフィルターなどが用いられる。その際、保留粒子径は、目的に応じて適宜定めることができる。保留粒子径とは、JIS 3801で規定された硫酸バリウムなどを自然ろ過したときの漏洩粒子径により求めたものであるが、実質的には、フィルターの平均孔径に相当する。例えば、光散乱の低減を利用した光学機器に応用する場合、フィルターの保留粒子径は小さいほどよいが、一般には保留粒子径0.1〜2.0μm、好ましくは0.1〜1.0μmのものを用いることができる。
本発明で用いられるカーボンナノチューブ分散溶媒には、ポリビニルピロリドン(PVP)を混合してもよい。ポリビニルピロリドンは、カーボンナノチューブの表面に吸着し、カーボンナノチューブを包むいわゆるラッピング効果を有することが知られている。したがって、本発明におけるカーボンナノチューブ分散液に混合することにより、カーボンナノチューブの凝集及び再凝集が防止される効果を有するものと考えられる。
カーボンナノチューブ分散溶媒中のポリビニルピロリドンの配合量は、カーボンナノチューブの配合量によって適宜定めることができるが、好ましくは0.1〜10重量%とするとよい。
以上のように製作されたカーボンナノチューブを、NMP(N−メチルピロリドン)溶媒並びに非イオン系界面活性剤混合溶媒及び/又はポリビニルピロリドン(PVP)混合溶媒に入れて混合し、超音波で処理して、カーボンナノチューブ分散溶媒を作製する。次に、これらのカーボンナノチューブ分散溶液を超遠心分離機又はガラス繊維ろ紙でろ過して、微細なカーボンナノチューブのみが分散した溶媒とする。ろ過は、カーボンナノチューブ分散液の段階で行ってもよいし、分散液をポリイミド混合有機溶媒と混合した後に行うこともできる。
ここで、ポリビニルピロリドリンはカーボンナノチューブの表面に吸着し、カーボンナノチューブが凝集及び再凝集するのを防ぐ効果を有する。この分散溶媒をブロック共重合ポリイミドの有機溶媒、例えば、NMP溶液に混合する。得られた混合溶液は、例えば、基板上にスピンコートなどにより塗布した後、溶媒を蒸発させることによって薄膜化することができる。このようにして、本発明のカーボンナノチューブ分散ブロック共重合ポリイミドが得られる。
本発明のカーボンナノチューブ分散ポリイミドには、目的に応じて、さらに充填剤を配合することが可能である。充填材としては、炭素繊維、金属被覆炭素繊維、カーボン粉末、ガラス繊維、モンモリナイトなどがあげられる。
本発明のカーボンナノチューブ分散ポリイミドには、目的に応じて、さらに、その他の成分として、導電性付与材、難燃剤、顔料、染料、滑剤、離型剤、相溶化剤、分散剤、可塑剤、熱安定化剤、酸化防止剤などを添加することができる。
発明にしたがって、カーボンナノチューブが均一に分散されたポリイミドを得ることができる。このようなカーボンナンチューブ分散ポリイミドは、マトリックス中での凝集等によって均一な分散が損なわれることがないために、機械的特性、透明性、耐熱性に優れ、各種用途への応用が可能となる。
Polyimide in which carbon nanotubes are dispersed is expected to have excellent characteristics, but sufficient dispersibility cannot be obtained due to the cohesive strength between carbon nanotubes and the low affinity of the surface. Further, the method of chemically modifying the surface of the carbon nanotube to increase the affinity has a drawback that the nanotube is damaged by a strong oxidation reaction and the expected function of the nanotube cannot be obtained.
On the other hand, polyimide is a useful resin with excellent mechanical properties, insulating properties, and heat resistance, and although it is expected to be applied to nanocomposites, it is generally insoluble in organic solvents. It is difficult to mix and disperse the carbon nanotubes, and it is particularly difficult to uniformly disperse the carbon nanotubes. Also, since polyimide is not usually thermoplastic, it is difficult to adopt dispersion of carbon nanotubes by kneading that is performed in the production of nanocomposites made of other polymer materials.
Accordingly, an object of the present invention is to provide a carbon nanotube-dispersed polymer material in which carbon nanotubes are uniformly dispersed in polyimide without damaging the carbon nanotubes.
The present invention focuses on the function of a nonionic surfactant as a dispersant for carbon nanotubes and the wrapping effect of polyvinylpyrrolidone (PVP) on carbon nanotubes, while the nonionic surfactant and / or polyvinylpyrrolidone (PVP). Is dissolved in an amide polar organic solvent, particularly NMP (N methylpyrrolidone) and / or dimethylacetamide (DMAC), as a far superior dispersant compared with the case where the amide polar solvent is used alone. It has been found that carbon nanotubes can be uniformly dispersed in a solvent-soluble polyimide.
Polyimides include two-component, three-component, and four-component polyimides. In general, many ternary polyimides are soluble in a solvent, and four-component polyimides have increased solubility. As a polyimide soluble in a solvent, an aromatic polyimide is preferable. The block copolymerized polyimide is generally soluble in a solvent. Accordingly, in the present invention, the carbon nanotubes are preferably dispersed utilizing the property of the aromatic block copolymer polyimide dissolved in the organic solvent.
Specifically, the present invention has the following configuration.
(1) It is obtained by mixing a carbon nanotube dispersion solution comprising a carbon nanotube, an amide polar organic solvent, and a nonionic surfactant and / or polyvinylpyrrolidone (PVP) with an organic solvent of polyimide soluble in a solvent. Carbon nanotube dispersed polyimide.
(2) The carbon nanotube-dispersed polyimide as described in (1) above, wherein the amide polar organic solvent is N-methylpyrrolidone (NMP) and / or dimethylacetamide (DMAC).
(3) The carbon nanotube-dispersed polyimide as described in (1) or (2) above, wherein the nonionic surfactant is a polyoxyethylene-based surfactant.
(4) The carbon nanotube as described in any one of (1) to (3) above, wherein the solvent-soluble polyimide is a three-component or higher polyimide obtained from an aromatic diamine or an aliphatic diamine. Dispersed polyimide.
(5) The carbon nanochu according to any one of the above (1) to (4), wherein the compounding amount of the nonionic surfactant in the carbon nanotube dispersion is 0.005 to 5% by weight. -Dispersed polyimide.
(6) The carbon nano tube according to any one of (1) to (5) above, wherein the blending amount of polyvinylpyrrolidone (PVP) in the carbon nanotube dispersion is 0.1 to 10% by weight. B dispersion polyimide.
(7) A carbon nanotube is mixed and dispersed in a mixed solution of an amide polar organic solvent and a nonionic surfactant with strong stirring, and the resulting dispersion is mixed in a polyimide mixed organic solvent. The manufacturing method of a carbon nanotube dispersion | distribution polyimide.
(8) Carbon nanotubes are mixed and dispersed in a mixed solution of an amide polar organic solvent and a nonionic surfactant while performing a strong stirring treatment, and further polyvinylpyrrolidin (PVP) is mixed, and the resulting dispersion is polyimide. A method for producing a carbon nanotube-dispersed polyimide, comprising mixing in a mixed organic solvent.
(9) A carbon nanotube is mixed and dispersed in a mixed solution of an amide polar organic solvent and polyvinylpyrrolidone (PVP) while performing a strong stirring treatment, and the resulting dispersion is mixed with a polyimide mixed organic solvent. A method for producing carbon nanotube-dispersed polyimide.
(10) The method for producing a carbon nanotube-dispersed polyimide according to any one of (8) to (10), wherein the carbon nanotube dispersion is filtered with a filter and then mixed with a polyimide mixed organic solvent.
(11) The method for producing a carbon nanotube-dispersed polyimide according to any one of (8) to (10), wherein the carbon nanotube dispersion is mixed with a polyimide-mixed organic solvent and then filtered.
As the amide polar organic solvent used in the present invention, specifically, any of dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAC), N-methylpyrrolidone (NMP) and the like can be used. Particularly preferably, N-methylpyrrolidone (NMP) and / or dimethylacetamide (DMAC) can be used. They can dissolve many organics (except lower hydrocarbons), inorganics, polar gases, natural and polymeric resins. The solvent-soluble polyimide used in the present invention can be dissolved in these amide polar organic solvents. Therefore, if the carbon nanotubes can be uniformly dispersed in these solvents, a solvent-soluble polyimide in which the carbon nanotubes are uniformly dispersed can be obtained by dissolving the solvent-soluble polyimide in the dispersion.
The nonionic surfactant used in the present invention may be any of polyoxyethylene-based, polyhydric alcohol and fatty acid ester-based, or a system having both of these, particularly preferably a polyoxyethylene-based surfactant. Things are used. Examples of polyoxyethylene surfactants include fatty acid polyoxyethylene ethers, higher alcohol polyoxyethylene ethers, alkyl phenols polyoxyethylene ethers, sorbitan ester polyoxyethylene ethers, castors Examples include oil polyoxyethylene ether, polyoxypropylene polyoxyethylene ether, and fatty acid alkylol amide. Examples of polyhydric alcohol and fatty acid ester surfactants include monoglycerite surfactants, sorbitol surfactants, saltabine surfactants, and sugar ester surfactants.
The addition amount of these nonionic surfactants can be appropriately determined depending on the blending amount of carbon nanotubes and the type of amide-based polar organic solvent to be blended. A sufficient dispersion effect of the nanotubes can be obtained. If it is 0.005% or less, the amount of the surfactant with respect to the carbon nanotubes is insufficient, so that some of the nanotubes are aggregated to form a precipitate. If the amount is 10% by weight or more, molecular rotation of the surfactant molecules in the solvent becomes difficult, so that a sufficient amount of the hydrophobic portion of the surfactant can be adsorbed on the surface of the hydrophobic nanotube. This is inconvenient for fine nanotube dispersion. Moreover, when the compounding quantity of a carbon nanotube is 0.005-0.05%, the compounding quantity of a nonionic surfactant has good 0.01-5 weight%.
Carbon nanotubes used in the present invention vary from multi-walled ones (multi-wall carbon nanotubes, called “MWNT”) to single-walled ones (single-wall carbon nanotubes, called “SWNT”) depending on the purpose. Can be used.
In the present invention, single wall carbon nanotubes are preferably used. The production method of SWNT to be used is not particularly limited, and a thermal decomposition method using a catalyst (a method similar to a vapor phase growth method), an arc discharge method, a laser evaporation method, and a HiPco method (High-Presure carbon monoxide). Any conventionally known manufacturing method such as process) may be employed.
Hereinafter, a method for producing a single wall carbon nanotube suitable for the present invention by laser vapor deposition will be exemplified. As raw materials, graphite powder and nickel and cobalt fine powder mixing rods were prepared. This mixing rod is heated to 1,250 ° C. by an electric furnace in an argon atmosphere of 665 hPa (500 Torr), and irradiated with a second harmonic pulse of 350 mJ / Pulse Nd: YAG laser to evaporate carbon and metal fine particles. By doing so, a single wall carbon nanotube was produced.
The above manufacturing method is merely a typical example, and the metal type, gas type, electric furnace temperature, laser wavelength, and the like may be changed. Also, methods other than laser vapor deposition, such as CVD and arc discharge, thermal decomposition of carbon monoxide, template method in which organic molecules are inserted into fine pores for thermal decomposition, fullerene / metal co-deposition Single wall nanotubes produced by other methods such as the method may be used.
Further, the blending amount of the carbon nanotubes varies depending on the purpose of use, but is not particularly limited as long as dispersibility is obtained. When SWNT is used and dispersed in a mixed solution of NMP and polyoxyethylene surfactant, it can be dispersed to a maximum of 0.05%.
The intense stirring in the present invention refers to stirring performed by ultrasonic treatment, super vibration treatment, or the like. Preferably, sonication is used. The ultrasonic waves used in the present invention were 20 kHz, 150 W and 28 kHz, 140 W, and a good dispersion effect could be obtained by processing for about 1 hour, but the ultrasonic conditions of the present invention are limited to this. Is not to be done. It can be determined as appropriate depending on the amount of carbon nanotubes to be blended, the type of amide polar organic, and the like.
The polyimide used in the present invention must be soluble in a solvent. In general, polyimide is hardly soluble in a solvent, and it is difficult to uniformly disperse carbon nanotubes with normal polyimide. Accordingly, in the present invention, it is important to prepare a solvent-soluble polyimide in advance by adjusting the solubility in a solvent by the combination method, molecular weight and molecular weight distribution of an acid dianhydride and an aromatic diamine. In general, many ternary polyimides are soluble in a solvent, and the solubility increases when a four-component system is used. As the polyimide soluble in such a solvent, a three or more component polyimide obtained from an aromatic polyimide or an aliphatic diamine is used. As the aromatic polyimide, a block copolymerized aromatic polyimide is preferably used.
As a method for producing a block copolymerized polyimide, for example, as disclosed in US Pat. No. 5,502,143, acid dianhydride in a polar solvent in the presence of a two-component catalyst having a low boiling point is used. A block copolymerized polyimide can be produced by subjecting a product and an aromatic diamine to a heat reaction, and further adding a diamine and continuously performing an imidization reaction. At that time, the catalyst and the polar solvent can be naturally removed by heating and evaporation.
For example, when the acid dianhydride and the aromatic amine to be used are 5 types and 10 types, respectively, 2,500 types of quaternary polyimides represented by the following formula can theoretically be generated.
(A1-: B1) (A2-B2) (A: acid dicarboxylic acid, B: diamine)
Such a block copolymerized polyimide is not only soluble in an organic solvent, but also can measure the molecular weight and molecular weight distribution by GPC, and the reproducibility of the polymer is good. The solution also has the advantage that it can be stored at room temperature for a long time. In addition, it is a four-component system that uses a solvent and becomes a block copolymer that is regularly arranged by sequential reaction, which can be modified, and is photosensitive, low dielectric, adhesive, electrodeposition, dimensional stability Depending on the application, a wide variety of block copolymerized polyimides can be provided.
In this case, examples of the two-component catalyst include γ-valerolactone-pyridine, γ-valerolactone-N-methylmorpholine, crotonic acid N-methylmorpholine, and crotonic acid pyridine, preferably γ-valerolactone- Pyridine or N-methylmorpholine crotonic acid is used.
A preferred method for producing the polyimide of the present invention is, for example, by reacting a tetracarboxylic dianhydride and a diamine in the presence of a lactone and base composite catalyst to form an imide oligomer, and then a tetracarboxylic dianhydride and / or a diamine. (The molar ratio of total tetracarboxylic dianhydride to diamine is 1.05-0.95). The block copolymerized polyimide solution synthesized in this way has good storage stability. In a sealed container, it can be stably stored at room temperature for several months to several years.
At this time, the polycondensation reaction between the aromatic diamine and the tetracarboxylic dianhydride is usually carried out in an organic solvent. Examples of the organic solvent in this reaction system include N, N-dimethylformamide, N, N-dimethylmethoxyacetamide, N, N-dimethylethoxyacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, dimethyl Examples include sulfone, tetramethylurea, and 1-oxide (also referred to as sulfolane). The concentration of the reaction raw material in the polycondensation reaction is usually 5 to 40% by weight.
In addition, valerolactone is usually used as the lactone, and pyridine or N-methylmorpholine is used as the base. The lactone is used in an amount of 0.05 to 0.3 mol based on the acid dianhydride (US Pat. No. 5,502,143 described above).
Examples of the aromatic tetracarboxylic dianhydride used in the present invention include pyromellitic dianhydride, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,4,3 ′, 4 ′. -Benzophenone tetracarboxylic dianhydride, 2,3,2 ', 3'-benzophenone tetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (2,3 -Dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (2,3-dicarboxyphenyl) sulfone dianhydride, 4,4 '-{2,2,2- Lifluoro-1- (trifluoromethyl) ethylidene} bis (l, 2-benzenedicarboxylic acid anhydride), 9,9-bis {4- (3,4-dicarboxyphenoxy) phenyl} full orange anhydride, 1, 2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4, 9,10-perylenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, bicyclo [2,2,2] -oct-7-ene-2,3,5,6 -Tetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 1,2,3,4-cyclopentanetetracarbo It can be used acid dianhydrides.
Examples of the aromatic diamine used in the present invention include 4,4′-diaminodiphenylmethane, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, and 4,4′-diamino. Diphenylsulfone, 2,2-bis (4-aminophenyl) propane, 1,2-bisanilinoethane, 3,3′-dimethylbenzidine, 3,3′-dimethyl-4,4′-diaminodiphenyl ether, 3, 3′-dimethyl-4,4′-diaminodiphenylmethane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxyphenyl) sulfone, 1,3-bis (3- Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) ) Phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2-nitro-1,4-diaminobenzene, 3,3′-dinitro-3,3′-dimethoxy- 4,4′-diaminobiphenyl, 3,3′-dihydroxy-4, 4′-diaminobiphenyl, 2,4-diaminophenol, 0-tolidine sulfone, 1,3-diaminobenzene, 1,4-diaminobenzene, 2 , 5-diaminotoluene, 3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2-bis (trifluoro) -methylbenzidine, 2,2-bis- (4-aminophenyl) propane, 2, 2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, 1,1,1,3,3,3-hexafluoro-2-bis- (4-aminophenyl) Nyl) propane, 1,5-diaminonaphthalene, 9,9-bis (4-aminophenyl) fluorene, 9,10-bis (4-aminophenyl) anthracene, 3,3′-diamino-4,4′-dihydroxy Biphenyl sulfone and the like can be used.
Examples of the aliphatic diamine used in the present invention include N-methyl-2,2′diaminodiethylamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5]. Undecane, cystamine, 1,2-bis (2-aminoethoxy) ethane, 1,3-bis (aminomethyl) cyclohexane, 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyl Disiloxane and bis (4-aminocyclohexyl) methane can be used.
A glass fiber filter, a membrane filter, etc. are used for the filter used by this invention. At that time, the retained particle diameter can be appropriately determined according to the purpose. The reserved particle diameter is obtained from the leaked particle diameter when barium sulfate or the like specified in JIS 3801 is naturally filtered, and substantially corresponds to the average pore diameter of the filter. For example, when applied to an optical device using light scattering reduction, the smaller the retained particle diameter of the filter, the better, but generally the retained particle diameter is 0.1 to 2.0 μm, preferably 0.1 to 1.0 μm. Things can be used.
Polyvinylpyrrolidone (PVP) may be mixed in the carbon nanotube dispersion solvent used in the present invention. Polyvinyl pyrrolidone is known to have a so-called wrapping effect that is adsorbed on the surface of the carbon nanotube and encapsulates the carbon nanotube. Therefore, it is considered that mixing with the carbon nanotube dispersion in the present invention has an effect of preventing aggregation and reaggregation of carbon nanotubes.
The blending amount of polyvinylpyrrolidone in the carbon nanotube dispersion solvent can be appropriately determined depending on the blending amount of the carbon nanotubes, but is preferably 0.1 to 10% by weight.
The carbon nanotubes produced as described above are mixed in an NMP (N-methylpyrrolidone) solvent and a nonionic surfactant mixed solvent and / or a polyvinylpyrrolidone (PVP) mixed solvent, and treated with ultrasonic waves. A carbon nanotube dispersion solvent is prepared. Next, these carbon nanotube dispersion solutions are filtered with an ultracentrifuge or glass fiber filter paper to obtain a solvent in which only fine carbon nanotubes are dispersed. Filtration may be performed at the stage of the carbon nanotube dispersion, or after mixing the dispersion with a polyimide mixed organic solvent.
Here, polyvinylpyrrolidone is adsorbed on the surface of the carbon nanotube and has an effect of preventing the carbon nanotube from aggregating and reaggregating. This dispersion solvent is mixed with an organic solvent of block copolymerized polyimide, for example, an NMP solution. The obtained mixed solution can be formed into a thin film by, for example, applying it onto a substrate by spin coating or the like and then evaporating the solvent. In this way, the carbon nanotube dispersed block copolymerized polyimide of the present invention is obtained.
The carbon nanotube-dispersed polyimide of the present invention can further contain a filler depending on the purpose. Examples of the filler include carbon fiber, metal-coated carbon fiber, carbon powder, glass fiber, and montmorillonite.
Depending on the purpose, the carbon nanotube-dispersed polyimide of the present invention may further include, as other components, a conductivity imparting material, a flame retardant, a pigment, a dye, a lubricant, a release agent, a compatibilizer, a dispersant, a plasticizer, Heat stabilizers, antioxidants and the like can be added.
According to the invention, a polyimide in which carbon nanotubes are uniformly dispersed can be obtained. Since such a carbonnan tube-dispersed polyimide does not impair uniform dispersion due to aggregation in the matrix, etc., it has excellent mechanical properties, transparency and heat resistance, and can be applied to various applications. .

以下に、具体的な実施例により、本発明のカーボンナノチューブ分散ポリイミドの作製方法を示す。
A.溶剤に可溶なポリイミドの製造
まず、本発明で用いられる溶剤可溶ポリイミドの製造方法は、芳香族テトラカルボン酸ジ無水物と芳香族アミンとをほぼ等量用い、有機極性溶媒中でラクトン系触媒の存在下に150−220℃、好ましくは160−180℃に加熱して重縮合する。この重縮合反応時に生成する水は、トルエン、キシレン等と共に共沸によって反応系外に除かれる。以下に、その具体的実施例を示す。
The method for producing the carbon nanotube-dispersed polyimide of the present invention will be described below with specific examples.
A. Production of Solvent-Soluble Polyimide First, the method for producing the solvent-soluble polyimide used in the present invention uses approximately equal amounts of aromatic tetracarboxylic dianhydride and aromatic amine, and lactone system in an organic polar solvent. In the presence of the catalyst, polycondensation is carried out by heating to 150-220 ° C, preferably 160-180 ° C. The water produced during the polycondensation reaction is removed from the reaction system by azeotropic distillation with toluene, xylene and the like. Specific examples are shown below.

ガラス製のセパラブル三つ口フラスコを使用し、これに攪拌機、窒素導入管および冷却管の下部にストップコックを備えた水分受容器を取り付けた。窒素を流通させ、さらに攪拌しながら反応器をシリコーン油浴中に漬けて加熱し反応を行った。反応温度はシリコーン油浴の温度で表した。まず、フラスコにビス−(3,4−ジカルボキシフェニル)エーテルジ酸二無水物(ODPA)62.04g(200ミリモル)、2,4−ジアミノトルエン(DAT)12.22g(100ミリモル)、バレロラクトン3g(30ミリモル)、ピリジン4.7g(60ミリモル)、NMP(N−メチル−2−ピロリドン)300gおよびトルエン40gを入れ、室温で30分間攪拌し、次いで昇温し、180℃において1時間、200rpmで攪拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、29.42g(100ミリモル)、9,9−ビス(4−アミノフェニル)フルオレン(FDA)、69.69g(200ミリモル)、NMP350gおよびトルエン40gを添加し、室温で1時間攪拌(200rpm)し、次いで昇温して180℃で1時間、加熱攪拌した。トルエン−水留出分15mlを除き、以後は留出分を系外に除きながら、180℃で3時間、加熱および攪拌を行って反応を終了した。これにより20%ポリイミドワニスを得た。  A glass separable three-necked flask was used, and a water acceptor equipped with a stopcock was attached to the lower part of a stirrer, a nitrogen introduction tube and a cooling tube. Nitrogen was circulated, and the reactor was immersed in a silicone oil bath with further stirring and heated to carry out the reaction. The reaction temperature was expressed as the temperature of the silicone oil bath. First, 62.04 g (200 mmol) of bis- (3,4-dicarboxyphenyl) ether dianhydride (ODPA), 12.22 g (100 mmol) of 2,4-diaminotoluene (DAT), valerolactone 3 g (30 mmol), 4.7 g (60 mmol) of pyridine, 300 g of NMP (N-methyl-2-pyrrolidone) and 40 g of toluene were stirred at room temperature for 30 minutes, then heated to 180 ° C. for 1 hour. The reaction was carried out with stirring at 200 rpm. After the reaction, 30 ml of toluene-water distillate was removed. The residue was air-cooled and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 29.42 g (100 mmol), 9,9-bis (4-aminophenyl) fluorene (FDA ), 69.69 g (200 mmol), 350 g of NMP and 40 g of toluene were added, stirred at room temperature for 1 hour (200 rpm), then heated to 180 ° C. for 1 hour with stirring. After removing 15 ml of toluene-water distillate, the reaction was terminated by heating and stirring at 180 ° C. for 3 hours while removing the distillate from the system. As a result, a 20% polyimide varnish was obtained.

ガラス製のセパラブル三つ口フラスコを使用し、これに攪拌機、窒素導入管および冷却管の下部にストップコックを備えた水分受容器を取り付けた。窒素を流通させ、さらに攪拌しながら反応器をシリコーン油浴中に漬けて加熱し反応を行った。反応温度はシリコーン油浴の温度で表した。まず、フラスコに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、58.84g(200ミリモル)9,9−ビス(4−アミノフェニル)フルオレン(FDA)、104.53g(300ミリモル)、バレロラクトン4g(40ミリモル)、ピリジン6.3g(80ミリモル)、NMP(N−メチル−2−ピロリドン)400gおよびトルエン40gを入れ、室温で30分間攪拌し、次いで昇温し、180℃において1時間、200rpmで攪拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、58.84g(200ミリモル)、3,3’−ジアミノ−4,4’−ジヒドロキシビフェニルスルホン、28.03g(100ミリモル)、NMP543gおよびトルエン40gを添加し、室温で1時間攪拌(200rpm)し、次いで昇温して180℃で1時間、加熱攪拌した。トルエン−水留出分15mlを除き、以後は留出分を系外に除きながら、180℃で3時間、加熱および攪拌を行って反応を終了した。これにより20%ポリイミドワニスを得た。  A glass separable three-necked flask was used, and a water acceptor equipped with a stopcock was attached to the lower part of a stirrer, a nitrogen introduction tube and a cooling tube. Nitrogen was circulated, and the reactor was immersed in a silicone oil bath with further stirring and heated to carry out the reaction. The reaction temperature was expressed as the temperature of the silicone oil bath. First, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 58.84 g (200 mmol) 9,9-bis (4-aminophenyl) fluorene (FDA), 104. 53 g (300 mmol), valerolactone 4 g (40 mmol), pyridine 6.3 g (80 mmol), NMP (N-methyl-2-pyrrolidone) 400 g and toluene 40 g were added, stirred at room temperature for 30 minutes, then heated Then, the reaction was carried out at 180 ° C. for 1 hour with stirring at 200 rpm. After the reaction, 30 ml of toluene-water distillate was removed. The residue was air-cooled, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 58.84 g (200 mmol), 3,3′-diamino-4,4′-dihydroxybiphenyl. Sulfone, 28.03 g (100 mmol), 543 g of NMP and 40 g of toluene were added, stirred at room temperature for 1 hour (200 rpm), then heated to 180 ° C. for 1 hour with stirring. After removing 15 ml of toluene-water distillate, the reaction was terminated by heating and stirring at 180 ° C. for 3 hours while removing the distillate from the system. As a result, a 20% polyimide varnish was obtained.

ガラス製のセパラブル三つ口フラスコを使用し、これに攪拌機、窒素導入管および冷却管の下部にストップコックを備えた水分受容器を取り付けた。窒素を流通させ、さらに攪拌しながら反応器をシリコーン油浴中に漬けて加熱し反応を行った。反応温度はシリコーン油浴の温度で表した。まず、フラスコに(ビシクロ〔2,2,2〕オクタ−7−エンテトラカルボン酸二無水物(BCD)、49.6g(200ミリモル)、4,4’−ジアミノジフェニルエーテル(p−DADE)、20.02g(100ミリモル)、バレロラクトン3g(30ミリモル)、ピリジン4.7g(60ミリモル)、NMP(N−メチル−2−ピロリドン)300gおよびトルエン40gを入れ、室温で30分間攪拌し、次いで昇温し、180℃において1時間、200rpmで攪拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、29.42g(100ミリモル)、3,4’−ジアミノジフェニルエーテル(m−DADE)、20.02g(100ミリモル)、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(Bis−AP−AF)、36.63g(100ミリモル)NMP280gおよびトルエン40gを添加し、室温で1時間攪拌(200rpm)し、次いで昇温して180℃で1時間、加熱攪拌した。トルエン−水留出分15mlを除き、以後は留出分を系外に除きながら、180℃で3時間、加熱および攪拌を行って反応を終了した。これにより20%ポリイミドワニスを得た。  A glass separable three-necked flask was used, and a water acceptor equipped with a stopcock was attached to the lower part of a stirrer, a nitrogen introduction tube and a cooling tube. Nitrogen was circulated, and the reactor was immersed in a silicone oil bath with further stirring and heated to carry out the reaction. The reaction temperature was expressed as the temperature of the silicone oil bath. First, a flask (bicyclo [2,2,2] oct-7-enetetracarboxylic dianhydride (BCD), 49.6 g (200 mmol), 4,4′-diaminodiphenyl ether (p-DADE), 20 0.02 g (100 mmol), 3 g (30 mmol) of valerolactone, 4.7 g (60 mmol) of pyridine, 300 g of NMP (N-methyl-2-pyrrolidone) and 40 g of toluene, stirred for 30 minutes at room temperature, The reaction was carried out with stirring at 200 rpm for 1 hour at 180 ° C. After the reaction, 30 ml of toluene-water distillate was removed, and the residue was air-cooled to give 3,3 ′, 4,4′- Biphenyltetracarboxylic dianhydride (BPDA), 29.42 g (100 mmol), 3,4'-diaminodiphenyl ether (m-DADE), 0.02 g (100 mmol), 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane (Bis-AP-AF), 36.63 g (100 mmol) NMP 280 g and toluene 40 g were added, The mixture was stirred at room temperature for 1 hour (200 rpm) and then heated and stirred for 1 hour at 180 ° C. Excluding 15 ml of toluene-water distillate, and thereafter removing the distillate from the system at 180 ° C. The reaction was terminated by heating and stirring for 3 hours, thereby obtaining a 20% polyimide varnish.

実施例1と同様の装置に5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物52.85g(200ミリモル)、N−メチル−2,2’ジアミノジエチルアミン11.72g(100ミリモル)、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン27.44g(100ミリモル)、バレロラクトン3g(30ミリモル)、ピリジン4.7g(60ミリモル)、γ−ブチロラクトン340g及びトルエン40gを入れ、室温で30分攪拌した。次いで昇温して、180℃で3時間、200rpmで攪拌しながら反応を行った。反応後、共沸した水及びトルエンを除いた。これにより20%のポリイミドワニスを得た。  In the same apparatus as in Example 1, 52.85 g (200 mmol) of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, N-methyl-2 , 2 ′ diaminodiethylamine 11.72 g (100 mmol), 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane 27.44 g (100 mmol), 3 g (30 mmol) of valerolactone, 4.7 g (60 mmol) of pyridine, 340 g of γ-butyrolactone and 40 g of toluene were added and stirred at room temperature for 30 minutes. Next, the temperature was raised, and the reaction was carried out at 180 ° C. for 3 hours with stirring at 200 rpm. After the reaction, azeotropic water and toluene were removed. This gave 20% polyimide varnish.

実施例1と同様の装置に5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物52.85g(200ミリモル)、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン27.44g(100ミリモル)、バレロラクトン3g(30ミリモル)、ピリジン4.7g(60ミリモル)、γ−ブチロラクトン200g及びトルエン40gを入れ、室温で30分攪拌し、次いで昇温して、180℃で1時間、200rpmで攪拌しながら反応を行った。反応後トルエン及び水を除き、室温まで冷却した。次いで、1,2−ビス(2−アミノエトキシ)エタン14.82g(100ミリモル)、γ−ブチロラクトン150g及びトルエン40gを入れ、180℃で3時間、加熱攪拌し、生成した水及びトルエンを除去した。これにより20%のポリイミドワニスを得た。  In the same apparatus as in Example 1, 52.85 g (200 mmol) of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane 27.44 g (100 mmol), valerolactone 3 g (30 mmol), pyridine 4.7 g (60 mmol), γ -200 g of butyrolactone and 40 g of toluene were added, stirred at room temperature for 30 minutes, then heated, and reacted at 180 ° C for 1 hour with stirring at 200 rpm. After the reaction, toluene and water were removed and the mixture was cooled to room temperature. Next, 14.82 g (100 mmol) of 1,2-bis (2-aminoethoxy) ethane, 150 g of γ-butyrolactone and 40 g of toluene were added, and the mixture was heated and stirred at 180 ° C. for 3 hours to remove the generated water and toluene. . This gave 20% polyimide varnish.

実施例1と同様の装置に1,2,3,4−シクロペンタンテトラカルボン酸ジ無水物42.02g(200ミリモル)、1,3−ビス(アミノメチル)シクロヘキサン14.22g(100ミリモル)、1,2−ビス(2−アミノエトキシ)エタン14.82g(100ミリモル)、バレロラクトン3g(30ミリモル)、ピリジン4.7g(60ミリモル)、γ−ブチロラクトン255g及びトルエン40gを入れ、室温で30分攪拌した。次いで昇温して、180℃で3時間、200rpmで攪拌しながら反応を行った。反応後、共沸した水及びトルエンを除いた。これにより20%のポリイミドワニスを得た。
B.カーボンナノチューブ分散液の製造
次に、本発明で用いられるカーボンナノチューブ分散液の製造方法の実施例を示す。
In the same apparatus as in Example 1, 42.02 g (200 mmol) of 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 14.22 g (100 mmol) of 1,3-bis (aminomethyl) cyclohexane, 14.82 g (100 mmol) of 1,2-bis (2-aminoethoxy) ethane, 3 g (30 mmol) of valerolactone, 4.7 g (60 mmol) of pyridine, 255 g of γ-butyrolactone and 40 g of toluene were added at room temperature. Stir for minutes. Next, the temperature was raised, and the reaction was carried out at 180 ° C. for 3 hours with stirring at 200 rpm. After the reaction, azeotropic water and toluene were removed. This gave 20% polyimide varnish.
B. Production of Carbon Nanotube Dispersion Next, an example of the production method of the carbon nanotube dispersion used in the present invention will be shown.

SWNT(3mg)を、NMP(N−メチルピロリドン)溶媒(30g)と非イオン性界面活性剤Triton X−100(30mg)の混合溶媒に入れて混合し、超音波(20kHz)で1時間処理した。次に、この分散溶液をガラス繊維濾紙(GC−50、保留粒子径0.5μm)で濾過し、カーボンナノチューブ分散溶媒を得た(「カーボンナノチューブ分散液A」という)。  SWNT (3 mg) was mixed in a mixed solvent of NMP (N-methylpyrrolidone) solvent (30 g) and nonionic surfactant Triton X-100 (30 mg) and treated with ultrasonic waves (20 kHz) for 1 hour. . Next, this dispersion solution was filtered with a glass fiber filter paper (GC-50, retained particle diameter 0.5 μm) to obtain a carbon nanotube dispersion solvent (referred to as “carbon nanotube dispersion liquid A”).

SWNT(3mg)を、DMAC(ジメチルアセトアミド)溶媒(30g)と非イオン性界面活性剤Triton X−100(30mg)の混合溶媒に入れて混合し、超音波(20kHz)で1時間処理した。次に、この分散溶液をガラス繊維濾紙(GC−50、保留粒子径0.5μm)で濾過し、カーボンナノチューブ分散溶媒を得た(「カーボンナノチューブ分散液B」という)。  SWNT (3 mg) was mixed in a mixed solvent of DMAC (dimethylacetamide) solvent (30 g) and nonionic surfactant Triton X-100 (30 mg), and treated with ultrasonic waves (20 kHz) for 1 hour. Next, this dispersion solution was filtered through a glass fiber filter paper (GC-50, retained particle diameter 0.5 μm) to obtain a carbon nanotube dispersion solvent (referred to as “carbon nanotube dispersion liquid B”).

SWNT(3mg)を、NMP(N−メチルピロリドン)溶媒(30g)と非イオン性界面活性剤Triton X−100(30mg)の混合溶媒に入れて混合し、超音波(20kHz)で1時間処理した。次に、この混合溶媒に、平均分子量36万のポリビニルピロリドン(PVP)粉末200mgを加え、攪拌溶解した後、50℃で12時間熟成した。次に、この分散溶液をガラス繊維濾紙(GC−50、保留粒子径0.5μm)で濾過し、カーボンナノチューブ分散溶媒を得た(「カーボンナノチューブ分散液C」という)。  SWNT (3 mg) was mixed in a mixed solvent of NMP (N-methylpyrrolidone) solvent (30 g) and nonionic surfactant Triton X-100 (30 mg) and treated with ultrasonic waves (20 kHz) for 1 hour. . Next, 200 mg of polyvinylpyrrolidone (PVP) powder having an average molecular weight of 360,000 was added to this mixed solvent, and the mixture was stirred and dissolved, followed by aging at 50 ° C. for 12 hours. Next, this dispersion solution was filtered through a glass fiber filter paper (GC-50, retained particle diameter 0.5 μm) to obtain a carbon nanotube dispersion solvent (referred to as “carbon nanotube dispersion liquid C”).

SWNT(3mg)を、NMP(N−メチルピロリドン)溶媒(30g)と非イオン性界面活性剤Tween 60(30mg)の混合溶媒に入れて混合し、超音波(20kHz)で1時間処理した。次に、この分散溶液を超遠心分離機により処理し、カーボンナノチューブ分散溶媒を得た(「カーボンナノチューブ分散液D」という)。  SWNT (3 mg) was mixed in a mixed solvent of NMP (N-methylpyrrolidone) solvent (30 g) and nonionic surfactant Tween 60 (30 mg), and treated with ultrasonic waves (20 kHz) for 1 hour. Next, this dispersion was treated with an ultracentrifuge to obtain a carbon nanotube dispersion solvent (referred to as “carbon nanotube dispersion D”).

SWNT(3mg)を、NMP(N−メチルピロリドン)溶媒(30g)と平均分子量130万のポリビニルピロリドン(150mg)の混合溶媒に入れて混合し、超音波(20kHz)で1時間処理した。次に、この分散溶液をガラス繊維濾紙(GC−50、保留粒子径0.5μm)で濾過し、カーボンナノチューブ分散溶媒を得た(「カーボンナノチューブ分散液E」という)。  SWNT (3 mg) was mixed in a mixed solvent of NMP (N-methylpyrrolidone) solvent (30 g) and polyvinylpyrrolidone (150 mg) having an average molecular weight of 1.3 million, and treated with ultrasonic waves (20 kHz) for 1 hour. Next, this dispersion solution was filtered with a glass fiber filter paper (GC-50, retained particle diameter 0.5 μm) to obtain a carbon nanotube dispersion solvent (referred to as “carbon nanotube dispersion E”).

上記実施例7ないし11で得られたカーボンナノチューブ分散液AないしE(30g)と、上記実施例1ないし6で得られた溶剤可溶ポリイミドの有機溶媒混合溶液(30g)を混合攪拌したところ、それぞれ黒色に着色した均一な溶液を得た。混合溶液が適度な粘度となるようにNMP溶媒を真空中で一部蒸発させた後、混合溶液の一部をガラス基板上に垂らしてドクターブレード法により展開し、NMP溶媒を蒸発させることにより薄膜を形成した。それぞれの薄膜を光学顕微鏡で観察したところ、ナノチューブの凝集体は観察されなかった。また、顕微ラマン測定および可視・近赤外光吸収スペクトル測定を行ったところ、ナノチューブのラマンシグナルおよび光吸収が検出された。このように、SWNTを溶剤可溶ポリイミドに均一に分散できることが確認できた。
以上のように、上記実施例4ないし8で得られたカーボンナノチューブ分散液AないしにEは溶剤に可溶なポリイミドに均一に分散することは可能であった。しかしながら、同様のカーボンナノチューブ分散液AないしEを用いても、溶剤に不溶なポリイミドではカーボンナノチューブ分散液を混合することはできない。このような溶剤に不溶なポリイミドの場合、前駆体であるポリアミック酸が溶剤に可溶な場合がある。そこで、次の比較例1では、ポリイミド状態では溶剤に不溶であるが、溶剤に可溶な前駆体であるポリアミック酸へのカーボンナノチューブの分散を試みたが、均一に分散することはできなかった。
比較例1
カーボンナノチューブ分散液A(30g)と、ポリアミック酸ワニスPyer−ML(RC5019)(無水ピロメリット酸PMDAとビス(4−アミノフェニル)エーテルODAの化合物)15%NMP溶液(30g)を混合攪拌したが、溶液中でカーボンナノチューブが凝集し、均一な溶液を得ることができなかった。この溶液のNMP溶媒を蒸発させ、さらにポリアミック酸が脱水反応によりポリイミドに変化するまで加熱したが、カーボンナノチューブをこのポリイミド中に均一に分散することは困難であった。
次に、本発明のカーボンナノチューブ分散液以外の組成の分散液を用いて、溶剤に可溶なポリイミドに対する混合を試みたが、比較例2〜4のように、分散液自体カーボンナノチューブが均一に分散されていないため、やはり均一に分散することは困難であった。
比較例2
SWNT(1mg)を、アセトン10gおよびアセトン10gと非イオン系界面活性剤Triton X−100(10mg)の混合溶媒それぞれに入れて混合し、超音波(20kHz)で1時間処理したところ、超音波処理終了後、両者とも溶液は黒濁せずカーボンナノチューブが凝集した沈殿物が生じてしまい、上記実施例1〜3で得られたいずれの溶剤に可溶なポリイミドに分散することは困難であった。
比較例3
SWNT(1mg)を、ジメチルスルフォキシド10gおよびジメチルスルフォキシド10gと非イオン系界面活性剤Triton X−100(10mg)の混合溶媒それぞれに入れて混合し、超音波(20kHz)で1時間処理したところ、超音波処理終了後、両者とも溶液は黒濁せずカーボンナノチューブが凝集した沈殿物が生じてしまい、上記実施例1〜3で得られたいずれの溶剤に可溶なポリイミドに分散することは困難であった。
比較例4
SWNT(1mg)を、2−プロパノール10gおよび2−プロパノール10gと非イオン系界面活性剤Triton X−100(10mg)の混合溶媒それぞれに入れて混合し、超音波(20kHz)で1時間処理したところ、超音波処理終了後、両者とも溶液は黒濁せずカーボンナノチューブが凝集した沈殿物が生じてしまい、上記実施例1〜3で得られたいずれの溶剤に可溶なポリイミドに分散することは困難であった。
以上のように、本発明で特定されるカーボンナノチューブ分散溶液を溶剤に可溶なポリイミド、特にブロック共重合芳香族ポリイミドに混合することによって、はじめてカーボンナノチューブが均一に分散したポリイミドが得ることができる。
When the carbon nanotube dispersions A to E (30 g) obtained in Examples 7 to 11 and the organic solvent mixed solution (30 g) of the solvent-soluble polyimide obtained in Examples 1 to 6 were mixed and stirred, Uniform solutions colored in black were obtained. After partially evaporating the NMP solvent in vacuum so that the mixed solution has an appropriate viscosity, a part of the mixed solution is dropped on a glass substrate and developed by the doctor blade method, and the NMP solvent is evaporated to form a thin film. Formed. When each thin film was observed with an optical microscope, aggregates of nanotubes were not observed. Further, when microscopic Raman measurement and visible / near-infrared light absorption spectrum measurement were performed, the Raman signal and light absorption of the nanotube were detected. Thus, it was confirmed that SWNT can be uniformly dispersed in the solvent-soluble polyimide.
As described above, the carbon nanotube dispersions A to E obtained in Examples 4 to 8 were able to be uniformly dispersed in a polyimide soluble in a solvent. However, even if the same carbon nanotube dispersions A to E are used, the carbon nanotube dispersion cannot be mixed with a polyimide insoluble in a solvent. In the case of polyimide insoluble in such a solvent, the precursor polyamic acid may be soluble in the solvent. Therefore, in Comparative Example 1 below, although insoluble in a solvent in a polyimide state, an attempt was made to disperse the carbon nanotubes in the polyamic acid, which is a precursor soluble in the solvent, but it was not possible to disperse uniformly. .
Comparative Example 1
The carbon nanotube dispersion A (30 g) and polyamic acid varnish Pyer-ML (RC5019) (compound of pyromellitic anhydride PMDA and bis (4-aminophenyl) ether ODA) 15% NMP solution (30 g) were mixed and stirred. The carbon nanotubes aggregated in the solution, and a uniform solution could not be obtained. Although the NMP solvent of this solution was evaporated and further heated until the polyamic acid was changed to polyimide by dehydration reaction, it was difficult to uniformly disperse the carbon nanotubes in this polyimide.
Next, using a dispersion having a composition other than the carbon nanotube dispersion of the present invention, mixing with a solvent-soluble polyimide was attempted. As in Comparative Examples 2 to 4, the dispersion itself had a uniform carbon nanotube. Since it was not dispersed, it was still difficult to disperse uniformly.
Comparative Example 2
When SWNT (1 mg) was mixed in each of 10 g of acetone and 10 g of acetone and a mixed solvent of nonionic surfactant Triton X-100 (10 mg) and treated with ultrasonic waves (20 kHz) for 1 hour, ultrasonic treatment After the completion, both solutions did not become cloudy and a precipitate in which carbon nanotubes were aggregated was formed, and it was difficult to disperse in any solvent-soluble polyimide obtained in Examples 1 to 3 above. .
Comparative Example 3
SWNT (1 mg) was mixed in 10 g of dimethyl sulfoxide and 10 g of dimethyl sulfoxide and a mixed solvent of nonionic surfactant Triton X-100 (10 mg) and treated with ultrasonic waves (20 kHz) for 1 hour. As a result, after the ultrasonic treatment was completed, both solutions did not become cloudy and a precipitate in which the carbon nanotubes were aggregated was generated, and dispersed in any solvent-soluble polyimide obtained in Examples 1 to 3 above. It was difficult.
Comparative Example 4
When SWNT (1 mg) was mixed in 10 g of 2-propanol and 10 g of 2-propanol and a mixed solvent of nonionic surfactant Triton X-100 (10 mg) and treated with ultrasonic waves (20 kHz) for 1 hour. In addition, after the ultrasonic treatment is finished, both of the solutions are not cloudy and a precipitate in which the carbon nanotubes are aggregated is formed, and it is dispersed in any solvent-soluble polyimide obtained in Examples 1 to 3 above. It was difficult.
As described above, a polyimide in which carbon nanotubes are uniformly dispersed can be obtained for the first time by mixing the carbon nanotube dispersion solution specified in the present invention with a solvent-soluble polyimide, particularly a block copolymerized aromatic polyimide. .

Claims (8)

カーボンナノチューブ、アミド系極性有機溶媒および非イオン性界面活性剤からなるカーボンナノチューブ分散溶液を溶剤に可溶なポリイミドの有機溶媒混合液に混合することにより得られたカーボンナノチューブ分散ポリイミド。A carbon nanotube-dispersed polyimide obtained by mixing a carbon nanotube dispersion solution composed of carbon nanotubes, an amide polar organic solvent and a nonionic surfactant with an organic solvent mixed solution of polyimide soluble in a solvent. アミド系極性有機溶媒がN−メチルピロリドン(NMP)及び/又はジメチルアセトアミドであることを特徴とする請求項1に記載のカーボンナノチューブ分散ポリイミド。The carbon nanotube-dispersed polyimide according to claim 1, wherein the amide polar organic solvent is N-methylpyrrolidone (NMP) and / or dimethylacetamide. 非イオン性界面活性剤がポリオキシエチレン系界面活性剤であることを特徴とする請求項1又は2に記載のカーボンナノチューブ分散ポリイミド。The carbon nanotube-dispersed polyimide according to claim 1 or 2, wherein the nonionic surfactant is a polyoxyethylene-based surfactant. 溶剤に可溶なポリイミドが、芳香族ジアミン又は脂肪族ジアミンから得られる3成分以上のポリイミドであることを特徴とする請求項1ないし3のいずれかに記載のカーボンナノチューブ分散ポリイミド。The carbon nanotube-dispersed polyimide according to any one of claims 1 to 3, wherein the solvent-soluble polyimide is a three or more component polyimide obtained from an aromatic diamine or an aliphatic diamine. カーボンナノチューブ分散液中の非イオン性界面活性剤の配合量が0.005〜5重量%であることを特徴とする請求項1ないし4のいずれかに記載のカーボンナノチュ−ブ分散ポリイミド。The carbon nanotube-dispersed polyimide according to any one of claims 1 to 4, wherein the compounding amount of the nonionic surfactant in the carbon nanotube dispersion is 0.005 to 5% by weight. アミド系極性有機溶媒及び非イオン系界面活性剤混合溶液に、強攪拌処理を行いながらカーボンナノチューブを混合分散し、得られた分散溶液を溶剤に可溶なポリイミドの有機溶媒混合液に混合することを特徴とする、カーボンナノチューブ分散ポリイミドの製造方法。Carbon nanotubes are mixed and dispersed in a mixed solution of an amide polar organic solvent and a nonionic surfactant with strong stirring, and the resulting dispersion is mixed with an organic solvent mixture of polyimide soluble in the solvent. A method for producing a carbon nanotube-dispersed polyimide, characterized in that: カーボンナノチューブ分散液をフィルターによりろ過処理した後、溶剤に可溶なポリイミドの有機溶媒混合液に混合することを特徴とする請求項6に記載のカーボンナノチューブ分散ポリイミドの製造方法。The method for producing a carbon nanotube-dispersed polyimide according to claim 6, wherein the carbon nanotube dispersion is filtered with a filter and then mixed with a solvent-soluble polyimide organic solvent mixture . カーボンナノチューブ分散液を溶剤に可溶なポリイミドの有機溶媒混合液に混合した後フィルターによるろ過処理を行うことを特徴とする請求項6又は7に記載のカーボンナノチューブ分散ポリイミドの製造方法。The method for producing a carbon nanotube-dispersed polyimide according to claim 6 or 7, wherein the carbon nanotube dispersion is mixed with an organic solvent mixed solution of polyimide soluble in a solvent, followed by filtration with a filter.
JP2005517154A 2004-01-20 2005-01-20 Carbon nanotube-dispersed polyimide composition Expired - Fee Related JP5019152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517154A JP5019152B2 (en) 2004-01-20 2005-01-20 Carbon nanotube-dispersed polyimide composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004011899 2004-01-20
JP2004011899 2004-01-20
PCT/JP2005/001030 WO2005068556A1 (en) 2004-01-20 2005-01-20 Carbon nanotube-dispersed polyimide composition
JP2005517154A JP5019152B2 (en) 2004-01-20 2005-01-20 Carbon nanotube-dispersed polyimide composition

Publications (2)

Publication Number Publication Date
JPWO2005068556A1 JPWO2005068556A1 (en) 2007-09-06
JP5019152B2 true JP5019152B2 (en) 2012-09-05

Family

ID=34792353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517154A Expired - Fee Related JP5019152B2 (en) 2004-01-20 2005-01-20 Carbon nanotube-dispersed polyimide composition

Country Status (2)

Country Link
JP (1) JP5019152B2 (en)
WO (1) WO2005068556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619849B1 (en) * 2014-07-03 2016-05-18 전북대학교산학협력단 Preparation method of hybrid alignment layer with improvement of the relaxation time for LCD and the hybrid alignment layer made thereby

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290292A (en) * 2004-04-02 2005-10-20 National Institute Of Advanced Industrial & Technology Saturable absorber of carbon nanotube-dispersed polyimide
JP4761183B2 (en) * 2004-11-01 2011-08-31 独立行政法人産業技術総合研究所 Carbon nanotube-dispersed polyimide and method for producing the same
JP2007023149A (en) * 2005-07-15 2007-02-01 National Institute Of Advanced Industrial & Technology Polyimide in which carbon nanotube is dispersed and conductivity is controlled
ATE476394T1 (en) * 2005-10-11 2010-08-15 Fibre E Tessuti Speciali S P A SYNTHESIS OF CARBON NANOTUBE AND/OR NANOFIBERS ON A POLYMER SUBSTRATE
CN100348667C (en) * 2006-05-11 2007-11-14 上海交通大学 Process for preparing rare earth modified carbon nanotube/polyimide composite materials
JP4951478B2 (en) * 2007-12-03 2012-06-13 三菱レイヨン株式会社 Method for producing carbon nanotube-containing matrix resin
JP5777323B2 (en) * 2010-11-01 2015-09-09 大阪瓦斯株式会社 Nanocarbon-containing coating composition and coating film formed thereby
JP5728681B2 (en) * 2011-02-14 2015-06-03 地方独立行政法人大阪府立産業技術総合研究所 Nanocarbon-dispersed polyimide solution and composite material produced using the same
EP3438992A4 (en) * 2016-04-01 2019-04-17 Mitsubishi Chemical Corporation Resin composition
US20220135742A1 (en) * 2019-03-07 2022-05-05 Mitsubishi Gas Chemical Company, Inc. Flame-retardant polyimide molding material and molded object
CN117487303A (en) * 2023-12-28 2024-02-02 汕头市科彩新材料有限公司 Photo-thermal aging resistant modified polypropylene material, preparation method thereof and application thereof in non-woven fabric

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
US5502143A (en) * 1992-12-25 1996-03-26 Pi Material Research Laboratory Process for preparing polyimide resins
WO2002076724A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes
WO2002100931A1 (en) * 2001-06-08 2002-12-19 Eikos, Inc. Nanocomposite dielectrics
WO2003060035A1 (en) * 2001-12-20 2003-07-24 Cognitek Management Systems, Inc. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
JP2004115788A (en) * 2002-09-04 2004-04-15 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2004167667A (en) * 2002-11-01 2004-06-17 Mitsubishi Rayon Co Ltd Composition containing carbon nanotubes and method of adjusting the same, and composite matter formed of the composition and method of manufacturing the same
JP2005154630A (en) * 2003-11-27 2005-06-16 National Institute Of Advanced Industrial & Technology Carbon nanotube-dispersed polar organic solvent
JP2005162877A (en) * 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology Carbon nanotube-dispersed polar organic solvent and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502143A (en) * 1992-12-25 1996-03-26 Pi Material Research Laboratory Process for preparing polyimide resins
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
WO2002076724A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes
WO2002100931A1 (en) * 2001-06-08 2002-12-19 Eikos, Inc. Nanocomposite dielectrics
WO2003060035A1 (en) * 2001-12-20 2003-07-24 Cognitek Management Systems, Inc. Composition for enhancing thermal conductivity of a heat transfer medium and method of use thereof
JP2004115788A (en) * 2002-09-04 2004-04-15 Du Pont Toray Co Ltd Polyimide film and method for producing the same
JP2004167667A (en) * 2002-11-01 2004-06-17 Mitsubishi Rayon Co Ltd Composition containing carbon nanotubes and method of adjusting the same, and composite matter formed of the composition and method of manufacturing the same
JP2005154630A (en) * 2003-11-27 2005-06-16 National Institute Of Advanced Industrial & Technology Carbon nanotube-dispersed polar organic solvent
JP2005162877A (en) * 2003-12-02 2005-06-23 National Institute Of Advanced Industrial & Technology Carbon nanotube-dispersed polar organic solvent and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619849B1 (en) * 2014-07-03 2016-05-18 전북대학교산학협력단 Preparation method of hybrid alignment layer with improvement of the relaxation time for LCD and the hybrid alignment layer made thereby

Also Published As

Publication number Publication date
WO2005068556A1 (en) 2005-07-28
JPWO2005068556A1 (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5019152B2 (en) Carbon nanotube-dispersed polyimide composition
US7906043B2 (en) Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
JP2007023149A (en) Polyimide in which carbon nanotube is dispersed and conductivity is controlled
JP6156363B2 (en) Fine carbon dispersion composition and polyimide-fine carbon composite using the same
Hu et al. Efficient dispersion of multi‐walled carbon nanotubes by in situ polymerization
JP5870720B2 (en) Carbon nanotube dispersant made of polyamic acid
JP2008285368A (en) Dispersion of multi-walled carbon nanotube and its production method
Wu et al. Comparison of polyimide/multiwalled carbon nanotube (MWNT) nanocomposites by in situ polymerization and blending
US10011694B2 (en) Polyimide-carbon nanotube composite film
JP2012096953A (en) Nanocarbon aqueous dispersant, method of producing the same, and nanocarbon-containing structure
US11242443B2 (en) Dark-color polymer composite films
JP4761183B2 (en) Carbon nanotube-dispersed polyimide and method for producing the same
WO2022176905A1 (en) Dispersion composition and dispersant
US20220064406A1 (en) Manufacturing process for dark-color polymer composite films
Shen et al. Dispersion behavior of single-walled carbon nanotubes by grafting of amphiphilic block copolymer
Chien et al. Synthesis and dielectric properties of polyimide/hollow silica nanofiber composite
Mallakpour et al. Microwave assisted functionalization of carboxylated‐multiwalled carbon nanotubes with 5‐aminoisophthalic acid and its application for the preparation of chiral poly (ester‐imide)/CNT nanocomposites
JP2005219986A (en) Dispersion of single-wall carbon nanotube and production method therefor
Chang et al. Obvious improvement of dispersion of multiwall carbon nanotubes in polymer matrix through careful interface design
Antolín‐Cerón et al. Comparative study of the thermal and mechanical properties of nanocomposites prepared by in situ polymerization of ε‐caprolactone and functionalized carbon nanotubes
Wang et al. In situ preparation of polyimide/amino‐functionalized carbon nanotube composites and their properties
Mallakpour et al. Chemical surface coating of MWCNT s with riboflavin and its application for the production of poly (ester‐imide)/MWCNT s composites containing 4, 4′‐thiobis (2‐tert‐butyl‐5‐methylphenol) linkages: Thermal and morphological properties
Jiang et al. Aqueous solution blending route for preparing flexible and antistatic polyimide/carbon nanotube composite films with core‐shell structured polyimide/graphene microspheres
JP2007063468A (en) Slurry containing composite material particle and method for producing composite material particle
JP2013154337A (en) Carbon nanotube dispersant comprising polyamic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Ref document number: 5019152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees